NEUE UND BEWÄHRTE METHODEN ZUR SICHERSTELLUNG DER FUNKTIONALEN SICHERHEIT

Dr. Alexander Schloske

NEUE UND BEWÄHRTE METHODEN ZUR SICHER-STELLUNG DER FUNKTIONALEN SICHERHEIT

Neue Herausforderungen – Erfolg versprechende Lösungsansätze FpF-Seminar, 03.-04. Juli 2012, Stuttgart

Dr.-Ing. Alexander Schloske

Abteilungsleiter Produkt- und Qualitätsmanagement

Telefon: +49(0)711/9 70-1890 Fax: +49(0)711/9 70-1002

E-Mail: alexander.schloske@ipa.fraunhofer.de

Internet: www.ipa.fraunhofer.de

© Fraunhofer

Vortragsinhalte

- Methoden und Werkzeuge zur Gefahren- und Risikoanalyse
- Methoden und Werkzeuge zur Analyse systematischer Fehler
- Methoden und Werkzeuge zur Analyse zufälliger Fehler
- Zusammenspiel der Methoden
- Erläuterung anhand von Beispielen

METHODEN ZUR ANALYSE MECHATRONISCHER SYSTEME

© Fraunhofer

Funktionale Sicherheit

Methoden zur Analyse mechatronischer Systeme

Methoden zur SIL-Klassifizierung

- Gefahren- und Risikoanalyse
- Risikograph

Methoden zur Analyse systematischer Fehler

- Fehlermöglichkeits- und Einflussanalyse (FMEA)
- Fehlerbasierte System-Reaktionsanalyse (FSR)
- Paarvergleichsmatrix

Methoden zur Analyse zufälliger Fehler

- Fehlerbaumanalyse (FTA)
- Fehlermöglichkeits-, Einfluss- und Diagnoseanalyse (FMEDA)
- Berechnungsalgorithmen

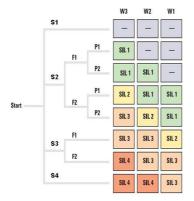
METHODEN ZUR SIL-KLASSIFIZIERUNG

© Fraunhofer

Methoden zur Analyse mechatronischer Systeme Gefahren- und Risikoanalyse

Zielsetzung:

 Systematische Ermittlung potentieller Gefahrenund Risiken des Systems


Methodisches Vorgehen:

- Definition der Hauptfunktionen des Systems
- Ermittlung der potentiellen Fehlfunktionen
- Ermittlung der Gefahren und Risiken

Nutzen/Anmerkung:

- Frühzeitige Durchführung
- Betrachtung unabhängig vom Sicherheitskonzept (Grundlage für Sicherheitskonzept)
- Voraussetzung zur (A)SIL-Einstufung

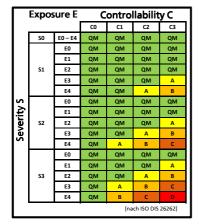
Risikograph zur SIL-Klassifizierung nach DIN EN 61508

Zielsetzung:

 Systematische Ermittlung des SIL-Levels auf Basis der Gefahren- und Risikoanalyse

Methodisches Vorgehen:

- Bestimmung des SIL-Levels anhand der
 - Schwere (S)
 - Häufigkeit des Ausgesetztseins (F)
 - Beherrschbarkeit (P)
 - Wahrscheinlichkeit des Auftretens (W)


Nutzen/Anmerkung:

- Systematisches und nachvollziehbares Vorgehen
- Basis für Methodenanwendung und Zielwerte

© Fraunhofer

Methoden zur Analyse mechatronischer Systeme Risikograph zur ASIL-Klassifizierung nach ISO/DIS 26262

Zielsetzung:

 Systematische Ermittlung des ASIL-Levels auf Basis der Gefahren- und Risikoanalyse

Methodisches Vorgehen:

- Bestimmung des ASIL-Levels anhand
 - der Schwere (Severity)
 - der Häufigkeit des Ausgesetztseins (Exposure)
 - der Beherrschbarkeit (Controllability)

Nutzen/Anmerkung:

- Systematisches und nachvollziehbares Vorgehen
- Basis für Vorgaben zur Methodenanwendung und für Zielwerte der weiteren Entwicklung

