
Memory Concepts for Enabling Adaptivity
in Distributed Embedded Systems

Philipp Schleiss, Marc Zeller, Gereon Weiss
Fraunhofer ESK, Munich, Germany
{name.surname}@esk.fraunhofer.de

Abstract—Establishing cost and resource efficient dependabil-
ity through means of adaptivity in safety-critical distributed
embedded systems is a strenuous endeavour, as the varying
requirements on resilience, control and efficiency across domains
prohibits a single solution to suit all needs. To assist the process
of determining a safe and efficient system architecture with
satisfactory precision, this work exemplifies the importance of
differentiation by only addressing distributed embedded sys-
tems that perform multiple functions with alternating levels
of criticality. Further, they do not require full fail-operational
behaviour, thus allowing to sacrifice less important functions in
the pursuit of preserving safety. Herein, a dynamic instantiation
and graceful degradation strategy is developed to subsequently
study its effect on cost when implemented in conjunction with
execute-in-place (NOR-flash) or block-addressable (NAND-flash)
memory concepts. Even though NOR-flash is generally considered
to be a better candidate for such systems, this qualitative research
produces evidence that NAND-flash memory concepts are likely to
financially outperform traditional architectures when considering
adaptivity.

I. INTRODUCTION

In light of emerging technological advances, such as, multi-
core CPUs, higher network bandwidth, and smart sensors, an
opportunity arises to ease the path towards adaptivity in safety-
critical distributed embedded systems. A promising step on
this route is the replacement of single purpose processing
units in exchange for platforms capable of controlling mul-
tiple arbitrary functions. Hereby, research on mixed-criticality
systems forms a cornerstone in loosening this rigidity while
paying special respect to the particularly stringent temporal
and spatial isolation constraints found in the safety domain
[1]. In turn, this gain in flexibility lays the foundation for more
sophisticated forms of adaptivity.

Looking beyond the myriad of challenges occurring in the
pursuit of attaining a reliable level of temporal and spatial
isolation [2], one of the first questions that comes to mind
is how the newly gained flexibility can contribute to system
robustness in a more resource efficient manner. Despite this,
and even though unit cost majorly influences mass production
processes, as for instance seen in the automotive industry,
guidance on economically designing such resilient distributed
embedded systems is sparse. One notable facet of this eco-
nomic efficiency perspective is the arrangement and utilisation
of memory, which substantially affects overall cost. As such,
this work analyses memory concepts based on NAND- and
NOR-flash, the latter often being favoured for embedded
systems due to is execute-in-place (XIP) capabilities [3]. Aside

The paper was presented at APRES 2014. Copyright retained by the authors.

hereof, the contradicting emphasis on resilience, efficiency,
and control across domains questions the informative value
of a generalised blanket statement on financial efficiency.
Consequently, the scope of systems is restricted to a set of
not severely contravening constraints, which are expected to
benefit most from this approach. More precisely, systems that
necessitate full fail-operational behaviour, often make use of
triple redundancy concepts, only facilitate one function, or
associate cost as an ancillary influence, are disregarded in
favour of the multitude of other use cases lying in between
these extremes. These may only require a small set of func-
tionalities to maintain a safe state or only have to remain
operational for a short period of time after failure until a halt
can occur safely. In this confined band of systems the potential
to increase efficiency through introducing adaptivity and in
particular exploiting the diversity of criticality characteristics
is most auspicious and thus deserves further investigation.

Therefore, this work first of all illustrates the envisioned
form of adaptivity by outlining challenges and methods be-
longing to its central principle of dynamic application reallo-
cation (see Sec. II), and based thereon derives a degradation
strategy to safeguard control of the most critical functions
even after severe impairment (see Sec. III). Subsequently, the
effects of this scheme on memory are determined (see Sec.
IV), compared qualitatively (see Sec. V), and discussed (see
Sec. VI). Thereafter, the results are concluded, finally leading
to a brief outlook (see Sec. VII).

II. PRINCIPLES OF RESILIENT FAILURE HANDLING

To be able to gracefully handle device failures, a method
for transferring function control, which was previously in the
custody of the lost computational units, onto another physical
platform is indispensable to safeguard correct operations [4].
Based on this software replacement technique, more elaborate
transactional schemes can then transform the overall software
deployment through isolated changes on an application per ap-
plication basis, thus allowing the safe transition to a new robust
configuration, which would have otherwise been inconceivable.

