
Vol. 33

Thorsten Keuler

An Aspect-Oriented Approach for
Improving Architecture Design
Efficiency

Editor-in-Chief: Prof. Dr. Dieter Rombach
Editorial Board: Prof. Dr. Frank Bomarius
 Prof. Dr. Peter Liggesmeyer
 Prof. Dr. Dieter Rombach

FRAUNHOFER VERLAG

Ph
D

 Th
eses in

 Exp
erim

en
tal So

ftw
are En

g
in

eerin
g

PhD Theses in Experimental Software Engineering
Volume 33

Editor-in-Chief: Prof. Dr. Dieter Rombach

Editorial Board: Prof. Dr. Frank Bomarius, Prof. Dr. Peter Liggesmeyer,
 Prof. Dr. Dieter Rombach

Zugl.: Kaiserslautern, Univ., Diss., 2011

Printing:
Mediendienstleistungen des
Fraunhofer-Informationszentrum Raum und Bau IRB, Stuttgart

Printed on acid-free and chlorine-free bleached paper.

All rights reserved; no part of this publication may be translated, reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. The quotation of those designations in whatever way does not
imply the conclusion that the use of those designations is legal without the consent of the
owner of the trademark.

© by Fraunhofer Verlag, 2011
ISBN 978-3-8396-0225-6
Fraunhofer-Informationszentrum Raum und Bau IRB
Postfach 800469, 70504 Stuttgart
Nobelstraße 12, 70569 Stuttgart
Telefon +49 7119 70 - 25 00
Telefax +49 7119 70 - 25 08
E-Mail verlag@fraunhofer.de
URL http://verlag.fraunhofer.de

An Aspect-Oriented Approach for Improving
Architecture Design Efficiency

Beim Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation
von

Dipl.-Inf. Thorsten Keuler

Fraunhofer-Institut für Experimentelles Software Engineering
(Fraunhofer IESE)

Kaiserslautern

Berichterstatter: Prof. Dr. Dr. h.c. Dieter Rombach
 Prof. Dr. Colin Atkinson

Dekan: Prof. Dr. Karsten Berns

Tag der Wissenschaftlichen Aussprache: 26.11.2010

D 386

"Design is not just what it looks like and feels like.
Design is how it works."

Steve Jobs

 iii

Acknowledgment

Looking back over the past years, it became clear to me that the process
of getting a Ph.D. at Fraunhofer is characterized by fluctuation rather
than convergence. Although job variation seems to be intriguing in
terms of day-to-day work, it does not align well with the clear goal of
getting a Ph.D. Considering this fact a personal challenge, it turns out
that self-motivation combined with the will to embrace change needs to
be rekindled every once in a while. I believe this is impossible to do with-
out the continuous support of other people.

First of all, I want to thank the members of my Ph.D. committee: Colin
Atkinson, Karsten Berns, and Dieter Rombach. In particular, I want to
thank Dieter Rombach for giving me the opportunity to contribute to the
field of software engineering at a renowned research institution such as
Fraunhofer IESE.

Second, I want to thank my colleagues at Fraunhofer IESE who support-
ed my work in a multitude of ways, such as scientific discussions or giv-
ing feedback on Ph.D. rehearsals. In particular, I want to thank Michalis
Anastasopoulos, Martin Becker, Jörg Dörr, Isabel John, Jens Knodel, Dirk
Muthig, Matthias Naab, Marcus Trapp, Mario Trapp, and Christian We-
bel (in alphabetical order). I am also thankful for the professional support
with respect to the conduction of empirical studies provided by Marcus
Ciolkowski and Michael Kläs. Special thanks go to Stephan Thiel and
Sonnhild Namingha. Stephan supported me in printing and binding pre-
liminary versions of this thesis; and thank you, Sonnhild, for doing a
great job in improving the English grammar of this thesis on short notice.

Third, I want to thank the student workers who eagerly developed the
software realizing many ideas described in this thesis. In particular, I
want to thank Yury Kornev, Alexander Kabanov, and Mateus Volkmer
Nunes Gomes. In addition, I want to thank all students who participated
in the controlled experiments conducted in the context of the course
“Software Architectures for Distributed Systems” in the years 2008 and
2009, respectively.

Finally, I want to thank my family for supporting me all these years. I am
deeply grateful for having been given the chance to take the path I took.
Last but not least, I want to thank my soon-to-be wife Andrea for her
continuous support, understanding, patience, and love, throughout the
final and most challenging phase of the Ph.D. process. Thank you.

 v

Abstract

Our experience shows that the discipline of software architectures must
face the challenge of scaling with the ever increasing size and complexity
of requirements imposed on system development in order to be able to
deliver high-quality products on time. That is, software architecture
methods need to provide practical support for efficiently and effectively
predicting, controlling, and evolving required product properties
throughout the entire lifecycle of software-intensive products.

Traditionally, software architecture utilizes the principle of separation of
concerns to cope with the challenge of scalability of solutions to complex
problems. For instance, by encapsulating functionality into self-contained
units and applying information hiding, large and complex systems are
decomposed into modules that can be developed and integrated inde-
pendently. In the context of non-functional concerns, however, separa-
tion of concerns does not work as well. Since the focus during decom-
position is on the identification of components that aggregate semanti-
cally cohesive chunks of functionality, the inter-component dependen-
cies remain side-affected by solutions addressing non-functional con-
cerns. This is particularly true for component interdependencies that
specify inter-component communication. The interactions among com-
ponents become more critical determinants of system properties as
components become more complex and heterogeneous.

The main solution idea of this thesis is to leverage aspect-oriented con-
cepts at the architectural level in order to provide a means for effectively
and efficiently separating communication concerns in the context of ar-
chitectural design. The primary contribution of this thesis comprises a
formalization of architectural models and a method that supports the
design process with sophisticated extensions of a commercial architec-
ture design tool. The aspect-oriented architecture model, the design
method, and the tool support are fundamental ingredients for efficiently
implementing the principle of separation of concerns at the level of ar-
chitectural interconnection.

The proposed solutions are validated by means of a controlled experi-
ment showing that the aspect-oriented separation of communication
concerns indeed improves the design efficiency of architectures.

 Table of Contents

 vii

Table of Contents

Acknowledgment .. iii�
Abstract ... v�
Table of Contents ... vii�
List of Figures .. xi�
List of Tables .. xv�

1� Introduction ..1�
1.1� Problem Statement ..2�
1.2� Solution Idea and Research Questions ..9�
1.3� Research Challenges and Contributions12�
1.4� Practical Implications ..20�
1.5� Outline ...22�

2� Foundations ..23�
2.1� Software Architecture Definitions ...23�
2.2� Design Dimensions ...25�
2.3� Architectural Tactics, Patterns and Strategies28�
2.4� Architectural Separation of Concerns31�

2.4.1� Views and Perspectives ..31�
2.4.2� Issues with Cross-cutting Concerns37�

3� Architecture Meta-Model ..39�
3.1� Element and Relation Types ...39�

3.1.1� Components and Connectors ..40�
3.1.2� Modules ..44�
3.1.3� Allocation Types ...45�

3.2� Inter-Element Type Relations ..52�
3.2.1� C&C – Modules ...52�
3.2.2� C&C – Allocations ..53�
3.2.3� Modules – Allocations ..55�

3.3� Tactic Meta-Model ...57�
3.3.1� Implementation Tactics ..57�
3.3.2� Execution Tactics ..59�

4� Aspect-oriented Architecture Model ..61�
4.1� Foundations ...61�

4.1.1� Aspect Orientation ...61�
4.1.2� Aspect-oriented Modeling ...64�

4.2� Related Work ...66�
4.2.1� Architectural Aspects ...66�
4.2.2� Connector Composition ...67�

4.3� Architectural Join Point Model ...68�

Table of Contents Table of Contents

viii

4.3.1� Architectural Base ... 68�
4.3.2� Architectural Aspects .. 69�
4.3.3� Architectural Adaptation Subjects 70�
4.3.4� Pointcut Definition Language .. 72�
4.3.5� Weaving of Architectural Models 78�

5� Aspect-oriented Design Method .. 87�
5.1� Foundations .. 87�
5.2� Design Method Overview .. 89�
5.3� Designing Connectors under Constant Change 91�

5.3.1� Compositional Issues ... 91�
5.3.2� Change Issues ... 94�

5.4� Managing Compositional Interactions 95�
5.4.1� Classification of Interactions .. 95�
5.4.2� Interaction Detection .. 100�
5.4.3� Generating Fluents from Weaving Specifications 105�
5.4.4� Composition Process ... 110�

5.5� Pointcut Evolution ... 112�
5.5.1� Evolution Scenarios ... 112�
5.5.2� Pointcut Evolution Guidelines 113�
5.5.3� Reflective Pointcut Expressions 117�

6� Tool Support .. 119�
6.1� Automated Steps .. 119�
6.2� Composition Process ... 121�

6.2.1� Interactive Join Point Selection 121�
6.2.2� Pointcut Generation .. 124�
6.2.3� Model Checking ... 124�
6.2.4� Model Weaving .. 125�

6.3� Simulation ... 126�

7� Validation ... 129�
7.1� Overview ... 129�
7.2� Hypotheses ... 130�
7.3� Controlled Experiment .. 131�

7.3.1� Experiment Design .. 132�
7.3.2� Experiment Execution .. 132�
7.3.3� Analysis and Interpretation .. 133�
7.3.4� Threats to Validity ... 140�
7.3.5� Experiment Conclusions .. 141�

7.4� Composition Validation ... 143�

8� Summary and Outlook .. 147�
8.1� Results and Contributions ... 147�

8.1.1� Aspect-oriented Architecture Model 147�
8.1.2� Design Method ... 149�
8.1.3� Tool Support ... 150�
8.1.4� Validation ... 151�

 Table of Contents

 ix

8.2� Limitations .. 152�
8.2.1� Aspect-oriented Architectural Model 152�
8.2.2� Design Method ... 152�
8.2.3� Tool Support ... 153�

8.3� Future Work .. 153�
8.3.1� Aspect-oriented Model Compositions 153�
8.3.2� Model-based Development ... 154�
8.3.3� Model-based Simulations .. 154�
8.3.4� Extended Validations .. 155�

8.4� Concluding Remarks ... 155�

References ... 156�

Appendix A:� Experimentation Material 163�

Lebenslauf ... 183�

 List of Figures

 xi

List of Figures

Figure 1 Design decisions are based on previous increments 3�
Figure 2 Confined decision making in incremental design 4�
Figure 3 Complexity of design space exploration 5�
Figure 4 Changes in priorities imply revisions of design decisions 6�
Figure 5 Obsolete requirements imply a change of architectural

decisions as well 6�
Figure 6 Solution Idea 10�
Figure 7 Dissolving the dependencies between “layers” in the

solution space 10�
Figure 8 Main dimensions of architecture design 26�
Figure 9 Sample tactic – “Heartbeat” 29�
Figure 10 Architectural Availability: combining “Heartbeat” and

“Active Redundancy” 30�
Figure 11 Architectural Availability Pattern: deployment implications 30�
Figure 12 Architectural views in context 32�
Figure 13 Quality specifics cut across views 34�
Figure 14 Design dimensions to be reflected by the architectural

meta-model 40�
Figure 15 Component-connector meta-model 42�
Figure 16 Notation for C&C structures 43�
Figure 17 Example C&C model 43�
Figure 18 Module meta-model 44�
Figure 19 Example model using the module notation 45�
Figure 20 Hardware meta-model 47�
Figure 21 Example model using hardware notational elements 47�
Figure 22 External systems meta-model 48�
Figure 23 People meta-model 49�
Figure 24 Example model showing people allocations 50�
Figure 25 Infrastructure meta-model 51�
Figure 26 Example model for infrastructure 51�
Figure 27 C&C and Modules: Meta-model relationships 52�
Figure 28 C&C and Allocations: Meta-model relationships 54�
Figure 29 Modules and Allocations: Meta-model relationships 55�
Figure 30 Architecture meta-model – Overview 56�
Figure 31 Implementation tactics affecting elements of the

architecture meta-model 57�
Figure 32 Execution tactics affecting the architecture meta-model 59�
Figure 33 Conceptual model for aspect-oriented modeling

(adapted from [SSK06]) 66�
Figure 34 Sample connector definition: Client-Server 69�
Figure 35 Mapping of aspects to execution tactics 69�
Figure 36 Messages as adaptation subjects 70�

List of Figures

xii

Figure 37 Data structure for messages in connector protocols 71�
Figure 38 Sample mapping to message data structure 71�
Figure 39 Creating pointcut expressions based on component and

message types 73�
Figure 40 Sample sequences for illustrating the effects of type-based

selections 73�
Figure 41 Navigating to messages using the deployment 75�
Figure 42 Sample deployment illustrating the effects of the join point

selection operators 76�
Figure 43 Join point semantics of before() directive 79�
Figure 44 Sample tactic - graphical and message notation 80�
Figure 45 Graphical weaving result of the before()-directive 81�
Figure 46 Message structure of the weaving result - before 81�
Figure 47 Join point semantics of after() directive 81�
Figure 48 Graphical weaving result of the after()-directive 83�
Figure 49 Message structure of the weaving result - after 83�
Figure 50 Join point semantics of around() directive 83�
Figure 51 “authorizationTactic” with special keywords for around()

directives 84�
Figure 52 Graphical Weaving Result of the around()-Directive 85�
Figure 53 Message structure of the weaving result – around 85�
Figure 54 High-level depiction of the Fraunhofer Architecture Design

process 88�
Figure 55 Connector design in the Fraunhofer Architecture Design

process 89�
Figure 56 Base connector specifying Publish-Subscribe semantics 90�
Figure 57 Billing tactic 92�
Figure 58 Authorization tactic interrupted by billing tactic 92�
Figure 59 Changed base model causes a join point "miss" 94�
Figure 60 Authorization-Tactic2 98�
Figure 61 LTS representation of a Publish-Subscribe connector 102�
Figure 62 Woven Publish-Subscribe connector with authorization

tactic 103�
Figure 63 The assertion holds since the fluent is evaluated to true 105�
Figure 64 Interaction detection in the process of connector design 110�
Figure 65 Automated steps in the design process 120�
Figure 66 Starting an interactive join point collection session 122�
Figure 67 Displaying messages related to a selected architectural

element 123�
Figure 68 Example selection of messages affecting the diagrams

containing the messages 123�
Figure 69 Generating pointcut expressions during the join point

collection session 124�
Figure 70 Integrated model checking capabilities 125�
Figure 71 Weaving specification dialog 126�
Figure 72 Simulation setup 127�
Figure 73 Sample output for a simulation run 128�

 List of Figures

 xiii

Figure 74 Showing the differences between the current simulation
and the previous ones 128�

Figure 75 Efficiency of identification 134�
Figure 76 Efficiency of modification 135�
Figure 77 Correctness of identification 137�
Figure 78 Correctness of modification 138�
Figure 79 Tool setting for the validation of composition correctness 143�
Figure 80 Pre-briefing Questionnaire 163�
Figure 81 Task Description - Group A (1/3) 164�
Figure 82 Task Description - Group A (2/3) 165�
Figure 83 Task Description - Group A (3/3) 166�
Figure 84 Task Description - Group B (1/3) 167�
Figure 85 Task Description - Group B (2/3) 168�
Figure 86 Task Description - Group B (3/3) 169�
Figure 87 Debriefing questionnaire 170�
Figure 88 Validation questionnaire 171�
Figure 89 Efficiency increase between AO and Integrated Modeling

in btw. two tasks 172�
Figure 90 Efficiency increase between AO and Integrated Modeling

in btw. two tasks 172�
Figure 91 Efficiency increase between AO and Integrated Modeling

in btw. two tasks 173�
Figure 92 Efficiency increase between AO and Integrated Modeling

in btw. two tasks 173�
Figure 93 Efficiency increase between AO and Integrated Modeling

in btw. two tasks 174�
Figure 94 Efficiency increase between AO and Integrated Modeling

in btw. two tasks 174�
Figure 95 Results Task 1 175�
Figure 96 Results Task 2 175�
Figure 97 Results Task 3 176�
Figure 98 Results Task 4 177�
Figure 99 Results Task 5 177�
Figure 100 Results Task 6 178�
Figure 101 Results Task 7 178�
Figure 102 Results Task 8 179�
Figure 103 Results Task 9 179�
Figure 104 Results Task 10 180�
Figure 105 Results Task 11 180�
Figure 106 Results Task 12 181�
Figure 107 Results Task 13 181�

 List of Tables

 xv

List of Tables

Table 1 Mapping of PDL to UML 74�
Table 2 Poincut design space 78�
Table 3 Tool characteristics 121�
Table 4 Statistical analysis - efficiency of model changes 136�
Table 5 Statistical analysis - correctness of model changes 139�
Table 6 Dependency matrix for the selected set of tactics 145�
Table 7 Results of the automatic composition validation 145�

 Introduction

 1

1 Introduction

“Architecting is about Balancing”, Randy Stafford

Today, software development organizations are faced with the continu-
ously increasing size and complexity of the systems to be developed.
Consequently, software systems engineering methods must be scalable
regarding size and complexity in order to be able to deliver products of
required quality on time. That is, software systems engineering methods
need to provide practical support for efficiently and effectively predict-
ing, controlling, and evolving quality throughout the entire lifecycle of
such software-intensive products. Throughout this thesis, the term “sys-
tem” will be used to refer to software-intensive products.

The reasons underlying the demand for the scaling of engineering meth-
ods are three-fold:

� First, the number and complexity of requirements used as input for
the development of a system are increasing. As a result, modern sys-
tems contain several millions of lines of code, thousands of modules,
tens of thousands of interrelationships between these entities, and in-
volve hundreds of developers, potentially distributed all over the
globe.

� Second, the relevance of non-functional requirements is heavily in-
creasing. For instance, the systems themselves need to be extensible,
secure, interoperable, and so forth. At the same time, they need to be
controlled, maintained, and evolved in continuously changing envi-
ronments during runtime.

� Third, the design for reuse in the context of product lines calls for the
effective, efficient, and sustained handling of variants throughout sys-
tem development, which imposes additional complexity on the devel-
opment process [Bos00].

It is the goal of software engineering [Som01] to cope with these scala-
bility drivers by imposing structures on systems in order to enable effi-
cient development while, at the same time, providing a high degree of
confidence that the required quality properties are achievable. For these

Introduction

2

reasons, the discipline of software and system architectures has emerged
since the 1990s [Sha96], [PW92], [GS94].

Definition – Software Architecture

A software system’s architecture is the set of principal design decisions
made about the system [TMD09].

According to this definition, one of the main goals in architecting is to
provide a set of design decisions that, in combination, address a given
set of architectural concerns [TA05].

Definition - Concern

A concern about an architecture is a requirement, an objective, an inten-
tion, or an aspiration a stakeholder has for that architecture [MEH01].

Design decisions as such are decisions about the shape and texture of
solutions to particular architectural concerns. The consequences of
wrong decisions made at the architectural level will be uncovered during
implementation the earliest, which increases the likelihood for costly re-
work across the entire development lifecycle. Since concerns potentially
contradict or are in conflict with one another, for the benefit of a partic-
ular concern, a design decision is sometimes accepted despite the fact
that other concerns are impacted negatively. Such decisions are referred
to as trade-off decisions. The major challenge in making design decisions
in general, and trade-off decisions in particular, is to keep track of direct
and indirect impacts revealed among solutions that address different
concerns.

1.1 Problem Statement

Making architectural design decisions needs to be supported by a pro-
cess that scales with the number of concerns at hand. In other words,
the efficiency of the design process needs to scale with the number of
team members involved in the design.

Practical Challenge: Scalability of Team Sizes

In practice, architectural design efficiency does not scale with the
size of the team developing the architecture.

In other words, the time for creating an architecture design does not
necessarily decrease because of new resources assigned to the architec-
ture team. The main reason for the scalability problem is due to a poten-

 Introduction

 3

tially high number of inter-dependencies among architectural quality
concerns. Considering parallel teamwork in architecture design, all solu-
tions to quality requirements are locally designed, evaluated, and opti-
mized. At one point in time, these partial solutions need to be consoli-
dated into one single architecture though. Without communication
among the separate teams, there is only a slight chance that the solu-
tions will not impact each other. Hence, the effort decrease achieved by
parallel teams working on different facets of the architecture, in turn,
causes significantly higher effort during consolidation of partial solutions.
In fact, it is the side effects of the partial solutions on each other that
need to be checked every time before they can be integrated into an ar-
chitecture design.

In the following, a set of additional influencing factors is presented that
make the endeavor of architecture development challenging in terms of
scalability.

The first important influencing factor is that architectures are designed
iteratively and incrementally [Boo07]. That is, at the beginning of any it-
eration the architects need to select a subset of requirements, which are
then addressed by taking appropriate design decisions. For making de-
sign decisions, the architect also needs to consider the increments de-
signed during previous iterations.

Figure 1 Design decisions are based on previous increments

In this context, one fundamental assumption is that architecture is de-
signed relative to a set of requirements. Hence, an architecture incre-
ment is the totality of design decisions that address the requirements at
a particular point in time. The example shown in Figure 1 illustrates that
the decisions made for security and performance yield the best combina-
tion of design alternatives up to that point (the green fill color indicates a
good design at that particular increment).

The iterative nature of the process, however, imposes an additional
source of complexity on the design of architectures, namely the limited
scope that the design can be evaluated in. Since iterations imply that the
architecture develops over time, the validity of the analysis of the design
is volatile.

Decision#1

Decision Path

bad good

Overall Quality

Design
Alternative

Decision#2

Security

Performance

Introduction

4

Practical Challenge: Limited Design Scope

In the context of a new increment, there is a high probability that
previous design decisions need to be revised.

As shown in Figure 2, based on the current increment, there is no way to
reach the global optimum merely by selecting a design alternative for
availability (Decision#3). Previous decisions (in this case Decision#1)
would have to be revised in order to get the best combination of design
alternatives.

Figure 2 Confined decision making in incremental design

In order to know what combination would be the best, theoretically all
possible combinations would have to be compared after each iteration. I
stress the fact that it is not realistic to strive for the global optimum; In
practice it is necessary to know what would be the minimum set of
changes that need to be performed in order to yield an architecture of
required quality. The resulting design space complexity can be expressed
by the following formula, with n being the number of separate design
decisions and o(di) the number of options for the design decision di:

Possible combinations of design decisions =:��

n

i ido1)(

In other words, the formula describes the number of distinct paths
through the design space. Applying this formula to the example as
shown in Figure 2, we end up with 3*2*3 = 18 distinct combinations of
design decisions. Since we assume the exploration of at least two op-
tions per design decision, we expect each factor of the formula to be
equal to or greater than two.

Decision#1

Decision#2

Decision#3

Security

Performance

Availability

 Introduction

 5

Figure 3 Complexity of design space exploration

Due to the incremental nature of architecture design, an issue arises that
is of practical relevance as well: The tacit knowledge of the decisions
that lead to a particular design. That is, the steps describing the decisions
taken are not explicit. Thus, the architecture design only reflects the im-
pact of the aggregation of all design decisions made.

Besides issues regarding the incremental nature of design, another major
influencing factor is given by the fact that architecture needs to be de-
veloped under conditions of constant change: “The set of decisions
comprising the architecture forms in concert with the requirements and
continues to expand through evolution. The architecture is thus under
constant change” [TMD09].

That is, in realistic settings architectural concerns change constantly, ei-
ther in terms of changed priorities, or in terms of new or modified con-
cern specifications. Knowing that requirements change over time leads
to the conclusion that architectural design decisions need to be revised

� �nO 2

Design alternatives

Qualities

3

6

18

Sec Per Avail

3 2 3

Example case
Minimal complexity

Practical Challenge : Traceability of Design Decisions

An architectural design is always the result of a combination of
design decisions that have been made (deliberately or not) up to a
particular point in time. However, tracing how the final design was
created is not necessarily recoverable from the final result.

Practical Challenge : Continuously Changing Requirements

In practice, architectural concerns are never stable, and thus require
continuous adaptation of architectural decisions throughout the
lifecycle of the system.

Introduction

6

as well, which imposes additional complexity on design space explora-
tion.

As illustrated in Figure 4, a change of requirements potentially leads to a
different evaluation of intermediate design decisions, which in turn re-
quires a change of decisions already made. Projecting this into the real
world, this could mean that an architecture that was designed for securi-
ty and performance suddenly needs to address maintainability as well. As
a consequence, all existing design decisions would have to be revisited
and checked for the stated security concern, and if feasible, changed ac-
cordingly.

Figure 4 Changes in priorities imply revisions of design decisions

If requirements become obsolete (see Figure 5), existing designs need to
be revisited as well. By removing concerns, and thus their impact, from
the queue of design decisions, changes to other design decisions might
be a likely result in order to obtain a better set of design decisions.

Figure 5 Obsolete requirements imply a change of architectural decisions as well

Decision#1

Decision#2

Decision#3

Decision#1

Decision#2

Decision#3

 Introduction

 7

In the context of product lines ([WL99], [CN02]) the complexity of the
design space is even higher. That is, since the product line architecture
needs to be designed in such a way that a set of products with shared as
well as individual requirements can be built, variants of architectural de-
signs need to be created, evaluated, and evolved over time.

The main reason that makes all these issues hard to address in practice is
the lack of effective and efficient separation of architectural concerns.

Definition – Separation of Concerns

In computer science, separation of concerns is the process of separating
a computer program into distinct features that overlap in functionality as
little as possible. [Dij82]

Separation of Concerns has traditionally been achieved through modu-
larity and encapsulation with the help of information hiding [Par72]. The
main drawback of such decomposition approaches is that they only al-
low modularizing the system in one dimension at a time. As a result, a
particular concern becomes dominant and most of the other concerns
such as quality concerns that do not align with the main decomposition
are scattered across many system modules. This phenomenon is called
“tyranny of the dominant decomposition” [THO0]. One implication of
this statement is that what works well for functional concerns does not
suffice for the quality requirements. The reasons for this are two-fold:

First, solutions to quality requirements potentially interfere with one an-
other. For example, in order to achieve maintainability, modular struc-
tures could be introduced to minimize change impacts. However, the
very same structures introduced for maintainability might decrease per-
formance at the same time.

Second, solutions to quality requirements do have significant implica-
tions on functional structures. For example, in case security is an archi-
tectural concern, there are potentially many functions in the system that
are required to be compliant with the security policy prescribing rules for
accessing and changing information. The relationship between solutions
to quality requirements and functional structures is the reason why such
kinds of concerns are also knows as “cross-cutting concerns”.

Practical Challenge: Designing for Variation

Product line architectures impose an additional dimension of com-
plexity on the design space exploration, since the variant parts need
to be explicitly designed, evaluated, and evolved in parallel to the
common parts.

Introduction

8

Definition – Cross-Cutting Architectural Concern

At the architecture design level, a crosscutting concern could be any
concern that cannot be effectively modularized using the given abstrac-
tions of an Architecture Description Language (ADL) [GS94].

We stress the fact that concerns themselves do not cut across the archi-
tectural structure per se; it is rather the solutions to the concerns that
make them eventually cross-cutting. Typical examples of cross-cutting
solutions to quality requirements are authentication, encryption, com-
pression, access control, transactions, or persistence. Cross-cutting con-
cerns have several implications on architecture development.

Technical Need: Effective and Efficient Separation of Cross-
Cutting Architectural Concerns

There is no effective and efficient way for both separating and
composing cross-cutting solutions to architectural concerns.

Solutions to cross-cutting concerns usually comprise multiple parts that
affect architectural entities in structural as well as behavioral regards. In
terms of architectural concerns, runtime quality attributes require solu-
tions that change the behavior of architectural entities such as the con-
trol flow or coordination behavior. This implies that inter-component
communications are potentially affected by such cross-cutting solutions
[FEC04], [CRF+06]. There is a common understanding that “arriving at
design decisions describing proper component interactions in a system
can be even more challenging than those restricted to the development
of functionality” [TMD09], [CRF+06].

Solutions to Runtime Quality Attributes are Impacting Inter-
Component Communications

Runtime concerns are heavily dependent on the coordination and
communication capabilities of architectural entities.

In principle, all externally visible properties that are exposed during a sys-
tem’s runtime must potentially be considered, since they are influenced
by component interactions [FEC04]. In case of security concerns, for in-
stance, the component communications specify the way of how and
when data is encrypted and decrypted in any context of data access or
transfer. Such a specification needs to be followed by many, if not all, of
the components in the system. Since not all quality requirements relate
to communication properties per se (e.g., maintainability), for the re-
mainder of this thesis, I will focus on those quality requirements that
have an impact on inter-component communication.

 Introduction

 9

1.2 Solution Idea and Research Questions

The phenomenon of cross-cutting concerns exists on other levels of ab-
straction as well, for instance at the requirements or at the code level.
Most existing solutions target cross-cutting concerns on the code level.
The most prominent example is Aspect-oriented Programming (AOP)
[HHK00]. AOP aims at solving cross-cutting problems on the source code
level by separating the cross-cutting portions from those entities affected
by them and providing a composition mechanism that automatically
composes the separate parts into a final code base.

The main idea of aspects is to exploit the fact that the cross-cutting solu-
tions affect many places of the overall system in the same or in a similar
way. Hence, the cross-cutting solution can be implemented once and is
then propagated by replicating the very same solution in different places
of the design.

Aspect Orientation in General allows for Separating Concerns
that Cut across a System

Aspect orientation addresses cross-cutting concerns that affect a
number of places of the system in similar ways.

This is especially true for architectural solutions that cut across inter-
component communication specifications, for example authorization or
persistence. The aspect-oriented programming paradigm brings an effi-
cient composition mechanism that enables developers to quickly en-
hance or modify source code with so-called aspects. The composition it-
self is also known as “aspect weaving”, denoting that aspect code is in-
troduced into the system code. As a consequence, in case a cross-cutting
concern is to be revised or extended, there only one place needs to be
changed: the aspect.

The main solution idea of this thesis is to leverage aspect-oriented con-
cepts at the architectural level in order to provide a means for effectively
and efficiently creating architectural design models that reflect inter-
component communications. The architectural models shall be com-
posed from a set of designs that address non-functional requirements
separately from each other.

To that end, I provide composition mechanisms akin to AspectJ [HHK00],
but at the modeling level. Based on these mechanisms, model composi-
tions can be specified based on a number of sequence diagrams. As a
consequence, I am able to generate any given combination of design de-
cisions in terms of inter-component communication at any point in time.
As shown in Figure 6, we can navigate through the design space by

Introduction

10

simply selecting any combination of design decisions. The final design
model is then generated automatically. The generation of design models
enables easy changes of design decisions, without having to backtrack
through the decision tree.

Figure 6 Solution Idea

The solution idea addresses all problems introduced above by providing
the ability to flexibly and efficiently combine design decisions in the
realm of architectural inter-component communication. Referring to the
tree structure of the design space depicted in Figure 2, I am now able to
break the dependencies between the layers between the iterations.

Figure 7 Dissolving the dependencies between “layers” in the solution space

Req#1 Req#2 Req#3

Design
Decision

bad good

Overall QualityDesign
Alternative

x

x Aspect-oriented Composition

Decision#1

Decision#2 Decision#1

Decision#2

 Introduction

 11

The underlying solution hypothesis can then be defined as:

HS: Aspect-oriented concepts can be used for efficiently manifesting and
changing design decisions in the realm of inter-component communica-
tions.

The expected benefits lie in the ability to efficiently create and change
architectural design models specifying inter-component communication.
Therefore, the research presented in this thesis is geared towards two
main research questions:

1. Can aspect orientation be utilized at the architectural level for sepa-
rating cross-cutting solutions for inter-component communications?

2. Can aspect-oriented modeling improve the efficiency of the creation
and alteration of models specifying inter-component communica-
tions?

In order to answer these questions, the following research questions
arise:

Research Questions

� How do the concepts of aspect-oriented programming map
to architectural concepts?

� What concerns can be treated in an aspect-oriented way?

� What should a composition mechanism provide?

� How should architectural composition be defined?

� How is a correct composition defined?

� How can compositions be checked for correctness?

� How efficient is the composition?

� How flexible is the composition with respect to change?

The results presented in this thesis answer these research questions.
However, during the evolution of the solutions as presented in this the-
sis, a number of research challenges revealed themselves and had to be
tackled appropriately. In the following, I will describe these research
challenges that I needed to cope with, discuss related work and state-of-
the-art solutions, and briefly explain the contributions of the work pre-
sented in this thesis.

Introduction

12

1.3 Research Challenges and Contributions

The research challenges as addressed by the work presented in this the-
sis are related to one of the following four fields:

1. Theoretical foundations and models that I built the solution on

2. Methodical approaches that support the process of utilizing the
formalized models in order to increase scalability and efficiency

3. Engineering approaches realizing the formalized models in such a
way that the methodical support can be leveraged in practical set-
tings

4. Empirical evaluation of the proposed solutions using experimental
approaches as described in [Bas93].

For each of these fields, I provide a number of scientific challenges as
well as engineering challenges that I came across along the way, explain
the respective shortcomings of existing state-of-the-art concepts, and
show the solutions I came up with in order to address the scientific chal-
lenges.

1 – Theoretical Foundations and Model Building

Scientific Challenge: Formalization of Architecture

State of the Art
In the literature, there exist solutions that formalize partial as-
pects of architecture design; however, a conceptualized model
interrelating entities that are of importance in the context of
the problems motivating this thesis is missing.