Risikograph zur ASIL-Klassifizierung nach ISO 26262

Exposure E Controllability C

			CO	C1	C2	С3
	S0	E0 – E4	QM	QM	QM	QM
Severity S		E0	QM	QM	QM	QM
		E1	QM	QM	QM	QM
	S1	E2	QM	QM	QM	QM
		E3	QM	QM	QM	Α
		E4	QM	QM	Α	В
		E0	QM	QM	QM	QM
		E1	QM	QM	QM	QM
	S2	E2	QM	QM	QM	Α
		E3	QM	QM	Α	В
		E4	QM	Α	В	С
		E0	QM	QM	QM	QM
		E1	QM	QM	QM	Α
	S3	E2	QM	QM	Α	В
		E3	QM	Α	В	С
		E4	QM	В	С	D

[nach ISO 26262]

Schwere (Severity)

- **S0: keine** Verletzungsgefahr
- 51: geringe und mäßige Verletzungen
- **52: ernste** und **möglicherweise tödliche** Verletzungen
- 53: schwere und wahrscheinlich tödliche Verletzungen

Häufigkeit des Ausgesetztseins (Exposure)

- E1: selten: Situation tritt für die meisten Fahrer seltener als einmal pro Jahr auf
- E2: gelegentlich: Situation tritt für die meisten Fahrer wenige Male pro Jahr auf
- E3: ziemlich oft: Situation tritt für Durchschnittsfahrer einmal im Monat oder öfter auf
- E4: oft: Situation die bei nahezu jeder Fahrt auftritt

Beherrschbarkeit (Controllability)

- C1: einfach beherrschbar: mehr als 99% der Fahrer oder der anderen Verkehrsteilnehmer können den Schaden üblicherweise abwenden
- C2: durchschnittlich beherrschbar: mehr als 90% der Fahrer oder der anderen Verkehrsteilnehmer können den Schaden üblicherweise abwenden
- C3: schwierig oder gar nicht beherrschbar: weniger als 90% der Fahrer oder der anderen Verkehrsteilnehmer können den Schaden üblicherweise abwenden

© Fraunhofer

METHODEN ZUR ANALYSE SYSTEMATISCHER FEHLER

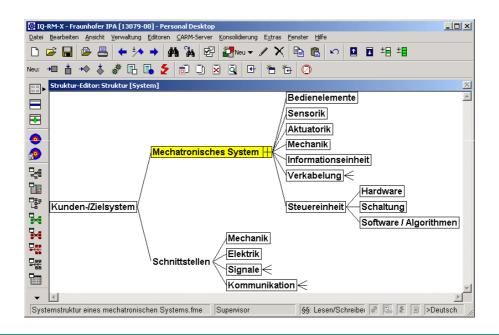
Fehlermöglichkeits- und Einflussanalyse (FMEA)

Zielsetzung:

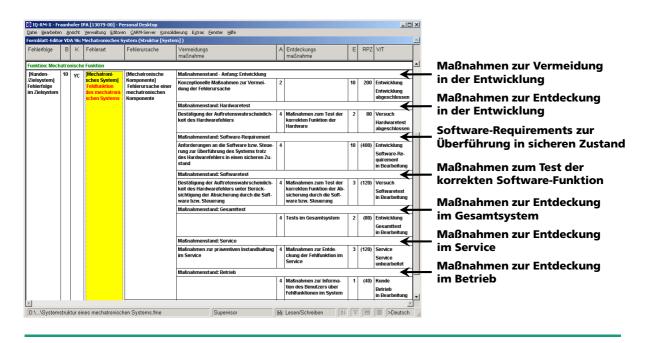
 Systematische Ermittlung potentieller Fehlfunktionen des betrachteten Systems

Methode nach VDA 4 Kapitel 3 (2006):

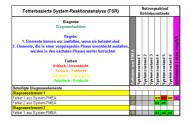
- 1: Strukturanalyse (Strukturbaum)
- 2: Funktionsanalyse (Funktionsnetze)
- 3: Fehleranalyse (Fehlernetze)
- 4: Maßnahmenanalyse und Bewertung
- 5: Optimierung (falls notwendig)


Nutzen/Anmerkung:

- Frühzeitige Ermittlung von Fahrsituationen,
 Funktionen und Erstellung von Funktionsnetzen
- Präzise Benennung der Fehlfunktionen
- Detaillierte Übersicht über Fehlfunktionen


© Fraunhofer

Methoden zur Analyse mechatronischer Systeme Mögliche Systemstruktur eines mechatronischen Systems

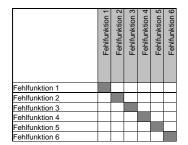

Methoden zur Analyse mechatronischer Systeme Mögliche Maßnahmenstruktur eines mechatronischen Systems

© Fraunhofer

Methoden zur Analyse mechatronischer Systeme Fehlerbasierte System-Reaktionsanalyse (FSR)

Zielsetzung:

- Analyse komplexer Fehlermodelle
- Definition von Diagnose- und Absicherungsmaßnahmen für komplexer Fehlermodelle
- Ermittlung von Diagnosedeckungsgraden


Methode:

- Übernahme Fehlfunktionen der System-FMEA
- Bewertung Entdeckbarkeit von Ausfallarten unter Berücksichtigung von Systemzuständen

Nutzen/Anmerkung:

- Diagnosedeckungsgrade für komplexe Fehler
- Hinweise auf "schlafende Fehler" im System

Paarvergleichsmatrix für schlafende Fehler

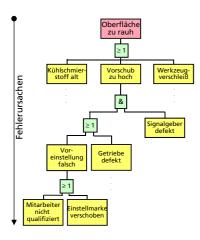
Zielsetzung:

 Bewertung des Risikos schlafender Fehler unter Berücksichtigung des zeitlichen Auftretens

Methode:

- Gegenüberstellung schlafender Fehler in der Paarvergleichsmatrix
- Bewertung der Auswirkungen und Entdeckbarkeit in Abhängigkeit des zeitlichen Auftretens

Nutzen/Anmerkung:


 Hilfsmittel zur Entwicklung des Sicherheitskonzepts für zeitlich unabhängig auftretende Mehrfachfehler (latent und multiple faults)

© Fraunhofer

METHODEN ZUR ANALYSE ZUFÄLLIGER FEHLER

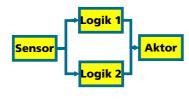
Fehlerbaumanalyse (FTA)

Zielsetzung:

 Ermittlung und Visualisierung aller Fehlerursachen, die zum unerwünschten Ereignis führen

Methode:

- Systemanalyse und Erstellung des Fehlerbaums
- Quantitative Auswertung des Fehlerbaums


Nutzen/Anmerkung:

- Visualisierung von Ausfällen und deren Zusammenhänge und Wahrscheinlichkeiten
- Beurteilung von Systemen und Produkten bzgl. Sicherheit und Zuverlässigkeit

© Fraunhofer

Methoden zur Analyse mechatronischer Systeme Reliability Block Diagramm

Teilsysteme der Sicherheitsfunktion

Zielsetzung:

 Hilfsmittel zur Zerlegung der an der Sicherheitsfunktion beteiligten Teilsysteme

Methode:

- Abbildung der an der Sicherheitsfunktion beteiligten Teilsysteme entsprechend der Architektur
 - Seriell
 - Parallel
 - Common cause

Nutzen/Anmerkung:

 Voraussetzung zur Berechnung der FuSi-Parameter (z.B. PMHF, Fault-Metrik) in der FMEDA

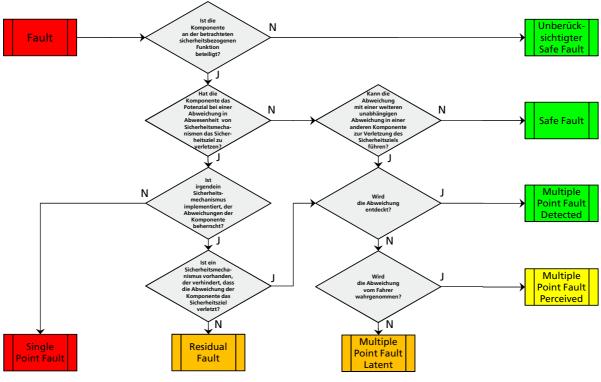
Failure Modes, Effects and Diagnostic Analysis (FMEDA)

Zielsetzung:

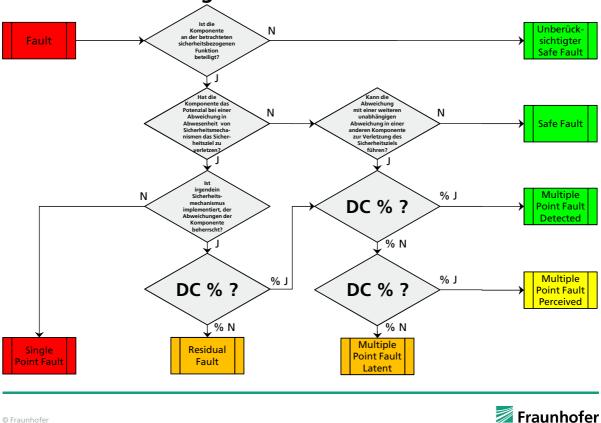
 Analyse der Fehlermodi der an der Sicherheitsfunktion beteiligten Komponenten

Methode:

- Auflistung aller Abweichungen der an der Sicherheitsfunktion beteiligten Komponenten
- Bewertung der Abweichungen/Ausfälle
- Ermittlung der Fehlerraten

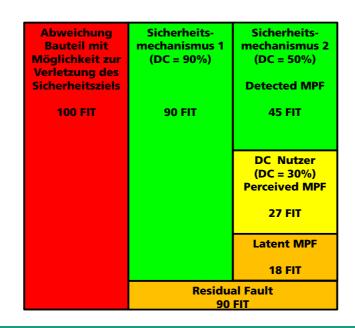

Nutzen/Anmerkung:

- Tabellarisches Verfahren zur Berechnung der FuSi-Parameter (z.B. PMHF, Fault-Metriken)
- Pro Sicherheitsziel Erstellung einer FMEDA


© Fraunhofer

Fraunhofer

Fault-Klassifizierung nach ISO 26262


Fault-Klassifizierung nach ISO 26262

Berechnungsmodell

© Fraunhofer

Residual, Detected, Perceived und Latent Multiple Faults

Berechnungsalgorithmen für Fault-Metriken und gefahrbringende Ausfälle nach ISO 26262-5, Annex E und G

$$\begin{aligned} & \text{Single Point Fault metric} = 1 - \frac{\sum\limits_{\text{Safety related HW elements}} (\lambda_{\text{SPF}} + \lambda_{\text{RF}})}{\sum\limits_{\text{Safety related HW elements}} = \frac{\sum\limits_{\text{Safety related HW elements}} (\lambda_{\text{MPF}} + \lambda_{\text{S}})}{\sum\limits_{\text{Safety related HW elements}} \end{aligned}$$

where $\sum_{\text{safety related HW elements}} \lambda_x$ is the sum of λ_x of the safety-related hardware elements of the item.

ASIL	PMHF	SPFM	LFM		
Α	< 10 ⁻⁶	-	-		
В	< 10 ⁻⁷	≥ 90%	≥ 60%		
С	< 10 ⁻⁷	≥ 97%	≥ 80%		
D	< 10 ⁻⁸	≥ 99%	≥ 90%		

Legende:

PMHF = Probabilistic Metric for random Hardware Failures (PMHF)

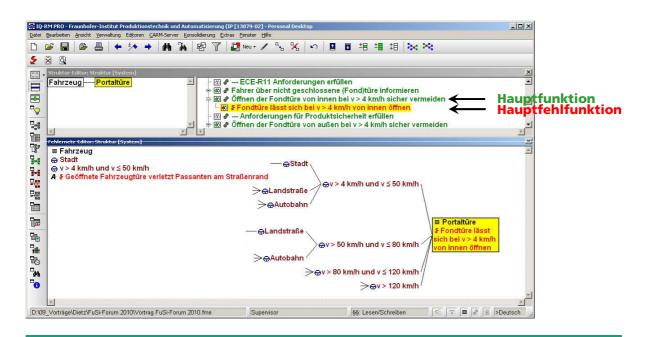
SPFM = Single-point fault metric LFM = Latent-fault metric

