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This paper presents the bond-order potential (BOP) for the BCC transition metal tungsten,
which is a real-space semi-empirical method for the description of interactions between atoms. It is
based on the tight-binding approximation and provides thus a direct bridge between the electronic-
structure and the atomistic modeling hierarchies. Two variants of the BOP were constructed and
they are both extensively tested against accurate DFT methods in order to assess their reliability
and applicability. A comparison of BOP with a central-force potential on the other hand highlights
the importance of directional bonding and demonstrates that a correct description of directional
covalent bonds is crucial for a successful, fully transferable model. The potentials are applied in
studies of low-index surfaces, symmetrical tilt grain boundaries and dislocations.

PACS numbers: 71.15.Nc, 71.20.Be, 61.72.Bb, 62.25.+g

I. INTRODUCTION

Tungsten is a refractory transition metal with a
half-filled d-band, crystallizing in a body-centered-cubic
(BCC) structure. It is a metal with the highest melt-
ing temperature (3680K) and for this reason its main
applications have been filaments for bulb lamps, electri-
cal contacts, arch-welding electrodes, heating elements
in high temperature furnaces, etc. Notwithstanding, two
recent developments may broaden significantly the use of
tungsten and elevate its technological prominence. First,
tungsten is considered as one of the structural materi-
als that will play an important role in the fusion reactor
ITER project.1,2 It is a promising plasma facing mate-
rial, for both the divertor and the first wall, principally
because of its high melting temperature and resistance
to sputtering by low energy ions.3,4 Second, recent ad-
vancements in nanoengineering have enabled tailoring of
microstructure and production of ultrafine-grained and
nanocrystalline tungsten with significantly enhanced me-
chanical behavior.5 This nanoengineered material dis-
plays very high strength but localized shearing rather
than uniform plastic deformation and/or cracking under
loading.

An important general drawback in structural appli-
cations is the fact that in tungsten the ductile-to-
brittle transition (DBT) occurs well above the room
temperature.6,7 This transition appears to be con-
trolled by dislocation mobility rather than by crack
nucleation.8–10 For example, studies of the cleavage in
tungsten single crystals indicate an anisotropy with re-
spect to both the crack plane and the direction of crack
propagation,11 suggesting that the DBT temperature and
subsequent crack extension are directly related to atomic
level features of crack and dislocation propagation. In ad-
dition, the mechanical properties of tungsten are strongly
dependent on alloying, impurities and thermomechanical

treatment12, which is a common characteristic of BCC
transition metals (see e.g. Refs. 13,14). This is particu-
larly important for fusion reactors since under prolonged
irradiation by 14 MeV neutrons a significant transmuta-
tion of tungsten to osmium via rhenium takes place. Con-
cerns have been expressed regarding mechanical proper-
ties of resulting W-Os-Re alloys, in particular in con-
nection with embrittlement and occurrence of the sigma
phase.15

The plastic deformation and fracture of crystalline
materials is, in general, controlled by extended defects,
specifically dislocations, grain boundaries and other
interfaces.16–20 For example, it is now generally accepted
that in BCC metals the strong temperature dependence
of the yield and flow stress arises owing to the com-
plex structure of the core of 1/2〈111〉 screw disloca-
tions. Moreover, this core structure is responsible for
unusual dependencies of the flow stress on the orienta-
tion of the crystal with respect to the loading axes (for
reviews see Refs. 14,21–27). In tungsten the tempera-
ture and strain rate dependencies were observed in Refs.
28,29. Atomic level understanding of dislocation cores
and their effects on dislocation glide, phenomena associ-
ated with formation and propagation of cleavage and/or
intergranular cracks as well as investigation of the struc-
ture and properties of nano-crystalline materials, are typ-
ical problems that are studied by the atomic level com-
puter modeling. Such studies have become wide-spread
in materials science, as demonstrated by a recent hand-
book that summarizes a broad range of methods and spe-
cific investigations.30