Contribution of this thesis
Based on a consolidation of existing formalizations as described
by the current state-of-the-art, I defined a meta-model that re-
lates all facets of architecture that are of relevance for separat-
ing cross-cutting solutions from core architectural entities. The
conceptualized model provides the basis for defining specific
extensions addressing the architectural issues regarding im-
provement of separation of concerns at the architectural level.

In order to find solutions to the practical problems described in the pre-
vious sections, the practical issues are mapped to a conceptualized mod-
el that could be taken as a starting point for building a solution.

 Introduction

 13

That is, in a first step I needed to build a model that formalizes and inter-
relates concepts within the realm of architecture design. The second step
of formalization was concerned with model building at the solution level.
Since I aim at leveraging aspect-oriented concepts at the architectural
level, I needed to overcome a number of current shortcomings existing in
the realm of aspect-oriented modeling in general and aspect-oriented
architectures in particular.

Looking at the problem statement regarding cross-cutting concerns at
the level of inter-component communication, I found that an appropri-
ate solution needs to provide a means for expressing cross-cutting con-
cerns at the architectural level in the form of behavioral models. In that
context, I found that existing aspect-oriented design solutions at the ar-
chitectural level were realized as extensions to architectural description
languages (ADLs) [GCB06]; however, “model compilers” that produce
an integrated solution out of the aspect-oriented architecture descrip-
tions are missing. In addition, I found that existing approaches are only
appropriate for working on the type level of model elements rather than
on the instance level. This shortcoming is relevant for two reasons: First,
architectural element types that are defined after concrete models have
been created cannot be easily propagated to existing instances. This is
particularly important in the context of improving the scalability of teams
by increasing parallelism. Second, the spectrum for defining specific as-
pects is limited. Either the types are extended or modified, or a new type
needs to be defined that is appropriate for the particular context. In the
following table, I summarize the state-of-the-art shortcomings and list
the contributions provided by this thesis to overcome or mitigate the
problems identified.

Introduction

14

Scientific Challenge: Utilize Aspect Orientation at the Archi-
tectural Level

State of the Art
(a) Regarding aspect-oriented modeling, a number of contribu-

tions already exist that leverage aspect-oriented concepts at
the modeling level. However, most approaches address
structural models only.

(b) There are solutions that provide aspect-oriented extensions
to architecture description languages; however, there is no
support for compiling the language into an integrated solu-
tion.

(c) Existing solutions work at the type level of model elements
only. That is, aspect-oriented modeling can be integrated at
the level of type definitions; however, existing model ele-
ments cannot be treated as existing instances of types in-
troduced at a later point in time.

Contributions of this thesis
(a) I base this work on the modification of UML sequence dia-

grams.

(b) In this thesis, I present a solution that is able to compile a
number of solutions to crosscutting concerns into a con-
sistent architecture design.

(c) The solution presented in this thesis comes with means for
specifying aspects to operate on the type as well as on in-
stance level of the base model elements. I can propagate
new or changed element types into the model and achieve
a finer-grained spectrum between the worlds of types and
instances. In addition, I leverage meta-model relationships
as defined in the architectural meta-model in order to be
able to provide a powerful means for efficiently selecting
huge portions of an architectural design for specifying
model compositions.

Compositional interactions denote the situation when aspects interfere
with one another within the base model. Since aspects potentially oper-
ate on the same base model elements, there is a high potential that two
or more aspects will change the model in such a way that the resulting
aspectual composition does not reflect the intended model properties.
Regarding the state-of-the-art, I found that there is only limited support
for detecting, resolving, or preventing aspect interactions at the model-
ing level.

 Introduction

 15

Scientific Challenge: Treatment of Compositional Interactions

State of the Art
There is only one aspect-oriented modeling approach that is ca-
pable of detecting compositional interactions at the modeling
level. However, that approach only works for structural models
and does not provide any means for resolving the detected in-
teractions.

Contributions of this thesis
� Utilization of fluent linear temporal logic for checking com-

positional interactions at the modeling level.

� Provision of a set of strategies for resolving conflicts during
model composition.

2 – Methodological Support

In general, a formalization of real-world phenomena in terms of a model
also requires a process that shows how to use the model for solving real
problems at hand. However, existing aspect-oriented modeling ap-
proaches found in the literature usually do not provide methodological
guidance [SSK06].

Scientific Challenge: Lack of Methodological Guidance

State of the Art
Existing work in the area of aspect-oriented modeling in general
and aspect-oriented architectures in particular does not provide
methodological guidance.

Contribution of this thesis
In this thesis, I provide a set of extensions to an existing archi-
tectural design method. That is, I define a process that explains
how to use aspect-oriented modeling within the process of ar-
chitecture design.

In terms of model evolution, aspect-oriented approaches usually suffer
from the drawback that they need to keep track of changes to the base
model in order to keep the composition specification consistent. This
problem is also referred to as pointcut fragility [CGB09]. In fact, there is
only limited support regarding pointcut fragility at the modeling level.

Introduction

16

Scientific Challenge: Evolution of Aspect-oriented Models

State of the Art
There is only limited support for addressing the problem of
pointcut fragility at the modeling level.

Contributions of this thesis
� The thesis comes with a set of guidelines addressing

pointcut evolution scenarios.

� Provision of a reflective model that allows for checking base
model changes against pointcut specifications.

3 – Engineering solutions

I used the engineering method [WRH00] to determine the capabilities,
drawbacks, and limitations of current solutions in the realm of architec-
ture design. Since existing solutions are realized as extensions to ADLs,
they have not been adopted in practice yet [WH05].

Engineering Challenge: Industry Acceptance of Architecture
Description Languages

State of the Art
Existing approaches utilizing aspects at the architectural level
extend formal architecture description languages (ADLs).

Contribution of this thesis
The solution provided by this thesis uses the UML, which can be
considered a de facto industry standard.

An important aspect of engineering solutions regarding aspect-oriented
modeling is the specification of the composition. Usually, a so-called
pointcut definition language is used for specifying the model composi-
tion. Since these languages are based on a formal syntax, pointcut ex-
pressions are hard to create and to evolve in the face of change.

 Introduction

 17

Engineering Challenge: Setting up Weaving Specifications

State of the Art
State-of-the-art approaches rely on the manual construction of
formal pointcut expressions.

Contribution of this thesis
In this thesis, I provide a concept for interactively selecting the
model elements that are considered the places for modifying
the respective behavior of architectural elements. Based on that
selection, a formal pointcut expression used by the model com-
position algorithms can be generated automatically.

Another challenge regarding the engineering of aspect-oriented model
creation is related to the actual model weaving. I found that almost no
approach as of today supports effective weaving of models. Most ap-
proaches defer the actual weaving to the programming level [SSK06].

Engineering Challenge: Weaving of Aspect-oriented Models

State of the Art
Existing aspect-oriented modeling approaches do not support
the actual weaving of behavioral models.

Contribution of this thesis
In this thesis, I provide an implementation of algorithms that ac-
tually realize the weaving of behavioral models.

As described before, the basis for checking compositional properties is
fluent linear temporal logic. That is, I utilize the concepts existing in the
realm of labeled transition systems [GM03] to check the resulting models
for time-varying properties. In practice, however, the specification of a
formal model describing a labeled transition system including formal as-
sertions is a manual task and prone to errors.

Introduction

18

Engineering Challenge: Manual Creation of Fluents and As-
sertions for Model Checking

State of the Art
The creation of formal models that can be used by model
checking approaches requires manual effort.

Contribution of this thesis
I defined a set of heuristics that allow for automatically deriving
formal specifications of model properties in terms of fluents and
assertions. Besides the fact that I can generate a labeled transi-
tion system out of the interaction specifications defined by se-
quence diagrams, I am also able to hide the formal complexity
from the user, which is positive in three ways: 1. Automatic
generation tremendously improves the efficiency of model
checking. 2. The designer does not need to be familiar with
formal model checking techniques. 3. The automatic generation
is less, if at all, error prone.

4 – Empirical Validation

In the literature, there is only little evidence regarding the effectiveness
and efficiency of aspect-oriented concepts in the realm of model-based
development in general and model-based architectures in particular.

Empirical Challenge: Lack of Evidence regarding the Effec-
tiveness and Efficiency of Aspect-oriented Approaches in
Model-based Development

State of the Art
There is only limited evidence regarding the effects of aspect-
oriented modeling.

Contribution of this thesis
A controlled experiment was conducted that revealed gains in
efficiency due to the use of aspect-oriented separation of con-
cerns in the context of modeling-related activities.

 Introduction

 19

In summary, the contribution of this thesis comprises:

� A formalization of architectural design elements for defining aspect-
oriented extensions such that cross-cutting concerns can be treated
systematically.

� Aspect-oriented extensions to the architecture meta-model in order
to be able to separate cross-cutting concerns effectively and efficient-
ly from base models. The aspect-oriented meta-model enables effi-
cient composition of sub-solutions yielding a consolidated design
overall. The aspect-oriented meta-model presented in this thesis

i. is based on UML sequence diagrams.

ii. exploits meta-model relationships of the architecture in order to
provide a powerful means for supporting pointcut specifica-
tions.

iii. comes with means for specifying aspects to operate on the
type- as well as on the instance-level of the base model ele-
ments.

iv. comes with a set of weaving algorithms.

v. utilizes fluent linear temporal logic for checking compositional
interactions at the model level.

� A method that guides an architect through the process of designing
and evaluating trade-off decisions. That is, I provide guidelines for

i. how to use aspect-oriented modeling within the process of ar-
chitecture design.

ii. pointcut evolution.

iii. resolving semantic conflicts during model composition.

� A tool that enables efficient model-based design and formal analyses
by supporting semi-automated model compositions and evaluations.
The solution provided by the tool comprises:

i. Aspect weaving based on UML sequence diagrams.

ii. Interactive selection of model elements for weaving, including
automatic generation of a formal pointcut expression that can
be used by the model weaving algorithms.

iii. Implementations of the algorithms that actually realize the
model weaving.

iv. Automatic derivation of formal specifications of model proper-
ties in terms of fluents and assertions, which hides the formal
complexity from the user while improving the efficiency of

Introduction

20

model checking and significantly reduces error-proneness due
to the automatic generation of formal expressions.

v. Integrated meta-model relationships in order to provide power-
ful means for efficiently selecting huge portions of a model for
weaving.

vi. A reflective approach for automatically checking base model
changes against pointcut specifications.

� The validation of the impact of aspect orientation on the efficiency of
architectural model handling. I compared the aspect-oriented ap-
proach and an integrated modeling approach.

1.4 Practical Implications

Given the proposed solution approach and the problem statements as
discussed in sections 1.1 and 1.2, improvement hypotheses for the prac-
tical issues can be defined as follows:

HP1: By separating cross-cutting architectural solutions using aspect-
oriented concepts, the ability of scaling the team size with the concerns
is significantly improved.

Since the composition approach supports the integration of partial solu-
tions, the approach significantly improves the scalability of parallel
teamwork. According to the problem statement described in section 1.1,
the main factor that hampers scalability is the number of distinct solu-
tions describing inter-component communications that need to be inte-
grated into a single one. By applying the aspect-oriented solution as pre-
sented in this thesis, we assume that the increased scalability of team
size depends on the increase of the number of runtime quality attributes
to address and the respective number of design alternatives. In other
words, if we have only a single quality attribute to design for and we on-
ly have a single solution to investigate, the aspect-oriented approach
does not unfold its power. However, in practice, architectures need to
serve a multitude of quality requirements and thus motivate the exploita-
tion of aspect-oriented concepts.

HP2: By separating cross-cutting architectural solutions using aspect-
oriented concepts, the impact of the limited design scope is significantly
reduced.

Because all design alternatives can be created by simply generating the
resulting architectural designs from a composition specification, there
are no increments that other (partial) solutions need to build on. This
avoids ripple effects from changing previous designs. However, even

 Introduction

 21

though the impact of the limited design scope is significantly reduced,
the challenge is shifted towards the composition of the partial solutions.
That is, the effort for navigating through the theoretical design space as
depicted in section 1.1 depends on the effort needed for composing a
respective selection of partial solutions. The amount of effort saved for
navigating through the design space scales with the number of interde-
pendencies among the partial designs created for each quality attribute.

HP3: By separating cross-cutting architectural solutions using aspect-
oriented concepts, the design decisions that lead to a particular design
are always explicit.

If the solutions to particular concerns can be separated in terms of as-
pects, it is possible to operate on the selection of decisions only. As a re-
sult, architects do not depend on a particular resulting design to make
the next decision, and it is clear which decisions finally make up the ar-
chitecture design.

HP4: By separating cross-cutting architectural solutions using aspect-
oriented concepts, the responsiveness to changing requirements is signif-
icantly improved.

Through its ability to generate designs from basic solutions, the ap-
proach increases its resistance to change. That is, if priorities of quality
requirements change, the change is local to the selection of a particular
solution. In case requirements become obsolete, the corresponding solu-
tions are dismissed from the composition specification. I hypothesize that
the significance in efficiency improvements is dependent on the kind of
change. That is, the more scattered the solution is that is subject to
change, the more significant are the efficiency gains if aspect-oriented
concepts are applied.

HP5: By separating cross-cutting architectural solutions using aspect-
oriented concepts, the efficiency of creating and maintaining architec-
tural designs in the context of product lines is significantly improved.

The controlled and efficient separation of modular solutions to quality
requirements supports the handling of variant models in the context of
product lines as well. In the case of single system development, the se-
lection of design alternatives leads to a set of design options that are
discarded. However, the very same mechanism can be utilized in the
context of product lines, since selecting different design options for dif-
ferent quality concerns can be interpreted as instantiating generic archi-
tectures to a particular product instance. For example, if a product line
offers products ranging from low-end to high-end solutions, the most
expensive variants are supposed to exhibit a high level of performance as
compared to cheaper variants of the product line.

Introduction

22

1.5 Outline

Based on the research questions and challenges described above, the
thesis is structured as follows:

In Chapter 2, the foundations for the work presented in this thesis are
explained. In particular, I point out the drawbacks of current state of the
art concepts for realizing the principle separation of concerns at the ar-
chitectural level.

Chapter 3 defines an architectural meta-model and relates all terms and
notions for architectural design and modeling.

In Chapter 4, the aspect-oriented model for architecture design is intro-
duced. The core idea is to modularize architectural solutions that would
cut across the architecture otherwise. To that end, an extension of the
meta-model is presented showing how aspect-oriented concepts map to
architectural elements as defined in the meta-model.

In Chapter 5 the architecture design method is presented, showing how
to utilize the meta-models defined in the previous chapters. The method
addresses compositional issues of aspect-oriented architectures and gives
guidance on how to design architectures in the context of change.

Chapter 6 presents the tooling that supports the method by automating
important steps as described in the design method. The tool support is
realized as extensions to the IBM Rational Software Architect®.

In Chapter 7, the validation of the approach is presented. To validate the
hypotheses regarding efficiency and effectiveness of the proposed ap-
proach, an experiment was conducted. This chapter presents the exper-
iment design, execution, analyses, and interpretations of the results.

Chapter 8 concludes this thesis by summarizing the findings and contri-
butions and providing an outlook on future topics for further research.

 Foundations

 23

2 Foundations

In order to relate the phenomenon of cross-cutting concerns to software
architecture, I introduce the foundations of software architecture as de-
scribed in the software engineering literature. In addition, I scope out
what the reasons for cross-cutting concerns are and how they impact ar-
chitectural design in general. In order to clearly distinguish the contribu-
tions of this thesis from existing work, an overview of state-of-the-art
concepts is given that support separation of concerns at the architectural
level and show the reasons why existing concepts are insufficient for
dealing with cross-cutting concerns at the architectural level.

2.1 Software Architecture Definitions

In research as well as in practice, there exist many definitions for archi-
tectures. However, all definitions, in one way or another, refer to a
common set of things: elements or components, relationships between
them, the properties or form of all elements, as well as the rationale de-
scribing the existence and appearance of the resulting structures given a
set of requirements to be fulfilled.

In order to come up with a meta-model that interrelates architectural
concepts, the definition is based on two definitions of software architec-
ture most frequently referred to in the software engineering literature.
The first one stems from the Software Engineering Institute [CK03].

Definition – Software Architecture

The architecture of a software-intensive system is the structure or struc-
tures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

The second definition is defined by the IEEE 1471-2000 standard for ar-
chitecture description [MEH01].

Definition – Software Architecture

The fundamental organization of a system embodied in its components,
their relationships to each other, and to the environment, and the prin-
ciples guiding its design and evolution.

Foundations

24

The most interesting aspect that is added by the definition of IEEE 1471-
2000 is that architecture comprises principles that guide a system in its
design and evolution. Hence, besides describing what architecture is, the
importance of the rationale is confirmed by that definition as one of the
fundamental concerns in architecture design.

As mentioned in the previous chapter, architecture design is about mak-
ing design decisions, balancing design decisions, and trading off archi-
tectural concerns [CKK01]. In order to do all these things, architecture
design decisions need to be manifested in one form or another. Without
manifestation, architectures would be implicit and very limited regarding
their leverage. Therefore, architectural design decisions are recorded us-
ing so-called architectural models [TMD09]. However, the facts that
“every architectural model is an approximation of reality” and therefore
“is only partially accurate and partially complete”, need to be taken into
account whenever architectures are to be exploited [RW05].

Definition - Architectural Model

“An architectural model is an artifact that captures some or all of the de-
sign decisions that comprise a system’s architecture. Architectural Mod-
eling is the reification and documentation of those design decisions.
Depending on the level of rigor and formality, architectural models are
more or less expressive for visualizing, evaluating, and evolving an archi-
tecture.” [TMD09]

Architectural models are created using modeling notations or modeling
languages. There exist quite a number of modeling languages, ranging
from highly ambiguous languages to strictly defined formal languages.
There is a natural trade-off between expressiveness and formality of
modeling notations. If a modeling notation is very expressive, practition-
ers are willing to adopt such a language without any problems. Natural
languages mark the one side of the spectrum that spans expressiveness
and formality. Since natural languages are very expressive but not for-
mal, they cannot be processed by machines to validate architectural de-
sign decisions. Therefore, validation of design decisions needs to be
done manually through inspections. Such kinds of inspections are open
to misinterpretation and it is questionable if complexity can be coped
with if models are described by natural languages.

On the other end of the spectrum, there are modeling notations that are
very formal, supporting machine executable and therefore quantifiable
validations. Most of today’s so-called architecture description languages
(ADLs) belong to this category of modeling notations. Most ADLs were
developed during the 1990s when there was a rising understanding that
architectures needed appropriate descriptions in order to be effective.
However, almost all ADLs originate from research efforts and are rarely
applied in industrial practice today [WH05]. Not surprisingly, there is al-
most no or only limited tool support for ADLs.

 Foundations

 25

The Unified Modeling Language (UML) [UML08] is a graphical modeling
notation that can be placed in the middle of that spectrum. UML is syn-
tactically rich and it is more precise than natural or purely graphical nota-
tions (e.g., MS Powerpoint™, MS Visio™, etc.). However, since the UML
is still ambiguous, UML offers so-called stereotypes and tagged values
that add information to the models in order to increase the semantics
and reduce the degree of misinterpretation. In practice, there exist nu-
merous tools supporting the UML and its extensions since the UML is
considered a de-facto standard in industry.

Given these facts, the work presented in this thesis aims at utilizing the
UML in order to benefit from both ends of the spectrum. On the one
hand, UML is considered a de-facto standard in industry; on the other
hand, UML can be geared towards more rigor and formality.

2.2 Design Dimensions

Architecture in general is used for different purposes at different places
throughout the lifecycle of a system [TMD09]. Depending on the stage
of development, architecture needs to support different activities and
therefore answer different kinds of questions. The activities that I focus
on are activities of architecture design. Architecture design deals with
the manifestation of design decisions that address non-functional re-
quirements stated by a set of stakeholders. That is, the stakeholder con-
cerns determine what to model and to which level of detail.

In order to systematically connect stakeholder concerns to architecture
design activities, stakeholder concerns are classified according to the
goals they aim at. For example, according to [ISO01], stakeholder con-
cerns can be mapped to external and internal product properties. Exter-
nal properties are properties that are exhibited by the product during
runtime. Internal properties are “typically static measures of intermediate
products” [ISO01]. Hence, stakeholder concerns need to be addressed by
appropriate architectural models that allow reasoning about internal and
external properties alike.

For these reasons, architectural models are used for answering either
one of the following types of questions:

1. How is the software structured as a set of elements that have
runtime behavior and interactions?

2. How is the software structured as a set of implementation units?

3. How does the software relate to non-software elements in its envi-
ronment?

Foun

26

ndations

C
s
s
a
a
u
t
t
s

F

I
t

C

I
t
r
c

s
g

Consequently
sion giving an
sis, I will refer
allocation dim
answers quest
ule dimension
tation units, a
to non-softwa
signments rela
ing software u

Figure 8 Main dim

In the followi
tail.

Component-

In the compon
terms of its ru
runtime prese
components h
using the C&
specific functi
goal?”.

Mod

How is the
structured
implemen

y, there are th
nswers to diffe
r to the dimen

mension (Figur
tions related t
ns answers qu
and the alloca
are elements.
ating impleme
units to execu

mensions of archi

ng, these des

Connector D

nent-connecto
untime behav

ence, it can be
has to take p

&C dimension
on?” or “How

dule

e system
d as a set of
ntation units?

Ho
rel
un

hree main dim
erent question
nsions as com
re 8). The com
to runtime str
uestions relate
ation dimens
Typical exam

entation units
tion environm

tecture design

sign dimension

Dimension

or dimension (
vior. That is, b
e specified how
lace. Typical q
are: “What i

w do elements

Allocation

C

ow does the soft
late to non-soft

nits?

mensions of de
ns. For the rem

mponent-conn
mponent-con
uctures of the

ed to the struc
ion relates all

mples of alloca
s to teams, or
ments.

ns will be des

(C&C), the sys
based on com
w the collabor
questions tha
is the mean r
s collaborate t

Component-

tware
ware

How is the syst
as a set of elem
runtime behav

esign, each d
mainder of thi
ector, module
nnector dime
e system, the
cture of imple
 software con
ations are tea
deployments

scribed in mo

stem is describ
mponents that
ration among
t can be answ
response time
to achieve a c

Connector

tem structured
ments that have
vior and interact

dimen-
is the-
e, and
ension
mod-

emen-
ncerns
am as-
 relat-

re de-

bed in
t have
these

wered
e of a
certain

tions?

 Foundations

 27

According to [TMD09], components and connectors (C&C) address the
following concerns:

� Processing, which can be referred to as functionality or behavior
(functional responsibility assignments)

� State, which may be referred to as information or data

� Interaction, which may be referred to as communication, coordina-
tion, or mediation

In order to specify the collaboration behavior of the component types,
the dynamic structure of components has to be modeled. During
runtime, these components are interconnected by so-called connectors.
Connectors specify the coordination behavior via so-called connector
protocols. Basically, connector protocols show how components are
supposed to work together in terms of coordination. In terms of model-
ing, the coordination behavior can be modeled by using message se-
quence charts, UML sequence diagrams, or UML state charts.

Module Dimension

The module dimension denotes a collection of principles that can be ap-
plied when a static model of the architecture is supposed to be created.
Looking at architectural principles, modules are structured using decom-
position and by establishing implementation relationships between
them. The module dimension describes how different implementation
units depend on one another. As a consequence, modules are consid-
ered to be close to a system’s implementation. By capturing these rela-
tionships, dependencies can be analyzed that might exist among mod-
ules in the presence of a change scenario, for instance. Here, I assume
that concerns like functional decomposition and dependencies between
modules are defined in such kinds of views.

The main concerns addressed by the module architectural dimension are:

• Functional decomposition of a system into subsystems

• Module interface definitions

• Information flow and data structures

The module structures are thus the starting point for estimating the im-
pact of a particular change.

Foundations

28

Allocation Dimension

The allocation dimension is mainly concerned with assigning software ar-
tifacts to other entities. In the case of the definition given by [CGB+02],
the allocation dimension comprises three distinct concerns: deployment,
implementation, and work assignment.

• Deployment: The deployment shows how software units are mapped
to the HW environment comprised of processing nodes, network inter-
connections, or disk storage facilities.

• Work assignments: Modules are mapped to teams.

• Implementation: Modules are mapped to infrastructure entities (e.g.,
configuration management) to support multi-team development.

As can be seen from this explanation, allocation is relevant for answering
questions about both runtime and development-time quality attributes.
If runtime properties are addressed, components and connectors need to
be considered in combination with deployment models. Likewise, in the
case of development-time properties, module structures in combination
with work assignments and implementation allocations need to be con-
sidered.

2.3 Architectural Tactics, Patterns and Strategies

In architecture design, the architect needs to come up with solutions
that adequately address the stakeholder concerns at hand. For address-
ing non-functional concerns, the main underlying principle of solution
design is called operationalization. That is, non-functional requirements
are refined and eventually mapped to new functional requirements. In
general, operationalization is driven by an architectural strategy.

Definition – Architectural Strategy

An architectural strategy is a high-level decomposition of a quality goal
into sub-goals.

Each of the sub-goals is then addressed by an appropriate set of solu-
tions. Architecturally speaking, there are two notions of relevance re-
garding architectural solutions: architectural tactics and patterns.

Definition – Architectural Tactic

An architectural tactic is a design decision that influences the control of
a quality attribute response [CK03].

 Foundations

 29

In other words, tactics are design options for the architect that support
the achievement of non-functional concerns. Looking at the design di-
mensions of architectures in general, architectural tactics potentially have
a multi-dimensional nature. That is, an architectural tactic most likely not
just influences one dimension (e.g., component and connector) but
might also influence the allocation dimension in terms of deployment.
Looking at the “Heartbeat” example illustrated in Figure 9, it can be
seen that the tactic comprises structural (a) as well as behavioral (b) as-
pects. The purpose of the “Heartbeat” tactic is to provide a solution to
the problem of detecting the failure of particular components in a sys-
tem. The failure of a component is deduced from the missing heartbeat
the component is supposed to send within a specified time span. The
structural models of the tactic illustrate what elements need to collabo-
rate, whereas the behavioral models show how the elements are sup-
posed to work together.

Figure 9 Sample tactic – “Heartbeat”

Although the notion of patterns has been coined by the design pattern
community [GHJ+95], the concept of a pattern also exists at the level of
architecture design. In that sense, architectural patterns are reusable so-
lutions or concepts that can be transferred to different contexts.

Definition – Architectural Pattern

An architectural pattern packages a set of architectural tactics [CK03].

According to this definition, the sample pattern as depicted in Figure 10
captures design knowledge by packaging two tactics into one, namely
the “Heartbeat” tactic and the “Active Redundancy” tactic. The heart-
beat tactic in the pattern corresponds to its description as given above.
The “Active Redundancy” tactic aims at switching resources in terms of

Foundations

30

functional responsibilities. In the example case, the “Active Redundancy”
tactic switches the connector behavior of the Communication connector
if the monitor detects a failure of the observed entity. All entities com-
municating with the Observed Entity that failed are re-routed to the
Backup Entity.

Figure 10 Architectural Availability: combining “Heartbeat” and “Active Redundancy”

As can be seen in Figure 11, the architectural pattern defines additional
assumptions in terms of its multi-dimensionality. Here, the pattern states
that the Observed Entity needs to be deployed on a different physical
node than the Backup Entity.

Figure 11 Architectural Availability Pattern: deployment implications

 Foundations

 31

2.4 Architectural Separation of Concerns

2.4.1 Views and Perspectives

Traditionally, separation of concerns at the architectural level has been
addressed by applying so-called architectural views [MEH01], [Kru95],
[RW05].

Definition – Architectural View

An architectural view is a representation of one or more aspects of an
architecture that illustrates how the architecture addresses one or more
concerns held by one or more of its stakeholders [RW05].

In other words, an architectural view “is a set of design decisions related
by a common concern (or set of concerns)” [TMD09]. There exist several
works in the literature that emphasize the need for different views dur-
ing architecture design and evaluation. The most prominent ones are
Kruchten’s 4+1 view model [Kru95], SEI’s Documentation Scheme
[CGB+02], Siemens-4-Views [HNS00], as well as the IEEE 1471-2000
Standard [IEEE1471], [MEH01]. In this context, the IEEE 1471-2000
standard introduced the term viewpoint for the first time.

Definition – Architectural Viewpoint

A specification of the conventions for constructing and using a view. A
pattern or template from which to develop individual views by estab-
lishing the purposes and audience for a view and the techniques for its
creation and analysis [MEH01].

Viewpoints help in deriving views; however, there is no general set of
views that adequately and universally describe the architectures of soft-
ware-intensive systems. One of the challenges in architecting is to select
those views that convey information which is useful for analyses or
communication. The selection itself depends on questions like:

� Which kind of system does the architecture describe?

� What concerns do the stakeholders have?

� Which analyses should be possible?

Foundations

32

Figure 12 Architectural views in context

Even though there is no general answer to which views to select, our ex-
perience has shown that the following set of views represents a good
starting point in any architecture endeavor:

1. Context Views: Describe the context of the system to be devel-
oped. That is, they show all surrounding systems that interact with
the system to be developed. In short, it is the purpose of the context
view to show what the scope of the system is by distinguishing it
from the systems that it is connected to.

2. Component-Connector Views: The component-connector views
describe the decomposition of the system into functional compo-
nents and connectors allowing the components to communicate.

3. Module Views: The module views describe the decomposition of
the system into implementation units, also referred to as modules.
From this view, the assignment of tasks to developers can be de-
rived.

 Foundations

 33

4. Deployment Views: The deployment view associates runtime arti-
facts like components and connectors with concrete computational
units and communication paths. That is, components are assigned to
nodes and (implicitly) connectors to communication paths.

5. Team Allocation Views: Team allocation views allocate resources
to development activities and related artifacts.

This set of views mainly supports the decomposition of a system into
smaller units, which somehow makes these views form the “quasi-
standard” set of views. Up to this point, all views described have not ex-
plicitly addressed non-functional concerns. Since we need to be able to
answer questions about the fulfillment of non-functional concerns, we
need to collect information from different views and extend or analyze
that information in a very special way. This is what perspectives are used
for.

Definition – Architectural Perspective

An architectural perspective is defined as “a collection of activities, tac-
tics, and guidelines that are used to ensure that a system exhibits a par-
ticular set of related quality properties that require consideration across a
number of the system's architectural views” [RW05].

For instance, in order to answer questions about the maintainability of a
system, we need to combine information about the team structure and
its elements, including their properties (e.g., productivity, availability,
etc.), with information taken from the module view describing the rela-
tionships of implementation units of the system under investigation. In
order to answer questions about performance, we need to use infor-
mation from the deployment view, telling us about hardware properties
(e.g., bandwidth) and physical separation of software units in combina-
tion with information about the logical interactions of components (tak-
en from the component-connector view).

Foundations

34

Figure 13 Quality specifics cut across views

The resulting challenge regarding views and perspectives for separating
concerns is due to the fact that all views and perspectives need to oper-
ate on the same architectural model. The creation and evolution of archi-
tectural views based on a consistent architectural model turns out to be
the major challenge in that regard.

In the context of architectural views, there exist so-called architecture
frameworks support view-based architecture development. Architecture
frameworks are a means for packaging existing knowledge and best
practices such that architects have appropriate support for architecture
design, in particular architecture documentation. However, the frame-
works usually only provide a starting point in terms of a set of questions,
processes, guidelines, or a set of viewpoints that an architect might con-
sider during architecture design.

In the following, I will briefly describe the most prominent examples of
architecture frameworks, and characterize them regarding their support
with respect to cross-cutting concerns.

Context

C&C

Module

Team All.

Deployment

Se
cu

ri
ty

Pe
rf

o
rm

an
ce

M
ai

n
ta

in
.

Sa
fe

ty

A
va

ila
b

ili
ty

Not relevant

relevant

 Foundations

 35

DoDAF

The Department of Defense Architecture Framework (DoDAF) [DoD04]
defines a standard for documenting system architectures. DoDAF leaves
many choices to the user of the framework such as notation selection,
consistency checks, and so forth. DoDAF comes with a set of viewpoints
that are recommended to be considered during architecture documenta-
tion, namely:

� Operational view: Describes the context of the mission of the system

� Systems view: Describes the system parts in detail

� Technical standards view: Shows what technical standards are ap-
plied

� All views: Captures cross-cutting concerns, but at a very high level of
abstraction

DoDAF, however, does not mandate (and thus also does not provide)
any method to be applied, and especially does not provide any support
regarding the handling of cross-cutting concerns.

TOGAF

The Open Group Architecture Framework (TOGAF) [ToG03] is a frame-
work for developing enterprise architectures. That is, the framework
supports enterprise architects in their need to design an IT–based infra-
structure that supports the implementation of specified business goals.
TOGAF does consider factors beyond software and hardware, such as
human factors as well. In short, TOGAF consists of three major items:

� ADM: Architecture development method

� Virtual repository: Comprises models, patterns, architecture descrip-
tions, etc.

� Resource base: Comprises guidelines, templates, etc.

Similar to DoDAF, TOGAF does specify what to do but leaves the deci-
sion about how to do it to the implementer of the framework. Regard-
ing the handling of cross-cutting concerns, TOGAF does not provide any
means per se.