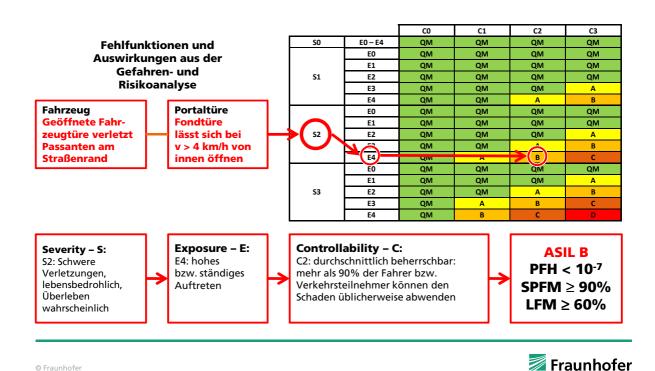
Quelle: ISO 26262-5

© Fraunhofer

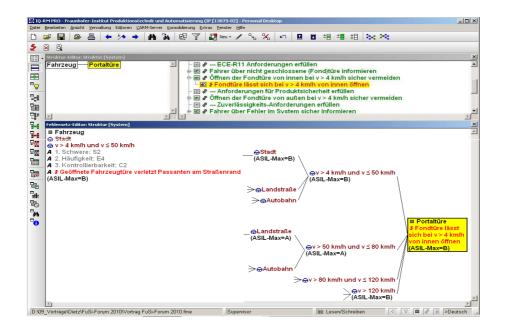
ERLÄUTERUNG ANHAND EINES BEISPIELSYSTEMS

Erläuterung anhand eines Beispielsystems Beispielsystem (Fahrzeug und Werte zufällig gewählt)



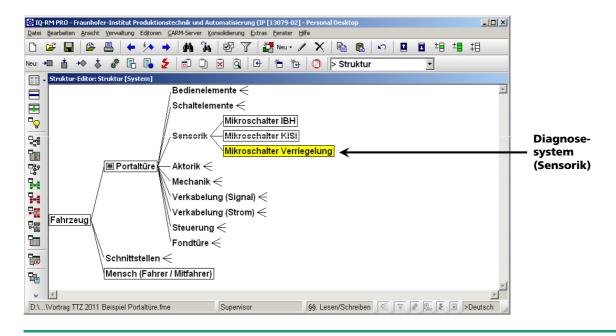

1965 20xx?

© Fraunhofer Fraunhofer

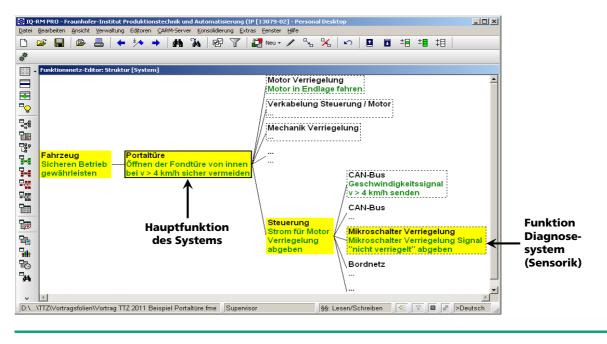

Erläuterung anhand eines Beispielsystems Gefahren- und Risikoanalyse

Möglicher Risikograph gemäß ISO/DIS 26262

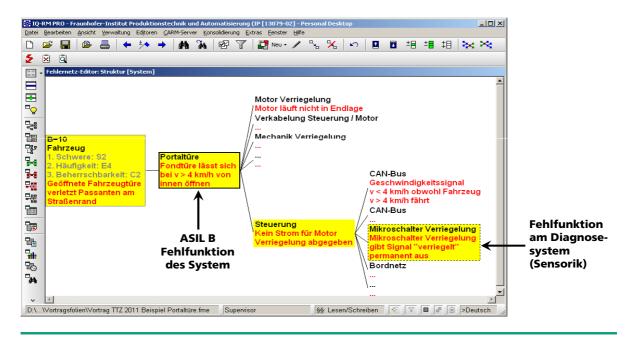
Erläuterung anhand eines Beispielsystems Gefahren- und Risikoanalyse mit ASIL-Klassifizierung