A. General Challenges

To ensure a safe migration of applications a multitude of
aspects must be considered meticulously. First of all, allowing
software relocation undermines the stringent design-time veri-
fication and validation process, because schedulability analysis,
symbol resolution, CPU architecture compatibility, memory
allocation, and temporal and spatial isolation questions must be
addresses at run-time. In addition, finding a valid deployment
in a restricted time span while considering multiple partially

opposing mandatory and desirable constraints is non-trivial
[4]. Then again, to address applications independently of their
physical location a flexible and deterministic communication
system is inevitable. Furthermore, due to current technical
bounds on CPU clock speed, a device can only host multiple
applications by using numerous CPUs or CPU cores, which in
turn raises further isolation concerns [5]. The use of identical
hardware platforms may ease the attainability of some of these
goals but in turn would not embrace the diversity of distributed
embedded systems. Regardless, for the remainder of this work
these challenges are considered to be sufficiently solvable even
in heterogeneous settings. As such, the focus is laid on factors
affecting memory utilisation when implementing application
mobility.

B. Memory Alignment

In view of varying application lengths and flat address
spaces, an algorithm is needed to realign the entire memory
layout or to fragment new applications to fit them into the
freed areas. With respect to temporal and spatial isolation the
simultaneous realignment of all applications in memory at run-
time is questionable, as the time-frame in which an adaption
can take place without breaching any deadlines is narrow
and thus necessitates a fast and highly predicable method.
Alternatively, an offline based reconfiguration approach can
mitigate these impediments and allows the use of established
tests, such as inspecting functions before productive use to
verify correct linking and symbol resolution [6]. Then again,
the interval in which a safe state for offline reconfiguration
can be reached may depend on a human operator’s decisions
and is therefore not always reliably quantifiable, thus leading
to a more conservative risk assessment. On the other hand, a
fragmented replacement of applications at run-time is viable
but depends on deterministic relocation and pointer adjustment
techniques.

C. Criticality of Applications

Moreover, mixed-criticality systems consist of applications
that differ in their contribution to safety, and as such span
the spectrum from purely comfort and multimedia features
to time- and life-critical functions [7]. After failure, it is
crucial to restore critical software before any deadlines are
breached, whereas the delayed reinstatement of less demanding
applications is sufficient.

A straightforward approach to incorporate this time sen-
sitivity into an application deployment strategy is to set up
at least one additional application instance that independently
calculates its state on a different hardware platform to be
able to seamlessly take over operation after failure of the
primary instance. Starting from this hot-standby approach,
there are many techniques aiming at improving efficiency, as
for instance, sharing states periodically instead of performing
all calculations twice. Finding a sufficiently consistent and effi-
cient method for sharing a synchronous state between multiple
instances is however an application specific problem, which
cannot be addressed from an overall architectural standpoint.
Moreover, applying a hot-standby technique for less urgent
fail-over demands is wasteful, as resources are unnecessarily
occupied by standby instances instead of only initialising these
instances after failure (cold-standby).

III. REDUNDANCY & DEGRADATION STRATEGY

In case a hardware platform hosting a safety-critical ap-
plication fails, control is transferred to the backup instance.
From this point on, the initial hot-standby redundancy is
void, thus inducing a frail state incapable of withstanding
another failure. Subsequently, the operator or system would
typically initiate a safe halt at earliest convenience to pre-
vent a catastrophic failure. Supposing that the system-wide
remaining resources, such as, CPU, network bandwidth, and
memory, allow to host a newly created hot-standby instance,
this approach is unreasonably harsh. Furthermore, even if the
overall capacity is non-sufficient to host all applications, the
envisioned system shall unschedule less critical software in
order to recreate redundancy for the most essential control
functions, thus allowing operations to continue directly or
after a short reconfiguration phase in exchange for taking a
minor inconvenience into account. For this, only executable
code and static data are regarded, whereas larger data sources
and state persistence are discarded from the scope of this
work, as they are respectively considered to be fetched directly
from globally addressable external data sources or managed
by intermediate use case specific software. In sum, these
principles of degradation and recreation of redundancy define
the basic behaviour of distributed embedded systems eligible
for implementing the subsequent memory concepts.