Foundations

36

RM-ODP

The Reference Model for Open Distributed Processing (RM-ODP) [ISO98]
is an ISO standard for describing open, distributed processing infor-
mation systems developed to run in an environment of independent,
heterogeneous processing nodes connected by a network [TMD09]. The
RM-ODP defined five viewpoints to be considered during architecture
design, namely:

� Enterprise (context): Describes the enterprise’s context

� Information: Shows the distribution and processing of information

� Computational: Shows computational entities and their relationships

� Engineering: Shows processes that interrelate the computational enti-
ties

� Technology: Describes the technologies employed

The framework contributes to ensuring that the architect thinks about
and documents relevant aspects of the architecture that impact various
qualities. In general, the RM-ODP is similar to DoDAF: There is no me-
thodical support in terms of how the viewpoints are supposed to be
used, and there is no support for dealing with cross-cutting concerns.

Zachman Framework

The Zachman Framework [Zac87] is a widely used approach for develop-
ing and/or documenting enterprise-wide Information Systems Architec-
tures. The framework comes with multiple perspectives of the overall ar-
chitecture for supporting the organization, access, integration, interpre-
tation, development, management, and changing of a set of architectur-
al representations of the organization's information systems.

Akin to other architecture frameworks, the Zachman framework does
not provide any concrete methodical guidance of how to instantiate the
framework. Any appropriate approach, standard, role, method, tech-
nique, or tool may be applied. In fact, the Framework can be viewed as a
tool for organizing any form of metadata for the enterprise.

In conclusion, the frameworks as such make a contribution at the con-
ceptual level of architecting; however, they do not provide any means
for facilitating design activities, especially regarding the systematic
treatment of cross-cutting concerns.

 Foundations

 37

2.4.2 Issues with Cross-cutting Concerns

In general, cross-cutting concerns come with three major challenges.

Issue #1: Identification of Cross-Cutting Concerns

In order to cope with the issue of cross-cutting concerns, they need
to be identified in a first step.

That is, depending on the stage of development or on the kind of devel-
opment artifacts at hand, it is not obvious whether or not a particular
concern is actually cross-cutting. Cross-cutting concerns can exist at all
levels of abstractions [TMA+04]; however, the existence of a cross-
cutting concern at a particular level of abstraction does not imply the ex-
istence of the same cross-cutting concern at other levels.

Issue #2: Separation of Cross-Cutting Concerns

In order to tackle cross-cutting concerns effectively, they need to be
separated from other concerns.

This is where architectural views as described in the previous sections
come into play. As already indicated, architectural views in general are a
means for separating concerns. However, since the views are defined on
the same architectural model, they are likely to expose elements that are
affected by other views as well. It has been recognized in research that
“the drawbacks of crosscutting with respect to architectural views is sim-
ilar to the drawbacks with respect to code, i.e. hampering reuse,
maintenance and evolution of the architecture” [BH06].

Issue #3: Integration of Cross-Cutting Concerns

The third challenge is the integration of the separated concerns into
a coherent system.

With the term “system” as used in the above problem statement, I refer
to either one of the following: system model, system implementation, or
executing system. Without integrating the concerns into a single system,
there would be no realization of cross-cutting concerns in the end. How-
ever, the issue of concern integration is the main reason why separation
of concerns using state-of-the-art view-based architecture approaches
does not suffice. Currently, all view-based approaches support the sepa-
ration issue; however, the integration issue remains unsolved.

Foundations

38

View-based approaches only separate the concerns; they do not provide
any means for integrating the concerns.

Conceptually, view-based approaches are similar to database queries.
The only difference is that the role of the database is taken by the archi-
tectural model. Architectural views define queries on an architectural
model and the query result comprises a partial representation of infor-
mation stored in the architectural model. An important assumption of a
query-based approach to separation of concerns is that the model com-
prises much more information that is indirectly related to the information
displayed within a view. Consequently, when the architectural model is
changed based on the partial information rendered by that view, the
underlying reasoning for the change is only of limited value because of
the limited scope of the information. An informed change of an architec-
tural design based on the views needs to take all relevant architectural
information into account that is impacted by that change. However, this
stipulation is not fulfilled by state-of-the-art view-based architecture ap-
proaches.

 Architecture Meta-Model

 39

3 Architecture Meta-Model

“As far as the laws of mathematics refer to reality, they
are not certain, and as far as they are certain, they do

not refer to reality.” Albert Einstein

In the literature, there exists no common meta-model that relates all im-
portant facets of architecture in a conceptualized way. However, in order
to address the research issue of cross-cutting concerns in the realm of
architectural interconnection, a meta-model is needed that provides a
basis for understanding the relationships between the different architec-
ture design dimensions. In this chapter, I describe such a conceptualized
meta-model for architecture that integrates existing concepts regarding
architecture modeling and aligns them according to the design dimen-
sions presented before.

The first part of this chapter reflects the main architectural design di-
mensions (C&C, Module, and Allocation) as introduced in Chapter 2 in
the context of architecture modeling. The second part of this chapter es-
tablishes the interrelationship between the different meta-models creat-
ed in their own right. The third part shows how architectural tactics re-
late to the meta-model and what entities are potentially affected by
cross-cutting concerns.

3.1 Element and Relation Types

The architectural dimensions as introduced in Chapter 2 define runtime,
development, and allocation elements and structures to be considered
during architecture design. As shown in Figure 14, there are always
three types of elements to be defined in all of the high-level areas: soft-
ware entities, processes, and contextual entities. For each of the areas,
the entities have a different manifestation. For instance, in case of devel-
opment, contextual entities need to be defined that support the devel-
opment of a system; in case of runtime, contextual entities need to be
defined that are of relevance during runtime, such as the runtime envi-
ronment. Although the main focus of this thesis is on the software ele-
ments within the runtime space, I present a complete architecture meta-

Architecture Meta-Model

40

model in order to provide a context that is broad enough to fit the par-
ticular extensions.

Figure 14 Design dimensions to be reflected by the architectural meta-model

3.1.1 Components and Connectors

As described before, components and connectors (C&C) describe
runtime entities of a system and show how these elements are supposed
to collaborate. Given that definition, the purpose of an architectural
model comprised of components and connectors is to represent dynamic
aspects in terms of behavior of entities and interactions among those en-
tities. In the following, these elements and relations are defined in more
details.

Components

Since there is no commonly agreed on definition of a component, we
base our architectural meta-model on aspects postulated by one of the
most prominent definitions of components.

 Architecture Meta-Model

 41

Definition - Software Component

A software component is a unit of composition with contractually
specified interfaces and context dependencies only. A software com-
ponent can be deployed independently and is subject to composition
by third parties [Szy98].

Concerning relation types, there is only one relation type that is of rele-
vance in the context of components and connectors: the connector.

Connectors

The elements that specify how components interact at the architectural
level are referred to as “connectors”. Connectors allow architects and
engineers to compose heterogeneous functionality, developed at differ-
ent times, in different locations, by different organizations [MMP00]. As
such, connectors can be thought of quite appropriately as “the guards at
the gate of separation of concerns” [TMD09].

Definition - Software Connector

A software connector is an architectural element tasked with effecting
and regulating interactions among components. In other words, a
connector performs transfer of control and data among components.
[TMD09]

Examples of simple connectors are “procedure call” or “shared data ac-
cess” [CGB+02]. I stress the fact that connectors are first-class entities
with potentially high complexity since they might also offer non-
simplistic services like transactions, messaging, and persistence for in-
stance [Sha94]. In terms of architectural decisions, connector design is a
non-trivial endeavour, since the architect gets lots of options to choose
from. For instance, a connector could be broadcasting messages or
events to any component that is interested or only to a subset of com-
ponents. Further, the connector could stipulate that the sending compo-
nent suspends its operation until the transmission process is complete. In
case of volatile networks, a connector could also be in charge of collect-
ing, reordering, assembling, compressing, encrypting, or filtering the
messages it is supposed to transmit. When these responsibilities are tak-
en into account, it can be seen that connectors can be sophisticated and
highly complex design entities that need to be constructed and verified
with care.

The meta-model for components and connectors as depicted in Figure
15 defines that a component provides a number of ports and can be de-
composed into a number of (sub-)components. Ports are the communi-
cation end points between connected components. A port provides
and/or requires a number of interfaces. “A connector type is defined by

Architecture Meta-Model

42

a set of roles and a glue specification. The roles describe the expected
local behavior of each of the interacting parties. That is, they act as a
specification that determines the obligations of each component partici-
pating in the interaction [AG97]”. In the meta-model as depicted below,
the role is used for connector specification without a concrete set of
components that should be connected using that connector. When the
connection is established, the roles are replaced by the respective ports
that need to comply with the role specification. The connector protocol
(sometimes also referred to as “glue”) coordinates the interaction of the
connected components.

Meta-model:

Figure 15 Component-connector meta-model

Figure 16 shows the notational elements for modeling components and
connectors. For representing components and interfaces, the notational
elements are used as defined by the UML.

 Architecture Meta-Model

 43

Notation:

Figure 16 Notation for C&C structures

Figure 17 shows a sample model that specifies a client-server component
structure. The upper part of the figure shows the structure of the com-
ponents. The connection between the components is established by the
serverCall connector. The serverCall connector itself is specified explicitly
as illustrated in the lower part of Figure 17. I stress the fact that con-
nector semantics can be modeled by means of UML sequence diagrams.

Figure 17 Example C&C model

Architecture Meta-Model

44

3.1.2 Modules

In contrast to components, modules refer to design-time entities. A
module suggests encapsulation properties, whereas components might
not be well encapsulated [GAO95]. Additionally, it might not be possible
to deploy a module independently from other entities. This is due to the
fact that modules usually depend on lots of other modules in order to be
compiled and installed.

Definition - Module

A module is a code unit that implements a coherent set of responsibili-
ties. A module can be a class, a collection of classes, a layer, or any de-
composition of the code unit [CGB+02].

From the perspective of a developer, it is the modules that are consid-
ered the blueprint for the implementation rather than the components
as defined by component-connector models.

Dependencies

Abstractly speaking, in the realm of modules there exists only one type
of relation: module dependencies [CGB+02]. A dependency relation
might be instantiated to more concrete forms of specific relations.

Meta-model:

Figure 18 Module meta-model

A module dependency relation between modules denotes a (set of) con-
crete relationship(s) at the implementation level that establish a depend-
ency among these modules. The most relevant concrete dependencies

 Architecture Meta-Model

 45

on the module level are <<use>>-relations, <<is-allowed-to-use>>-
relations, and <<is-a>>-relations. The module meta-model as depicted in
Figure 18 defines that modules potentially aggregate other modules.
This is important, since modules are decomposable into sub-modules. In
addition, modules might depend on other modules. A module provides
or requires a set of interfaces that specify the usage possibilities of the
module. The provided module interfaces are eventually realized by pro-
gram code that is translated into an executable binary format.

A sample model showing the use of the UML for describing module
structures is shown in Figure 19. The Clients module aggregates two
modules (Remote-UI and PC) and specifies a usage relation between cli-
ent modules and service modules. Note that the use-relation might be
subject to decomposition as well, since there might be more concrete
use-relations between modules on lower levels.

Notation:

Figure 19 Example model using the module notation

3.1.3 Allocation Types

There exist a number of element and relation types belonging to the cat-
egory of allocations. According to the definition given by [CGB+02], al-
locations are mainly concerned with assigning software artifacts to non-
software entities. Non-software entities either refer to hardware, exter-
nal systems, infrastructure, or people in the lifecycle of the system. In the
following, these non-software entities will be described in more detail.

Architecture Meta-Model

46

3.1.3.1 Hardware

“Hardware aspects of the system under consideration are seldom far
from the software architect’s mind” [CK03]. This statement underpins
that it is very important to know about the relevant properties of hard-
ware elements that are involved in rendering the final system functionali-
ty. In case certain hardware properties were to be neglected, the out-
come of the development effort would run the risk that the final system
might not achieve its goals. Depending on the concrete requirements,
different hardware properties might be of interest to the architect. For
example, in the case of performance, the processing power of physical
nodes as well as the bandwidth of the physical communication media
are of relevance. If availability is an issue, the failure probabilities of the
hardware units are of interest. If energy efficiency is a requirement, the
energy consumption of all hardware units needs to be known. In gen-
eral, all hardware elements that influence or are influenced by the soft-
ware are potentially relevant for modeling.

Element Types

In terms of elements, there is a clear connotation to components and
connectors, since components need to execute and interconnect using
appropriate hardware units. Therefore, hardware components and phys-
ical connectors are the main elements in the hardware dimension.

Relations

In terms of relations within the hardware model, the link to the software
world needs to be established. Using the terms as defined by the UML,
the deployment of the software entities to the hardware units needs to
be considered.

Meta-model:

The meta-model as depicted in Figure 20 shows the elements and rela-
tions that exist in the hardware allocation dimension. A hardware com-
ponent (HW component) is a processing unit capable of hosting and ex-
ecuting software units packaged as so-called artifacts. Hardware com-
ponents host one or more runtime environments that actually execute
the software pieces of the system. The hardware components are inter-
connected by means of Physical Connectors. Physical connectors repre-
sent physical communication channels such as wireless LAN or bus sys-
tems as they are found in embedded systems.

 Architecture Meta-Model

 47

Figure 20 Hardware meta-model

The notational elements of the hardware allocation type are illustrated
by the sample model depicted in Figure 21.

Notation:

Figure 21 Example model using hardware notational elements

The sample model as shown in Figure 21 shows two hardware compo-
nents that deploy one artifact each. The hardware component “ECU F2”
also hosts the runtime environment “AUTOSAR-RTE”.

3.1.3.2 External Systems

Usually, today’s systems are not operated in isolation anymore. New sys-
tems are supposed to collaborate with existing systems like third-party or
legacy systems. Despite the fact that the existing systems are usually not
under control by the architect, there is an information need about exist-
ing systems that the new system needs to interface with. Here, the situa-
tion is similar to the hardware world: Depending on the requirements,
different properties of existing systems need to be accessible to the ar-
chitect.

Architecture Meta-Model

48

Meta-model:

The meta-model of external systems as depicted in Figure 22 shows that
an external system potentially provides one or more interfaces. Further-
more, an external system uses one or more communication paths.

Figure 22 External systems meta-model

When an architecture is about to be designed, all relevant external sys-
tems need to be identified and relevant properties need to be specified
as concretely as possible.

3.1.3.3 People

One of the most easily overlooked factors during software development
is the human factor. Even though many steps during software develop-
ment can be automated, lots of activities and decisions remain that have
to be made by people. The set of involved roles and persons assigned to
the roles have properties that need to be taken into consideration as
well. For instance, when modules are assigned to teams for implementa-
tion, the team members themselves heavily influence the speed and
quality of the development. The business goal of achieving a particular
time to market is heavily dependent on the capabilities of the develop-
ment and quality assurance teams. The pure software structures and de-
pendencies are important; however, it is the combination of software
structures with people that determines the final result in terms of quality
and time.

Element types

The element types relevant in the people meta-model are roles, re-
sources, tasks, and software artifacts. In general, there might be differ-
ent roles involved in software development; however, the important as-
pect is that the architect is aware of what roles to consider and what
properties of the persons that are assigned to the roles need to be taken
into account. A typical list of roles involved in a software development
project are requirements engineers or business analysts, architects, de-
signers, developers, testers, and maintainers.

 Architecture Meta-Model

 49

Relations

Each of the roles has to perform a (set of) particular tasks defined on the
software artifacts, such as elicits, develops, tests, maintains, evolves, and
so forth.

Meta-model:

The meta-model as depicted in Figure 23 shows that resources are as-
signed to one or more roles. Each role has a number of responsibilities
expressed by a need to perform certain tasks on a defined set of soft-
ware artifacts.

Figure 23 People meta-model

Notation:

As depicted in Figure 24, an instance of the people meta-model com-
prises resources, roles, and tasks. Here, a single resource (John) is as-
signed to two roles, namely Developer and Tester. The resource proper-
ties that are of relevance to the architect are attributes like “productivi-
ty” or “steepness of learning curve”. These attributes can be used when
role assignments need to be made in the face of pressing deadlines.

Architecture Meta-Model

50

Figure 24 Example model showing people allocations

3.1.3.4 Infrastructure

At development and maintenance time, there are systems external to the
software system that need to be taken into consideration as well. For in-
stance, when maintainability is an issue, the infrastructure of the devel-
opment teams is supposed to support the maintenance activities. Typi-
cally, in large projects a configuration management system is used for
enabling concurrent development activities. At one point, technical deci-
sions about the development environment need to be taken, and most
importantly, these decisions should not conflict with other quality attrib-
utes the software is required to exhibit.

Element types

According to that description, infrastructure elements like frameworks
and tools can be identified. Prominent instances of these categories in
practice are Configuration Management Systems, Code Development
Frameworks, and Test Frameworks. In general, these elements support
lifecycle activities in the context of the product.

Relation types

The relation types that exists in the infrastructure are the <<supports>>
and the <<performs>> relationships.

 Architecture Meta-Model

 51

Meta-model:

As depicted in Figure 25, the infrastructure meta-model defines that
frameworks and tools support tasks that are defined on the respective
software artifacts.

Figure 25 Infrastructure meta-model

Notation:

The example model shown in Figure 26 depicts an instance of the infra-
structure meta-model as defined above. There exists a number of tasks
supported by a configuration management tool (SVN: subversion
[Sub10]) and a testing framework (JUnit [JUN10]) that support a set of
the lifecycle activities (here: Coding and Testing).

Figure 26 Example model for infrastructure

Architecture Meta-Model

52

3.2 Inter-Element Type Relations

In this section, I investigate how the respective meta-models relate to
each other. By systematically investigating relationships between the me-
ta-model elements as presented in the previous sections, I aim at a co-
herent picture of architecture that appropriately relates all facets as de-
scribed earlier. I start by mutually mapping each of the design dimen-
sions to each other before all identified relationships are combined into a
coherent overall picture.

3.2.1 C&C – Modules

The C&C architectural dimension and the module architectural dimen-
sion are related to each other since components and connectors are
eventually realized by modules (see Figure 27).

Figure 27 C&C and Modules: Meta-model relationships

That is, while a component represents a runtime entity, the realization of
such an entity is a development-time module. In this case, a module or a
set of modules eventually realizes the interfaces provided by a particular
component port. The same holds for connectors; connectors define the
interaction mechanisms of the components that exist at runtime, how-

 Architecture Meta-Model

 53

ever, the interaction mechanisms need to be mapped to units of imple-
mentation or infrastructure services that realize the required communica-
tion facilities. In this case, a set of modules eventually realizes the role-
and connector protocols.

3.2.2 C&C – Allocations

According to the definition given in Section 3.1.3, the allocation dimen-
sion denotes how software entities relate to non-software entities. In
case of C&C, runtime elements are mapped to non-software elements.
The most obvious relationship between the C&C and the allocation di-
mension is the deployment of components. The deployment defines the
mapping of runtime entities to hardware units. Here, the element Arti-
fact bridges the two meta-models, since an Artifact manifest compo-
nents. Since there are allocations in terms of people and infrastructure as
well, the element SoftwareArtifact links the meta-models of people and
infrastructure.

Architecture Meta-Model

54

Figure 28 C&C and Allocations: Meta-model relationships

 Architecture Meta-Model

 55

3.2.3 Modules – Allocations

Modules are eventually transformed into code units, which are in turn
used for producing executable binaries. These binaries are then to be
manifested in terms of artifacts that can be deployed (see Figure 29). As
compared to the component-connector deployment relationships, a re-
fined deployment of the architecture is created allowing for impact anal-
yses regarding the module structures on runtime properties.

Figure 29 Modules and Allocations: Meta-model relationships

In addition to being allocated to physical entities, modules are to be allo-
cated to other non-software entities as well, namely to teams or team
members in terms of role assignments. Using this kind of mapping al-
lows for analyses of development-time issues like buildability or mainte-
nance. Another important allocation instance is the mapping of modules
to infrastructure entities like configuration management systems, coding
frameworks, or test frameworks. This mapping is realized by the element
SoftwareArtifact, which forms a bridge from the module meta-model to

Architecture Meta-Model

56

the allocation meta-models in terms of people and infrastructure. In Fig-
ure 30, an overview of the resulting meta-model for architecture devel-
opment is depicted.

Figure 30 Architecture meta-model – Overview

 Architecture Meta-Model

 57

3.3 Tactic Meta-Model

Having defined the architectural meta-model, the tactic meta-models
need to be defined as well. As defined in Section 2.3, a tactic is a design
option for the architect. However, design options need to be applied to
the architectural design in order to be effective. This also implies that the
application of tactics affects a number of architectural elements already
existing in the design. In order to examine the potential impact that the
different kinds of tactics have on architectural design, tactics in the con-
text of the architectural meta-model are investigated.

3.3.1 Implementation Tactics

In terms of design dimensions, implementation tactics aim at improving
the efficiency and effectiveness of activities that teams need to perform
on the implementation units.

Figure 31 Implementation tactics affecting elements of the architecture meta-model

In terms of the architecture meta-model as defined in the previous sec-
tion, implementation tactics either apply to modules themselves, mean-

Architecture Meta-Model

58

ing that tactics might introduce new modules or change the structure of
existing ones, or they may as well cause changes to interfaces provided
by modules. Regarding the team allocations and infrastructure elements,
implementation tactics potentially target resources by adding resources
to a team or changing resources depending on the required skill set. In
addition, implementation tactics may also refer to tools or frameworks
supporting specific tasks throughout system development.

In general, implementation tactics are categorized into “Localization”,
“Prevention”, and “Binding time” tactics [CK03]:

Localization of change

Localization of change describes tactics that aim at minimizing the num-
ber of elements to be modified in case a change request needs to be im-
plemented. According to [CK03], localization of change assumes that
“restricting modifications to a small set of modules will generally reduce
the cost”. Modularization of concerns is considered a general approach
that serves the goal of localizing change.

Prevention of ripple effects

Tactics belonging to this class strive for the elimination of ripple effects
in the context of a change to a system. According to [CK03], a ripple ef-
fect of a modification is defined as “the necessity of making changes to
modules not directly affected by it [the initial change]”. Implementation
tactics might introduce new interfaces in order to absorb changes such
that other modules are not affected in case of a change.

Defer binding time

Deferring the binding time of decisions categorizes implementation tac-
tics that aim at “allowing non-developers to make changes” [CK03].
That is, a product that can be extended in the field without the need to
be redesigned, implemented, and tested, is very changeable. The draw-
back of deferring the binding time is that the system itself as well as the
environment of the system needs to be prepared for those kinds of
changes. According to [CK03], “Deferring binding time supports both of
those scenarios at the cost of requiring additional infrastructure to sup-
port the late binding.”

 Architecture Meta-Model

 59

3.3.2 Execution Tactics

In general, execution tactics address runtime properties such as perfor-
mance or availability. Thus, execution tactics potentially affect two de-
sign dimensions: the component and connectors and the deployment al-
locations (see Figure 32).

Figure 32 Execution tactics affecting the architecture meta-model

The component structure is usually impacted by introducing new com-
ponents or by adding or changing responsibilities of existing components
in terms of interface changes. The same holds for deployment entities
like nodes or runtime environments. Most importantly, execution tactics
most likely influence connectors. That is, an execution tactic potentially

Architecture Meta-Model

60

introduces new roles and changes the connector protocol. In other
words, the connectors are impacted by changes of coordinating infor-
mation exchanges of the component structures.

Similar to implementation tactics, execution tactics are classified into dif-
ferent categories: detection, recovery, prevention.

Detection tactics

Detection tactics deal with solutions that allow for detecting incidents
during runtime that the system needs to identify in order to react to the-
se incidents. An example tactic for incident detection is the “Heartbeat”
tactic depicted in Figure 9 on page 29. Detection tactics usually impact
components, component interfaces, connectors, hardware components,
and physical connectors.

Recovery tactics

Recovery tactics are strongly coupled with detection tactics, since they
express the way the system is supposed to react to an identified incident.
Usually recovery tactics aim at minimizing the negative consequences of
an incident that has already occurred. For instance, if a component fails,
a recovery tactic would be to switch to a replacement component that
takes over the responsibility of the component that failed. Recovery tac-
tics usually impact components, component interfaces, connectors,
hardware components, and physical connectors.

Prevention tactics

In contrast to detection and recovery tactics, prevention tactics aim at
minimizing the likelihood that a particular incident will occur. Usually,
the system can be analyzed with respect to certain probabilities that de-
scribe the likelihood of a particular incident. Depending on the goal of
the prevention tactic, the probabilities can be reduced by applying sys-
tematic approaches like failure mode effects analyses or fault tree anal-
yses. As a result, prevention tactic usually impact structures and proper-
ties of architectural elements such as redundant communication chan-
nels.

 Aspect-oriented Architecture Model

 61

4 Aspect-oriented Architecture Model

“I believe consistency and orthogonality are tools of
design, not the primary goal in design.”

Yukihiro Matsumoto

In this chapter, I present specific extensions to the architectural meta-
model in terms of how to separate cross-cutting concerns from one an-
other. To that end, I apply ideas of aspect-oriented programming
[KLM+97]. First, I give an overview of aspect orientation in general, then
I look into aspect orientation at the modeling level. After that, the as-
pect-oriented extensions to the architectural meta-model are defined.
That is, I map all relevant concepts of aspect orientation to elements at
the architectural level as defined in Chapter 2.

4.1 Foundations

4.1.1 Aspect Orientation

The term aspect orientation was mentioned at the European Conference
on Object-Oriented Programming (ECOOP) in 1997 for the first time
[KLM+97]. At that time, the authors of [KLM+97] tried to solve pro-
gramming issues like reuse and evolution of code by improving modular-
ization and separation of concerns. For these reasons, the term aspect
orientation was used interchangeably with aspect-oriented program-
ming. The authors of [KLM+97] had realized that software programs
were hard to modularize and hard to change because of the existence of
so-called cross-cutting concerns. Cross-cutting concerns often cannot be
cleanly separated from the rest of the system in both design and imple-
mentation, and can result in either scattering (code duplication), tan-
gling (significant dependencies between systems), or both [BC05].

The solution idea of aspect orientation is to factor out the cross-cutting
concerns into a single, well-defined module (the so-called aspect) that
can be automatically composed with the rest of the program (the so-
called “core” or “base”). Every aspect-oriented technique is defined by a
so-called join point model (JPM) [Caz06]. According to [MKD02], a JPM

Aspect-oriented Architecture Model

62

is characterized by three elements: join points, join point selection mech-
anism, and a means for specifying semantics at join points.

1. Join points: A join point is a point in a program where behavior can be
altered, augmented, or removed. In other words, the join points are
considered the interface type between aspects and base elements. Ex-
amples of join points at the programming level are method calls, field
accesses, or constructor calls.

2. Join Point Selection Mechanism: On the programming level, join
point selection is done by using so-called pointcuts. A pointcut can be
defined as a query on the program itself. The most simple and trivial way
to capture join points is to enumerate them using either their names or
ids or whatever property can be utilized for their exact identification.
Another technique that can be seen as an extension to the enumeration
of join points is to capture desired join points by providing a pattern
(mostly a name or signature pattern). The most common means used at
the programming level is the wildcard symbol. A concrete example in
AspectJ would be:

pointcut threadCreation(Runnable runnable)
 : call(Thread.new(Runnable)) && args(runnable);

// This pointcut captures all calls to the
// constructor of class Thread using an argument of type Runnable.

Listing 1 Sample pointcut in AspectJ

3. Adaptation: The third important element in the JPM is the adaptation,
a means of specifying semantics at join points. Once join points have
been selected, the programmer usually alters the code at those points ei-
ther by adding or by changing existing functionality. In AO terminology,
the adaptation is called “advice”. In general, there are three ways of
how the advice can be introduced: before, after, and around.

Thread around(Runnable runnable) : threadCrea-
tion(runnable){
 Thread myThread = pool.get();
 if (myThread == null) {
 myThread = new ThreadPool.DelegatorThread();
 }
 myThread.setDelegatee(runnable);
 return myThread;
 }}
// In this advice, the original calls to the Thread-constructor as collected
// by the pointcut threadCreation will be replaced by the code fragment
// as listed within the advice declaration.

Listing 2 Sample advice declaration in AspectJ

 Aspect-oriented Architecture Model

 63

“Before” denotes that the adaptation is supposed to be introduced right
before the control flow reaches the respective join point, for instance,
before a method is about to be called. The designator “after” is defined
accordingly, intercepting the control flow right after the join point has
been reached. “Around” implies a special behavior, since the behavior
exposed at the selected join point can be completely exchanged or even
removed.

4. Weaving: The transformation process that puts base elements and as-
pects together is called “weaving”. If the aspect is woven as defined in-
to a sample class MyThreadClass as defined in Listing 3, we get a modi-
fied behavior according to Listing 4.

class MyThreadClass extends Thread {

 public MyThreadClass(Runnable runnable){
 super(runnable);
 }

 Thread getNewThread(Runnable runnable){

 return new MyThreadClass(runnable);
 }
}

Listing 3 Sample class describing the weaving target

class MyThreadClass extends Thread {

 public MyThreadClass(Runnable runnable){
 super(runnable);
 }

 Thread getNewThread(Runnable runnable){

 Thread myThread = pool.get();
 if (myThread == null) {
 myThread = new ThreadPool.DelegatorThread();
 }
 myThread.setDelegatee(runnable);
 return myThread;
 }
}

Listing 4 Modified behavior of class “MyThreadClass” after weaving

As a result, all constructor calls will return an assigned thread from the
thread pool. The type Thread of the around advice denotes the return
type of the advice execution.

Aspect-oriented Architecture Model

64

4.1.2 Aspect-oriented Modeling

The ideas of aspect-oriented programming found adoption in model-
based software development as well. The discipline dealing with con-
cepts of aspect orientation on the modeling level is called Aspect-
oriented Modeling (AOM). According to [SSK06] and [CRS+05], most ex-
isting aspect-oriented modeling approaches base their aspect oriented
modeling proposal on the UML [SHU02a], [SHU02b], [SHU02c], [SHU06],
[AEB03], [BGL04], [FS06], [RTT04], [ZHZ02]. Furthermore, the majority of
the evaluated approaches in [SSK06] base their work on UML versions
prior to the UML 2.0 specification. For customizing the UML towards as-
pect-oriented concepts, UML's inherent profiling mechanism is used.

In addition, most approaches as compared in [SSK06] address structural
diagrams only. There are only few approaches that make use of behav-
ioral diagrams in order to demonstrate behavioral features of aspects or
to specify when cross-cutting behavior should occur relative to the base
behavior. Since our goal is to support the efficient design of architectural
connectors, we will eventually need to operate on behavioral diagrams.

In the following, I define all relevant terms in the realm of AOM, which
are then mapped to the architectural meta-model as described in Chap-
ter 3.

Concern: According to [MEH01], a concern is “a requirement, an inten-
tion, an objective, or an aspiration a stakeholder has regarding a particu-
lar product”. Concerns are either cross-cutting or non-cross-cutting. That
is, a concern is cross-cutting if the concern is scattered across a modular
structure. The principle separation of concerns aims at modularization of
concerns such that each concern can be treated separately in order to
reduce complexity. In that context, concern composition also deals with
re-composing a system by assembling the separated concerns effectively
and efficiently.

Base: A base is a unit of modularization formalizing a non-cross-cutting
concern [SSK06]. Usually, the base is the result of having selected a par-
ticular dominant decomposition dimension (e.g., functional decomposi-
tion). In such cases, the functions are usually well modularized and not
cross-cutting. Ultimately, they are most likely to be influenced by cross-
cutting concerns though.

Aspect: An aspect is a unit of modularization formalizing a cross-cutting
concern [BC05]. In other words, the aspect describes a concern, which
would be scattered across the system otherwise, in a modular way.

Weaving: In aspect-oriented software development, the composition of
aspects with other concerns, which in turn are either bases or aspects, is
called weaving [SSK06]. The weaving process is the concern composition

 Aspect-oriented Architecture Model

 65

process, combining the cross-cutting concerns with the non-cross-
cutting concerns in order to form an integrated model.

Adaptation: An adaptation specifies in what way an aspect adapts the
concern’s structure or behavior. Adaptation denotes enhancement, re-
placement, or deletion. In other words, an aspect can extend the behav-
ior of a base concern; it might replace the base concern with the aspect
behavior; or it might just delete behavior as defined by the base.

Adaptation Subject: In general, an adaptation subject describes where
to introduce an aspect’s adaptations [SSK06]. In terms of aspect-oriented
programming, the adaptation subject is the join point. At the modeling
level, two kinds of join points are defined: structural join points and be-
havioral join points. Structural join points are defined on model elements
that represent system structure (e.g., module structures), whereas behav-
ioral join points are defined on model element representing behavioral
elements of a modeling language (e.g., activities).

Adaptation Rules: Adaptation rules are part of a particular kind of
weaving and introduce an aspect’s adaptations at certain points of other
concerns. In a sense, an adaptation rule combines a particular (set of)
adaptation(s) with a set of adaptation subjects. In addition, adaptation
rules specify how the adaptation affects the base, also referred to as ad-
aptation effect. Since aspect-oriented software development has clearly
been driven by the emergence of aspect-oriented programming lan-
guages such as AspectJ, most AOM approaches rely on the asymmetric
paradigm [SSK06]. That is, the adaptation effects transferred from the
programming level are: before, after, and around. According to [SSK06],
only few approaches do consider the effect of aspect adaptations at all.