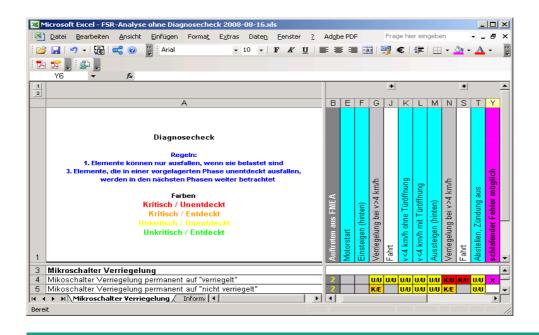
ANALYSE SYSTEMATISCHER FEHLER


© Fraunhofer

Erläuterung anhand eines Beispielsystems Mögliche Systemstruktur einer "Portaltüre"

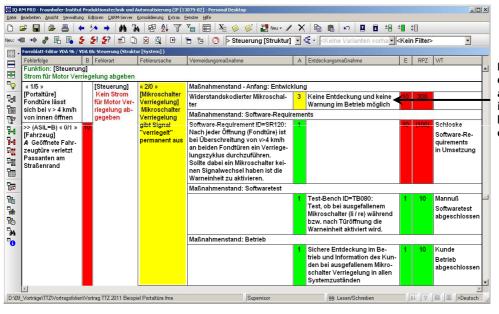


Mögliches Funktionsnetz einer "Portaltüre"

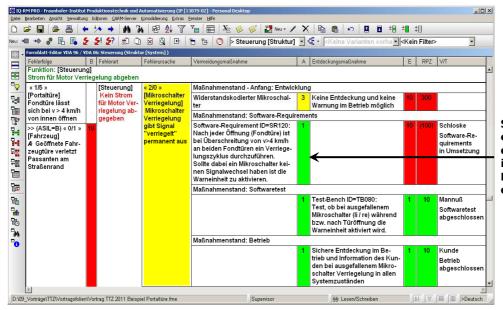

Fraunhofer

Erläuterung anhand eines Beispielsystems Mögliches Fehlernetz einer "Portaltüre"

© Fraunhofer


Mögliche FSR eines Diagnosesystems der "Portaltüre"

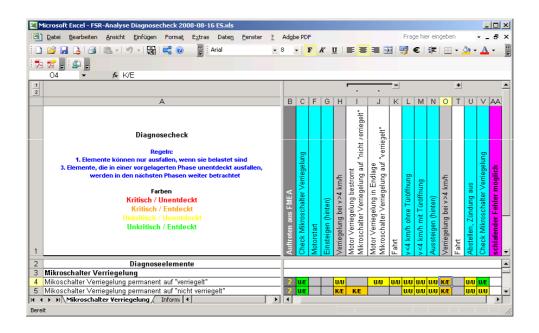
Fraunhofer


© Fraunhofer

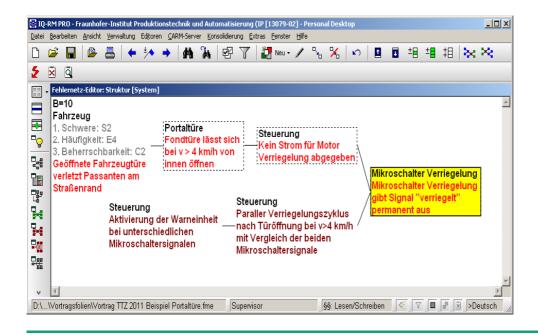
Erläuterung anhand eines Beispielsystems Mögliches Formblatt einer "Portaltüre"

Keine Erkennung der Fehlfunktion an der Sensorik im Betrieb und keine Information des Fahrers

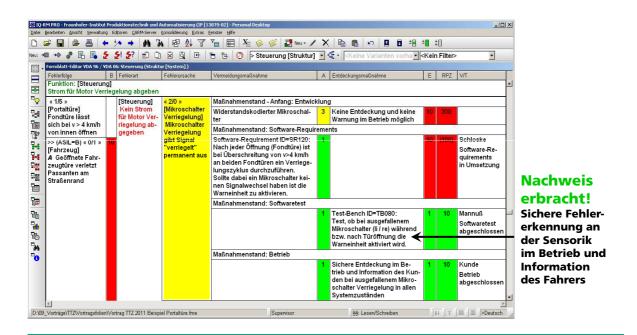
Mögliches Formblatt einer "Portaltüre"