The principal precursor of all atomic level calculations,
in particular those involving systems composed of a large
number of atoms that do not form an ideal lattice, is
a reliable description of interatomic interactions. The
state-of-the-art methods based on the density functional
theory (DFT) provide such a description most reliably
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and have, indeed, been employed in many investigations
of physical and mechanical properties of materials (for
reviews see for example Refs. 30–33). However, in stud-
ies of crystal defects these rigorous calculations are still
limited by feasible block sizes and by the use of periodic
boundary conditions. The DFT calculations are there-
fore commonly performed for periodic arrays of defects
that are often too closely spaced. Consequently, stud-
ies of large and complex systems require approximations
and simplifications when describing interatomic interac-
tions that may, however, obliterate some important fea-
tures of the chemical bonding. For this reason, the most
challenging aspect of materials modeling is an appropri-
ate description of interactions that reflects correctly and
with sufficient accuracy the physics of bonding, while at
the same time it is computationally treatable for large
systems of particles.34

Methods describing interatomic forces that have been
most broadly used in large-scale atomistic studies of
metallic materials are the embedded atom method35–37

and the Finnis-Sinclair (FS) potential.34,38,39 These
central-force many-body potentials are able to describe
well simple and noble metals in which the bonding is al-
most nearly free-electron-like (NFE). However, in transi-
tion metals and intermetallic compounds based on transi-
tion metals, the bonding has a mixed NFE and covalent
character. In these materials it is the filling of the d-
band that controls the cohesion and hence the particular
ground state structure.40,41 This bonding, which is me-
diated by the d-electrons, is covalent in character so that
the atomic interactions are non-central and depend on
the angles between bonds.

Various approximate schemes that include non-central
forces in metallic materials have been advanced in the
recent years. They range from the modified embed-
ded atom method42–44 through a variety of tight-binding
(TB) techniques (see e.g. Ref. 45) to the approach based
on perturbation expansions employed in the framework
of first-principles generalized pseudopotential theory.46,47

The development we focus on in this paper is the Bond-
Order Potential (BOP). This method possesses an impor-
tant advantage for modeling of extended defects since it
can be utilized in real space and periodic boundary con-
ditions, necessary in k-space methods, are not needed. It
is based on chemically intuitive tight-binding approxima-
tion to the quantum mechanical electronic structure48–51

with the electronic degrees of freedom coarse-grained into
a many-body interatomic potential that reflects correctly
the angular character of bonding. This aspect of bond-
ing can be very significant when the bonding has a mixed
metallic and covalent character.52,53 Within the scheme,
the Hellmann-Feynman theorem can be used to evaluate
forces on the atoms and the computational effort scales
linearly with the number of atoms in the system. This
method, which employs an orthogonal TB basis and two-
center bond integrals, has been implemented in the Ox-
ford order-N package (OXON).54 An important recent
advancement of BOPs that significantly enhances their

robustness, specifically the transferability to different sit-
uations, has been the introduction of the environment de-
pendence of two-center bond integrals. This has been at-
tained through the analytic screening function derived in
Ref. 55 by starting from a non-orthogonal tight-binding
representation and using BOP methodology to invert
the overlap matrix. The resultant bond integrals are
explicitly dependent on the local environment not only
through the bond lengths but also through the bond an-
gles. They are then fitted to reproduce accurately the val-
ues of the screened bond integrals that are obtained nu-
merically from calculations employing the first principles
tight-binding linearized-muffin-tin-orbitals (TB-LMTO)
method.56

The BOPs have now been constructed for three ele-
mental transition metals, titanium,57 molybdenum58 and
iridium59 as well as for Ti-Al alloys.60 These potentials
were employed extensively in studies of dislocations and
led to a number of important findings. In the case of ti-
tanium the preference for the prism slip was explained.61

The core structure of the 1/2〈111〉 screw dislocation
found using the BOP for molybdenum is in full agree-
ment with DFT calculations58,62,63 but differs from that
obtained in studies using central-force potentials.64–67