In the following conceptual model, I relate all relevant terms as defined
above. It is important to note that the adaptation subject is defined by a
pointcut expression that specifies a join point selection. In the subse-
quent sections, I map the notion of a join point to architectural ele-
ments.

Aspect-oriented Architecture Model

66

Figure 33 Conceptual model for aspect-oriented modeling (adapted from [SSK06])

4.2 Related Work

4.2.1 Architectural Aspects

In the realm of architectures, there exist several works that aim at lever-
aging aspect notions in order to systematically capture cross-cutting ar-
chitectural concerns [KTG+06], [NPM+02], [CPF05], [Per06], [NPM09].
Most of the existing approaches aim at enhancing the description lan-
guages (ADL) [Cle96] in order to express cross-cutting concerns. That is,
the approaches focus on the extension of connector specifications, like
AspectualACME [GCB06], DAOP-ADL [PFT03], AO-ADL [PF07], or PRIS-

 Aspect-oriented Architecture Model

 67

MA [PAC+06] so the connectors can be defined within the context of so-
called aspectual components. Aspectual components are in charge of
capturing otherwise cross-cutting concerns.

However, in terms of connecting the aspects to the base models, most
existing approaches do not mention in their proposal the need for sup-
porting important AO properties such as quantification (e.g., pointcuts),
interferences between aspects, and heterogeneous aspects [GCB06]. In
case of AspectualACME, the authors provide a quantification mecha-
nism; however, it is solely based on syntactical expressions and comes
with all the drawbacks of pointcut fragility. Another issue is that there is
no way of specifying precedence of aspects in case of collisions. In gen-
eral, I agree with the findings of the authors of [GCB06] that there is lit-
tle consensus on how Aspect-oriented Sofware Development (AOSD)
and ADLs should be integrated, especially with respect to the interplay of
aspects and architectural connection abstractions [BCG+06].

The major difference between existing work in the area of aspectual ar-
chitecture description languages and the work presented in this thesis
can be found in the goal that we strive for. We use aspect-oriented con-
cepts to make it possible to efficiently modify and extend connector pro-
tocols throughout the genesis of an architecture. The focus of the work
presented in this thesis is clearly on the integration of cross-cutting con-
cerns with a base architectural model. As stated in Section 2.4.2, cross-
cutting concerns exhibit three challenges: identification, separation, and
integration.

In case of aspect-oriented ADLs, none of the solutions provides any sup-
port for integrating the concerns, that is, for generating a compiled rep-
resentation of the aspects and base architectural concerns.

4.2.2 Connector Composition

The work presented by [SK04] is similar in terms of the general idea: en-
hancing basic connectors with selected adaptations to produce a more
complex connector. The authors apply a set of transformation operators
to enhance the basic connectors. However, the goal as well as the solu-
tion of the approach differ in several ways:

Whereas the main goal of the work of [SK04] is to generate implementa-
tions of connector compositions, the work presented in this thesis aims
at generating models of connectors. Another significant difference is
that the transformation approach presented in [SK04] works on the con-
nector-type level only. That is, connector instances are not subject to
change by other kinds of transformations. The work presented in this
thesis, however, leverages a type-based specification mechanism in order
to navigate to the adaptation subjects. Another fundamental issue of the
approach presented in [SK04] is the incremental construction of con-

Aspect-oriented Architecture Model

68

nectors. There is no solution to the incremental problems as stated in
Chapter 1, and most importantly, there is no explicit handling of cross-
cutting concerns. Finally, the approach of [SK04] does not provide any
means for checking compositional properties.

The work presented in [LWF03] is based on category theory [LWF01].
Their approach for composing connectors works on the type level only,
similar to the approach proposed by [SK04], and comes with the draw-
backs of evolutionary introduced cross-cutting concerns. In addition, the
formalisms that the composition is based on are less intuitive to archi-
tects in practice.

The approach presented in [RGG01] aims at designing communication
protocols in distributed systems using the Specification and Description
Language (SDL). The underlying idea is to modularize the design of com-
plex protocols by using collaboration roles that can be composed into
more complex protocols. With the exception of the shortcoming of
working on the type level only, and thus lacking solutions to incremental
issues, the approach of decomposing protocols into smaller units looks
promising in terms of being complimentary to the approach presented in
this thesis.

4.3 Architectural Join Point Model

As stated by the research questions in section 1.3, I aim at leveraging as-
pect-oriented concepts at the architectural level. Therefore, appropriate
architectural elements are identified that aspect-oriented concepts can
be mapped to.

4.3.1 Architectural Base

As explained in section 1.1, one reason for the inefficiency of model cre-
ation is that architectural solutions for quality concerns potentially cut
across a variety of architectural design artifacts. This is particularly true
for quality concerns that affect component interactions [FBL02]. Refer-
ring to the architectural meta-model as defined in Section 3.1.1, archi-
tectural connectors specify interaction protocols between components.
Connectors are crucial in terms of cross-cutting concerns, since connect-
ors are responsible for all kinds of communication and coordination
among components. Connectors can be described using formal specifi-
cation techniques [All97] as illustrated in Figure 34-b, or graphically us-
ing a modeling language like the UML, as shown in Figure 34-a. I stress
the fact that the sequence-based specification can be enhanced by using
techniques for transforming a set of sequences into a single-state ma-
chine as presented in [WS00].

 Aspect-oriented Architecture Model

 69

Figure 34 Sample connector definition: Client-Server

For the remainder of this thesis, the architectural connectors are referred
to as the base models that modularize a (communication) concern.

4.3.2 Architectural Aspects

I map the concept of an aspect to architectural tactics as defined by the
architectural meta-model shown in Section 3.3.2. Since execution tactics
enhance an existing connector description in order to support a certain
quality attribute, execution tactics are treated as architectural aspects.
More specifically, it is the interaction specifications of the execution tac-
tics influencing the connectors that are considered architectural aspects.
They are eventually composed with the base communication model ex-
pressed by the connector design as exemplified above. More formally, an
execution tactic A is used to augment an existing connector description
by a number of tactics TA � T and pointcuts PA � P.

Figure 35 Mapping of aspects to execution tactics

Aspect-oriented Architecture Model

70

The composition of execution tactics with the base models is referred to
as “weaving” (see Figure 35). The weaving specifies the way a set of ex-
ecution tactics should be composed with a base model.

4.3.3 Architectural Adaptation Subjects

In light of such connector models, architectural design decisions con-
cerning component interaction and coordination potentially require
many model elements to be identified, created, altered, and validated. In
the context of connector design, an adaptation subject (or join point)
would be a place in the base communication model that can be altered,
augmented, or removed by an aspect (see Figure 36). Hence, the appli-
cation of an architectural pattern (as defined in section 2.3) can be de-
scribed by a number of tactics TA � T and respective pointcuts PA � P.

Figure 36 Messages as adaptation subjects

Based on the fact that connectors describe component interactions by
showing message passing [TMD09], I mapped the notion of connector
protocols to a message-centric paradigm [KMU08]. As a result, a com-
ponent-connector design comprises a special data structure of messages
that encode all information required in a connector protocol. In that
sense, messages are abstract constructs representing communication
events, enriched with information about involved roles and their collabo-
ration protocol.

 Aspect-oriented Architecture Model

 71

A connector design can be defined as:

1. A finite set C of components

2. A sequence S that denotes the allowed order of message exchanges
among components

Figure 37 Data structure for messages in connector protocols

Each message encodes its own source and target components. Besides,
the position of the message in the protocol sequence is encoded using
before and after attributes.

Figure 38 Sample mapping to message data structure

Let message n be message m’s follow-up message. Then, the before-
attribute of message m in the connector protocol sequence refers to
message n. The after-attribute of message n references message m in
turn. In the example, we see that the message call encodes the sequence
of the diagram as shown in Figure 38. Since there is no preceding and
succeeding message in the sequence, the references are null. However,
the source and target attributes are set to component A and component
B, respectively. By looking at the complete set of messages, we know the
overall sequence of the collaboration protocol by just looking at the re-
spective message attributes. The partOf property is used for tracking
messages to their respective connector. In case a message is the return
message for a particular message, that message can be referenced using
the returnTo attribute. For modeling connector protocols, I use sequence
diagrams as defined by the UML 2.1. For complex protocols, it is thus
possible to model the sequences hierarchically.

Aspect-oriented Architecture Model

72

Looking at Figure 36, a pointcut selects messages and thus determines
where execution tactics (as defined in Section 3.3.2) apply. Hence, the
pointcut retrieves a set of messages that are considered during weaving.

Thus, an execution tactic A is a set of pairs over 2(T,P) where

� T � MsgT is a finite set of messages including a special joinPoint mes-
sage

� P � MsgB is a selection of messages from the base model

During weaving, the joinPoint message is used to define where the tar-
get model and the tactics meet. Note that M A � MsgB � MsgT, i.e., the
target model, is enriched by new messages and collaborations. A weav-
ing is specified using adaptation rules as described in Section 4.1.2.

4.3.4 Pointcut Definition Language

As defined in Section 4.1.2, an adaptation rule specifies where and how
to introduce an aspect’s adaptations at certain points of other concerns.
Where to introduce the adaptation is determined by a selection of adap-
tation subjects, or join points, that can be specified by the respective
pointcuts. In fact, what makes aspect orientation powerful in terms of
efficiency is its ability to specify a multitude of different places in a sys-
tem with a relatively simple expression [FF00]. However, in order to ben-
efit from such an approach, a number of challenges need to be ad-
dressed. First, it should be easy to create a valid pointcut expression us-
ing formalized language. Second, the pointcut expressions need to sup-
port easy maintenance over time. In the following, I define a pointcut
definition language that strives to mitigate the challenge of both creat-
ing and maintaining of pointcut expressions.

4.3.4.1 Type-based Pointcuts

Today, composition modeling techniques rely mostly on syntax-based
pointcuts, meaning that they rely on specific naming conventions or
structural properties of elements. These kinds of pointcuts have become
widespread in aspect-oriented programming. The main identified draw-
back of syntax-based techniques is the so-called pointcut fragility
[Caz06]. Pointcut fragility refers to the fact that in case of changes to a
base model, the respective pointcut would have to be changed as well.

In order to address the issue of pointcut fragility, the pointcuts need to
operate on a higher level of abstraction. To that end, I define the
pointcuts by using the connector protocols at the type level of messages.
By doing so, I decouple the pointcut definitions from concrete messages
as specified in the connector models and mitigate the problem of

 Aspect-oriented Architecture Model

 73

pointcut fragility, which causes inconsistency between the aspects and
the core models.

Figure 39 Creating pointcut expressions based on component and message types

By using such a type system, we are able to select a number of concrete
messages just by referring to their types. Looking at Figure 40, we can
select the messages getOtherData and update by simply denoting that
we would like to capture all messages of the type <<call>>.

Figure 40 Sample sequences for illustrating the effects of type-based selections

The pointcut definition language (PDL) as defined in this section imple-
ments the type-based pointcut design as well as the navigation capabili-
ties provided by the integrated architecture meta-model as presented in
Chapter 3 [KRK09]. The syntax of the PDL is defined analogously to the
Atlas Transformation Language (ATL) [ATL10]. Moreover, it supports re-
flective access to join points, meaning that messages are referenced by
name (instance-level) or by stereotypes (type-level pointcuts). For refer-
ring to elements within the architectural model, I will use the following
notations:

metaelement!instance(name)

and

metaelement!type(name)

Aspect-oriented Architecture Model

74

In these statements, the meta-element refers to the elements as defined
by the UML. The elements of relevance in this context are
UML::Message, UML::Node, UML::Component, UML::Artifact, and
UML::CommunicationPath. The respective instance or type following the
“!”-symbol refers to a particular element stereotype or element instance.
For specifying pointcuts, however, we use abbreviations that map to the
UML element definition as follows:

Pointcut expressions can be composed using these operators: “&”,“|”,
“!”, and “()”. For instance, by denoting pc_A & pc_B, those join points
are retrieved that are captured by both pointcuts. In other words, the in-
tersection of both sets is retrieved. By denoting pc_A | pc_B, the set un-
ion is returned, that is, all join points, even those that are captured by ei-
ther one of the pointcuts. By denoting !pc_A, all join points captured by
that particular pointcut are excluded. By using the brackets (pc_A), sets
of join points can be grouped logically.

4.3.4.2 Deployment-based Pointcuts

Even though type-based pointcut expressions are a powerful means for
selecting huge numbers of message instances, experience has shown
that the message types alone might not be sufficient for being efficient
in practice. For this reason, I aim at utilizing architectural information
during the process of pointcut specification in addition to the message
types. In order to utilize architectural facets of messages for defining
pointcuts, I exploit the fact that connectors belong to the component-

Abbreviation UML Element

jp UML::Message

node UML::Node

comp UML::Component

art UML::Artifact

cp UML::CommunicationPath

Table 1 Mapping of PDL to UML

 Aspect-oriented Architecture Model

 75

connector dimensions and therefore have a relationship to the deploy-
ment view of architectures. In the following, I show how to take ad-
vantage of these relationships to specify pointcuts. Looking at the defini-
tion of component type and connector type, I can exploit the fact that
connectors, and thus messages, are operating between components.
That is, by looking at a particular component we are able to trace the
messages that the component sends and receives. In order to exploit the
deployment relationships, we take advantage of the element types as
defined by the meta-model in section 3.1.3.1. Since components are
manifested by artifacts that are eventually deployed to particular hard-
ware components, the deployment offers two additional elements that
can be used for tracing the messages exchanged between components:
artifacts and nodes.

Figure 41 Navigating to messages using the deployment

The basis for navigation are the elements hardware component, artifact,
and component. We can take advantage of these facts since compo-
nents are defined as being interrelated by connectors, the connectors
themselves are defined using message sequences. By referring to com-
ponents, we have another kind of abstraction mechanism for mecha-
nisms, namely, all messages that are sent or received by a particular
component. That principle applies to deployment entities as well. Se-
mantically, we can specify a collection of messages that are exchanged

Aspect-oriented Architecture Model

76

Figure 42 Sample deployment illustrating the effects of the join point selection operators

between two hardware components, or messages that are sent or re-
ceived by a particular hardware component. That is, we use the designa-
tors source, target, and all for specifying a message selection given one
of these elements.

The semantics of the designators are defined in the following:

• source (element): returns all messages originating from the specified
element (instance or type). Valid assignments of elements need to be ei-
ther node, artifact, or component.

source(node!instance(ECU B))

Given the example as depicted in Figure 14 and Figure 42, this pointcut
specification returns the message update.

• target (element): returns all messages received by the specified ele-
ment (instance or type). Valid assignments of elements need to be either
node, artifact, or component.

target(component!type(ArchProfile::Persistence))

Given the example as depicted in Figure 14 and Figure 42, this pointcut
specification returns the messages getOtherData.

• all (element): returns all messages that are passed through the speci-
fied element (instance or type). The only valid assignment of the element
is communication path.

all(node!type(ArchitectureProfile::FlexRay))

 Aspect-oriented Architecture Model

 77

Given the example as depicted in Figure 14 and Figure 42, this pointcut
specification returns the messages update and getOtherData.In addition,
attributes of elements can be accessed through the “dot-notation” as
follows:

metaelement!type(string).attribute

For example, the expression

cp!type(ArchitectureProfile::FlexRay).bandwidth

accesses the attribute named bandwidth of the FlexRay stereotype as de-
fined by the UML profile ArchitectureProfile specializing the UML meta-
element CommuncationPath. With access to element attributes like this,
conditional statements can be constructed that utilize the element prop-
erties for assembling a particular pointcut. Here I apply the comparison
operators <, >, =, >=, <= in order to evaluate numeric expressions.

For instance, given the following pointcut:

jp!type(ArchitectureProfile::secureMessage).size>10

This pointcut expression selects all the messages of the type <<secure-
Message>> that have an attribute size whose value is greater than 10.

The pointcut expression

source(comp!type(ArchitectureProfile::Peer).id=E12)

selects all messages that are sent by all components of the type
<<Peer>> having the attribute value of id set to E12.

As described in [KRK09], the PDL offers the possibility to provide upper-
and lower-range values of the same attribute or to utilize different at-
tributes of the same stereotype by combining simple pointcuts. For ex-
ample, given the pointcut

jp!type(ArchitectureProfile::IService).size >10 &
jp!type(ArchitectureProfile::IService).size <100

selects all messages having an attribute size set between 10 and 100.

Besides the idea of type-based pointcut specifications, the selection of
join points may be performed across architectural views. Using elements
from different views in the pointcut language provides additional possi-
bilities for capturing join points on different semantic levels. First of all,
combining elements from component-connector and deployment mod-

Aspect-oriented Architecture Model

78

els makes it possible to capture the cross-cutting structure of some con-
cerns in a more natural way. For instance, in a Client-Server system,
pointcuts can be described by select all messages where a Server is
communicating with a Client or select all messages that trigger a remote
operation. Using the architectural meta-model, it is possible to create
formal expressions that exactly realize the natural query for messages,
since the information about the distribution of the system is manifested
in the deployment views of the architecture. (Note that a message is sent
through a communication path only if sender and receiver are deployed
on different nodes that are connected.) The central element in the ap-
proach for defining pointcuts across architectural views is the compo-
nent element. Components enable interconnections between compo-
nent-and-connector and deployment models because of the relationship
<<manifests>> in the architecture meta-model. Using the component
element as a navigation link, it is possible to navigate to all messages
starting from the deployment model. As a result, the pointcut language
spans the following design space in terms of types and architectural
views:

Table 2 Poincut design space

4.3.5 Weaving of Architectural Models

For the actual weaving, the adaptation effects as described in Section
4.1.2 are used, namely before, after, and around. The before-designator
represents the point in the sequence right before the message occur-
rence. The after-designator captures the point right after the message
execution, i.e., after the reply has been sent (synchronous messages) or
the end of the execution flow is detected (asynchronous messages).

 Message-based Deployment-based Cross-View

Type-based jp!type(AP::call) all(cp!type(AP::CAN)) all(cp!type(AP::CAN)) |
jp!type(AP::call)

Instance-
based

jp!instance(secure*) source(node!instance(ECU
A))

source(node!instance(ECU A)) &
jp!instance(secure*)

Mixed jp!type(AP::call) |

jp!instance(serviceA)

all(cp!type(AP::CAN)) &

 source(node!instance(ECU
A))

all(cp!type(AP::CAN)) &

jp!instance(secure*)

 Aspect-oriented Architecture Model

 79

Weaving always implies that connector protocols are altered by means of
adding or replacing message sequences in a connector protocol instance.
To exemplify the mechanisms, it is shown how the interaction sequences
are modified by each of the adaptation effects. In fact, the weaving al-
gorithm works on the message data structure as defined in Section
4.3.3. A sample base with the respective join point (message m = “call”)
is depicted in Figure 43.

Figure 43 Join point semantics of before() directive

In the following, the weaving algorithm is described for each of the ad-
aptation effects in detail.

Adaptation Effect: Before

For describing the weaving algorithms, I use an object-oriented notation.
In case of a before-directive (see Listing 5), the before-reference of the
last message in the tactic T is changed to the message m (lines 1-2).
Note that, since sequence is represented as an array, the size()-operation
returns the number of elements in the respective array. Then, the before-
reference of message m’s after-reference (m.after.before) is changed to
the first message in the sequence of the tactic (line 3). The after-
reference of the message m, the source- and the target references are
changed, respectively (lines 4-6).

before():(Message m){

1 T.sequence [sequence.size()-1].before = m;

2 T.sequence [0].after = m.after;

3 m.after.before = T.sequence [0];

4 m.after = T.sequence [sequence.size()-1];

5 T.sequence [0].source = m.source;

6 T.sequence[sequence.size()-1].target = m.source;}

Listing 5 Weaving algorithm for before-semantics

Aspect-oriented Architecture Model

80

Figure 44 shows a sample tactic for weaving. Note that the tactic has a
representation in terms of the message data structure as well.

Figure 44 Sample tactic - graphical and message notation

For illustration purposes, a sample weaving can be defined as follows:

before(): jp!instance(myConnector.call) -> myTactic

The semantics of this weaving specification is interpreted as follows:
“Enhance the interaction specification of the connector myConnector
with the interactions as specified by myTactic right before all places
where a message with the name call occurs.”

The graphical result of the weaving is shown in Figure 45. Figure 46
shows the resulting messages in terms of field changes indicated by blue
highlight. As can be seen, the message structure of the join point itself
(“call”), as well as the message structure of the tactics (“tOp”) have
been changed according to the weaving algorithm as shown in Listing 5.

 Aspect-oriented Architecture Model

 81

Figure 45 Graphical weaving result of the before()-directive

Figure 46 Message structure of the weaving result - before

Adaptation Effect: After

Figure 47 Join point semantics of after() directive

In case of an after-directive (see Listing 6), the before-reference of the
last message in the tactic is set to the before-reference of the return
message of m (return is indicated by m*) (line 1). Then, the after-
reference of the first message in the sequence of the tactic is set to the
return message (line 2). The before-reference of the message that was
originally after-referenced by the return message (m*.after) in the proto-
col sequence is changed to the last message in the tactic (line 3). The be-
fore-reference of the return message m* as well as the source and target

Aspect-oriented Architecture Model

82

components are changed accordingly (lines 4-6). The semantics of the
after-directive are depicted in Figure 47.

after():(Message m){

1 T.sequence [sequence.size()-1].before=m*.before;

2 T.sequence [0].after = m*;

3 m*.before.after = T.sequence [sequence.size()-1];

4 m*.before = T.sequence [0];

5 T.sequence [0].source = m*.target;

6 T.sequence[message.size()-1].target = m*.target;

}

Listing 6 Weaving algorithm for after-semantics

For illustration purposes, a sample weaving is defined as follows (the tac-
tic myTactic as depicted in Figure 44 is used):

after(): jp!instance(myConnector.call) -> myTactic

The semantics of this weaving specification is interpreted as follows:
“Enhance the interaction specification of the connector myConnector
with the interactions as specified by myTactic right after all places where
a message with the name call occurs.”

The graphical result of the weaving is shown in Figure 48. Figure 49
shows the resulting messages in terms of field changes indicated by blue
highlighting.

 Aspect-oriented Architecture Model

 83

Figure 48 Graphical weaving result of the after()-directive

Figure 49 Message structure of the weaving result - after

Adaptation Effect: Around

Figure 50 Join point semantics of around() directive

The around-advice sets the before-reference of the last message in the
advice to the before-reference of the original return message (see Listing
7, line 1). Then, the after-reference of the first message in the advice is
set to the after-reference of the original sequence (line 2). The before-
reference of the originally preceding message (m.after.before) is set to
the first message in the sequence of the tactic (line 3). The after-
reference of the follow-up message of m (m*.before.after) is changed to
the last message in the tactic (line 4). The source and target references

Aspect-oriented Architecture Model

84

of the tactic are changed accordingly (lines 5-6). The semantics of the
around-directive are depicted in Figure 50.

around():(Message m){

1 T.sequence[sequence.size()-1].before=m*.before;

2 T.sequence [0].after = m.after;

3 m.after.before = T.sequence [0];

4 m*.before.after = T.sequence [sequence.size()-1];

5 T.sequence[sequence.size()-1].target = m*.target;

6 T.sequence [0].source = m.source; }

Listing 7 Weaving algorithm for around-semantics

The tactic shown in Figure 51 defines a special keyword “thisJoinPoint”.
This keyword is used for accessing the join point context during weaving.
Information about the join point message itself (denoted by the keyword
“thisJoinPoint”), as well as the join point’s source and target compo-
nents (accessible via “thisJoinPoint.source/thisJoinPointTarget”, respec-
tively) are particularly important.

Figure 51 “authorizationTactic” with special keywords for around() directives

For illustration purposes, a sample weaving is defined as follows (the tac-
tic “authorizationTactic” is used as depicted in Figure 51):

 Aspect-oriented Architecture Model

 85

around():jp!instance(myConnector.call)->authorizationTactic

The semantics of this weaving specification is interpreted as follows:
“Enhance the interaction specification of the connector myConnector
with the interactions as specified by authorizationTactic in such a way
that all places where a message with the name call occurs are wrapped
according to the tactic’s context”.

The graphical result of the weaving is shown in Figure 52. Figure 53
shows the resulting messages in terms of field changes indicated by blue
highlights. It is remarkable that the original sequence is maintained. The
around-directive caused a wrapping effect since the tactic was designed
to do so. However, the power of the around-advice allows to completely
remove the join point itself as well.

Figure 52 Graphical Weaving Result of the around()-Directive

Figure 53 Message structure of the weaving result – around

Aspect-oriented Architecture Model

86

 Aspect-oriented Design Method

 87

5 Aspect-oriented Design Method

“Most assuredly, there is no magic potion, and an
adequate approach to design problems demands care,

thought, creativity, discipline, experience, and method.”
[TMD09]

In this chapter, we present the solutions to the challenges we found
when the aspect-oriented architectural model was applied to architec-
ture design. In order to relate the proposed design approach to existing
work, I briefly give an overview of existing architecture design methods
at the beginning of this chapter. In particular, I show what the common-
alities and challenges of existing methods are. Then, I investigate two
major challenges that arise when aspect-oriented concepts are to be ap-
plied in general and at the modeling level in particular:

1. Compositional challenges in terms of aspect interference, since as-
pects are working on the same base model.

2. Evolutionary challenges, since the base model potentially evolves in-
dependent of the aspect definitions.

5.1 Foundations

Architecture design approaches that have found adoption in practice are
Attribute-driven Design (ADD) [BB01], Siemens’ 4 Views method
[HNS00], Rational Unified Process (RUP) [Kru03], Business Architecture
Process and Organization (BAPO) [ARO03], Architectural Separation of
Concerns (ASC) [Ran00], Functionality-based Architecture Design meth-
od [Bos00], and the Architecture Design Process as defined by Fraunho-
fer IESE, [EKK+10].

In the literature, there exist architecture design processes that prescribe
when which activity leads to what artifacts. The authors of [HKN+07]
provide a comparison of five industrial approaches for architecture de-
sign. They outline their commonalities as well as the differences. As a re-
sult, they derive a general model for architecture design.

Aspect-oriented Design Method

88

In general, there are many commonalities among these architecture de-
sign methods. Most of the existing design approaches follow an iterative
process model. We always find a preparation or analysis phase, an actual
design or synthesis phase, and a validation phase. Synthesis is a well-
known concept in traditional engineering disciplines and involves the
construction of sub-solutions for distinct, loosely coupled sub-problems
and the integration of these sub-solutions into a complete solution. It is
the synthesis phase, as we will see, that covers the challenge of efficient-
ly and effectively composing quality requirements solutions.

A mapping of the general phases to the Fraunhofer Architecture Process
is shown in Figure 54. The analysis phase as defined by the general
model maps to the elicitation of architectural concerns in terms of busi-
ness goals, quality requirements, key functional requirements, and con-
straints. A stakeholder analysis determines the questions that stakehold-
ers need to have answered by the architecture and thus determine what
models need to be created throughout the architecture design. The syn-
thesis phase maps to the realization phase. During realization, the solu-
tions to particular concerns are designed and consolidated (synthesized).
The documentation and assessment steps represent the architectural
analysis phase as defined by the general model for architecture design.

Figure 54 High-level depiction of the Fraunhofer Architecture Design process

Reflecting the need for separating and composing cross-cutting solutions
into non-functional requirements, none of the methods analyzed in
[HKN+07] addresses this issue. Besides differences in levels of abstrac-
tion, existing aspect-oriented approaches that aim at tackling cross-
cutting concerns usually do not provide any methodical guidance. Ac-
cording to [SSK06], there are only two approaches that come with a
process description [CB05] or guidelines ([FRG+04] and [EAB05]). How-
ever, [FRG+04] do not consider behavioral models (e.g., sequence dia-

 Aspect-oriented Design Method

 89

grams) at all, and the authors of [CB05] and [EAB05] do not provide any
tool support and model composition at all.

5.2 Design Method Overview

Our approach for connector design seamlessly integrates with the
Fraunhofer Architecture Design process. Since connector design is an is-
sue of the realization phase, refined view of the realization phase in
terms of concrete realization activities in shown in Error! Reference
source not found..

Figure 55 Connector design in the Fraunhofer Architecture Design process

The connector design takes architectural increments and a set of func-
tional and/or non-functional requirements as input. The process itself de-
composes into four phases, where the first two phases are executable
independently from each other:

Phase 1 – Base connector modeling

In the first phase, a base connector model is designed that reflects core
functional interaction behavior. For instance, consider a simple Publish-

Aspect-oriented Design Method

90

Subscribe connector that describes the core functional interactions as
shown in the following diagrams:

Figure 56 Base connector specifying Publish-Subscribe semantics

Phase 2 – Tactic selection

The tactics used in the connector design process are execution tactics as
defined in Section 3.3.2. The tactics themselves might be defined in oth-
er architectural projects as well, since they are not related to a particular
architectural model at all. Similar to architectural patterns, tactics can be
just selected in case they already exist; otherwise, they can be adapted or
created from scratch.

Phase 3 – Tactic weaving

During tactic weaving, the tactics are finally composed with the base
connector models. The weaving itself requires a set of pre-processing
steps that need to be executed manually. The pre-processing steps yield
a so-called weaving configuration that specifies which tactics are sup-
posed to go where in the connector models. The specification of where
the tactics need to be woven is a manual step; however, I extended the
modeling tool in such a way that the architect is able to interactively
work with the model elements of relevance. The interactive selection of
join points is efficient, since I utilize the architectural meta-model. That
is, sets of messages can be assembled by selecting elements that aggre-
gate, or indirectly refer to, messages that we want to intercept in order

 Aspect-oriented Design Method

 91

to apply selected execution tactics. For example, by selecting a hardware
component in a deployment diagram, the architect is able to select all
messages that are sent or received by components deployed on that par-
ticular node without having to select all messages individually. This is
possible because the relationship between components, artifacts, and
nodes is clearly defined within the architectural meta-model.

Phase 4 – Impact Analyses

Impact analyses aim at estimating what the impact of the newly intro-
duced tactic is. In other words, we need to check the suitability of the
solutions for the given requirements and their compatibility with design
decisions made in earlier iterations. For this reason, the resulting model
needs to be checked for certain properties. The model properties to be
checked depend on the quality that we need to check the impact on.
One approach that seems promising for impact analyses is simulation. By
simulating behaviors based on synthesized architectural models, we have
the chance to perform cross-impact analyses that are objective and re-
peatable.

5.3 Designing Connectors under Constant Change

In this section, I show that the incremental problems as stated in Chapter
1 did not dissolve completely. The approach following the aspect-
oriented separation of concerns still has to face these issues in one form
or the other. In the following, I show the remaining problems and dis-
cuss corresponding solutions in detail.

5.3.1 Compositional Issues

One of the initial motivators for the work presented in this thesis is given
by the fact that architecture development follows an iterative and incre-
mental process. One of the main reasons that make increments prob-
lematic is given by the cross-cutting nature of architectural solutions to
non-functional requirements. Depending on increments makes a revision
of previous design decisions difficult.

Although we are now able to separate and compose architectural design
decisions in the realm of connectors, the problem of increments has not
been resolved; rather, it shifted in terms of the point in time we need to
deal with it. That is, although tactics separate and modularize cross-
cutting concerns, eventually they have to be composed with a base
model. In this case, we are not depending on previous increments in the
definition of execution tactics and the application to connector models;
however, the composition itself represents the concentrated version of

Aspect-oriented Design Method

92

incremental issues. The reason for this becomes clear when we look at
the composition steps in more detail.

If we have two tactics: A security tactic as defined in Figure 51 on page
84, and a simple tactic for billing as defined in Figure 57.

Figure 57 Billing tactic

According to the weaving specification given by:

around (jp!type(access)): Authorization-Tactic

after (jp!type(access)): Billing-Tactic

Listing 8 Weaving specification example

both tactics are woven into the base connector model (shown in Figure
56 on page 90).

Figure 58 Authorization tactic interrupted by billing tactic

The composition itself, however, is going to be sequential because the
connector model is augmented by one tactic at a time. As a conse-
quence, we might end up in a situation that the tactics interfere at the

 Aspect-oriented Design Method

 93

modeling level. In the aspect-oriented world, such interference effects
are also called aspect interactions [STJ06].

Interactions refer to any situation in which the behavior of any tactic as
specified in isolation is altered by some other tactic. In this example, we
see that the billing tactic interferes with the security tactic since it inter-
rupts the authorization check necessary for the billing (see Figure 58).
(Here, we show the subscribe sequence only.)

State of the Art Approaches towards Aspect Interactions

To this day, only few proposals have rigorously addressed the problem of
aspect interaction detection. Most of the work concentrates on the syn-
tactical level, i.e., on potential conflicts between aspects caused by the
syntax. In [WJ08], the authors present MATA, a UML aspect-oriented
modeling tool that uses graph transformations to specify and compose
aspects. They use critical-pair analysis to detect dependencies between
aspects on the syntactical level by looking at graph rule dependencies.
The approach in [BE07] introduces Aspect Interaction Charts on top of
Live Sequence Charts to specify aspects interactions in a modular man-
ner. A formal framework for interaction detection is presented in
[KFG04], including a method for the static analysis of aspect interaction
and conflict resolution of parallel composition. This work is extended in
[DFS02] by adding variables to aspects in order to define aspects more
precisely and thus to eliminate spurious conflicts, and by introducing a
generic composition operator that supports interaction. A trace-based
approach is presented in [SKB03], where runs on the base and the wo-
ven system are compared with identical input to test if an aspect works
as intended.