Sichere Fehlererkennung der Sensorik im Betrieb und Information des Fahrers


© Fraunhofer

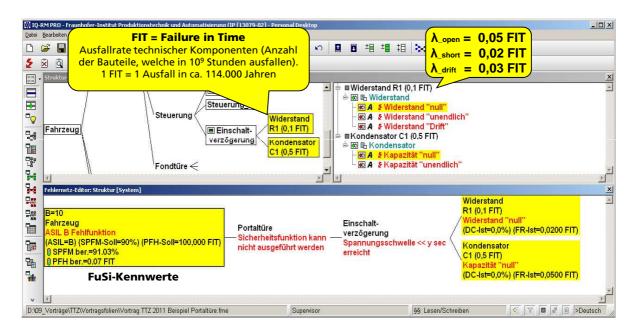
Erläuterung anhand eines Beispielsystems Mögliche FSR eines Diagnosesystems der "Portaltüre"


Analyse und Bewertung von Fehlfunktionen, Fehlererkennung / Fehlerreaktion im System "Portaltüre"

Fraunhofer

© Fraunhofer

Erläuterung anhand eines Beispielsystems Mögliches Formblatt einer "Portaltüre"



ANALYSE ZUFÄLLIGER FEHLER

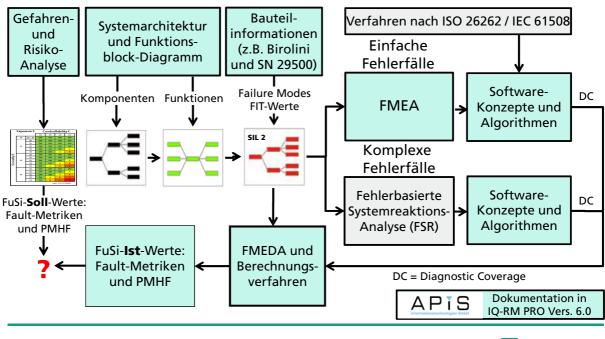
Erläuterung anhand eines Beispielsystems

FuSi-Kennwerte anhand von Fehlernetzen und Ausfallraten bis auf die Ebene der elektr(on)ischen Bauteile

© Fraunhofer

Failure Modes, Effects and Diagnostic Analysis (FMEDA)

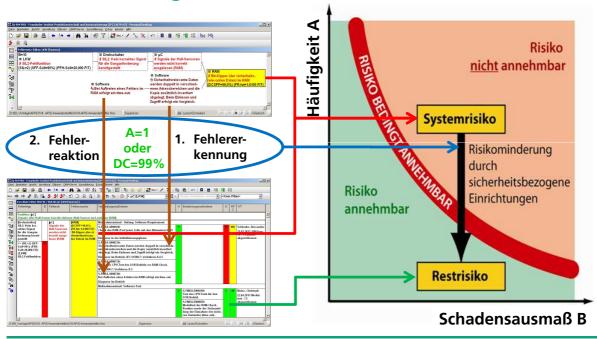
FMEDA für ein System (gemäß ISO/DIS 26262)