Furthermore, studies of the motion of screw disloca-
tions in molybdenum revealed significance of stresses per-
pendicular to the slip direction on the onset of plastic
deformation.68,69 In iridium, unlike in any other FCC
metal, two core structures for the screw dislocation have
been found. Transformation between these two struc-
tures may lead to an exceptionally high rate of cross slip
during plastic deformation and associated rapid increase
in the dislocation density and strong local hardening.
This may explain the unique phenomenon of brittle cleav-
age of iridium after extensive plastic deformation.70 For
TiAl, the compound crystallizing in the L10 structure,
the BOP predicts energies of stacking-fault-like defects
and dislocation core structures that agree with both ex-
perimental observations and ab initio calculations.60,71

In this paper we present the BOP for tungsten that has
been developed similarly as the BOP for molybdenum.58

Since the theoretical background of BOP, in particular
implementation of the analytic screened bond integrals
into the scheme, has been presented in detail in Ref. 58,
we summarize in Sec. II only the main concept and some
formulas that are necessary for the explanation of BOP
construction and parameterization. An essential part of
the development of interatomic potentials is the assess-
ment of their reliability, in particular their transferability
to environments other than those used in the fitting pro-
cedure. Such testing is presented in Sec. III and it com-
prises calculations that can be directly compared with ab

initio DFT calculations and/or experiments. These are
evaluation of energy differences between alternative crys-
tal structures, investigation of deformation paths trans-
forming the BCC structure to other structures, and cal-
culations of phonon spectra and the vacancy formation
energy. In Section IV we apply the constructed BOP
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to study several representative extended defects, namely
low-index surfaces, symmetric tilt grain boundaries and
screw dislocations. Dislocation calculations involve inves-
tigation of the effect of applied shear stresses and anal-
ysis of the results in terms of γ-surfaces that character-
ize shearing along crystallographic planes.26,65,72 Finally,
in Section V we summarize the most important aspects
of the BOP for tungsten and discuss its applicability in
large-scale atomistic studies.

II. BOP FORMALISM AND
PARAMETERIZATION

A detailed description of the bond-order potential for-
malism for transition metals and their alloys can be found
in the recent literature.54,58,60,73 Since the currently de-
veloped BOP for W is analogous to that previously devel-
oped for Mo58 we present in the following only the basics
of the BOP theory necessary for the definition and under-
standing of model parameterization. For a more detailed
description of the scheme and the fitting procedures the
reader is referred to Ref. 58.

In the BOP formulation the total binding energy is
composed of three terms:

E = Ebond + Eenv + Epair . (1)

Ebond is the attractive bond energy, Eenv is a purely re-
pulsive environment-dependent term that originates from
the repulsion due to the valence s- and p-electrons being
squeezed into the ion core regions under the influence of
the large covalent d-bonding forces, and Epair is a pair-
wise term that includes all remaining interactions not
explicitly covered by the two preceding terms.

Within the two-center, orthogonal TB model the bond
energy can be partitioned into a sum of contributions
from individual i − j bonds, Eij

bond, where

Eij
bond = 2

∑

αβ

Hiα,jβΘjβ,iα. (2)

The prefactor 2 in Eq. 2 accounts for spin degeneracy
and Hiα,jβ and Θjβ,iα are the Hamiltonian and bond-
order matrix elements, respectively. They are both as-
sociated with individual bonds between atomic orbitals
α and β centered on corresponding atoms i and j.
The Hamiltonian matrix elements Hiα,jβ are defined in
terms of the usual two-center Slater-Koster bond inte-
grals and their angular dependencies.74 Since the cohe-
sion of BCC transition metals is governed by d–d bond-
ing, only d-electrons have been included explicitly into
Ebond in our model. The validity of this approximation
has been discussed and tested extensively; see, for exam-
ple Refs. 40,41,75. The dominance of d-electron bonding
is clearly seen from the s-, p- and d-projected densities
of states presented in Fig. 1(a) that have been obtained
using the TB-LMTO method56 for BCC tungsten.