These approaches mainly concentrate on static program analysis and
therefore often fail to decide about semantic conflicts between behav-
ioral aspects. The authors of [DFS04] propose formal annotations, such
as pre- or post-conditions, for analyzing aspect interactions in models
written in Aspect-UML from a semantic point of view. However, besides
the fact that all models have to be supplied with annotations, this ap-
proach does not support the checking of safety or liveness properties,
which are essential for model checking semantic aspect interactions. In
[MV07], the authors also use model-checking to verify aspect advices,
but only for the state machines generated by the aspect code itself. Nei-
ther the entire system nor overridden aspects are verified. Katz et al.
[GK06], [GK07] use linear temporal logic to verify that a single aspect
will provide the desired properties when it is woven into an appropriate
base model. However, their approach only addresses one single aspect
and pointcut descriptor, and hence does not cover aspect interactions
and their detection.

Aspect-oriented Design Method

94

5.3.2 Change Issues

Looking at the aspect-oriented architectural model as defined in Section
4.3, the underlying concept is a clear separation of architectural tactics
from architectural core models. Consequently, both of the separated en-
tities might evolve, or change, in isolation from one another. This impos-
es additional complexity on the mechanism that relates both worlds: the
pointcut.

When the architectural base models change, there are two symptoms
that might impact the validity of specified compositions.

1. The existing pointcut definition does not capture (newly intro-
duced) architectural join points that should be captured.

2. The existing pointcut does capture (newly introduced) architectural
join points that should not be captured.

The reason for these issues is due to the fact that in general, join points
of a system are strongly coupled with the respective pointcuts, which
would cause problems during iterative architecting as well.

In the world of aspect-oriented software development, this phenomenon
is referred to as the fragile pointcut problem, which is due to the high
coupling between advice and the base system [Caz06]. This means that
modifications of the base model may change the semantics of pointcuts
even though the pointcut definition itself remains unaltered [KMB+06].

The example shown in Figure 59 shows a change in the message type
(access is replaced by call) that would lead to a reduced join point set in
case the pointcut definition (see Listing 8) would not be adapted.

Figure 59 Changed base model causes a join point "miss"

In the subsequent sections, proposed solutions to the issues mentioned
above, namely aspect interactions and pointcut fragility, will be ex-
plained in detail.

 Aspect-oriented Design Method

 95

5.4 Managing Compositional Interactions

As exemplified in the previous sections, if tactics are to be composed
that are not independent of each other, it is most likely that so-called
tactic interactions will occur. Tactic interactions potentially result in unin-
tended connector behaviors.

Since aspect orientation at the modeling level is quite a young discipline,
so is interaction detection. If we look at existing approaches for aspect-
oriented separation of concerns at the modeling level, there are only few
that consider interactions at all. In the realm of architecture description
languages, there are no such approaches that address interaction detec-
tion or resolution at the modeling level. According to [SSK06], there is
only one aspect-oriented modeling approach that allows detecting con-
flicts; other approaches simply provide some guidelines for avoiding in-
teractions. According to [SSK06], the conflict resolution mechanisms of
existing methods are quite simplistic as well. Since interactions can either
be on the syntactical or on the semantic level, existing model-based ap-
proaches address the syntactical interactions only. The work presented in
this thesis goes one step further: I provide an approach that is capable of
detecting semantic interactions as well.

5.4.1 Classification of Interactions

In order to find appropriate solutions for the interaction problem, I first
classify interactions according to indications and impact. Interactions can
occur when several tactics are woven into the same base communication
model. I distinguish between three types of interactions: dependencies,
collisions, and conflicts. Since the definitions given by [STJ06] are infor-
mal, I formalize the definitions of dependency and conflict in order to
have a basis for defining appropriate resolutions strategies. Dependen-
cies arise if one tactic is applicable to a model element introduced by an-
other tactic, i.e. the number of join points for a given tactic increases af-
ter the application of another tactic. This can be formalized as follows:

Definition – Weak Direct Dependency

Let A1, A2 be two tactics, and P1 = �i�n p
1

i and P2 = �i�m p2
i the corre-

sponding sets of pointcuts. A1 is said to be weakly directly dependent on
A2 if the following predicate holds:

DDepweak(A1,A2) =DF P1(A2) 	

where Pi(M) : M � 2Msg denotes the application of a pointcut Pi to a base
communication model M.

Aspect-oriented Design Method

96

In other words, A1 is weakly directly dependent on A2 if A2 entails ele-
ments that are captured by A1. Given the weaving specification

after (jp!type(access)): Billing-Tactic

the example tactic shown in Figure 51 on page 84 would introduce join
points that would be captured by the pointcut used for weaving the Bill-
ing-Tactic. Here, we encounter a weak dependency between the Billing-
Tactic and the Authorization-Tactic.

Definition – Strong Direct Dependency

Let M = (S, Msg, �, s0) be a base communication model. A tactic A1
strongly directly depends on a tactic A2 with respect to M if the follow-
ing condition is true:

DDepstrong(A1,A2,M) =DF DDepweak(A1,A2)
 P1(M) =

Strongly dependent means that a tactic requires a model element that is
only introduced by another tactic.

In the event that two tactics are mutually directly dependent on each
other, we encounter a so-called cyclic dependency. Weak and strong cy-
clic dependencies can be formalized as follows:

Definition – Cyclic Dependency

CDDepweak(A1,A2) =DF DDepweak(A1,A2)
 DDepweak(A2,A1)

CDDepstrong(A1,A2,M) =DF DDepstrong (A1,A2,M)
 DDepstrong(A2,A1,M)

Two or more tactics may also interact indirectly via a base communica-
tion model. Indirect dependencies are determined by the respective
pointcut specification. That is, we always need to have a reference to a
base model in order to check if an indirect dependency between tactics
exisits. I formalize this as follows:

Definition - Indirect Dependency

Let A1, A2 be two tactics, P1 = �i�n p
1

i and P2 = �i�m p2
i the corresponding

sets of pointcuts, and M = (S, Msg, �, s0) a base communication model.
A1 is said to be indirectly dependent on A2 for a given M if the following
predicate holds:

IDep(A1,A2,M) =DF P1(M) ��P2(M) 	

 Aspect-oriented Design Method

 97

In other words, A1 is indirectly dependent on A2 if A2 alters a subset of
the same join points altered by A1.

Looking at the example given by:

around (jp!type(access)): Authorization-Tactic

after (jp!type(access)): Billing-Tactic

we can see that both tactics are operating on the same join points (spec-
ified by “access”). According to DF P1(M) ��P2(M) 	
, we encounter an
indirect dependency between these two tactics.

The different kinds of dependencies that exist are indicators of potential
problems. However, the main problems arise when two or more tactics
are composed into one base model. This is where symptoms like colli-
sions and conflicts occur.

Collisions are interactions between tactics on the syntactical level. A colli-
sion is declared if one tactic modifies a base communication model in
such a way that a second tactic cannot be applied any longer or only in a
limited fashion.

In the following, I refer to the composition of a base communication
model M with a tactic Ax as M � Ax , or MAx for short.

Definition 3 - Collision

Let A1, A2 be two tactics, P1 and P2 the corresponding sets of pointcuts,
M = (S, Msg, �, s0) a base communication model M. A1 collides with A2
at M if the following predicates hold:

Colweak(A1,A2,M) =DF |P1(M
A2)| < |P1(M)|

Colstrong(A1,A2,M) =DF Colweak(A1,A2,M)
 P1(M
A2) =

A collision between two tactics A1 and A2 is weak if the number of join
points for A1 in the base communication model is decreased after the
weaving of A2, compared to only applying A1. A strong collision states
that a tactic can no be longer be applied after enhancing the base com-
munication model with another tactic. In such a case, a tactic would re-
move all join points of another tactic by using the around directive as
explained in Section 4.3.5 without applying the thisJoinPoint keyword.
For example, applying the weaving specification to the Publish-Subscribe
connector, all join points (register, unregister, notify) would be replaced
with the “replacementMessage”.

around (jp!type(access)): Authorization-Tactic2

Aspe

98

ect-oriented Desig

F

T
t

I

m
n

a

I
p
t

e
F
t
a

gn Method

Figure 60 Author

The modified
the around-d
keyword refer

Interactions o
use the notat
munication m
not interrupte

Definition 4

Let A1, A2 be t
have to hold a
at a model M

In other word
place (M �2

tactic), that pr

Relevant prop
es occur at a
For instance,
teraction mus
and the join p

ization-Tactic2

Authorization
irective, while
rencing the re

n the semant
ion of M �

model M. A for
ed by any othe

- Conflict

two tactics an
after the weav
if the followin

Con(A1, �2, M

ds, a property
2). After comp
roperty does n

perties can be
particular po
if the authori
st be woven
point message

n-Tactic as sho
e at the same
spective join p

tic level are ca
� to denote th
rmula � could
er tactic, for ex

nd �1 and �2 t
ving of A1, res
ng predicate h

M) =DF M ��2

of a model (e
posing this mo
not hold anym

described by
int in time re
zation is wov
in between t
.

own in Figure
e time omittin
point.

alled conflicts.
hat � is satisfi
express that a

xample.

he correspond
sp. A2. Then, A
holds:

2
 �(M � A1

expressed by �
odel with ano

more �(M � A

stipulating th
elative to the
ven into the m
the authorizat

e 60 is woven
ng the thisJoin

. In the follow
ied by a base
a particular ta

ding assertion
A1 conflicts w

 �2)

�2) holds in th
other model (e
A1

 �2).

hat specific me
tactic specific

model, no oth
tion message

using
nPoint

wing, I
 com-

actic is

ns that
with A2

he first
e.g., a

essag-
cation.
her in-
e itself

Cyclic con
such that t
model. In s

A cyclic co

The weavi
CCon(A1,A
mented m

Note that
weaving,
predicate
tics are ind
actions are

Dependen
ly imply th
cation mo
ent. Analy
posing tac
the syntac
ior, I define

Definition

Let A1,…A
model M,
M i = M �
model resu
Ai. A sequ
weaving if

This mean
when the
pair-wise c

Feasible w
checked fo

flicts arise if
they mutually
such cases, co

nflict can be f

CCon(A1,A2

ng of two ta
A2,M) always i
odels M � A1

dependencies
collisions and
DDepweak is u
dependent of
e always defin

cies, collisions
hat these tacti
del in a partic

yzing interactio
ctics with a ba
tical level do
e feasible wea

n 5 - Feasible

An be tactics th
�i the proper

� A1 � A2 �

ulting from th
uence of tacti

the following

ns that all for
model is aug

conflict-free, i.

�i � n �j

eaving is impo
or feasibility in

two tactics a
invalidate the

onflict resolutio

formalized as:

,M) =DF Con(A

actics into a b
implies undes
� A2 or M * �

s can be exam
d conflicts on
niversally valid
any base com
ed with respe

s, or conflicts
cs should be
cular order, si
ons helps to
ase communic
not necessaril
aving on the s

e Weaving

hat have to be
rty that has to
… � Ai = M
e sequential c
cs w = (A1,…A

g condition ho

� i � n . M

mulas establis
gmented at st
.e.,

j < i . �Con(A

ortant, since a
n order to prev

Asp

lter the mode
e stipulated pr
on strategies

A1,A2,M)
 Con

base commun
sired behavior
� A2 � A1.

ined and dete
nly afterward
d since depen
mmunication
ect to a specifi

between two
composed wi
nce the result
determine a f
cation model.
ly result in un
semantic level

e woven into a
o hold after t
�1� k � i Ak the
composition o
An) is called a

olds:

M n �i

shed up to st
tep i. Hence,

Ai, Aj, M
 i-1)
 M

a weaving con
vent conflicts

pect-oriented Desi

el during the
roperty of the
need to be ap

n(A2,A1,M)

nication mode
r in the result

ected before t
ds. Conseque
ndencies betw
model. All oth
ic base.

o or more tact
th the base c
ting models a
feasible order
. Since interac

ndesired system
as follows:

a base comm
he weaving o
e base comm
of M with tact
a semantically

tep i-1 must
all elements

M n �i

nfiguration ne
in the resultin

ign Method

99

weaving
 resulting

pplied.

el M with
ting aug-

the actual
ently, the
ween tac-
her inter-

tics usual-
communi-
are differ-
r of com-
ctions on
m behav-

unication
of Ai, and
unication

tics A1,…,
y feasible

still hold
of w are

eds to be
ng model.

Aspect-oriented Design Method

100

5.4.2 Interaction Detection

In this section, I describe the approach for detecting collisions and con-
flicts [KW09]. Collision detection is straightforward, as we can check the
properties defined above by examining the respective sets of join points.
For detecting conflicts, I use fluent linear temporal logic as a formal
foundation. In the following, I will describe the approaches in more de-
tail.

Detecting Dependencies and Collisions

Each of the classes of interaction described in the previous section can
be detected by different kinds of approaches. Dependency detection be-
tween two tactics A1 and A2, for instance, can be addressed by looking
at the join point collections of A1 and A2, respectively. To check for weak
dependencies between A1 and A2, the join points are analyzed that are
collected by each of the pointcuts P1(A2) and P2(A1). If the collection of
join points is not empty in either one of the cases, a weak dependency is
detected.

In case of strong dependencies, we check the join points captured by the
pointcuts mutually applied to the tactics. If any result set is not empty,
we have found an indicator of a strong dependency. Then we check if
the pointcut as applied to the base model returns an empty set of join
points. To that end, we can check for the conditions stipulated by defini-
tion DDepstrong. More concretely, if the predicate DDepweak holds and the
collection of join points gathered by P1(M) is empty, we have detected a
strong dependency. Indirect dependencies can be detected by compar-
ing the pointcuts applied by different tactics to the same base model. If
we find pointcut expressions that return identical subsets of join points,
we have detected an indirect dependency. Collisions can be detected in
a similar way, by just looking at the sets of join points that are collected
by pointcuts of different tactics applied to the same base model.

Detecting Conflicts

The main idea for checking semantic interactions of aspects, or tactics in
our case, is based on formal model checking techniques on the basis of
Labeled Transition Systems and Fluent Linear Temporal Logic (FLTL)
[GM03]. As described in Section 5.3.1, there is one approach that uses
FLTL to check particular model properties; however, the approach does
not consider the detection of interactions. Our approach pushes the en-
velope of semantic interaction detection in two regards: First, I enable
the specification of compositional properties of aspects that can be
model-checked, and thus, extend the traditional property checks of safe-
ty and liveness. Second, I provide a set of heuristics that can be used for
deriving the formal specifications of properties automatically. A labeled
transition system (LTS) can be used to model the communicating behav-

 Aspect-oriented Design Method

 101

ior of different entities in (distributed and concurrent) systems. More
formally, a labeled transition system M is described by a quadruple (S, A,
�, s0) where:

� S is the finite set of possible states

� A � Action is the finite communicating alphabet of M,

� � � S � A � {�} � S is a transition relation from state s1 to state s2 la-
beled with an action a � A

� s0 � S is the initial state

where Action is a global set of visible actions or events and � a local ac-
tion that is unobservable. A sequence of messages over 2A (including the
� message) that M can perform in its initial state is called an execution of
M. The semantics of a LTS are described by the set of all executions. I use
the formalism of LTS in the context of connector specifications, since the
formal connector foundations stem from the theory of communicating
sequential processes (CSP) [AG97]. Formally speaking, a connector is de-
scribed by a set of interacting roles and a glue specification. Roles repre-
sent entities involved in an interaction defined by a connector. Each role
has to follow a protocol specification that expresses the local behavior of
the respective role. The glue specification, in turn, determines the inter-
play of different collaborating roles. In terms of models, so-called con-
nector automata (CA) can be used for formally specifying connectors. A
CA coordinates the functional behavior of the roles by denoting how the
entities work together. A CA describes a glue specification as a set of
tasks represented as states and possible transitions between states
where each transition is labeled by a message. We can map connector
models as presented in Section 4.3.5 to LTS in a straightforward fashion.
Hence, let MsgB be the set of possible messages m = (p, s, src, trgt) that
can occur between two communicating entities src and trgt, enclosed by
a preceding message p and a succeeding message s, and let � be a local
message that is not observable. A Connector Automaton C is a discrete
Labeled Transition System described by a quadruple (S, M, �, s0) where:

� S and s0 are a set of states and the initial state, respectively,

� M � MsgB is the finite communicating alphabet of C,

� � � S � M � {�} � S is a transition relation from state s1 to state s2 la-
beled with a message m

An example LTS specifying the Publish-Subscribe connector protocol as
described by the diagrams shown in Figure 56 on page 90 is depicted in
Figure 61.

Aspect-oriented Design Method

102

Figure 61 LTS representation of a Publish-Subscribe connector

 Aspect-oriented Design Method

 103

The LTS resulting from the weaving of security into the Publish-Subscribe
connector is depicted in

Figure 62 Woven Publish-Subscribe connector with authorization tactic

I use Fluent Linear Temporal Logic (FLTL) to specify state-based temporal
logic properties over an event- or message-based computational model.
A fluent [MS99] is a time-varying property of the world that is true at
some time instant t if it has been initiated by an action or message at a
time instant tp prior to t and has not been terminated by another action
or message in the meantime. More formally, a fluent F is a proposition
defined by a set of initiating actions Init and terminating actions Term,
and an optional attribute Initially that states whether the fluent F is true
or false at time zero:

F =DF � Init,Term � with Init, Term � Action

The set of initiating and terminating actions has to be disjoint. The de-
fault value of a fluent is false.

The set of fluents �Fl
 is the set of the atomic propositions which built a

FLTL formula. Analogous to LTL, an FLTL model mFL is an infinite se-
quence over 2�Fl. By means of �Fl it is possible to define a mapping from
action-based to state-based traces. Therefore, let tra be an action trace,
i.e., a sequence of actions that can occur in a corresponding state ma-
chine and let tra(i) denote the i-th element. This can be formalized as:

� i � N0, � F � �Fl . F � mFL(i) iff

(a) Initially
 (� k . 0 � k � i, tra(k) � Term) �

(b) � j | (j � i)
 (tra(j) � Init)
 (� k . j < k � i . tra(k) � Term)

Aspe

104

ect-oriented Desig

C
t
(
p

t

T
f

e
t

t
a

I
f
a
p
b
r
t

C
t
m

T
m
s

gn Method

Condition (a)
true and no t
(b) stipulates
position i and
lowing, I use
tion Assert is s

Every action a

The fluent F(a
false with the

Bounded FLTL
example, the
time not more
in the state-b
two positions
a timed event

In order to ch
fine assertions
arise or alway
properties spe
be satisfied by
refer to prope
tion model it
having event e

Considering t
that specifies
message regis

FLUENT

Inva

The following
message occu
soon as the m

states that th
erminating ac
that F is true
 no terminatin
the notation
satisfied by an

a � Action imp

F(a

a) becomes tr
first occurren

L operators [L
property �� 5
e than 5 ticks
ased trace (no
of the state-b
-based model

heck the sema
s about event
ys be true. A
ecified over an
y a state mach
erties of the ta
self. For insta
e1 always follo

the Publish-Su
that there s

ster. This stipu

AUTHREG = �g

alidateSet = M

�

g sequence s
urrences along
message gran

he fluent F is
ction has occu

at i if some
ng action has
of tra Asse

n action trace

plicitly defines

) =DF � {a},Acti

ue at the tim
nce of any oth

KM+05] exten
� means that

s or time units
ow). To deter
based trace, a
 is used.

antic propertie
ts, or sequenc

Assertions refe
n event-based
hine after tact
actics as well a
ance, we can
owed by even

ubscribe conn
hould be an

ulation is then

granted, Inval

WITH

Msg* � {accessC

and the asse

(register � A

hows the val
g the sequenc
ted occurs. A

true at posit
urred before p
initiating actio
happened sin

ert to denote
tra.

a fluent F(a) a

ion \ {a} �

e instant a oc
er action or ev

nd FTLT by tim
t � holds at so
s away from t
rmine this tim
 temporal dist

es of compos
ces of events,
er to state-ba
d operational m
tics have been
as those of the

define assert
t e2.

ector, we cou
event grante
defined as:

idateSet � {re

Control, abort

rtion

UTHREG)

ues of the f
ce. The fluent
At the time th

tion i if it is in
position i, con
on occurred b
nce then. In th
that an FLTL

as follows:

ccurs and bec
vent.

med propertie
ome future po
the current po

me elapsed bet
tance function

sed models, w
, that should
sed temporal
model that ha
n woven. Prop
e base commu
tions that stip

uld define a
ed right befor

gister_rsp} �

t, denied}

luent accordi
changes to tr

he message re

nitially
ndition
before
he fol-
asser-

comes

es. For
oint in
osition
tween
n over

we de-
never

l logic
ave to
perties
unica-
pulate

fluent
re the

ng to
rue as
egister

 Aspect-oriented Design Method

 105

occurs, the fluent is still valid, so the assertion � (register � AUTHREG)
holds.

Figure 63 The assertion holds since the fluent is evaluated to true

5.4.3 Generating Fluents from Weaving Specifications

Since the manual creation of such fluents and assertions is a tedious and
error-prone task, we aimed at an automation of that task. To that end,
we specify a set of heuristics that allow for generating such fluents and
assertions automatically from a given weaving specification. Since the
weaving specification indicates some properties already (e.g., by the ad-
aptation effect), we use this information for deriving some fluents that
express standard properties to be true after weaving.

For deriving assertions, we need to know in what way the tactics are
supposed to be woven into the base communication model, as the way
tactics are woven implies contextual properties of that tactic with respect
to the base communication model. The derived assertions capture these
contextual properties and make them checkable during further modifica-
tions by other tactics.

As already indicated, the contextual properties are heavily dependent on
the adaptation effect selected for particular tactics. In the following, we
will elaborate on each of the adaptation effects and define a set of rules
that are useful for the automatic generation of fluents and assertions.

Aspect-oriented Design Method

106

Before-Advice:

Let A be a tactic and P be the corresponding pointcut. When defining an
assertion that describes the desired behavior of a connector augmented
by tactic A, we have to distinguish between two cases: synchronous in-
teraction and asynchronous interaction at the join point described by P.
In the following, let join point denote the message where the base
communication model and the tactic meet. For synchronous communica-
tion, let join point_rsp denote the return message caused by a synchro-
nous message join point. A feasible assertion for the before-advice is
given by

� (joinPoint � BEFOREADVICE), with
FLUENT BEFOREADVICE = � validatorMsg, joinPoint_rsp �

where validatorMsg � MsgA is a message that validates the fluent. In
other words, the validator message is the message that occurs right be-
fore the join point. The assertion defined in the before-case stipulates
that the fluent BEFOREADVICE is always true at the time when the respec-
tive join point message occurs. The fluent BEFOREADVICE is defined to be
true when a particular validator message (validatorMsg) occurs, and is
falsified when the respective response message of the join point occurs
(joinPoint_rsp). (Note that this rule implies a synchronous message ex-
change.)

In general, when interacting asynchronously, there is no response mes-
sage that can be used to invalidate the fluent. For that reason, all mes-
sages m = (p, s, src, trgt) that may occur directly after the join point are
used. Let Join pointNext = {m � MsgB | p = join point}. A feasible asser-
tion for asynchronous communication can then be defined as follows:

� (joinPoint � BEFOREADVICE), with
FLUENT BEFOREADVICE = � validatorMsg, JoinPointNext �

The assertion just defined is, in a sense, not very strong. There is no strict
coupling between the validation of the fluent and the join point, i.e.,
messages or events that do not influence the fluent may occur. In the
majority of the cases, this is not a problem; On the contrary, it is the only
possibility for tactics to be applied successively. But sometimes, strict
coupling is mandatory, for instance if for security reasons, an authoriza-
tion is required immediately before a login, without any further events or
messages in between. In that case, the set JoinpointNext has to be ex-
tended by all messages � MsgT that belong to the tactic and may occur
between validatorMsg and join point.

Therefore, let o be a non-empty sequence of messages of length n de-
noting the allowed order of message exchanges over A and let mi de-

 Aspect-oriented Design Method

 107

note the i-th message of that sequence. Then, � i < n is mi = pi+1. Let In-
do : Msg � N�be an index function over o where Indo(m) denotes the
position of m in the sequence o and j = Indo(validatorMsg) and k = In-
do(join point), respectively. For strong assertions, the set of messages Inv
that invalidate the fluent is defined as Inv = Join pointNext � Msg*

A �
Msg*, where Msg*

A = {m � MsgA | Indo(m) < Indo(validatorMsg) } and
Msg* = {m � MsgA1 � … � MsgAn | m 	 join point
 m 	 validatorMsg

m � Msg*

A }. The latter describes the set of messages defined by other
tactics to be injected, and thus might be woven in between the validat-
ing message of A and the join point. So the resulting fluent for a before-
advice is given by

FLUENT BEFOREADVICE = � validatorMsg, Inv �

In case of asynchronous communication, a system model with two suc-
ceeding messages of the same type would satisfy the above assertions,
although the assertion is obviously violated. This is due to the fact that
when the second message occurs, the fluent is still valid, since no re-
sponse message “_rsp” will invalidate it. However, this can only happen
if tactics depend on each other (cf. Definitions 1 and 2) or if they are
woven in incorrectly. The former can be detected statically without
weaving; the latter may occur if the weaving algorithm is incorrect. A
more precise assertion avoiding the aforementioned drawbacks can be
defined by using the next operator or a global clock such that

� (joinPoint � BEFOREADVICE
 ��joinPoint), or
� (joinPoint � BEFOREADVICE
 �� 1 �joinPoint)

Obviously, it is impossible to successfully enhance one join point in the
base communication model by two different before-advices whose asser-
tions are strong, since the resulting model cannot satisfy both properties.

After-Advice:

Two possibilities for specifying assertions for an after-advice for synchro-
nous interactions are given by

� (joinPoint_rsp � � AFTERADVICE) or
� (joinPoint_rsp � ��X AFTERADVICE), with

AFTERADVICE = � validatorMsg, invalidatorMsg �

where � � {<, >, � ,� }.

However, the first assertion requires the advice to be executed immedi-
ately after the join point and is, in addition, not closed under stuttering.
The second assertion requires a global clock to synchronize tick events. A

Aspect-oriented Design Method

108

feasible assertion without the next operator or a global clock can be de-
fined as follows:

� (joinPoint_rsp � (�(m1 � … � mn) W AFTERADVICE)), with
AFTERADVICE = � {valid1,…,validn},{invalid1,…,invalidm} �

The above assertions state that after every occurrence of the join point
event, the advice has to be executed before any of the messages m1 to
mn occur. The messages mi are to be chosen according to the context.
For instance, a strong assertion can be derived from the above by choos-
ing all mi � Msg \ {jointPoint_rsp}. The messages validi and invalidj are
appropriate messages taken from the tactic, i.e., � i,j . validi, invalidj �
MsgT.

In the asynchronous case, join point_rsp has to be replaced by join point,
since no explicit return message exists. As in the before-advice, a system
model with two succeeding messages corresponding to join points, but
only one after-advice, satisfies the above assertion, although the model
does not show the desired behavior. A more sophisticated assertion can
be defined in the following two ways:

�(joinPoint � (�(m1 �…� mn) W AFTERADVICE))
 ��joinPoint, or
� (joinPoint � (�(m1 � … � mn) W AFTERADVICE))

�� 1�joinPoint

Around-Advice:

An around-advice replaces any join point within the base model with the
interactions described by the advice, either by keeping the join point and
adding some “interactions” before and after, or by completely substitut-
ing the join point by one interaction. For the first case, the around-advice
can be seen as a sequential composition of appropriate before- and af-
ter-advices. A feasible assertion is given by:

� (BEFOREASSERT
 AFTERASSERT)

where BeforeAssert and AfterAssert are corresponding assertions for a
before- and an after-advice as described in the previous subsections. Fur-
ther, the join point may also be renamed, that is, the join point does not
necessarily have to be in MsgB, but can also be in MsgT. In the second
case, the presented heuristic cannot be used to (automatically) derive
fluents and assertions based on the interaction advice. This is due to the
fact that in the resulting model (after the advice injection), there is no
particular trigger or message coupled with the advice and therefore the
assertions cannot be specified without knowing the embedding context.
In that case, the assertion has to be defined manually. Eventually, for
every join point that is captured by pointcuts of a tactic, we generate

 Aspect-oriented Design Method

 109

one individual assertion that reflects the properties of the tactic in that
particular join point context.

An example of deriving fluents and assertions for around-adaptations is
given by the following weaving specification:

around (access): Authorization-Tactic

Here, we refer to the base model as defined in Figure 56 on page 90 and
the Authorization tactic as defined in Figure 51 depicted on page 84. In
the example, the Authorization tactic introduces no model elements af-
ter the thisJoinPoint message. For that reason, an assertion for the Au-
thorization advice may be defined according to (A8) by �(access �
StrictAuth). Since Authorization is a security-critical task, we model the
generic assertions as strict (A3) to prevent any message interactions be-
tween authorization and registration, leading to:

FLUENT STRICTAUTH_SYNC = �granted, InvalidateSet � {joinPoint_rsp} �
FLUENT STRICTAUTH_ASYNC = �granted, InvalidateSet � JoinPointNext �,

with
InvalidateSet = Msg* � {accessControl, checkAccessControl,

 checkAccessControl_rsp, denied}

When applying the pointcut to the base model, the message join-
Point_rsp and the set JoinPointNext have to be instantiated by corre-
sponding messages of the base model. In the example case, this leads to
the following assertions and fluents for all messages of type <<access>>,
namely (a) register, (b) unregister, and (c) notify:

(a) � (register � STRICTAUTH_SYNC _REG), with
FLUENT STRICTAUTH_SYNC _REG =

� granted, InvalidateSet � { register_rsp} �

(b) � (unregister � STRICTAUTH_SYNC_ UREG), with
FLUENT STRICTAUTH_SYNC_ UREG =

 � granted, InvalidateSet � { unregister_rsp}�, and

(c) � (notify � STRICTAUTH_ASYNC NO) with
FLUENT STRICTAUTH_ASYNCNO =

 � granted, InvalidateSet � { updating_rsp} �

With these rules, we are now able to automatically generate a set of flu-
ents and assertions such that conflicts can be checked before the “actu-
al” weaving.

Aspe

110

ect-oriented Desig

5.4.4 Com

O
d
t
t
s

F

C
t
o

T
q
(
p
s
o
m

t

o
m

gn Method

mposition P

Our interactio
distinct steps
tactical interac
the semantic
steps in more

Figure 64 Interact

Collision Det
that are state
of join points

Transform to
quences desc
(Finite State
pressed as LT
specification i
one input (be
model-checkin

Derive Fluen
tions based on

Model Check
order to chec
model. For th

rocess

on detection p
(right-hand s

ctions (depen
analyses. In t
detail.

tion detection in

tection: For s
d by definitio
gathered by p

o LTS: To det
ribing the con
Processes) in
TS. That is, w
nto an FSP re

esides the flue
ng the augme

nts & Assertio
n the tactics s

k Assertions:
ck if the defin
his purpose, t

process, as de
side of the pic
dencies and c
the following,

the process of co

syntactical an
ns given in Se
pointcut expre

ect interaction
nnector sema
order to der

we transform
epresentation
ents and asse
ented connect

ons: In this st
elected and re

: In the last st
ned assertion
the FSP specif

epicted in Figu
cture). The id
collisions) is do
, we will desc

onnector design

alyses, we ch
ection 0. That
essions.

ns on the sem
ntics have to
rive a compu

the sequenc
. The FSP spe
ertions) for th
or model.

tep, we derive
elated weavin

tep, we run t
s hold for th
fication, the a

ure 64, entail
entification o

one independe
cribe each of

heck the prop
is, we analyz

mantic level, th
be mapped t
tational mod

ce-based conn
ecification serv
he LTS Analyz

e fluents and
g specification

the LTS Analy
e augmented
assertions, an

s four
of syn-
ent of
these

perties
ze sets

he se-
to FSP
el ex-
nector
ves as

zer for

asser-
ns.

yzer in
d base
nd the

 Aspect-oriented Design Method

 111

fluents serve as input to the tool. The LTSA uses the FSP description to
generate an LTS behavior model that is equivalent to our connector au-
tomaton. Finally, we run the LTS analyzer and check if the defined asser-
tions hold for the augmented base communication model.

Interaction Resolution Strategies

If we encounter interactions, a resolution for the respective conflicts
needs to be found. In the following we present effective strategies that
can be pursued when interactions need to be resolved.

1. Changing the weaving sequence of tactics

Depending on the adaptation effect (before, after, around), there are
different impacts of the tactics with respect to the selected sequence in
which the tactics are woven into the model. For instance, in case an
around-advice is used, the tactic is likely to drastically change the con-
nector model at the join point, whereas in case of before- and after-
advice the connector model is just extended. One resolution strategy is
to find a sequence that alters the base models as non-intrusively as pos-
sible from one step to the next. In general, around-advices are woven as
late as possible, since they might be intersected by other tactics other-
wise.