IV. ROBUST STORAGE CONCEPTS

Safety-critical embedded systems have specific demands
on reliability, performance, power consumption, robustness to
environmental influences, and cost. Regarding storage hard-
ware more closely, non-volatile execute-in-place (XIP) storage
circumvents the need for additional RAM by supporting byte-
wise fetching of instructions. Such XIP memory is commonly
based on NOR-flash with high read and low write speeds [8],
or on erasable programmable read-only memory (EPROM),
which can only be reprogrammed as an entire unit. On the
contrary, block-addressable memory, such as NAND-flash, de-
pends on shadowing or paging techniques that map executable
code into byte-addressable memory. In return, this yields a
higher bit-density and an up to 5-times lower cost-per-byte [8].
To evaluate the cost-efficiency, substantially different storage
concepts aimed at stressing the particular advantages of each
storage type are presented to further derive their memory
utilisation characteristics.

A. Redundant Non-Volatile XIP Memory (Concept A)

Increasing resilience of a system holding code in XIP stor-
age and software state in RAM is easily achieved by replicating
every application onto a second device and scheduling all hot-
standby instances on it. However, the inability to differentiate
between cold- and hot-standby software with respect to storage
utilisation leads to a twofold storage demand that further
multiplies when taking multiple types of hardware platforms
into account, as all versions of an application for every CPU-
architecture must be stored at least twice.

B. Non-Volatile RAID5 XIP Memory (Concept B)

In search of memory conserving resilience, the redundancy,
performance, and cost benefits attained through the use of

RAID5 in information systems motivate to obtain similar gains
in the embedded domain [9]. In contrast to these RAID5
configurations, which focus on data redundancy, this approach
aims at redundantly storing directly executable code. There-
fore, instead of splitting an application according to a fixed
bit-length amongst multiple devices, the entire application is
placed into memory in an executable format. Furthermore, the
parity block on one device is based on the bit-values found
in the same absolute memory addresses of the other device,
thus leading to a memory overhead of only 1/n (n: number
of devices) and as such proportionally decreases with rising
unit numbers. Despite this, the probability of information loss
increases with the amount of platforms, limiting the scalability
or requiring parity blocks on multiple devices. Additionally,
memory is not utilised to the same extent on all devices
and therefore an additional blank memory block is wasted,
as displayed in a simplified example only including one type
of CPU architecture in Fig. 1. Beyond this, placing a hardware
platform with a second type of CPU architecture into this
overall system setup doubles memory demands. Then again,
as the memory block of any application can be recalculated
after the loss of a device by contacting all remaining platforms,
there is no eminent necessity to additionally hold cold-standby
instances in an executable format.

Device 1 (Type X)

NOR-Flash

RAM (only data)

XOR

A (primary, time critical)

C (primary)

Device 2 (Type X)

NOR-Flash

RAM (only data)

XOR

After failure:

A (hot-standby)

D (primary, comfort)

After failure:

C (primary) + Empty

B (hot-standby)

0

Device 3 (Type X)

NOR-Flash

RAM (only data)

Empty

B (primary, time critical)

A (hot-standby)

After failure:

A (primary, time critical)

0

Alignment
15

6

15

XOR

30

38

30

38

Fig. 1. RAID5 XIP Memory Concept

C. Page-Addressable Memory & Shadowing (Concept C)

The complexity of reaching non-wasteful resilience with
non-volatile XIP-memory concepts sways to explore more sim-
plistic ways of achieving cost efficiency without solely focus-
ing on memory utilisation. For this, all applications compiled
for every CPU architecture are placed into cheaper NAND-
flash on all computation devices. In addition, the software that
shall be executed on a certain platform must be shadowed into
RAM to allow the efficient fetching of instructions, whereas
cold-standby instances remain uninitialised. In sum, the non-
volatile storage waste ratio is negatively affected through every
additional application, whereas the absolute block-addressable
consumption also rises with an increase in devices. Moreover,
platform diversity simply multiplies memory demands.

D. Central Repositories & Partial Paging (Concept D)

With the advance of Ethernet in safety-critical embedded
systems [10], the restraint to persistently store applications
locally fades, as the bandwidth of the network may surpass
local storage transfer rates. Therefore, the number of devices
equipped with NAND-flash in concept C can be scaled down
as long as compliance with an essential level of resilience
is ensured, hence only necessitating a few central devices
acting as application repositories (see Fig. 2). In addition,

primary application instances that are only active in certain
situations and have less strict deadlines can be removed from
RAM and loaded on demand. Put more generally, using a
deterministic paging algorithm [11] for software with less
stringent deadlines can immensely lower minimal RAM limits
while not endangering safety.