-8 -4 0 4 8
E  [eV]

D
O

S

total
s
p
d

-8 -4 0 4 8
E  [eV]

D
O

S

k-space
9 moments

(b) BOP

(a) TB-LMTO

FIG. 1: Electronic densities of states of BCC W calculated by
(a) TB-LMTO method and (b) the present parameterization
using both the k-space TB and 9-moment BOP theory.

The dependencies of the three bond integrals ddσ, ddπ
and ddδ, which enter the BOP model for W, on the in-
teratomic distance have been obtained by first-principles
TB-LMTO55,56,76 and are presented in Fig. 2. Similarly
as in other transition metals, magnitudes of the d-bond
integrals decrease rapidly with increasing interatomic dis-
tance, and only first and second nearest neighbor (NN)
contributions are significant in the BCC structure. The
data in Fig. 2 also show that the TB-LMTO bond in-
tegrals display a marked discontinuity between the first
and second shells for the ddπ and ddδ bond integrals.
As discussed previously in Refs. 58 and 77, this is a re-
sult of the screening of the bond integrals by the local
environment. The environment dependence of the bond
integrals can be described within the BOP scheme as

β̃ij
τ = βτ (Rij)(1 − Sij

τ ), (3)

where β̃ij
τ and βij

τ are the screened and unscreened bond
integrals, respectively, and τ denotes the σ, π or δ bond.
The many-body screening function Sij

τ reflects the effect
of the environment surrounding the bond i − j on its
strength and depends generally on the bond and overlap
integrals between orbitals centered on atoms i and j and
orbitals centered on neighboring atoms. The analytic
form of the screening function has been derived from the
non-orthogonal TB theory55 and is described in detail in
Ref. 58. In the current model the screening arising from
the non-orthogonality of the orbitals is assumed to be
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FIG. 2: Radial dependencies of ddσ, ddπ and ddδ bond inte-
grals. Circles: Values calculated using TB-LMTO for the first
and second nearest neighbors in BCC W with varying lattice
parameter. Dashed curves: unscreened bond integrals. Full
curves: screened bond integrals.

due to the s-valence electrons on the atoms surrounding
the bond and requires therefore only additional parame-
terization of the sdσ bond and overlap interactions.

As in Ref. 58, dependencies on the interatomic distance
of the unscreened bond, βτ (R), and overlap, Oτ (R), inte-
grals are represented by continuous pairwise functions of
the generalized Goodwin-Skinner-Pettifor (GSP) form,78

namely

βτ (R) =βτ (R0)

(

R0

R

)na

× exp

{

nb

[(

R0

Rc

)nc

−
(

R

Rc

)nc

]}

Oτ (R) =Oτ (R0)

(

R0

R

)na

× exp

{

nb

[(

R0

Rc

)nc

−
(

R

Rc

)nc

]}

,

(4)

where na, nb, nc and Rc are fitting parameters. βτ (R0)
and Oτ (R0) are magnitudes of the first nearest-neighbor
bond and overlap integrals in the BCC structure, respec-
tively; the first NN distance in W, R0, is equal to 2.74 Å.
In order to guarantee that the bond and overlap integrals
decrease smoothly to zero, the GSP function is employed
for R < R1 and is augmented with a polynomial of fifth
order, given by Eq. (14) in Ref. 58, for R1 < R < Rcut.
The coefficients of this polynomial spline are computed
on-the-fly so that the function, and its first and sec-
ond derivatives are continuous at R = R1 and zero at
R = Rcut. The best choice of R1 and Rcut was found to
be the same for all the bond and overlap integrals, specif-
ically 2.8 Å and 4.45 Å, respectively. The solid curves in
Fig. 2 show the accuracy of the fit achieved by the ana-

lytic expression for the screened bond integrals. In order
to assess the importance of the screening of the bond in-
tegrals, we have also constructed a bond-order potential
without the screening, which is designated in the follow-
ing as BOP0. Corresponding values of the parameters
entering the GSP functions for both BOP models are
summarized in Table I.