2. Changing the strictness of assertions

One strategy for resolving conflicts is to trade-off strictness requirements
among tactics. It might not be okay if a security tactic is interrupted by a
logging tactic; however, it might be reasonable for a billing tactic to be
interrupted by an encryption tactic.

3. Renaming the join points (types could be renamed)

A resolution strategy for collisions is to create a distinction between the
join points matched by a couple of tactics. In case the join points are se-
mantically disjoint, a renaming of the respective join points, or a change
of types, might be a good way to go.

4. Combining critical tactics into one module before weaving

If cyclic conflicts occur, a resolution for such a situation might be to inte-
grate the interacting tactics at the source. That is, by combining both
tactics into one model, they are woven into the base model in the way
they are supposed to work together.

Aspect-oriented Design Method

112

5.5 Pointcut Evolution

The second major issue besides compositional challenges as mentioned
at the beginning of this chapter was the connector design under con-
stant change [PAC+05]. The problem of pointcut fragility is the main
reason for aspect-oriented design to be specified incorrectly.

Since fragility is defined relative to the model modifications performed,
we scope the change scenarios that may occur, and analyze the impact
of these scenarios on pointcut definitions in general. In addition, we de-
rive strategies for evolving pointcuts in the face of change. The concept
of type-based pointcuts as introduced in Section 4.3.4.1 already contrib-
utes to the stability of pointcuts, as we will see.

5.5.1 Evolution Scenarios

Regarding the scope of change scenarios, we look at changes that might
happen to the base models themselves, namely the sequence diagrams
describing the interactions between components as well as model ele-
ments (e.g., the deployment) that indirectly influence the connector
model.

Regarding the connector models themselves, we find three change sce-
narios that potentially impact pointcut specifications:

1. New elements/messages are added

2. Existing elements/messages are changed

3. Existing elements/messages are removed

Regarding model entities of related design dimensions that have an indi-
rect impact on the pointcut stability are:

4. Existing elements are redeployed

Besides the base model elements that might change over time, there is a
chance that the strategy of how a particular tactic should be applied to
the system might change as well.

5. Strategy of tactic application is changed.

For reacting to these evolution scenarios, we define a set of guidelines
that support the designer in adjusting the respective pointcut definition.

 Aspect-oriented Design Method

 113

5.5.2 Pointcut Evolution Guidelines

The goal of pointcut redefinition is to have an optimal level of complexity
in terms of the elements and operators used in the pointcut specification
itself. We can formulate heuristics for revising pointcuts in order to keep
the definitions’ complexity at an optimal minimum level during model
evolution or construction. The general heuristic that we can use for revis-
ing the pointcut can be formulated as follows: Always capture as many
elements as possible by applying higher-level constructs that aggregate
instances of that particular type. If messages are captured unintentionally
by a higher-level construct, exclude them explicitly at the message level
as long as the instance-based exclusions do not exceed the messages
captured by the type expression.

Here, we give a list of concrete strategies for optimizing pointcuts re-
garding the number of elements and operators.

� If several messages are of the same type, then we aggregate these
messages by using the type-designator, e.g., jp!type(message_type).

� If several messages have similarities in their names, we use the wild-
card designator “*”, e.g. jp!instance(M_name*).

� If several messages originate from or target the same component, we
aggregate these messages using the source designator, e.g.,
source(comp!{instance, type}(M_source)). This applies to higher-level
elements as well (artifacts and nodes), e.g., target(node!{instance,
type}(Node)).

� If several messages are sent through the same communication path,
we use the cp-designator, e.g., all(cp!{instance, type}(CP)).

� If several messages can be aggregated on the attribute level, we use
respective attribute designators, e.g.,
source(component!type(P::ST).attrib > 0).

In the context of the change scenarios described above, we need to con-
sider such kinds of optimization goals concurrently with the pointcut ad-
aptations. In the following, we will refer to the strategies shown in
[KRK09] that address the revision of pointcuts in the context of change
scenarios 1-6.

Aspect-oriented Design Method

114

Scenario 1.1: A new message M is added to the base model

Pointcut Error: Unintended join point capture

In case the message needs to be removed from the join point set, we
apply the general strategy of excluding types that ultimately refer to the
respective instances to be included. That is, in case the message is sent
from a component deployed on a node that is not involved in sending
any other messages captured by the pointcut, we can simply refer to the
node element for exclusion of the message. We apply this scheme along
the aggregation hierarchy of the components in the deployment specifi-
cation. We do also consider message types as well. In case the message
type is not used in the current pointcut specification, we can simply ex-
clude the message type from the pointcut expression using the expres-
sion “&! jp!type(M_type)”. In case the type is already used by the
pointcut, we exclude the respective message on an instance basis using
the expression “&! jp!instance(M)”. If we assume or know at this point
that all existing and possible future messages with this type will be rather
excluded from the pointcut, the obvious choice is to rule the type out. If
the M is rather an exception, then excluding the instance directly is the
right path.

Pointcut Error: Accidental join point miss

In case of accidental join point miss, we also have the possibility to add
the instance directly (“| jp!instance(M)”) or to add the type of the mes-
sage (“|jp!type(M)”). Using the type-based specification, we need to
check for possible resulting unintended join point captures. In case we
find additional messages revealing similarities, we aim at aggregating
them using logical operators as defined in Section 4.3.4.1.

Scenario 1.2: A new component C is added

In a sense, this scenario is similar to scenario 1.1, except that we possibly
add several messages with one component. Then, all the messages are
aggregated by C and we can use them in the pointcut directly.

Pointcut Error: Unintended join point capture

In case the current pointcut unintentionally captures messages intro-
duced by the new component, we can exclude the messages directly by
means of the designator jp or use the exclusion operator on the compo-
nent, e.g. &!source(comp!{type, instance}(C).

Pointcut Error: Accidental join point miss

In case we accidentally miss the messages introduced by the component,
we can include the messages by including the component type if it is not
already used as an inclusion criterion within the pointcut.

 Aspect-oriented Design Method

 115

Scenario 2.1: The name of a message is changed

In both cases, the unintended join point capture and the accidental join
point miss, the pointcut definitions have to be adjusted. If the pointcut
just refers to a deployment element only (artifacts, components, nodes),
the pointcut remains the same. If the pointcut already uses message
names, that pointcut definition would have to be revised.

Scenario 2.2: The type of message is changed

In general, a change of message types only affects a pointcut if the
pointcut already uses the respective message type. Pointcuts remain un-
affected if they refer to deployment elements only.

Pointcut Error: Unintended join point capture

If the new message is captured by the current pointcut definition, we
can exclude the message according to the strategy described in scenario
1.1.

Pointcut Error: Accidental join point miss

If we do not capture the message anymore with the unchanged
pointcut, we can handle the problem by treating the missed message as
a new message according to the strategy described in scenario 1.1.

Scenario 2.3: The name of component C is changed

Here, the pointcut is affected if instance-based declarations of the re-
spective component are used.

Pointcut Error: Unintended join point capture

In the event the component name is changed so that it is now matched
by a name pattern specified by the pointcut, the name pattern needs to
be adjusted. An alternative is to explicitly exclude the component in-
stance using “&!{source, target}!instance(C)”.

Pointcut Error: Accidental join point miss

If the new name is not captured by the respective declaration in the
pointcut, the name pattern needs to be adapted. Alternatively, the com-
ponent can be included by referring directly to the instance.

Aspect-oriented Design Method

116

Scenario 2.4: The type of component C is changed

In this case, if the poincut uses instances, name-based or deployment re-
lated elements only, the pointcut is not affected and might remain unal-
tered.

Pointcut Error: Unintended join point capture

In this case, the poincut portion referring to the component type that C
is changed to needs to be adapted. Alternatively, the component is di-
rectly excluded by referring to the instance, or we find an appropriate
way of uniquely referring to all messages related to that component.

Pointcut Error: Accidental join point miss

In case of accidental miss, the component can be included back by ex-
tending the pointcut with the type of C or the component instance, or
add its message or message types.

Scenario 3.1: An existing message M is removed

Removal of a particular message potentially reduces the complexity of
the pointcut, even if the message was not explicitly excluded or included.
In case the pointcut refers to the message by instance, the message has
to be removed from the pointcut.

Scenario 3.2: Component C is removed

Removal of a component implies that all portions of the pointcut that
are referring to the component instance need to be adjusted appropri-
ately. All other portions of the pointcut are potentially unaffected.

Scenario 4: Component C is redeployed

If we do not refer to any deployment element (node, artifact, compo-
nent, communication path), the pointcut remains the same.

Pointcut Error: Unintended join point capture

In case of unintended capture of join points, we can exclude the compo-
nent as in scenario 1.2. We also refine the existing pointcut by explicitly
stating what components to exclude, e.g., source (comp!instance(C_1)) |
source(comp!instance(C_2))).

Pointcut Error: Accidental join point miss

Here we apply the strategy described in scenario 1.2.

 Aspect-oriented Design Method

 117

Scenario 5: Strategy of tactic application is changed

If the strategy of the tactic application changes, all pointcut definitions
related to that tactic are potentially subject to change. There is no gen-
eral guideline that supports a revision of tactic application strategies.

We implemented the strategies for these scenarios (except Scenario 5)
via the pointcut generation algorithm. That is, based on a selection of
messages, the pointcut is generated automatically and reflects the solu-
tions as presented in this section.

5.5.3 Reflective Pointcut Expressions

The idea of reflective pointcut expressions leverages the fact that we
have a formalized model for selecting join points. That is, a join point set
is always comprised of a number of messages exchanged by particular
components, coordinated by respective connectors. The pointcut specifi-
cation approach as described in Section 4.3.4 is interactive and works on
the architectural meta-model, exploiting the fact that deployment rela-
tionships can be used for navigating to concrete messages.

Given these facts, the reflective pointcut expression works the following
way: If a pointcut expression has been defined for a particular base
model and the base model is about to change, then the current set of
messages captured by the pointcut expression is cached. This join point
set is the reference set for the changed base model. If the base model is
modified, then the pointcut fragility phenomenon as described in Section
4.3.4 is about to occur.

Here, we have to examine two cases: Unintended join point capture and
accidental join point miss. In case of accidental join point miss, we can
automatically refactor the pointcut expression by examining the architec-
tural model regarding navigation possibilities to the respective set of
messages. In case of unintended join point capture, we can display the
newly captured messages to the architect, and based on the decision to
include or exclude, the pointcut expression is automatically adapted.

118

 Tool Support

 119

6 Tool Support

“Any sufficiently advanced technology is
indistinguishable from magic.” Arthur C. Clarke

In this chapter, we show the tool support we provide in the context of
this thesis. The tooling issue regarding model-based architecture design
is important, since the concepts explained in the previous chapters
would not be realizable in practice without appropriate tool support.

First, we give an overview of the steps of the design process that are au-
tomated or tool-supported. Then we illustrate for all of these steps what
the tool interface looks like, how the tool can be used, and how the re-
sults can be exploited by an architect.

6.1 Automated Steps

Here, we show which steps in the design process are manual steps, and
which steps are tool-supported and automated.

The modeling of the base connectors and the tactics is tool-supported;
however, these steps are manual steps. Automation kicks in when the
composition is to be defined. That is, once the tactics have been select-
ed, the composition can be defined. The composition definition step is
semi-automatic in two ways:

1. Selection of join points

2. Generation of a valid pointcut expression.

Once the composition is defined, the tool automatically checks for inter-
actions as described in Section 5.3.1. That is, the tool automatically gen-
erates an FSP representation of the connector models accompanied by
appropriate fluents and assertions that can be model-checked.

Tool

120

 Support

F

I
d

s
v
t
t
a
o
p

w
s
p
c
t

T
p
S
s
t
e
g

Figure 65 Autom

If a compositio
defined in Se
Here, we stre
support for w
vey conducte
that supports
thors of [FRG+
any support fo
or state chart
programming

Based on the
we use mode
sign decisions
particular sim
cally from the
tions, compon

The automatio
plugin extens
Software Arch
standard func
tion detection
exactly these
gram weaver.
up the order

ated steps in the

on specificatio
ection 4.3.5 g
ess the fact th

weaving at the
d by the aut
weaving at th

+04] only con
or weaving be
ts. All other a
 level.

generated m
l-based simula
 in terms of co
ulation forma

e architectural
nent structure

on of several
sions to the
hitect (RSA) [I
ctionality; how
n, we extende
purposes. The
 Based on a s
of tactics as w

design process

on is to be rea
generate the
hat existing a
modeling leve
hors of [SSK0
he modeling le
sider structura

ehavioral diag
approaches d

odels, the imp
ations as a wa
onnectors. Th
at as input. Th
 model and is
s, and deploy

steps as descr
commercial m
BM10]. The d

wever, for syn
ed the RSA w
e synthesis is a
so-called “wea
well as the po

alized, the wea
resulting mo
pproaches lac
el [SSK06]. Ac
06], there is o
evel [FRG+04]
al diagrams; t
rams such as

defer the actu

pact analysis i
ay of analyzing
e simulation e
his input is ge
s comprised o
ment descript

ribed above h
modeling too
design of sequ
thesizing tact

with extra plu
accomplished
aving configur
ointcuts denot

aving algorith
odels automat
ck appropriate
ccording to th
only one app
]. However, th
they do not pr
sequence diag

ual weaving t

is conducted.
g the change o
engine itself ta
enerated auto
of connector d
tions.

has been realiz
l by IBM, Ra

uence diagram
tics and for in
ug-ins designe
by a sequenc
ration”, we ca
ting where th

hms as
tically.
e tool

he sur-
proach
he au-
rovide
grams
to the

Here,
of de-
akes a
omati-
defini-

zed as
ational
ms is a
nterac-
ed for
ce dia-
an set

he tac-

 Tool Support

 121

tics are supposed to go. It turned out that it is useful to be able to save
weaving specifications for later reuse or modifications. The configuration
can be stored and replayed, so we can quickly iterate over a set of dif-
ferent design decisions.

In Table 3, we show some facts regarding the tool support itself in order
to provide an idea of the magnitude of extensions that were necessary
to realize the design process as specified.

Table 3 Tool characteristics

In the subsequent sections, we will show some details regarding the tool
extensions for the supported phases. First, we show the steps supported
by the tool in terms of model composition, entailing interactive join point
selection, pointcut generation, model checking, and model weaving.
Then, we show an integration of a simulation engine supporting the im-
pact analysis phase.

6.2 Composition Process

As already mentioned, the model composition entails a set of activities
that are supported by the tool extensions. The first step is to look into
the process of how the pointcuts can be created by selecting appropriate
join points from the base models.

6.2.1 Interactive Join Point Selection

The interactive selection of join points is motivated by the fact that the
pointcut expressions based on the pointcut definition language as shown

Tool Characteristics

(distinct) Plugins 3 Plugins (Interaction-Detection, Weaving, Simulation)

Numer of statements (all
plugins)

16.000

Number of classes 292

Total development
effort

2.8 person years

Tool Support

122

in 4.3.4 tend to get quite complex, even for simple pointcut expressions
[KRK10]. The main idea behind the interactive definition was to provide
a means that intuitively guides the designer in selecting the join points
directly on the model, and defer the pointcut construction itself to an
automatic generator that is capable of transforming a selected set of
model elements into a valid pointcut expression according to the PDL.

The join point selection itself is session-based. That is, we collect join
points only for a single tactic at a time. The session for collecting join
points is triggered by selecting the respective tactic and starting the visu-
al collection session.

Figure 66 Starting an interactive join point collection session

The join point selection implements the semantics of the type-based and
deployment-based join points as defined in Sections 4.3.4.1 and 4.3.4.2.
That is, based on the elements selected in the diagrams, we are eventu-
ally able to navigate to messages. As shown in Figure 67, by simply se-
lecting the node, we can capture all messages related to the component
Client, since this component is deployed on the selected node Mo-
bilePhone. The effect of selecting a particular element is shown in Figure
67. Here we selected component C1 in the diagram. On the left side of
Figure 67, we see a number of elements in a tree structure. That tree
structure reflects the containment hierarchy as described in Section
4.3.4.2. That is, we analyze the type of the component (upper part of
the tree) and show all instances of the component type, including relat-
ed messages that exist in the architectural model. In the lower part of
the tree, we show the particular component instance and the messages
related to that component. When elements are selected within the tree
structure, the affected elements are marked in all the diagrams. The af-
fected components are marked in the respective deployment diagram (as
depicted in Figure 67).

 Tool Support

 123

Figure 67 Displaying messages related to a selected architectural element

A selection of the component Client results in a change of the appear-
ance of a sequence diagram containing the respective message as well.
An example is shown in the following illustration:

Figure 68 Example selection of messages affecting the diagrams containing the messages

Tool Support

124

6.2.2 Pointcut Generation

Pointcut generation is straightforward since we map the selected join
points to the PDL as defined in Section 4.3.4. We can activate the gener-
ation of a pointcut for a join point set by selecting the respective option
during a collection session.

Figure 69 Generating pointcut expressions during the join point collection session

6.2.3 Model Checking

Model checking as described in Section 5.4.3 leverages the heuristics for
deriving fluents and assertions from a given weaving specification. Con-
sequently, model checking comprises a two-step process:

1. Derivation of fluents and assertions

2. Generation of an FSP based on the sequences defined in the model

We use the Eclipse-based version of the LTSA for actually checking the
properties; however, the semi-automatic specification of the FSP and the
respective fluents and assertions is one of the contributions of this thesis.

 Tool Support

 125

Figure 70 Integrated model checking capabilities

6.2.4 Model Weaving

The weaving is implemented according to the algorithm specified in Sec-
tion 4.3.5. That is, given a weaving specification comprised of a set of
tactics, pointcuts, and a base model, the algorithm produces a woven
model that manifests all tactics according to the pointcut definition.

We are able to generate the resulting model into a new model (the so-
called target model), so the original base model is not polluted with the
tactics. If we want to compare design alternatives, we simply change the
weaving specification and generate a new model. Then we are able to
compare the properties of a set of given design alternatives.

The dialog for specifying the weaving configuration is depicted in the
following figure.

Tool Support

126

Figure 71 Weaving specification dialog

The dialog shows the tactics that are to be woven into the base model.
The base model needs to be selected in the first place, otherwise there
would be no possibility of selecting respective join points for the weav-
ing. Using the “Save as …” option, we can save the current weaving
configuration for future reuse or change. Clicking on the “Save” button
gives us a convenient mechanism for quickly overwriting the selected
weaving specification file with the current one. We also integrated mod-
el checking into the weaving specification. We can simply click on se-
mantic or syntactical testing, and the respective models are generated
for LTSA-based model checking. When the “weave” button is pushed,
the specification is realized by the model weaver.

6.3 Simulation

The simulation is one technique that can be used for impact analyses. In
this case, since we are creating models that describe runtime interactions
of components, a simulation approach seemed to be promising, since
we would be able to evaluate a resulting design model objectively given
a set of metrics that can be used for comparing different design alterna-
tives.

For simulation itself, we use the Java-based simulation framework
“DesmoJ” [Des10]. Similar to the model checking approach, we utilize
the simulation plugin as is; however, we provide a generative approach

 Tool Support

 127

for compiling respective models that can be simulated based on the ar-
chitectural descriptions.

The simulation setup as shown in Figure 72 comprises information about
the sequences to be considered for simulation. (By default, these are all
sequences involved in the particular deployment.)

Figure 72 Simulation setup

Then we can specify the number of distinct simulation runs, given a sta-
tistical distribution of message occurrences denoted by � and a standard
deviation.

As the result of a simulation, we obtain a graphical depiction of each
simulation run as shown in Figure 73. The thick black line is the average
calculated over all simulation runs. We can also trace back from the re-
spective message to the model (see tool tip) by simply double-clicking
the graph. If we want to know why there is a peak at a particular point
in time (see Figure 73), this feature helps us to understand the conse-
quences of design decisions in terms of inter-component communication
models.

Tool Support

128

Figure 73 Sample output for a simulation run

Another feature of model simulation is incremental simulation. That is, I
managed to realize a concept that allows the architect to change the de-
sign, while the simulation updates the simulation results at the same
time. Thus, the designer is always aware of the impact of change, and
the feedback for design changes is almost immediate.

Figure 74 Showing the differences between the current simulation and the previous ones

 Validation

 129

7 Validation

“If the facts don't fit the theory, change the facts.”
Albert Einstein

7.1 Overview

The goal of the approach as defined in Chapter 4 is to realize separation
of concerns at the architectural level using aspect-oriented concepts. The
effect of separating cross-cutting concerns from core design artifacts is
reduced effort for performing changes on architectural models. To that
end, the hypotheses at the problem level, that is, hypotheses stating
cause-effect relations regarding scalability issues in architecture design in
practice, are mapped to solution-level hypotheses. On the solution level,
we assume that aspect-oriented modeling is effective in realizing separa-
tion of concerns in such a way that scalability issues at the problem level
are positively impacted.

In this chapter, we show the results of a controlled experiment conduct-
ed in the context of a practical course held at the University of Kaisers-
lautern in the summer term of 2009. Since the technical goal is to sepa-
rate the solutions for non-functional requirements from design artifacts,
we refined the solution hypothesis as defined in Chapter 1 accordingly.

The experiment aimed at assessing the impact of the aspect-oriented ar-
chitectural approach on the efficiency of model creation, analysis, and
evolution, as described in Chapter 4.

The experiment was set up in such a way that two groups performed the
same tasks on different architectural models. However, the architectural
models differed only in terms of the level of separation. In other words,
one group worked on an architectural model that realized certain design
decisions in an integrated fashion, whereas the other group worked on
an architectural model structured according to the aspect-oriented meta-
model as described in Chapter 3.

The experiment revealed that the tasks that had to be performed signifi-
cantly differed in terms of effort used. Besides, the correctness of the re-
sulting models differed as well from one group to the other.

Validation

130

A second experiment was conducted for checking the effectiveness of
model checking. For this purpose, we designed a reference model in or-
der to assess the performance of the heuristics for generating fluents
and assertions. We compared the number of interactions detected by
the automatically generated assertions and fluents with the reference so-
lution. Basically, we checked if our approach returned as many interac-
tions as the manual model checking approach. In addition, we checked
for false positives, that is, we checked if the fully automated approach
produces results that are not valid interactions.

7.2 Hypotheses

As defined in Chapter 1, the solution-level hypothesis is defined as:

HS: Aspect-oriented concepts can be used for efficiently manifesting and
changing design decisions in the realm of inter-component communica-
tions.

The solution hypothesis expresses that the design activities based on
connector models are significantly improved in terms of efficiency
through aspect-oriented separation of concerns. On the other hand, the
hypothesis implicitly postulates that the aspect-oriented separation of
concerns yields architectural models that are at least as correct as those
built using traditional approaches, that is, approaches that do not apply
advanced principles of separation of concerns.

Next, the terms correctness and efficiency are defined in the context of
my solution hypothesis.

Definition: Correctness

Correctness is defined as the degree to which an architectural model
conforms to fact or specification.

In other words, an architectural model is correct if there are no faults or
errors in the model regarding its specification. In the context of connect-
or design, an error could be a wrong sequence of messages, missing
messages, or too many messages at a particular place in the model.

Definition: Efficiency

Efficiency is defined as the number of architectural elements that can be
processed per time unit. Processing of architectural elements either re-
fers to identification, modification, or validation.

 Validation

 131

Given this argumentation, we refine the hypothesis according to the fol-
lowing sub-hypotheses.

HS1: Creating architectural models using aspect-oriented concepts is
significantly more efficient than standard (integrated) models.

This hypothesis expresses the expectation that significant performance
increases will be achieved during model creation. The comparison is rela-
tive to traditional approaches that do not explicitly separate cross-cutting
concerns from architectural elements. The improvement factor depends
on the number of artifacts to be considered during modeling.

HS2: Creating architectural models using aspect-oriented concepts is
generally at least as correct as doing so with standard (integrated) mod-
els.

Besides efficiency, the proposed approach should yield models that are
correct. Therefore, the hypothesis states that the resulting architectural
models are at least as correct as in the case of traditional approaches.

HS3: Changing Aspect-oriented model-based architectures is, on aver-
age, at least as correct as with standard (integrated) models.

This hypothesis manifests the activity of model changes as mentioned in
the solution hypothesis HS.. Here we refine a model change into two dis-
tinct steps that are observable in isolation from one another: identifica-
tion of the model elements to be changed, and the change of the model
elements themselves.

HS4: Changes to the aspect-oriented models are, on average, significant-
ly more efficient than changes to standard (integrated) models.

7.3 Controlled Experiment

The goal of the controlled experiment was to investigate the validity of
the solution hypotheses HS3 and HS4 as defined in the previous section.
Concerning hypothesis HS1, we refer to the tool-supported generation of
architectural models in terms of connectors. That is, since architectural
model creation is simply a matter of generating connector designs from
given composition specifications, the increase in the proclaimed efficien-
cy is obvious. On the other hand, HS2 remains to be checked for validity.
However, checking the correctness of the generated resulting models is
not subject of the experiment presented, since such a check can be per-
formed by applying model checking techniques that do not require any
experimental setup.

Validation

132

Hence, regarding the solution hypotheses, the focus of the experiment
presented in this chapter is on the efficiency as well as on the effective-
ness (or correctness) of changing architectural connector designs.

In the next section, the design of the experiment will be explained in
more detail.

7.3.1 Experiment Design

The experiment design entailed “experience” as an independent varia-
ble, and the respective modeling approaches including distinct example
models as factors. The groups followed a 2x2 factorial design [WRH00],
and the tasks performed by one group on one example model were
switched for the respective control group. We compared the aspect-
oriented modeling approach as defined in Chapter 5 with an approach
that does not explicitly separate solutions to cross-cutting concerns from
architectural base models. The dependent variables in this experiment
are correctness and efficiency.

The experiment design is reflected in the following statement:

Analyze a model-based architecture design

� for the purpose of evaluating the impact of AO modeling

� with respect to the correctness and efficiency of changing ar-
chitectural models

� from the point of view of the architect

� in the context of an experiment with M.Sc. and B.Sc. students

The experiment was designed in such a way that a number of subjects
were supposed to perform a number of activities on a prepared architec-
tural design.

7.3.2 Experiment Execution

The experiment was conducted in the context of a practical course at the
University of Kaiserslautern. In terms of preparation, the subjects received
training on the method during an exercise and, in addition, all subjects got a
set of guidelines describing the process of aspect-oriented modeling.

The initial group assignment was random, based on the sequence in which
the subjects entered the room for experimentation. Regarding the environ-

 Validation

 133

ment in which the experiment was conducted, every student used IBM Ra-
tional Software Architect [IBM10] as the modeling tool.

The time frame for the experiment was basically not strictly limited. Howev-
er, the target time for performing all defined tasks was about two hours.
During this time, all subjects had to perform tasks on the given models that
could be measured in terms of time and model properties. Here, we give a
sample task description representing a typical task as defined by the experi-
ment.

“Change the Logging-Tactic in such a way that a second log-role is intro-
duced that is triggered in addition to the already existing log-role (redundant
logging). Apply this change to all sequence diagrams of Increment1A!”

Each group executed two runs of similar tasks over different examples. After
a subject finished all tasks belonging to a group, a new workspace was
loaded with the prepared models.

Data was collected using questionnaires for pre-briefing and de-briefing the
subjects. In addition, every subject was supposed to note the exact time
when a particular task started and finished. In order to check the quality of
the resulting task performances, the changed models were stored and in-
spected afterwards.

7.3.3 Analysis and Interpretation

In this section, we will evaluate the data collected during the experiment.

For evaluating how efficiently the tasks were performed, we used the
data collected in terms of time stamps. For evaluating correctness, we
compared the answers given by the participants with a reference solu-
tion. If the participants had to change the architectural model at hand,
we checked the changed architectural models for correctness as defined
in Section 7.2.

For testing the hypotheses stated in Section 7.2, we applied the Wilcox-
on-Ranksum test [MW47].

First, we analyzed the efficiency achieved by the subjects in terms of
model changes. As defined earlier, we partitioned “change” into two
distinct steps, namely, identification and modification.

Validation

134

Efficiency of Identification

The null-hypothesis for testing the efficiency of identifying model ele-
ments is defined as:

H0 Change efficiency: The identification of model elements in AO models is, on
average, as efficient as in integrated models.

The alternative hypothesis can be formulated as:

H1 Change efficiency: The identification of model elements in AO models is, on
average, significantly more efficient.

Figure 75 Efficiency of identification

The results of the identification tasks are shown in Figure 75. As can be
seen, all tasks could be performed significantly faster with aspect-
oriented design models than with integrated architectural models. On
average, all identification tasks performed on the aspect-oriented de-
signs were at least three times as efficient as those performed in the
control group.

 Validation

 135

Efficiency of Modification

The null-hypothesis for testing the efficiency of modifying AO models is
defined as:

H0 Change efficiency: The modification of AO models is, on average, as effi-
cient as in integrated models.

The alternative hypothesis can be formulated as:

H1 Change efficiency: The modification of AO models is, on average, signifi-
cantly more efficient.

Figure 76 Efficiency of modification

In case of modification tasks, we again see a significant performance in-
crease in the case of aspect-oriented architectural models. All tasks that
required architectural models to be changed, showed the aspect-
oriented design approach to be more efficient by a factor of three on
average.

Table 4 shows the concrete results of the tasks performed for testing the
efficiency increase. Looking at the p-values of the respective Wilcoxon-
rank sum tests, all stated null-hypotheses can be rejected, which leads to
the acceptance of the alternative hypotheses.

Validation

136

 Task Wilcoxon-rank sum
test (p-value)

Accept/Reject [if p<0.05]

Identification Task A (I) vs Task A (AO) 0.000084 Reject H0

 Task B (I) vs Task B (AO) 0.00047 Reject H0

 Task C (I) vs Task C (AO) 0.00016 Reject H0

Modification Task D (I) vs Task D (AO) 0.01262 Reject H0

 Task E (AO) vs Task E (I) 0.008133 Reject H0

 Task F (I) vs Task F (AO) 0.002093 Reject H0

 Task G (AO) vs Task G (I) 0.0005828 Reject H0

Table 4 Statistical analysis - efficiency of model changes

Consequently, the experiment has shown that

Changes to the aspect-oriented models are, on average, significantly
more efficient than changes to standard (integrated) models.

Correctness of Identification

The null-hypothesis for testing the correctness of identifying model ele-
ments is defined as:

H0 Change effectiveness: The identification of model elements in AO models
yields, on average, less correct results than model elements identified in
integrated models.

The alternative hypothesis can be formulated as:

H0 Change effectiveness: The identification of model elements in AO models
yields, on average, results that are at least as correct as elements identi-
fied in integrated models.

 Validation

 137

Figure 77 Correctness of identification

The correctness of the results produced by performing the modification
tasks revealed differences that were not that obvious as in the case of ef-
ficiency. However, as can be seen in Figure 77, on average all results
produced based on the aspect-oriented designs were completely correct.
(There is one outlier, though.) In the case of the integrated models, more
results were less correct than the aspect-oriented designs.

Correctness of Modification

The null-hypothesis for testing the correctness of modifying AO models
is defined as:

H0 Change effectiveness: The modification of AO models yields, on average, ar-
chitectural models that are less correct than if integrated models are
used.

The alternative hypothesis can be formulated as:

H0 Change effectiveness: The modification of AO models yields, on average, ar-
chitectural models that are at least as correct as if integrated models are
used.

Validation

138

Figure 78 Correctness of modification

The results of the modification tasks show that tasks D, E, and F, are not
significantly distinct from one another. Only task G has a remarkable dif-
ference in correctness of the results when both approaches were com-
pared. This phenomenon is reflected in the statistical analysis, since in
the case of modification tasks, there are no significant differences be-
tween the group that performed the tasks on the aspect-oriented de-
signs and the control group. However, regarding correctness of the iden-
tification tasks, significant differences were seen in favor of aspect-
oriented designs.

 Validation

 139

 Task Wilcoxon-rank sum
test (p-value)

Accept/Reject [if p<0.05]

Identification Task A (I) vs Task A (AO) 0.005247 Reject H0

 Task B (I) vs Task B (AO) 0.01749 Reject H0

 Task C (I) vs Task C (AO) 0.005275 Reject H0

Modification Task D (I) vs Task D (AO) 0.3914 No Reject of H0

 Task E (AO) vs Task E (I) 0.3545 No Reject of H0

 Task F (I) vs Task F (AO) ->1 No Reject of H0

 Task G (AO) vs Task G (I) 0.03072 Reject H0

Table 5 Statistical analysis - correctness of model changes

In sum, the statistical analyses regarding the correctness of the results
produced by each group only revealed significant differences in the iden-
tification tasks.

Concerning the null-hypothesis as defined for the modification task, we
claimed that the aspect-oriented design yields architectural models that
are at least as correct as models produced by the control group. Since
this null hypothesis cannot be rejected by just showing a non-significant
difference in both groups, we do not have statistical evidence that the
aspect-oriented approach yields different (more correct) results than
those obtained by the group performing the tasks on the integrated
models. However, even though statistically there are no significant dif-
ferences, we see that aspect-oriented design, on average, did not pro-
duce results that were less correct than the results produced in the con-
trol group.