Note: Memory size of NAND-flash is not to scale

Device 3 (Type X)

RAM

B (primary, time critical)

A (hot-standby)

After failure:

A (primary, time critical)

NAND-Flash

AX

AY

BX

BY

CX

CY

DX

DY

Device 2 (Type Y)

RAM

B (hot-standby)

Device 1 (Type X)

RAM

C (primary)

A (primary, time critical)

NAND-Flash

AX

AY

BX

BY

CX

CY

DX

DY

D (primary, comfort)

After failure:

C (primary)

Fig. 2. RAM Shadowing with Page-Addressable Memory

V. COMPARISON OF CONCEPTS

To reach a sound statement on cost-efficiency, a decision
process grounded on the comparison of concepts according
to their characteristics most influential to cost is mandatory.
Therefore, the dimensions of cost-per-byte, storage overhead,
number of initialised applications, and simplicity of attaining
adaptivity are presumed to sufficiently cover this prerequisite,
and are in consequence further examined.

Next to the obvious cost-per-byte benefits of NAND-
flash, unsurprisingly, the full replication of all applications (C)
in the antagonistic dimension of storage overhead performs
worst, followed by the duplication of software components
(A), whereas the RAID5 concepts (B) even lessens relative
wastefulness with an increasing number of devices. Likewise,
the establishment of repositories that deterministically transfer
applications over a network connection from a few dedicated
devices with large NAND-flash to the target devices (D) also
decreases storage overhead with similar magnitude.

Taking a closer look at memory used for holding initialised
applications, the duplication of all applications into XIP-
memory as a measure to prevent loss of programme code
(A) exhibits poor efficiency. In contrast, RAID5 approaches
(B) can profit from not maintaining initialised cold-standby
instances. However, accounting for the slow write speeds of
NOR-flash and the compulsion to contact all remaining nodes
for reconstruction prolongs the reconstruction of operational
instances, thus reducing their viability for cold-standby. Op-
posed hereto, the differentiation between cold- and hot-standby
systems can be leveraged more fruitfully when applications
are placed into volatile memory (C & D), as the manifold
higher write speed of RAM and therewith intertwined software
start-up speed allow more programmes to be capable of cold-
standby. Then again, fetching applications from a remote
repository (D) causes a delay, which is however marginalisable
with higher network bandwidth. Moreover, the introduction
of paging as an optimisation technique for less time critical
application (D) once again diminishes the amount of initialised
applications that must permanently remain executable, thus
outweighing the previous deficit.

Finally, simplicity is elementary in the creation of safe sys-
tems. When looking beyond the base challenges of determin-
istic dynamic application loading, the additional complexity
of managing code redundancy and restoring a redundant state
after failure in RAID5 architectures (B) is most troublesome
and can therefore severely complicate large transactional re-
configuration schemes. Surprisingly, also the pure duplication
of applications (A) may distort the ease of realisation when
multiple platform types are involved. For instance, the question
arises if code redundancy of an application is required for a de-
vice type that only exists in the system once. Compared hereto,
having a local copy of all applications for every platform
variant (C) simplifies this process considerably and further
fosters the reuse of methods already used for loading cold
backup instances. On the contrary, the optimisation techniques
of application repositories and deterministic paging (D) once
again complicate system design.

In a nutshell, the relative performance of each memory
concept in the four discussed dimensions is summarised under
consideration of systems containing one and multiple ([]) CPU
architectures in table I.

Memory
Type Redundancy Instruction

Access
Cost

per Byte
Storage

Overhead
Initialised
Applications Simplicity

A NOR Double XIP – – [– –] – + [–]
B NOR RAID5 XIP – ++ [–] 0 – –
C NAND Full Shadowing + – – [– –] + ++
D NAND Repository part. Paging + ++ [–] ++ 0

TABLE I. MEMORY CONCEPT EVALUATION MATRIX

VI. DISCUSSION

Regarded from a memory utilisation perspective, providing
full application redundancy with block-addressable storage is
wasteful, as storage is manifold occupied with identical appli-
cations, and RAM is needed to compensate for non-existent
XIP characteristics. However, in aspiration of determining
cost-efficiency with respect to application mobility, the inferior
cost-per-byte ratio of NOR-flash places the less memory-
efficient NAND-flash-based concept back within reach. Be-
yond this, application repositories can reduce this wastefulness
similarly to more intricate RAID5 approaches. When factoring
in paging of uncritical applications and uninitialised cold-
standby optimisations, even the overall RAM demand can
be lowered considerably, thus accentuating their virtue with
respect to cost.