Calculations of the screening function, the bond orders
and the bond energies are complex and computationally
demanding and have been done using the OXON pack-
age.54 The bond-order matrix is evaluated under the as-
sumption of local charge neutrality that is an excellent
approximation for metallic systems. In order to assure
a reliable description of local bonding in defective re-
gions and, in general, in less ordered environments, nine
moments of the density of states41 are used in our cal-
culations. This also guarantees that all the important
features of the density of states (DOS) are correctly re-
produced. As is shown in Fig. 1(b), both the bimodal be-
havior and the pseudogap of the exact k-space DOS are
matched well by the nine-moment BOP approximation.
Additional parameters (e.g. the number of d-electrons,
fictitious electronic temperature) which are necessary for
calculation of the bond energy in Eq. 2 are the same as
in Ref. 58.

The second step in the construction of the BOP is fit-
ting of the repulsive environment-dependent term Eenv.
It is described by a screened Yukawa-type potential:79,80

Eenv =
1

2

∑

i,j 6=i

B

Rij
exp

[

− λij(Rij − 2Rcore)
]

, (5)

where Rcore is the core radius and λij= (1/2)(λi + λj).
The screening exponent λij is dependent on the envi-
ronment of atoms i and j. We model this environment
dependence through an embedded-atom-type expression
by writing:

λi = λ0 +





∑

k 6=i

C exp(−νRik)





1/m

, (6)

where λ0 (the unscreened value of the exponent), C, ν
and m are all adjustable parameters. These parameters
are determined by fitting the experimental value of the
Cauchy pressure C12 − C44 in BCC tungsten since the
bond part alone does not lead automatically to the cor-
rect value. Similarly as in the case of the bond integrals,
a smooth polynomial cut-off tail was introduced in the
environment-dependent term, namely for the embedding
exponential function in Eq. 6. For Rtail < R < Rcut,
this function is augmented by a polynomial of fifth or-
der to ensure a smooth decay to zero. The values of all
parameters of this repulsive term are listed in Table II.

The final contribution to the binding energy is a pair-
wise interaction

Epair =
1

2

∑

i6=j

V (Rij). (7)
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TABLE I: Parameters of the GSP function for the bond and overlap integrals.

Rc [Å] βτ (R0) [eV] Oτ (R0) na nb nc

BOP
ddσ 1.873 -1.800 0.0442 0.179 0.179 4.426
ddπ 1.015 1.000 -0.0352 0.000 1.000 1.274
ddδ 0.500 -0.182 0.0253 0.000 1.000 1.000
sdσ 0.750 -1.400 0.1650 0.000 1.000 1.000

BOP0

ddσ 1.000 -1.9167 – 4.0 4.0 0.05
ddπ 1.000 0.8801 – 4.0 4.0 0.05
ddδ 1.000 -0.1037 – 4.0 4.0 0.05

Values of parameters R1 and Rcut are equal to 2.8 Å and 4.45 Å, respectively, for all integrals.

TABLE II: Parameters of the repulsive environment-dependent term of BOP0 and BOP.

B Rcore λ0 C ν m Rtail Rcut

[eV Å] [Å] [Å−1] [Å−m] [Å−1] [Å] [Å]
BOP 101.5 1.0 3.0 200.0 1.8 2.0 3.30 4.45
BOP0 15.0 1.0 2.0 110.0 1.5 2.0 3.30 4.40

2.5 3 3.5 4 4.5
Distance [Å]
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E
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BOP

BOP
0

1st
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FIG. 3: Pair potential scaling for BOP and BOP0 with
marked distances of first, second and third nearest neighbors
in the BCC lattice.