Validation

140

7.3.4 Threats to Validity

According to [WRH00], threats to validity exist in four dimensions: inter-
nal, external, construct, and conclusion validity

Internal validity is defined as the degree to which conclusions can be
drawn regarding the effect of the independent variable (e.g., usefulness
and ease of use) on the dependent variables.

As described by the experiment design, we chose two treatments for
two factors in order to prevent internal validity risks as far as possible.
Half of the participants performed the tasks on the aspect-oriented
models first, while the other half applied the standard approach first. For
the second run of the experiment, the sequence was reversed. By having
two treatments of the method as well as the example systems and a
change of groups after the first run, we most likely smoothed out learn-
ing effects. This is mainly due to the models being different and the
tasks requiring the subject to work with the models in detail.

In terms of maturation, there were indicators that the subjects tended to
get bored. In one case we could observe that some answers to the ques-
tions were just guessed, based on a pattern that we included. However,
the pattern was designed in such a way that we could identify the cases
where subjects just guessed answers based on previous results.

In terms of instrumentation, some task descriptions turned out to be
ambiguous. Due to this, additional clarification was necessary. In one
case, the results were partially useless since the time stamps were ap-
plied incorrectly. Moreover, the tasks as used in the experiment most
likely do not represent the full spectrum of change tasks in the context
of architectural design.

Construct validity is defined as the degree to which the variables used
accurately reflect the constructs of interest.

The goal of this experiment was to measure the efficiency and correct-
ness of tasks performed on architectural design models. Efficiency can be
objectively measured by the time units captured. Correctness can be
checked by inspecting the results and comparing them to a reference so-
lution. In addition, we have the possibility to apply formal model check-
ing techniques for analyzing the correctness of the results. However,
model checking itself can be regarded as an indirect measure only. The
reason is quite obvious: Using model checking, we can check if a design
is correct, that is, if a design does not violate any formally specified rules.
Model checking cannot be used to check whether a design is “good”.

 Validation

 141

Conclusion validity is defined as the degree to which the results of the
research are statistically significant.

For the efficiency hypotheses, we could statistically prove a significant
difference between the groups. For effectiveness, the difference be-
tween the groups could not be tested statistically though.

External validity is defined as the degree to which the results of the re-
search can be generalized.

The experiment population were bachelor and master students of com-
puter science. Since the intended population for applying the aspect-
oriented design approach are software architects with real-world indus-
try experience, the population selection constitutes a threat to external
validity.

The example models used during the experiment were basically hypo-
thetical toy models. They do not represent a realistic software system’s
architecture. In other words, the examples provided did not reflect the
complexity and scalability issues found in real-world projects.

The timeframe available for the experiment was limited. Since in prac-
tice, the timeframe might have an influence on the results produced by
either one of the methods, this is considered a threat to external validity.

We used a realistic modeling tool that is applied in practice as well. IBM
Rational Software Architect is a commercial tool providing support for
architecture design activities for practitioners. In that sense, the experi-
ment tooling infrastructure was realistic.

7.3.5 Experiment Conclusions

The main goal of the experiment was to investigate the impact of as-
pect-oriented architecture design on the ability to efficiently react to
change. We defined a set of tasks that represent change tasks to be per-
formed on a given architectural model. Then two groups alternatingly
performed the same set of tasks on different models. We expected to
gain some insights regarding the effects of aspect-oriented modeling at
the architectural level in terms of its effectiveness in realizing separation
of concerns.

The main solution-level hypothesis was defined as:

HS: Aspect-oriented concepts can be used for efficiently creating, chang-
ing, and evolving design decisions in the realm of component communi-
cations.

Validation

142

The results of the experiment showed that there is a positive effect of
the aspect-oriented design approach on the efficiency of changing archi-
tectural models.

However, we strive for replicating this experiment under a given set of
context factors such as:

� Long-term project

We aim at conducting a longer-term experiment in the context of a
realistic architecture project.

� Realistic architectural model

Since the architectural models used during the experiment were toy
models, we aim at applying the approach to realistic architectural
models as they are being developed in industry.

� Realistic change scenarios to be performed on the model

Besides simplistic example models representing architectural design
decisions, we would like to replicate the experiment with realistic
change scenarios.

� Population should be professional architects

The population of the experiment was comprised of students only.
Since there might be a significant difference to professional archi-
tects, we would like to perform a replication of the experiment with
industrial professionals.

� Ideally, there should be two teams that independently develop the
same system (not realistic)

In a perfect case, we would be able to have two distinct teams that
would be able to develop the same architecture in parallel. However,
since this is not realistic for industry-relevant products, we do not be-
lieve that we will get the chance to replicate the experiment under
such a condition.

Even though these context factors did not apply to the experiment we
conducted in the context of a practical course at the University of Kai-
serslautern, we have clear indications of the positive effect of the aspect-
oriented design of architectural connectors on the efficiency of model
creations as well as the correctness of the resulting architectural models.
We believe that the aspect-oriented approach as described in this thesis
will bring significant benefit to architecture-centric development in prac-
tice.

 Validation

 143

7.4 Composition Validation

For evaluating our model weaving approach in terms of correctness, we
designed a reference model in order to assess the performance of the
generated heuristics for checking the compositional correctness of the
generated models. To that end, we compared the number of interac-
tions detected by the automatically generated assertions and fluents
with the reference solution. Basically, we checked if our approach re-
turned as many interactions as the manual model checking approach. In
addition, we checked for false positives, that is, we checked whether the
fully automated approach produces results that are not valid interac-
tions.

In the following, the tool setting and the models involved in the valida-
tion activities are sketched.

Figure 79 Tool setting for the validation of composition correctness

As explained in Chapter 6, the weaving configuration dialog allows for
checking potential problems of the current configuration by testing for
syntactical collisions before the actual weaving takes place. After that,

Validation

144

the generic fluents are derived from the weaving specification. They are
instantiated after the actual synthesis, since by then we know about the
concrete join points. An additional plug-in (FSP generator) is in charge of
generating a state machine from the synthesized sequence diagrams. In
combination with the fluents and assertions derived during the synthesis
step, we are able to generate an FSP representation of the connector.
This is taken as input for the LTS analyzer in order to check the semantic
properties of the synthesized connector design.

As indicated before, we used a reference connector model to check our
approach with respect to completeness and correctness. In order to get
an idea of the complexity of the reference model, we used the following
metrics:

#Tactics [#interactionsPerSequence]:= Describes the number of dif-
ferent tactics applied to the same connector design. Each tactic indicates
its own complexity by the number of interactions specified by that par-
ticular tactic.

#BaseSequences [#interactionsPerSequence]:= Describes the com-
plexity of the base communication model in terms of interactions per se-
quence specified by that connector.

#Join points:= Describes the number of places in the base communica-
tion model affected by the tactics to be applied.

#DirectDependencies:= For definition, see Section 5.4.1.

#IndirectDependencies:= For definition, see Section 5.4.1.

Our reference model exhibits the following values with respect to the
metrics defined above:

#Tactics: 5 (T1: Billing[2], T2: Authentication[6], T3: Authorization[6], T4:
Monitoring[3], T5: Heartbeat[3])

#BaseSequences: 6 (S1: register[2], unregister[2], update[3], privRegis-
ter[2], privUnregister[2], privUpdate[3])

#Join points: 12 (for the configuration used)

The complexity indicators for the reference model show that the base
communication model is quite simple, since we only have three base se-
quences with two or three interactions each. Hence, the number of join
points in the base communication model is quite low, too. However, the
results show that even in a simple connector model, the interaction de-
tection is far from trivial. In total, we generated seven fluents (with up to
12 messages each) and seven assertions. With these fluents and asser-
tions, we were able to detect all semantic conflicts as described in the

 Validation

 145

reference solution. In the example case, we had no collisions since the
two around-advices did not remove any join points used by other tactics.

 T1 T2 T3 T4 T5

T1 6 6 12 12

T2 6 6 6 6

T3 6 6 6 6

T4 12 6 6 12

T5 12 6 6 12

Table 6 Dependency matrix for the selected set of tactics

However, since we specified strict assertions for the authentication as
well as for the authorization tactics, we encountered two semantic con-
flicts. This was due to the fact that the weaving sequence was set up in
such a way that the monitoring and heartbeat tactics tore the security-
related tactics apart. We could resolve this by rearranging the weaving
order. However, one semantic conflict still remained (false positive). We
had to loosen the strict assertion for authentication, since we had to al-
low that authorization tactic to be executed between the authentication
and the mutually shared join points.

 Reference Automated

Collisions (Pre-synthesis) 0 0

Conflicts (Post-synthesis) 2 2

False Positives 0 1

Missed 0 0

Table 7 Results of the automatic composition validation

Validation

146

 Summary and Outlook

 147

8 Summary and Outlook

“The best way to predict the future is to invent it.”
Alan Kay

8.1 Results and Contributions

In this chapter, we summarize the main results of the research conduct-
ed, describe the limitations and open issues of the solutions presented,
and sketch a number of potential next steps for future research efforts.

In short, the main results presented in this thesis comprise a formalized
aspect-oriented architectural model that can be effectively and efficiently
utilized for architecture design, and mitigate scalability issues as stated in
Chapter 1. The aspect-oriented architecture model comes with a method
that supports the design process with sophisticated extensions of a
commercial architecture design tool. The aspect-oriented architecture
model, the design method, and the tool support are fundamental ingre-
dients for efficiently implementing the principle separation of concerns
at the level of architectures.

In order to present the specific contributions of this thesis, we partition
them into four categories, namely: formalization, methodical, tool-
related, and validation.

8.1.1 Aspect-oriented Architecture Model

In the literature, there exist solutions that formalize partial aspects of ar-
chitecture design; however, a conceptualized model interrelating entities
that are of importance in the context of the problems motivating this
thesis is missing. In order to find solutions to the practical problems as
described in the previous sections, we needed to map the practical issues
to a conceptualized model that could be taken as a starting point for
building a solution. That is, in a first step we needed to build a model
that formalizes and interrelates concepts within the realm of architecture
design.

Summary and Outlook

148

Contribution: Formalization of Architecture

In terms of formalization, the contribution comprises an architectural
meta-model describing elements and relationships relevant for architec-
ture design. The meta-model formalizes existing knowledge and current
state-of-the-art perceptions of architectures. To that end, I defined a me-
ta-model relating all facets of architecture that are of relevance based on
a consolidation of existing formalizations as described by current state-
of-the-art research. The conceptualized model was the starting point for
defining specific extensions that address the architectural issues regard-
ing the improvement of separation of cross-cutting concerns.

Contribution: Utilization of Aspect-orientation at the Architectural
Level

The second step of formalization was concerned with model building at
the solution level. Since I aim at leveraging aspect-oriented concepts at
the architectural level, I needed to overcome a number of current short-
comings existing in the realm of aspect-oriented modeling in general and
aspect-oriented architectures in particular.

Contribution: Controlled Modification of UML Sequence Diagrams

Looking at the problem statement regarding cross-cutting concerns at
the level of inter-component communication, I found that an appropri-
ate solution needs to provide a means for expressing cross-cutting con-
cerns at the architectural level in the form of behavioral models.

Contribution: Integration of Cross-Cutting Solutions

I found that existing aspect-oriented design solutions at the architectural
level were realized as extensions to architectural description languages
(ADLs) [GCB06]; however, “model compilers” that produce an integrat-
ed solution from the aspect-oriented architecture descriptions are miss-
ing. In this thesis, I present a solution that is able to compile a number of
crosscutting concerns into a consistent architecture description.

Contribution: Composition Specifications on Type- and Instance
Levels

Existing approaches are only appropriate for working on the type-level of
model elements rather than on the instance-level. This shortcoming is
relevant for two reasons: First, architectural element types defined after
the creation of concrete models cannot be easily propagated to existing
instances. This is particularly important in the context of improving
scalability of teams by increasing parallelism. Second, the spectrum for
defining specific aspects is limited. Either the types are extended or mod-

 Summary and Outlook

 149

ified, or a new type needs to be defined that is appropriate for the par-
ticular context. The solution presented in this thesis comes with a means
for specifying aspects to operate on the type- as well as on the instance-
level of the base model elements. We can propagate new or changed el-
ement types into the model and achieve a finer-grained spectrum be-
tween the worlds of types and instances. In addition, we leverage meta-
model relationships as defined in the architectural meta-model in order
to be able to provide a powerful means for efficiently selecting huge
portions of a model.

Contribution: Treatment of Compositional Interactions

Compositional interactions denote the situation when aspects interfere
with one another within the base model. Since aspects potentially oper-
ate on the same base model elements, there is a high potential that two
or more aspects change the model in such a way that the resulting as-
pectual composition does not reflect the intended model properties. Re-
garding state of the art we found that there is only limited support for
detecting, resolving, or preventing aspect interactions at the modelling
level.

8.1.2 Design Method

Since the architectural model is formalized, the correctness of generated
model compositions can be based on formal model checking approaches
such as linear-time temporal logic in combination with labeled transition
systems. Concerning the model checking approach, we derived a set of
heuristics that can be used for automatically generating formal specifica-
tions of properties suitable for being model checked. That is, we formal-
ized the notions of interactions at the modeling level, extending existing
work in the area of aspect interaction detection. In addition, we derived
algorithms for automatically generating formal property specifications in
terms of fluents and assertions that can be used for model checking re-
sulting designs using the Labeled Transition Systems Analyzer.

In general, any formalization of real-world phenomena in terms of a
model also requires a process that shows how to use the model for solv-
ing real problems at hand. However, as can be seen in the literature, ex-
isting aspect-oriented modeling approaches usually do not provide me-
thodical guidance.

Contribution: Methodical Guidance

In terms of model evolution, aspect-oriented approaches usually suffer
from the fact that they need to keep track of changes of the base model
in order to keep the composition specification consistent. This problem is

Summary and Outlook

150

also referred to as pointcut fragility [CGB09]. In fact, there are no ap-
proaches that provide solutions to that issue at the modeling level.

In terms of methodical contributions, we defined a method that guides
the architect through the process of architecture design, focusing on
connector design in particular. Since the weaving itself can be consid-
ered the bottleneck of the approach’s scalability, subsequent challenges
needed to be resolved.

Contribution: Evolution of Aspect-oriented Models

The method comes with a set of guidelines for tackling problems along
the way of designing. That is, we provide guidelines for evolving the
model composition specification in the face of change by giving concrete
guidance regarding identified change classes. In addition to the guide-
lines, we provide a reflective model that allows for checking base model
changes against pointcut specifications.

8.1.3 Tool Support

In terms of tool support, we created a set of plugins that realize a num-
ber of design steps that are automated and necessary for applying the
approach in realistic settings. Basically, we automated all formalized
steps as defined in the aspect-oriented architecture model. In particular,
we support the composition specification, comprised of the pointcut def-
inition, the actual implementation of the weaving algorithms, the gener-
ation of fluents and assertions for model checking, and the generation
of a simulation model. The pointcut definition steps are supported by a
graphical, interactive selection of join points within the designed con-
nector models, as well as by the automatic generation of pointcut ex-
pressions according to the pointcut definition language defined in Sec-
tion 4.3.4.

Contribution: Using the UML for Increasing Industry Acceptance

One important drawback of ADLs is that, in general, they have not
found adoption in practice [WH05]. The solution provided by this thesis
uses the UML, which can be considered a de-facto industry standard.

Contribution: Efficient Creation of Weaving Specifications

An important aspect of engineering solutions regarding aspect-oriented
modeling is the specification of the composition. Usually, a so-called
pointcut definition language is used for specifying the model composi-
tion. Since these languages are based on a formal syntax, pointcut ex-
pressions are hard to create and to evolve in the face of change. In this
thesis, we provide a concept for interactively selecting the model ele-

 Summary and Outlook

 151

ments that are considered the places for modifying the respective behav-
ior. Based on that selection, we are able to automatically generate a
formal pointcut expression that can be used by the model composition
algorithm.

Contribution: Weaving of Aspect-oriented Models

Another challenge regarding the engineering of aspect-oriented model
creation is related to the actual model weaving. We found that almost
no approach currently supports effective weaving of models. Most ap-
proaches defer the actual weaving to the programming level. [SSK06]. In
this thesis, we provide an implementation of algorithms that actually re-
alizes the weaving of models.

Contribution: Automatic Generation of Fluents and Assertions for
Model Checking

The foundation for checking compositional properties is fluent linear
temporal logic. That is, we utilize the concepts in the realm of labeled
transition systems [GM03] in order to check the resulting models for
time-varying properties. In practice, however, the specification of a for-
mal model describing a labeled transition system including formal asser-
tions is a manual task and error-prone. We defined a set of heuristics
that allow for automatically deriving formal specifications of mode prop-
erties in terms of fluents and assertions. Besides the fact that we can
generate a labeled transition system out of the interaction specifications
defined by sequence diagrams, we are also able to hide the formal com-
plexity from the user, which is positive in three ways: 1. Automatic gen-
eration tremendously improves the efficiency of model checking. 2. The
designer does not need to be familiar with formal model checking tech-
niques. 3. The automatic generation is less, if at all, error-prone.

8.1.4 Validation

In the literature, there is only little evidence regarding the effectiveness
and efficiency of aspect-oriented concepts in the realm of model-based
development in general and model-based architectures in particular.

Contribution: Evidence regarding the Effectiveness and Efficiency
of Aspect-oriented Approaches in Model-based Development

In terms of validation, we performed a controlled experiment that
proved the efficiency increase achieved by the aspect-oriented approach
presented in this thesis. On the solution level, we validated a set of hy-
potheses derived from the general solution hypothesis stated in Chapter
1. We showed that, under the given context parameters, the solution
hypothesis is to be accepted in the sense that the aspect-oriented sepa-

Summary and Outlook

152

ration of concerns significantly increases the efficiency of connector de-
sign.

8.2 Limitations

The limitations of the solutions presented in this thesis are induced by
the fundamental assumptions that the approach is based on, as well as
by the effectiveness and applicability of the solutions in the context of
architecture design tasks.

8.2.1 Aspect-oriented Architectural Model

A major assumption in the context of the aspect-oriented architectural
meta-model and the related aspect-oriented extensions is that we tackle
non-functional requirements that can be traced to architectural connect-
ors only. Hence, the aspect-oriented approach as proposed in this thesis
addresses only a subset of potential non-functional requirements that
might be imposed on an architecture. Even though we assume a number
of relevant quality attributes to be traceable to the communication prop-
erties of a system (e.g., availability, safety, performance, reliability), we
stress the fact that the operationalization of the respecitve quality attrib-
ute plays an important role. One hypothesis at that point is that all quali-
ty attributes that can be observed during runtime have an impact on or
are impacted by the communication properties of the system. However,
the degree of impact most likely depends on the respective operationali-
zation of the quality attribute.

In addition, we focused on homogenous crosscutting concerns only. In
that case, we assume that the aspect applies to multiple places of the ar-
chitectural model in the same way. Some crosscutting concerns, howev-
er, are heterogenous by definition. For instance, aspects that impact dif-
ferent kinds of views such as deployment, team allocation, and compo-
nent connectors at the same time with different solutions portions with-
in all of the views.

8.2.2 Design Method

In terms of interaction detection, we are able to detect semantic interac-
tions that can be measured based on message sequences. The automatic
generation approach of fluents and assertions is currently geared to-
wards simple “yes/no” evaluations only. That is, currently we are able to
generate fluents and assertions that check whether a tactic is interrupted
by any other tactic or not. We do not consider a finer-grained evaluation
in terms of specific parts of a tactic needing to be interrupt-free, for in-
stance.

 Summary and Outlook

 153

In terms of design, we currently have a limitation based on the assump-
tion that that we do not reflect changes on the woven model itself back
to the composites, namely the base model and the aspects. One way to
address this problem in the context of subsequent modeling activities
that change the woven models maybe to introduce so-called protected
regions of the woven models. The protected region would not be modi-
fied in the event of subsequent weavings.

8.2.3 Tool Support

In terms of tool support, we need to consider two things: first, the tool-
ing itself in terms of its capabilities, and second, the scalability of the
tooling in terms of teams that might be working on different parts of the
same architectural model at the same time. Regarding the tool support
in terms of its capabilities, we currently face limitations in its interopera-
bility. Since lots of realistic development environments already have a
tool infrastructure, it is necessary to be able to interface with the already
existent models and tools. Currently, the tool setting is sort of isolated.
Some model exchange capabilities are provided by the tool; however,
this will hamper the efficient design loop we aim at.

8.3 Future Work

In the context of the work presented in this thesis, there are several are-
as that exhibit interesting questions to be addressed by future research
efforts.

8.3.1 Aspect-oriented Model Compositions

In the area of model composition, I propose extending the generation
capabilities in terms of fluents and assertions that can be model-
checked. I suggest extending the rules that can be used for automatically
deriving compositional properties right from the weaving specification.
That is, the properties should be defined on lower levels of granularity
such that the fluents and assertions are not necessarily too strict, or too
loose.

The algorithm for generating the respective pointcut specifications lends
itself for the improvement of pointcut generation. We believe that heu-
ristics can be defined to make the pointcut generation process signifi-
cantly more efficient.

In terms of the quality attributes that we are addressing, we aim at ex-
tending the approach in such a way that solutions to development-time

Summary and Outlook

154

requirements such as maintainability or portability can also be modular-
ized.

8.3.2 Model-based Development

In terms of model-based prediction of system properties, we see high
potential in the systematic integration of concepts defined by the Model-
driven Architecture (MDA) [MDA], [BG01] initiative driven by the OMG.
Since we are able to efficiently generate high-level specifications for sys-
tems, the approach could leverage model transformations in order to
create a connection to more platform-specific models. Using platform-
specific models makes the prediction more accurate in terms of the deri-
vation from real products that adhere to a given simulated architecture.
In the realm of embedded systems, we would go for the integration of
technology-specific models that describe the communication behavior of
particular bus technologies. Using model transformations, trade-off deci-
sions are supported by realistic impact estimations. A vision at that point
would be to close the loop between model-based simulations and meas-
ured real-world systems. Closing this loop implies a potential for auto-
matically self-adapting simulation models by connecting real-world enti-
ties to the system.

During the development of the approach, we found an interesting appli-
cation scenario of the model generation techniques presented in this
thesis. Since we have a powerful mechanism for replacing huge portions
of sequence-based interaction specifications, we can use the very same
techniques for generating refined models from a given compositional
specification. That is, by replacing a single message (or a set of messag-
es) with sequences that are much more detailed, we are able to generate
lower-level design models based on architectural abstractions. We be-
lieve this capability can be utilized for pushing the envelope in model-
driven software development. This is related to the idea of stratification
as described in [AK03]. Since the goal of stratification is to create a set of
architectural views that express cross-cutting concerns revealed on a par-
ticular level of abstraction, we believe that the approach presented in
this thesis can be used for realizing this idea efficiently.

8.3.3 Model-based Simulations

The current simulation approach comes with evaluation models for per-
formance only. Currently, we are able to simulate communication needs
given a particular network topology and component structures including
the connector models. In the future, additional evaluation models for
other properties that can be simulated need to be developed (e.g., avail-
ability, reliability, etc.)

 Summary and Outlook

 155

Especially the way of influencing the simulation model during runtime
offers great potential for cross-impact analyses. For instance, by specify-
ing faulty behavior at the modeling level, we would be able to simulate
the effectiveness of particular architectural tactics in the realm of safety.
Such kinds of simulations would exceed the kinds of simulations based
on the plain run of predefined sequences. Such simulations would be
particularly useful for combining different evaluation models on the
same set of simulation runs. We could imagine using the power of UML
2.1 constructs like fragments for specifying sophisticated simulation us-
ing conditional executions.

8.3.4 Extended Validations

Regarding the validation of the aspect-oriented design approach, we
strive for conducting more experiments to check different aspects of the
solution hypotheses. Since the experimentation potential heavily de-
pends on the tooling infrastructure, we would combine tool improve-
ments with the design of more complex experiments, isolating specific
variables, and gaining deeper insight into the potential of impacting
scalability issues using aspect-oriented separation of concerns.

Besides validating the solution hypotheses in more detail, we propose
conducting a number of case studies in industrial contexts in order to see
what influencing factors might hamper the efficiency of the approach in
reality. It is particularly interesting to see to which extend teams can be
decoupled from each other in realistic project settings.

8.4 Concluding Remarks

The goal of this thesis was to improve architecture design regarding its
scalability depending on the number of non-functional concerns at hand.
In practice, however, there exists a multitude of external influencing fac-
tors that are beyond of scope of the architect’s influence, and might
therefore be the ones that make architects feel lost in practice. However,
the contributions of this thesis provide a solid basis for coping with these
real-world challenges by offering effective improvements of daily engi-
neering activities. By delivering one piece of a solution towards scalable
engineering practices, we are convinced that architects are getting one
step closer to the vision of being able to efficiently react to changes in
requirements, contextual parameters, or managerial strategies.

References

156

References

[AEB03] Aldawud, O.; Elrad, T. & Bader, A. (2003), UML Profile for Aspect-Oriented
Software Development, in 'The Third International Workshop on Aspect
Oriented Modeling'.

[All97] Allen, R. J. (1997), 'A Formal Approach to Software Architecture'. PhD
thesis.

[AG97] Allen, R. & Garlan, D. (1997), 'A formal basis for architectural connection',
ACM Transactions on Software Engineering and Methodology.

[ARO03] America, P.; Rommes, E. & Obbink, J. H. (2003), Multi-view Variation
Modeling for Scenario Analysis, in 'PFE', pp. 44-65.

[AK03] Atkinson, C. & Kuhne, T. (2003), 'Aspect-Oriented Development with
Stratified Frameworks', IEEE Softw. 20(1), 81--89.

[ATL10] Atlas Project. The Atlas Transformation Language (ATL). From
http://www.eclipse.org/m2m/atl/

[BB01] Bachmann, F. & Bass, L. (2001), Introduction to the Attribute Driven De-
sign Method, in 'In 23rd International Conference on Software Engineer-
ing', pp. 745--746.

[BE07] Bakre, S. & Elrad, T. (2007), Scenario based resolution of aspect interac-
tions with aspect interaction charts, in 'AOM '07: Proceedings of the 10th
international workshop on Aspect-oriented modeling', ACM, New York,
NY, USA, pp. 1--6.

[BGL04] Barra, E., Genova,G., Llorens, J. (2004). An approach to Aspect Modelling
with UML 2.0. In Proc. of 5th Aspect-Oriented Modeling Workshop (UM-
L'04), Lisbon, Portugal.

[Bas93] Basili, V. R. (1993), The Experimental Paradigm in Software Engineering, in
'Proceedings of the International Workshop on Experimental Software En-
gineering Issues: Critical Assessment and Future Directions', Springer-
Verlag, London, UK, pp. 3--12.

[BCG+06] Batista, T.; Chavez, C.; Garcia, A.; Rashid, A.; Sant'Anna, C.; Kulesza, U. &
Filho, F. C. (2006), Reflections on architectural connection: seven issues on
aspects and ADLs, in 'EA '06: Proceedings of the 2006 international work-
shop on Early aspects at ICSE', ACM, New York, NY, USA, pp. 3--10.

[BC05] Berg, K. V. D. & Conejero, J. M. (2005), A conceptual formalization of
crosscutting in AOSD, in 'In Desarrollo de Software Orientado a Aspectos.

[BG01] Bézivin, J. & Gerbé, O. (2001), Towards a Precise Definition of the
OMG/MDA Framework, in 'ASE '01: Proceedings of the 16th IEEE interna-
tional conference on Automated software engineering', IEEE Computer
Society, Washington, DC, USA, pp. 273.

[Boo07] Booch, G. (2007), 'The Irrelevance of Architecture', IEEE Softw. 24(3), 10--
11.

[Bos00] Bosch, J. (2000), Design and Use of Software Architectures – Adopting
and evolving a product-line approach, Addison-Wesley, Reading, MA,
USA.

 References

 157

[BH06] Boucké, N. & Holvoet, T. (2006), Relating architectural views with architec-
tural concerns, in 'EA '06: Proceedings of the 2006 international work-
shop on Early aspects at ICSE', ACM, New York, NY, USA, pp. 11--18.

[BGH07] Boucké, N.; Garcia, A. & Holvoet, T. (2007), Composing Structural Views
in xADL, in 'Proceedings of the 10th international conference on Early as-
pects', Springer-Verlag, Berlin, Heidelberg, pp. 115--138.

[Caz06] Cazzola, W. (2006), Semantic Join Point Models: Motivations, Notions and
Requirements, in 'In Proceedings of the Software Engineering Properties of
Languages and Aspect Technologies Workshop (SPLAT’06'.

[CB05] Clarke, S. & Baniassad, E. (2005), Aspect-Oriented Analysis and Design:
The Theme Approach (Addison-Wesley Object Technology Series), Addi-
son-Wesley Professional.

[Cle96] Clements, P. C. (1996), A Survey of Architecture Description Languages, in
'IWSSD '96: Proceedings of the 8th International Workshop on Software
Specification and Design', IEEE Computer Society, Washington, DC, USA,
pp. 16.

[CGB+02] Clements, P.; Garlan, D.; Bass, L.; Stafford, J.; Nord, R.; Ivers, J. & Little, R.
(2002), Documenting Software Architectures: Views and Beyond, Pearson
Education.

[CKK01] Clements, P.; Kazman, R. & Klein, M. (2001), Evaluating Software Archi-
tectures: Methods and Case Studies, Addison-Wesley.

[CK03] Clements, P. & Kazman, R. (2003), Software Architecture in Practice, Ad-
dison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[CN02] Clements, P. C. & Northrop, L. (2002), Software Product Lines: Practices
and Patterns, Addison-Wesley.

[CGB09] Chavez, C.; Garcia, A.; Batista, T.; Oliveira, M.; Sant'Anna, C. & Rashid, A.
(2009), Composing architectural aspects based on style semantics, in
'AOSD '09: Proceedings of the 8th ACM international conference on As-
pect-oriented software development', ACM, New York, NY, USA, pp. 111-
-122.

[CRS+05] Chitchyan, R., Rashid, A., Sawyer, P., Garcia, A., Alarcon, M.P., Bakker, J.,
Tekinerdogan, B., Clarke, S., Jackson, A. (2005), Survey of Aspect-
Oriented Analysis and Design Approaches, Technical Report, AOSD-
Europe-ULANC-9: AOSD-Europe.

[CRF+06] Cuesta, C. E.; Romay, M. P.; de la Fuente, P. & Barrio-Solórzano, M.
(2006), 'Coordination as an Architectural Aspect', Electron. Notes Theor.
Comput. Sci. 154(1), 25--41.

[CPF05] Cuesta, C. E.; Romay, M.; de la Fuente, P.; Barrio-Solorzano, M. (2005).
Architectural aspects of architectural aspects. In 2nd European Workshop
on Software Architecture (EWSA), volume LNCS 3527, pages 247–262.

[Des10] Desmo-J Simulation Framework (2010). From
http://desmoj.sourceforge.net/

[Dij82] Dijkstra, E. W. (1982), Selected Writings on Computing: A Personal Per-
spective, Springer-Verlag.

[DoD04] DoD Architecture Framework Working Group. (2004). DoD Architecture
Framework, Version 1.0, United States Department of Defense.

[DFS02] Douence, R.; Fradet, P. & Südholt, M. (2002), A framework for the detec-
tion and resolution of aspect interactions, in , Springer-Verlag, , pp. 173--
188.

References

158

[DFS04] Douence, R.; Fradet, P. & Südholt, M. (2004), Composition, reuse and in-
teraction analysis of stateful aspects, in 'AOSD '04: Proceedings of the 3rd
international conference on Aspect-oriented software development',
ACM, New York, NY, USA, pp. 141--150.

[EKK+10] Eisenbarth, M.; Keuler, T.; Knodel, J.; Naab, M. & Rost, D. (2010), 'Fraun-
hofer DSSA'(IESE-Report No. 035.10/E), Technical report, Fraunhofer IESE.

[EAB05] Elrad, T.; Aldawud, O. & Bader, A. (2005), Expressing Aspects Using UML
Behavioral and Structural Diagrams, pp. 459-478.

[FF00] Filman, R. E. & Friedman, D. P. (2000), 'Aspect-Oriented Programming is
Quantification and Obliviousness', RIACS.

[FBL02] Filman, R. E.; Barrett, S.; Lee, D. D. & Linden, T. (2002), 'Inserting ilities by
controlling communications', Commun. ACM 45(1), 116--122.

[FEC04] Filman, R., Elrad, T., Clarke, S., & Aksit, M. (2004), Aspect-oriented soft-
ware development, Addison-Wesley Professional.

[FRG+04] France, R.; Ray, I.; Georg, G. & Ghosh, S. (2004), Aspect-oriented ap-
proach to early design modelling, in 'IEE Proceedings - Software', pp. 173-
-185.

[FS06] Fuentes, L., Sanchez, P. (2006) Elaborating UML 2.0 Profiles for AO
Design. In Proc. of the 8th International Workshop on Aspect-Oriented
Modeling (AOSD'06), Bonn, Germany.

[GHJ+95] Gamma, E.; Helm, R.; Johnson, R. & Vlissides, J. (1995), Design patterns:
elements of reusable object-oriented software, Addison-Wesley Profes-
sional.