Moreover, simplicity is a key to acceptance of adaptivity
in the safety domain, which in turn allows to break away from
single purpose units, federated architectures and dedicated
standby device, thus positively affecting overall cost in a
superior manner by substantially reducing a system’s bill
of materials. Besides this, the existence of large and cheap
storage may enable to implement data-intensive use cases
that were prior deemed uneconomical. Alternatively, even if
dynamic loading is suspected to be too laborious or unsafe for
certain use cases, the availability of large memory capacities
may instead encourage to store multiple pre-verified statically
linked images and therethrough replace the entire executable
memory content after reaching a safe halt.

VII. CONCLUSION & OUTLOOK

On the journey towards leveraging adaptivity as an instru-
ment to improve safety, the free relocation of applications

is an encouraging approach. To address this concept of ap-
plication mobility from ground up, a critical reconsideration
of current memory architectures is one of the first steps. As
such, the work demonstrates that block-addressable NAND-
flash in combination with RAM shadowing is favourable when
implementing software mobility in safety-critical distributed
embedded systems, because complexity is kept at bay while
cost is not adversely affected by the more wasteful storage
utilisation. Furthermore, application repositories, paging for
uncritical applications, and uninitialised cold-standby instances
pose as viable alternatives for unit cost driven domains through
their fair exchange of simplicity for cost-effectiveness.

To evaluate the practicability of approaches based on
block-addressable memory, a proof of concept implementation
for dynamically loading applications is the next imminent
challenge. Beyond this, and in anticipation of rigorous safety
requirements, a thorough analysis and dutiful integration of
run-time validation and verification methods is crucial to create
acceptance and justify the intrusion on well-established safety
design practices caused by this type of adaptivity.

ACKNOWLEDGMENT

This work was funded by the European Commission within
the 7th Framework Programme as part of the SafeAdapt project
under grant number 608945.

REFERENCES

[1] M. Mollison, J. Erickson, J. Anderson, S. Baruah, and J. Scoredos,
“Mixed-criticality real-time scheduling for multicore systems,” in 2010
IEEE 10th Int. Conference on Computer and Information Technology
(CIT), 2010, pp. 1864–1871.

[2] J. Rushby, “Partitioning in avionics architectures: Requirements, mech-
anisms, and assurance,” NASA, Langley, Tech. Rep., 1999.

[3] C. Park, J. Seo, D. Seo, S. Kim, and B. Kim, “Cost-efficient memory
architecture design of NAND flash memory embedded systems,” in
Proc. of 21st Int. Conference on Computer Design, 2003, pp. 474–480.

[4] M. Zeller and C. Prehofer, “Timing constraints for runtime adaptation
in real-time, networked embedded systems,” in Proc. of ICSE Workshop
on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2012, pp. 73–82.

[5] B. Brandenburg and J. Anderson, “Integrating hard/soft real-time tasks
and best-effort jobs on multiprocessors,” in Proc. of 19th Euromicro
Conference on Real-Time Systems (ECRTS), 2007, pp. 61–70.

[6] N. Kajtazovic, C. Preschern, and C. Kreiner, “A component-based
dynamic link support for safety-critical embedded systems,” in Proc.
of 20th IEEE Int. Conference and Workshops on the Engineering of
Computer Based Systems (ECBS), 2013, pp. 92–99.

[7] D. de Niz, K. Lakshmanan, and R. Rajkumar, “On the scheduling of
mixed-criticality real-time task sets,” in Proc. of 30th IEEE Real-Time
Systems Symposium (RTSS), 2009, pp. 291–300.

[8] Y.-H. Chang, J.-H. Lin, J.-W. Hsieh, and T.-W. Kuo, “A strategy to
emulate NOR flash with NAND flash,” Trans. Storage, vol. 6, no. 2,
pp. 5:1–5:23, 2010.

[9] M. Zeller, S. Grosse, D. Eilers, and R. Knorr, “Fail-safe data man-
agement in self-healing automotive systems,” in Proc. of 6th Int.
Conference on Autonomic and Autonomous Systems (ICAS), 2010, pp.
24–29.

[10] M. Jakovljevic and A. Ademaj, “Ethernet protocol services for critical
embedded systems applications,” in Proc. of 29th IEEE/AIAA Digital
Avionics Systems Conference (DASC), 2010, pp. 5.B.3–1 – 5.B.3–10.

[11] K. Cho, K.-S. We, C.-G. Lee, and K. Kim, “Using NAND flash memory
for executing large volume real-time programs in automotive embedded
systems,” in Proc. of 10th ACM Int. Conference on Embedded Software
(EMSOFT), 2010, pp. 159–168.