			Sicherheitsziel 1: F	eine un	gewol	lte Aktivierung der EPB während der	Fahrt					
Komponente	FIT-Wert	Sicherheitsrelevant	Sunchmed / Newsdown	Fehlerratemestelung (FIT)	Potenzial zur Verletzung des Sicherheitsziels in Abwesenheit eines Sicherheit zmechsmismus	Schrinkenscheinen zu Vermelung der Verlezung des	Abdeckung der Fehlerart / Abweichung zur Verletzung des Sicherheitsziels	Residual oder Single Point Fault (Fehlernate / FIT)	Fehlerart / Abweichung, weldte zusammen mit einer anderen unabhängigen Fehlerart / Abweichung zu einer Verletzung des Sicherheitszies führen kann	Scherheitzmachanismus zur Vermedung eines latenten Fehlers / Abweichung	Abdeckung der der latenten Fehlerart / Abweichung	Latent Multiple-Point Fault (Fehlernate / FTT)
Spannungs-			_			0.01	- 01			0.4	_	
versorgung	50,00	Jø	Ausfall während der Fahrt	2,4750				_				-
		_	Ausfall im Stand	0,0250				_				-
		_	Reduzierte Spannung während der Fahrt	47,0250	X	Übenvachung durch externe ECU	99%	0,4703				\vdash
		_	Reduzierte Spannung im Stand	0,4750				_				\vdash
Quarz	5,00	ja	Ausfall während der Fahrt	2,4750	X	Überwachung durch Hardware-Watchdog	90%	0,2475				\vdash
			Ausfall im Stand	0,0250								\vdash
	-		Drift während der Fahrt	2,4750	X	Überwachung durch Hardware-Watchdog	90%	0,2475				\vdash
	-		Drift im Stand	0,0250								\vdash
Relais	300,00	ja	Stuck at ON während der Fahrt	0,2250				_				-
			Stuck at OFF während der Fahrt	0,0750				_				-
	-	-	Stuck at ON im Stand Stuck at OFF im Stand	224,7750			-	_				-
T	40,00	10		74,9250			-	_				\vdash
Taster	40,00	ja	Stuck at ON während der Fahrt				-	_				-
	-		Stuck at OFF während der Fahrt Stuck at ON im Stand	19,9800			-	_				\vdash
	-		Stuck at OFF Im Stand	19,9800			-	_				\vdash
Hardware-	1	-	Stock at OTT III Statio	23,5000	_		 			Check bei	_	\vdash
Watchdog	10.00	nein	Ausfall	10.0000		1			×	Zündung "ON"	60%	4,0000
μC-Logik	20,00		Ausfall zu Stuck at ON während der Fahrt	9,9000	×	keine	0%	9,9000			30.0	.,
,	,00	1,-	Ausfall zu Stuck at OFF während der Fahrt	9,9000			1	-,00				
			Ausfall zu Stuck at ON im Stand	0,1000								
			Ausfall zu Stuck at OFF Im Stand	0,1000								
μC-ROM	20,00	Ja	Bitkipper oder Zeildefekt	10,0000	×	Checksummenprüfung beim Einlesen	99%	0,1000				
			Bitkipper oder Zelldefekt	10,0000								
μC-RAM	20,00	Ja	Bitkipper oder Zelldefekt während der Fahrt	9,9000	х	Checksummenprüfung beim Ein-/Auslesen	99%	0,0990				
			Bitkipper oder Zelldefekt während der Fahrt	9,9000								
			Bitkipper oder Zelldefekt im Stand	0,1000								
	_	_	Bitkipper oder Zelldefekt im Stand	0,1000			_					
μC-I/O	20,00	ja	Ausfall zu Stuck at ON während der Fahrt	9,9000	Х	keine	0%	9,9000				
		_	Ausfall zu Stuck at OFF während der Fahrt	9,9000				_				
		_	Ausfall zu Stuck at ON im Stand	0,1000				_				
		_	Ausfall zu Stuck at OFF im Stand	0,1000								
μC-Watchdog	20,00	nein	Ausfall	20,0000			1		×	1		20,0000

© Fraunhofer

ZUSAMMENSPIEL DER METHODEN

Zusammenhang zwischen den eingesetzten Methoden Vorgehensweise zur Analyse und Absicherung funktional sicherer mechatronischer Systeme



© Fraunhofer

Fraunhofer

FMEA und FMEDA

Analyse und Bewertung von Fehlfunktionen, Fehlererkennungen und Fehlerreaktionen im Betrieb

FAZIT

© Fraunhofer

Methoden zur Sicherstellung der Funktionalen Sicherheit Fazit

- Zur Analyse und Beurteilung der Funktionalen Sicherheit existieren bereits effektive Methoden und Werkzeuge
- Eine sinnvolle integrierte Anwendung der vorhandenen Methoden und Werkzeuge erleichtert die durchgängige Betrachtung und Aktualisierung der Daten
- Die Methoden und Werkzeuge entwickeln sich in Richtung Unterstützung der Funktionalen Sicherheit
- Eine alleinige Darstellung komplexer Zusammenhänge mechatronischer Systeme mit EXCEL-Werkzeugen wird nicht die gewünschten Ergebnisse liefern

ISO 26262 FUNKTIONALE SICHERHEIT

- NEUE HERAUSFORDERUNGEN
- ERFOLG VERSPRECHENDE LÖSUNGSANSÄTZE

Fraunhofer IPA Seminar 3. und 4. Juli 2012 Stuttgart