[GCB06] Garcia, R.; Chavez, C.; Batista, T.; Kulesza, U.; Rashid, A. & Lucena, C.
(2006), On the Modular Representation of Architectural Aspects, in 'In
Proc. of the European Workshop on Software Architecture'.

[GAO95] Garlan, D.; Allen, R. & Ockerbloom, J. (1995), 'Architectural Mismatch:
Why Reuse Is So Hard', IEEE Software 12, 17-26.

[GS94] Garlan, D., Shaw, M. (1994), An Introduction to Software Architecture, in
Advances in Software Engineering and Knowledge Engineering, Volume 1:
World Scientific Publishing Company.

[GM03] Giannakopoulou, D. & Magee, J. (2003), 'Fluent model checking for
event-based systems', SIGSOFT Softw. Eng. Notes 28(5), 257--266.

[GK06] Goldman, M., Katz, S., Modular Generic Verification of LTL Properties for
Aspects, Foundations of Aspect-oriented Languages Workshop, AOSD,
2006, Bonn.

[GK07] Goldman, M. & Katz, S. (2007), MAVEN: modular aspect verification, in
'TACAS'07: Proceedings of the 13th international conference on Tools
and algorithms for the construction and analysis of systems', Springer-
Verlag, Berlin, Heidelberg, pp. 308--322.

[HHK00] Hilsdale, E.; Hugunin, J.; Kersten, M.; Kiczales, G.; Lopes, C. & Palm, J.
(2000), AspectJ: the language and support tools, in 'OOPSLA '00: Adden-
dum to the 2000 proceedings of the conference on Object-oriented pro-
gramming, systems, languages, and applications (Addendum)', ACM, New
York, NY, USA, pp. 163.

[HKN+07] Hofmeister, C.; Kruchten, P.; Nord, R. L.; Obbink, H.; Ran, A. & America,
P. (2007), 'A general model of software architecture design derived from
five industrial approaches', J. Syst. Softw. 80(1), 106--126.

[HNS00] Hofmeister, C.; Nord, R. & Soni, D. (2000), Applied software architecture,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

 References

 159

[IBM10] IBM (2010). Rational Software Architect (RSA). From http://www-
01.ibm.com/software/awdtools/architect/swarchitect/

[IEEE1471] IEEE-Std.1471. (2000). ANSI/IEEE Std 1471-2000 – Recommended Practice
for Architectural Description of Software-Intensive Systems. IEEE, New
York, October 2000.

[ISO98] ISO/IEC (1998). Information Technology – Open Distributed Processing-
Reference Model, ISO/IEC, 10746.

[ISO01] ISO/IEC 9126-1: (2001). Software engineering, Product quality, Part 1:
Quality model.

[JUN10] JUnit (2010). From http://www.junit.org/

[KRK10] Kabanov, A., Rombach, D. (Supervisor), Keuler, T. (Supervisor), 2010,
Graphical Selection of Joinpoints for Weaving of Architectural Models,
Bachelor Thesis.

[Kan03] Kande, M. M., A concern-oriented approach to software architecture, in
Computer Science, vol. PhD. Lausanne,Switzerland: Swiss Federal Institute
ofTechnology (EPFL), 2003.

[KMB+06] Kellens, A.; Mens, K.; Brichau, J. & Gybels, K. (2006), Managing the Evolu-
tion of Aspect-Oriented Software with Model-based Pointcuts, in 'In Pro-
ceedings of the European Conference on Object-Oriented Programming
(ECOOP', Springer-Verlag, , pp. 501--525.

[KMU08] Keuler, T.; Muthig, D. & Uchida, T. (2008), Efficient Quality Impact Anal-
yses for Iterative Architecture Construction, in 'WICSA '08: Proceedings of
the Seventh Working IEEE/IFIP Conference on Software Architecture
(WICSA 2008)', IEEE Computer Society, Washington, DC, USA, pp. 19--
28.

[KW09] Keuler, T.; Webel, C. (2009), Interaction-sensitive Synthesis of Architectur-
al Tactics in Connector Designs, Workshop on Software Architecture De-
sign, WICSA/ECSA 2009.

[KLM+97] Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda, C.; Lopes, C.; Loingtier,
J.-M. & Irwin, J. (1997), Aspect-oriented programming, in Mehmet Ak�it &
Satoshi Matsuoka, ed., 'ECOOP'97” Object-Oriented Programming ',
Springer-Verlag, Berlin/Heidelberg, pp. 220--242.

[KRK09] Kornev, Y., Rombach, D. (Supervisor), Keuler, T. (Supervisor). (2009),
Style-based Pointcut Definition for Weaving of Architectural Tactics, Di-
ploma thesis.

[KTG+06] Krechetov, I.; Tekinerdogan, B.; Garcia, A.; Chavez, C. & Kulesza, U.
(2006), Towards an Integrated Aspect-Oriented Modeling Approach for, in
'Software Architecture Design. 8th Workshop on Aspect-Oriented Model-
ling (AOM.06), AOSD.06'.

[KFG04] Krishnamurthi, S.; Fisler, K. & Greenberg, M. (2004), Verifying aspect ad-
vice modularly, in 'SIGSOFT '04/FSE-12: Proceedings of the 12th ACM
SIGSOFT twelfth international symposium on Foundations of software en-
gineering', ACM, New York, NY, USA, pp. 137--146.

[Kru95] Kruchten, P. (1995), 'The 4+1 View Model of Architecture', IEEE Software
12, 42-50.

[Kru03] Kruchten, P. (2003), The Rational Unified Process: An Introduction, Addi-
son-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[LKM+05] Letier, E.; Kramer, J.; Magee, J. & Uchitel, S. (2005), Fluent temporal logic
for discrete-time in event-based models, in 'In Proceedings of the 10th Eu-
ropean Software Engineering Conference', ACM Press, , pp. 70--79.

References

160

[LWF01] Lopes, A.; Wermelinger, M. & Fiadeiro, J. L. (2001), A Compositional Ap-
proach to Connector Construction, in 'WADT '01: Selected papers from
the 15th International Workshop on Recent Trends in Algebraic Develop-
ment Techniques', Springer-Verlag, London, UK, pp. 201--220.

[LWF03] Lopes, A.; Wermelinger, M. & Fiadeiro, J. L. (2003), 'Higher-order architec-
tural connectors', ACM Trans. Softw. Eng. Methodol. 12(1), 64--104.

[MW47] Mann, H. B. & Whitney, D. R. (1947), 'On a test of whether one of two
random variables is stochastically larger than the other', Annals of Math-
ematical Statistics.

[MKD02] Masuhara, H.; Kiczales, G. & Dutchyn, C. (2002), 'Compilation Semantics
of Aspect-Oriented Programs'.

[MEH01] Maier, M. W.; Emery, D. E. & Hilliard, R. (2001), 'Software Architecture: In-
troducing IEEE Standard 1471.', IEEE Computer 34(4), 107-109.

[MT00] Medvidovic, N., & Taylor, R. N. (2000). A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE Trans-
actions on Software Engineering, 26(1), 70-93.

[MMP00] Mehta, N. R.; Medvidovic, N. & Phadke, S. (2000), Towards a taxonomy of
software connectors, in 'ICSE '00: Proceedings of the 22nd international
conference on Software engineering', ACM, New York, NY, USA, pp. 178-
-187.

[MS99] Miller, R. & Shanahan, M. (1999), 'The Event Calculus in Classical Logic –
Alternative Axiomatisations'.

[MV07] Mostefaoui, F. & Vachon, J. (2007), Verification of Aspect-UML models us-
ing alloy, in 'AOM '07: Proceedings of the 10th international workshop on
Aspect-oriented modeling', ACM, New York, NY, USA, pp. 41--48.

[MDA] MDA Guide Version 1.0.1. from http://www.omg.org/docs/omg/03-06-
01.pdf

[NPM+02] Navasa, A., Perez, M.A., Murillo, J.M., Hernandez, J. (2002), Aspect-
Oriented Software Architecture: a Structural Perspective, in Proceedings of
the Aspect-Oriented Software Development, pp. 1554-1558.

[NPM09] Navasa, A.; Pérez-Toledano, M. A. & Murillo, J. M. (2009), 'An ADL deal-
ing with aspects at software architecture stage', Inf. Softw. Technol. 51(2),
306--324.

[Par72] Parnas, D. L. (1972). On the criteria to be used in decomposing systems in-
to modules (Vol. 15, pp. 1053-1058): ACM.

[PAC+05] Perez, J.; Ali, N.; Cars, J. A. & Ramos, I. (2005), Dynamic Evolution in As-
pect-Oriented Architectural Models, in 'EWSA', pp. 59-76.

[Per06] Perez, J. PRISMA: Aspect-Oriented Software Architectures. (2006) PhD
thesis, Department of Information Systems and Computation, Polytechnic
University of Valencia.

[PAC+06] Perez, J.; Ali, N.; Carsi, J. A.; Ramos, I. (2006). Designing Software Archi-
tectures with an Aspect-Oriented Architecture Description Language. In I.
Gorton, G. T. Heineman, I. Crnkovic, H. W. Schmidt, J. A. Stafford, C. A.
Szyperski, and K. C. Wallnau, editors, Component-Based Software Engi-
neering, volume 4063 of Lecture Notes in Computer Science, pages 123–
138, V¨asteras, Sweden, 2006. Springer Verlag.

[PW92] Perry, D. E., & Wolf, A. L. (1992). Foundations for the study of software
architecture (Vol. 17, pp. 40-52): ACM.

 References

 161

[PFT03] Pinto, M.; Fuentes, L. & Troya, J. M. (2003), DAOP-ADL: an architecture
description language for dynamic component and aspect-based develop-
ment, in 'GPCE '03: Proceedings of the 2nd international conference on
Generative programming and component engineering', Springer-Verlag
New York, Inc., New York, NY, USA, pp. 118--137.

[PF07] Pinto, M., Fuentes, L. (2007) AO-ADL: An ADL for describing aspect-
oriented architectures. In Early Aspect Workshop at AOSD 2007.

[Ran00] Ran, A., 2000. ARES Conceptual Framework for Software Architecture. In:
Jazayeri, M., Ran, A., van der Linden, F. (Eds.), Software Architecture for
Product Families Principles and Practice. Addison-Wesley, Boston, pp. 1–
29.

[RTT04] Reina, A., Torres, J., Toro, M. (2004) Separating Concerns by Means of
UML-pro¯les and Metamodels in PIMs. In Proc. of the 5th Aspect-Oriented
Modeling Workshop (UML'04), Lisbon, Portugal.

[RGG01] Roessler, F.; Geppert, B. & Gotzhein, R. (2001), Collaboration-Based De-
sign of SDL Systems, in 'SDL '01: Proceedings of the 10th International
SDL Forum Copenhagen on Meeting UML', Springer-Verlag, London, UK,
pp. 72--89.

[RW05] Rozanski, N. & Woods, E. (2005), Software Systems Architecture: Working
With Stakeholders Using Viewpoints and Perspectives, Addison-Wesley
Professional.

[STJ06] Sanen, F.; Truyen, E. & Joosen, W. (2006), Classifying And Documenting
Aspect Interactions, in 'Proceedings of the Fifth AOSD Workshop on As-
pects, Components, and Patterns for Infrastructure Software', pp. 23--26.

[SSK06] Schauerhuber, A.; Schwinger, W.; Kapsammer, E.; Retschitzegger, W. &
Wimmer, M. (2006), 'A Survey on Aspect-Oriented Modeling Approaches'.

[Sha94] Shaw, M. (1994), Procedure Calls Are the Assembly Language of Software
Interconnection:, in , Springer-Verlag, , pp. 17--32.

[Sha96] Shaw, M., & Garlan, D. (1996). Software architecture: perspectives on an
emerging discipline. Prentice-Hall, Inc.

[Som01] Sommerville, I. (2001). Software engineering (6th ed.). Addison-Wesley
Longman Publishing Co., Inc.

[SK04] Spitznagel, B. & Koopman, P. (2004), 'Compositional Transformation of
Software Connectors'.

[SHU02a] Stein, D.; Hanenberg, S. & Unland, R. (2002), A UML-based aspect-
oriented design notation for AspectJ, in 'AOSD '02: Proceedings of the 1st
international conference on Aspect-oriented software development',
ACM, New York, NY, USA, pp. 106--112.

[SHU02b] Stein, D.; Hanenberg, S. & Unland, R. (2002), Designing Aspect-Oriented
Crosscutting in UML, in 'In AOSD-UML Workshop at AOSD ’02'.

[SHU02c] Stein, D.; Hanenberg, S. & Unl, R. (2002), On representing join points in
the UML, in 'Workshop on Aspect-Oriented Modeling with UML'.

[SHU06] Stein, D.; Hanenberg, S. & Unland, R. (2006), Expressing different concep-
tual models of join point selections in aspect-oriented design, in 'AOSD
'06: Proceedings of the 5th international conference on Aspect-oriented
software development', ACM, New York, NY, USA, pp. 15--26.

[SKB03] Stoerzer, M.; Krinke, J.; Breu, S. & Passau, U. (2003), 'Trace Analysis for
Aspect Application'.

[Sub10] Subversion (2010). From http://subversion.tigris.org/

References

162

[Szy98] Szyperski, C. (1998), Component software: beyond object-oriented pro-
gramming, ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA.

[THO00] Tarr, P.; Harrison, W.; Ossher, H.; Finkelstein, A.; Nuseibeh, B. & Perry, D.
(2000), Workshop on multi-dimensional separation of concerns in soft-
ware engineering (workshop session), in 'ICSE '00: Proceedings of the
22nd international conference on Software engineering', ACM, New York,
NY, USA, pp. 809--810.

[THS99] Tarr, P., Ossher, H., Harrison, W., Sutton, S.M. (1999), N Degrees of Sepa-
ration: Multi-Dimensional Separation of Concerns, in Proceedings of the
21st International Conference on Software Engineering (ICSE’99), pp.107-
119.

[TMD09] Taylor, R. N.; Medvidovic, N. & Dashofy, E. M. (2009), Software Architec-
ture: Foundations, Theory and Practice, Addison-Wesley.

[TMA+04] Tekinerdogan, B., Moreira, A., Araujo, J., Clements, P. (2004), Workshop
report of Early Aspects at AOSD.

[ToG03] The Open Group. (2003). TOGAF (The Open Group Archtiecture Frame-
work) Version 8.1, “Enterprise Edition”, The Open Group.

[TA05] Tyree, J. & Akerman, A. (2005), 'Architecture Decisions: Demystifying Ar-
chitecture', IEEE Softw. 22(2), 19--27.

[UML08] UML. (2008). Unified Modeling Language. From
http://www.omg.org/technology/documents/formal/spem.htm

[WL99] Weiss, D. M. & Lai, R., ed. (1999), Software Product Line Engineering: A
Family-Based Software Development Process, Addison-Wesley.

[WJ08] Whittle, J. & Jayaraman, P. (2008), 'MATA: A Tool for Aspect-Oriented
Modeling Based on Graph Transformation', 16--27.

[WS00] Whittle, J. & Schumann, J. (2000), Generating statechart designs from
scenarios, in 'ICSE '00: Proceedings of the 22nd international conference
on Software engineering', ACM, New York, NY, USA, pp. 314--323.

[WRH00] Wohlin, C.; Runeson, P.; H�st, M.; Ohlsson, M. C.; Regnell, B. & Wesslén,
A. (2000), Experimentation in software engineering: an introduction,
Kluwer Academic Publishers, Norwell, MA, USA.

[WH05] Woods, E. & Hilliard, R. (2005), Architecture Description Languages in
Practice Session Report, in 'WICSA '05: Proceedings of the 5th Working
IEEE/IFIP Conference on Software Architecture', IEEE Computer Society,
Washington, DC, USA, pp. 243--246.

[Zac87] Zachman, J. A. (1987). A framework for information systems architecture.
IBM Systems Journal, 26(3), 276-292.

[ZHZ02] Zakaria, A., Hosny, H., Zeid, A. (2002) A UML Extension for Modeling As-
pect-Oriented Systems. In Proc. of the 2nd International Workshop on As-
pect-Oriented Modeling with UML (UML'02).

 References

 163

Appendix A: Experimentation Material

This appendix contains the materials used for the experiment as de-
scribed in Chapter 7.

Pre briefing questionnaire

ID: _______________________

Studies
(e.g. Bachelor, Master): ______________ Semester: __

Experience

What is your experience with software architecture?

None Little Average Substantial Professional
 1 2 3 4 5

What is your experience with the UML 2.0?

 None Little Average Substantial Professional
 1 2 3 4 5

What is your experience with the Eclipse IDE?

 None Little Average Substantial Professional
 1 2 3 4 5

What is your experience with the IBM Rational Architect/Modeler?

 None Little Average Substantial Professional
 1 2 3 4 5

Motivation

Estimate how motivated you are to perform well in the experiment:

Not Poorly Fairly Well Highly
 1 2 3 4 5

Figure 80 Pre-briefing Questionnaire

Experimentation Material

164

Figure 81 Task Description - Group A (1/3)

 References

 165

Figure 82 Task Description - Group A (2/3)

Experimentation Material

166

Figure 83 Task Description - Group A (3/3)

 References

 167

Figure 84 Task Description - Group B (1/3)

Experimentation Material

168

Figure 85 Task Description - Group B (2/3)

 References

 169

Figure 86 Task Description - Group B (3/3)

Experimentation Material

170

Figure 87 Debriefing questionnaire

 References

 171

Figure 88 Validation questionnaire

Expe

172

erimentation Mat

F

F

erial

Figure 89 Efficien

Figure 90 Efficien

ncy increase betw

ncy increase betw

ween AO and Integ

ween AO and Integ

grated Modeling

grated Modeling

in btw. two tasks

in btw. two tasks

s

s

Figure 91 Eff

Figure 92 Eff

iciency increase b

iciency increase b

between AO and

between AO and

Integrated Mode

Integrated Mode

eling in btw. two

eling in btw. two

References

173

tasks

tasks

Expe

174

erimentation Mat

F

F

erial

Figure 93 Efficien

Figure 94 Efficien

ncy increase betw

ncy increase betw

ween AO and Integ

ween AO and Integ

grated Modeling

grated Modeling

in btw. two tasks

in btw. two tasks

s

s

 References

 175

Figure 95 Results Task 1

Figure 96 Results Task 2

Group A Answer Correct Time[min.]
ID2_2 6 100 7
ID7_2 6 100 5
ID2_1 6 100 5
ID5_1 6 100 5
ID10_1 6 100 5
ID7_1 6 100 6
ID4_1 6 100 4

Avg 100 5,285714

Group B
ID6_1 6 100 6
ID1_1 5 83,33333 3
ID9_1 6 100 5
ID3_1 6 100 7
ID1_2 6 100 8
ID6_2 6 100 3
ID3_1 6 100 4

Task 1

Group A Answer Correct Time[min.]
ID2_2 3 100 1
ID7_2 3 100 4
ID2_1 3 100 1
ID5_1 3 100 3
ID10_1 3 100 3
ID7_1 3 100 1
ID4_1 3 100 1

Avg 100 2

Group B
ID6_1 3 100 2
ID1_1 3 100 2
ID9_1 3 100 2
ID3_1 3 100 1
ID1_2 2 66,66667 4
ID6_2 3 100 1
ID3_1 3 100 2

Task 2

Experimentation Material

176

Figure 97 Results Task 3

Group A Answer Correct Weighted-Efficiency Time[min.]
ID2_2 3 100 5 5
ID7_2 3 100 4 4
ID2_1 3 100 12 12
ID5_1 3 100 6 6
ID10_1 1 33,33333 21 7
ID7_1 3 100 1 1
ID4_1 2 66,66667 6 4

Avg 85,71429 5,571429

Group B
ID6_1 3 100 7 7
ID1_1 2 66,66667 30 20
ID9_1 4 66,66667 4,5 3
ID3_1 4 66,66667 12 8
ID1_2 2 66,66667 6 4
ID6_2 1 33,33333 9 3
ID3_1 1 33,33333 6 2

Task 3

 References

 177

Figure 98 Results Task 4

Figure 99 Results Task 5

Group A Correct Time[min.] Complete
ID2_2 100 26 100
ID7_2 100 25 100
ID2_1 100 20 100
ID5_1 100 16 100
ID10_1 100 22 100
ID7_1 100 41 100
ID4_1 100 29 84

Avg 25,57143

Group B
ID6_1 100 15 100
ID1_1 100 6 100
ID9_1 100 14 100
ID3_1 100 3 100
ID1_2 100 26 100
ID6_2 100 7 100
ID3_1 100 9 100

Task 4

Group A Answer Correct Time[min.]
ID2_2 10 100 3
ID7_2 10 100 5
ID2_1 10 100 2
ID5_1 10 100 1
ID10_1 10 100 10
ID7_1 10 100 2
ID4_1 20 0 2

Avg 85,71429 3,571429

Group B
ID6_1 10 100 3
ID1_1 9 90 3
ID9_1 10 100 5
ID3_1 10 100 4
ID1_2 10 100 4
ID6_2 10 100 4
ID3_1 20 0 1

Task 5

Experimentation Material

178

Figure 100 Results Task 6

Figure 101 Results Task 7

Group A Answer Correct Time[min.]
ID2_2 3 100 1
ID7_2 3 100 1
ID2_1 3 100 1
ID5_1 3 100 2
ID10_1 3 100 1
ID7_1 3 100 1
ID4_1 3 100 1

Avg 100 1,142857

Group B
ID6_1 3 100 1
ID1_1 3 100 1
ID9_1 3 100 1
ID3_1 3 100 1
ID1_2 3 100 3
ID6_2 3 100 1
ID3_1 3 100 3

Task 6

Group A Answer Correct WeightedTime[min.]
ID2_2 3 100 1 1
ID7_2 4 66,66667 13,5 9
ID2_1 6 0 7 7
ID5_1 3 100 2 2
ID10_1 1 33,33333 9 3
ID7_1 3 100 5 5
ID4_1 3 100 2 2

Avg 71,42857 5,642857 4,142857

Group B
ID6_1 3 100 3 3
ID1_1 3 100 1 1
ID9_1 4 66,66667 4,5 3
ID3_1 3 100 8 8
ID1_2 2 66,66667 6 4
ID6_2 3 100 5 5
ID3_1 3 100 2 2

Task 7

 References

 179

Figure 102 Results Task 8

Figure 103 Results Task 9

Group A Correct Time[min.] Complete
ID2_2 100 6 100
ID7_2 100 4 100
ID2_1 100 10 100
ID5_1 100 12 100
ID10_1 100 6 100
ID7_1 100 7 100
ID4_1 100 15 100

Avg 8,571429

Group B
ID6_1 100 30 100
ID1_1 100 17 100
ID9_1 100 31 100
ID3_1 0 ? 0
ID1_2 70 40 100
ID6_2 100 11 100
ID3_1 100 35 100

Task 8

Group A Answer Correct Time[min.]
ID2_2 20 100 6
ID7_2 8 40 6
ID2_1 18 90 4
ID5_1 20 100 3
ID10_1 20 100 4
ID7_1 20 100 3
ID4_1 11 55 4

Avg 83,57143 4,285714

Group B
ID6_1 20 100 7
ID1_1 11 55 3
ID9_1 20 100 6
ID3_1 20 100 5
ID1_2 19 95 5
ID6_2 20 100 3
ID3_1 20 100 3

Task 9

Experimentation Material

180

Figure 104 Results Task 10

Figure 105 Results Task 11

Group A Answer Correct Weighted Efficiacy Time[min.]
ID2_2 3 100 1 1
ID7_2 3 100 3 3
ID2_1 3 100 1 1
ID5_1 3 100 1 1
ID10_1 3 100 1 1
ID7_1 3 100 1 1
ID4_1 3 100 1 1

Avg 100 1,285714

Group B
ID6_1 3 100 1 1
ID1_1 3 100 1 1
ID9_1 3 100 1 1
ID3_1 3 100 1 1
ID1_2 2 66,66667 1,5 1
ID6_2 3 100 1 1
ID3_1 3 100 1 1

Task 10

Group A Answer Correct Weighted Efficiacy Time[min.]
ID2_2 3 100 1 1
ID7_2 3 100 2 2
ID2_1 4 66,66667 7,5 5
ID5_1 3 100 8 8
ID10_1 0 0 0 1
ID7_1 4 66,66667 7,5 5
ID4_1 3 100 1 1

Avg 76,19048 3,285714

Group B
ID6_1 4 66,66667 6 4
ID1_1 1 33,33333 3 1
ID9_1 4 66,66667 9 6
ID3_1 3 100 7 7
ID1_2 1 33,33333 15 5
ID6_2 3 100 3 3
ID3_1 2 66,66667 6 4

Task 11

 References

 181

Figure 106 Results Task 12

Figure 107 Results Task 13

Group A Correct Time[min.] Complete
ID2_2 100 17 100
ID7_2 100 25 100
ID2_1 100 10 100
ID5_1 100 22 100
ID10_1 100 21 100
ID7_1 100 25 100
ID4_1 100 40 100

Avg 22,85714

Group B
ID6_1 100 2 100
ID1_1 100 7 100
ID9_1 100 4 100
ID3_1 100 7 100
ID1_2 100 8 100
ID6_2 100 2 100
ID3_1 100 3 100

Task 12

Group A Correct Time[min.] Complete
ID2_2 100 8 100
ID7_2 100 14 100
ID2_1 100 6 100
ID5_1 100 3 100
ID10_1 100 7 100
ID7_1 100 10 100
ID4_1 100 15 100

Avg 9,166667

Group B Weighted
ID6_1 100 15 26,78571 56
ID1_1 100 20 20 100
ID9_1 100 29 29 100
ID3_1 100 17 17,89474 95
ID1_2 100 34 91,89189 37
ID6_2 100 41 41 100
ID3_1 81 30 30 100

Task 13

Experimentation Material

182

 Lebenslauf

 183

Lebenslauf

Persönliche Daten

 Name Thorsten Keuler

 Anschrift Mannheimerstr. 25
 67655 Kaiserslautern

 Geburtsdatum und -ort 07.12.1978 in Zweibrücken

 Familienstand Ledig

Werdegang

 1985 - 1988 Grundschule, Beuren

 1989 - 1998 Gymnasium, Hermeskeil (Abitur)

 1998 - 1999 Zivildienst, Aach

 1999 - 2004 Studium der angewandten Informatik, Universität

Kaiserslautern (Diplom)

 seit 2004 Wissenschaftlicher Mitarbeiter am Fraunhofer IESE,

Kaiserslautern

Kaiserslautern, den 26.11.2010

PhD Theses in Experimental Software Engineering

Volume 1 Oliver Laitenberger (2000), Cost-Effective Detection of Software Defects
Through Perspective-based Inspections

Volume 2 Christian Bunse (2000), Pattern-Based Refinement and Translation of
Object-Oriented Models to Code

Volume 3 Andreas Birk (2000), A Knowledge Management Infrastructure for
Systematic Improvement in Software Engineering

Volume 4 Carsten Tautz (2000), Customizing Software Engineering Experience
Management Systems to Organizational Needs

Volume 5 Erik Kamsties (2001), Surfacing Ambiguity in Natural Language
Requirements

Volume 6 Christiane Differding (2001), Adaptive Measurement Plans for Software
Development

Volume 7 Isabella Wieczorek (2001), Improved Software Cost Estimation
A Robust and Interpretable Modeling Method and a Comprehensive
Empirical Investigation

Volume 8 Dietmar Pfahl (2001), An Integrated Approach to Simulation-Based
Learning in Support of Strategic and Project Management in Software
Organisations

Volume 9 Antje von Knethen (2001), Change-Oriented Requirements Traceability
Support for Evolution of Embedded Systems

Volume 10 Jürgen Münch (2001), Muster-basierte Erstellung von Software-
Projektplänen

Volume 11 Dirk Muthig (2002), A Light-weight Approach Facilitating an Evolutionary
Transition Towards Software Product Lines

Volume 12 Klaus Schmid (2003), Planning Software Reuse – A Disciplined Scoping
Approach for Software Product Lines

Volume 13 Jörg Zettel (2003), Anpassbare Methodenassistenz in CASE-Werkzeugen

Volume 14 Ulrike Becker-Kornstaedt (2004), Prospect: a Method for Systematic
Elicitation of Software Processes

Volume 15 Joachim Bayer (2004), View-Based Software Documentation

Volume 16 Markus Nick (2005), Experience Maintenance through Closed-Loop
Feedback

Volume 17 Jean-François Girard (2005), ADORE-AR: Software Architecture
Reconstruction with Partitioning and Clustering

Volume 18 Ramin Tavakoli Kolagari (2006), Requirements Engineering für Software-
Produktlinien eingebetteter, technischer Systeme

Volume 19 Dirk Hamann (2006), Towards an Integrated Approach for Software
Process Improvement: Combining Software Process Assessment and
Software Process Modeling

Volume 20 Bernd Freimut (2006), MAGIC: A Hybrid Modeling Approach for
Optimizing Inspection Cost-Effectiveness

Volume 21 Mark Müller (2006), Analyzing Software Quality Assurance Strategies
through Simulation. Development and Empirical Validation of a Simulation
Model in an Industrial Software Product Line Organization

Volume 22 Holger Diekmann (2008), Software Resource Consumption Engineering for
Mass Produced Embedded System Families

Volume 23 Adam Trendowicz (2008), Software Effort Estimation with Well-Founded
Causal Models

Volume 24 Jens Heidrich (2008), Goal-oriented Quantitative Software Project Control

Volume 25 Alexis Ocampo (2008), The REMIS Approach to Rationale-based Support
for Process Model Evolution

Volume 26 Marcus Trapp (2008), Generating User Interfaces for Ambient Intelligence
Systems; Introducing Client Types as Adaptation Factor

Volume 27 Christian Denger (2009), SafeSpection – A Framework for Systematization
and Customization of Software Hazard Identification by Applying Inspection
Concepts

Volume 28 Andreas Jedlitschka (2009), An Empirical Model of Software Managers’
Information Needs for Software Engineering Technology Selection
A Framework to Support Experimentally-based Software Engineering
Technology Selection

Volume 29 Eric Ras (2009), Learning Spaces: Automatic Context-Aware Enrichment of
Software Engineering Experience

Volume 30 Isabel John (2009), Pattern-based Documentation Analysis for Software
Product Lines

Volume 31 Martín Soto (2009), The DeltaProcess Approach to Systematic Software
Process Change Management

Volume 32 Ove Armbrust (2010), The SCOPE Approach for Scoping Software
Processes

Volume 33 Thorsten Keuler (2010), An Aspect-Oriented Approach for Improving
Architecture Design Efficiency

Software Engineering has become one of the major foci of
Computer Science research in Kaiserslautern, Germany. Both the
University of Kaiserslautern‘s Computer Science Department and the
Fraunhofer Institute for Experimental Software Engineering (IESE)
conduct research that subscribes to the development of complex
software applications based on engineering principles. This requires
system and process models for managing complexity, methods and
techniques for ensuring product and process quality, and scalable
formal methods for modeling and simulating system behavior. To
understand the potential and limitations of these technologies, expe-
riments need to be conducted for quantitative and qualitative evalu-
ation and improvement. This line of software engineering research,
which is based on the experimental scientific paradigm, is referred to
as ‘Experimental Software Engineering‘.
In this series, we publish PhD theses from the Fraunhofer Institute
for Experimental Software Engineering (IESE) and from the Software
Engineering Research Groups of the Computer Science Department
at the University of Kaiserslautern. PhD theses that originate else-
where can be included, if accepted by the Editorial Board.

Editor-in-Chief: Prof. Dr. Dieter Rombach
Executive Director of Fraunhofer IESE and Head of the AGSE Group
of the Computer Science Department, University of Kaiserslautern

Editorial Board Member: Prof. Dr. Peter Liggesmeyer
Scientific Director of Fraunhofer IESE and Head of the AGDE Group
of the Computer Science Department, University of Kaiserslautern

Editorial Board Member: Prof. Dr. Frank Bomarius
Deputy Director of Fraunhofer IESE and Professor for Computer
Science at the Department of Engineering, University of Applied
Sciences, Kaiserslautern

AG Software Engineering Ph
D

 T
h

es
es

 in
 E

xp
er

im
en

ta
l S

o
ft

w
ar

e
En

g
in

ee
ri

n
g

ISBN 978-3-8396-0225-6

9 7 8 3 8 3 9 6 0 2 2 5 6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile ()
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.10000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.10000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.10000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF00500044004600200066006f00720020004400690067006900740061006c0020005000720069006e00740069006e0067003a0020003100350030002f0036003000300020006400700069002c0020004a0050004500470020004d0065006400690075006d0020002800560036002e0030002f00530074004a0029>
 /DEU <FEFF0050004400460020006600fc00720020004400690067006900740061006c0064007200750063006b002000280046006100720062006500200075006e00640020005300630068007700610072007a007700650069007300730029003a0020003100350030002f0036003000300020006400700069002c0020004a0050004500470020004d0069007400740065006c002e002000420065006900200044007200750063006b00730079007300740065006d0065006e0020006d00690074002000480061006c00620074006f006e002d00410075007300670061006200650020006700670066002e0020006400690065002000420069006c0064006100750066006c00f600730075006e006700200065006e00740073007000720065006300680065006e0064002000650072006800f600680065006e002e0020002800560036002e0030002f00530074004a002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e003a0020007700770077002e00700072006500700072006500730073002e006300680029>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