V (Rij) is a pair potential and, similarly as in previous
studies,58–60,81 it is taken as a sum of cubic splines:

V (Rij) =

4
∑

k=1

Ak(Rk − Rij)
3H(Rk − Rij), (8)

where H(x) is the Heaviside step function. The node
points Rk and coefficients Ak are used as fitting param-
eters. This functional form of the pair potential assures
that V (Rij), as well as its first and second derivatives,
are everywhere continuous and equal to zero at the cut-
off distance R1. The parameters of the pair potential are
obtained by fitting two elastic constants that remain af-
ter fixing the Cauchy pressure, the cohesive energy and
the equilibrium lattice parameter. The values of the node
points, Rk, and coefficients, Ak, that have been found us-

ing this procedure are summarized in Table III for both
BOP and BOP0 and the corresponding pair potentials
are plotted in Fig. 3.

Both pair potentials are repulsive at short distances,
since they mainly represent the overlap repulsion and the
electrostatic interaction between atoms, but provide a
weak attraction beyond second NN of the BCC lattice.
This can be justified when considering that the bonding
and environmental repulsive parts of the cohesion do not
include bonding due to s- and p-electrons and the hy-
bridization effects, which may provide additional attrac-
tive contributions to the total energy. However, it should
be noted that the attraction described by the pair poten-
tial is not based on any rigorous analysis but results from
the fitting.

The five fundamental properties of the ground state
BCC structure, which have been used to fit the potentials
are summarized in Table. IV.

III. VALIDATION OF THE POTENTIAL

In order to assess the reliability of constructed poten-
tials we performed a series of calculations and compared
their results with results of ab initio calculations and/or
available experimental data. Such validation is impor-
tant for the use of potentials in studies of extended de-
fects since they are fitted to only a minimal number of
empirical and ab initio data for the ground state BCC
structure and do not embody any implicit information
about any other configurations.

We also include in our testing results of the central-
force Finnis-Sinclair potential parameterized for W by
Ackland and Thetford84. Even though it is known that
the central-force potentials cannot describe adequately
bonding in transition metals they can still serve as a
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TABLE III: Parameters of the pair potentials for BOP0 and BOP.

BOP BOP0

i Ri [Å] Ai [eV Å−3] Ri [Å] Ai [eV Å−3]
1 4.60 −0.101453949537 4.80 −0.254933510570
2 3.75 1.381881663730 4.60 0.531685598475
3 3.10 4.111472692380 3.60 0.961779038168
4 2.85 −12.634040533950 2.90 5.949929825811

TABLE IV: Fundamental properties of the ground state BCC
structure used for fitting of BOPs: lattice parameter a [Å],
cohesive energy per atom [eV] and elastic moduli [GPa] (from
Refs. 82,83).

a Ecoh C11 C12 C44

3.1652 8.90 522.4 204.4 160.6

valuable tool provided that their limitations are well un-
derstood. Due to their simplicity and high computational
efficiency these potentials can be used in calculations that
can quickly probe a large number of atomic arrangements
and help thus to identify critical configurations. How-
ever, a careful investigation of the structure and proper-
ties of these configurations has to employ more reliable
methods. Understanding limits of simple potentials is
also crucial for eventual coalescence of BOP and central-
force schemes into a robust multiscale framework.

The characteristics that have been included in testing
are the energies of several alternative crystal structures,
the variation of the energy with structural transforma-
tions that correspond to four distinct deformation paths,
the phonon dispersion curves for three low-index direc-
tions, and the vacancy formation energy.

A. Alternative crystal structures

The primary requirement on the constructed poten-
tials is the stability of the ground state BCC structure
relative to other crystal structures. This has been tested
by calculating energies of several high-symmetry struc-
tures, namely A15, FCC, HCP (with ideal c/a ratio),
and simple cubic (SC), as functions of their densities.
The calculations were performed using both the screened
BOP and unscreened BOP0 potentials as well as the FS
potential and a DFT method.85–88 The calculated energy
vs. volume per atom dependencies are shown in Fig. 4.
(We did not include in Fig. 4 results for the HCP struc-
tures because they almost coincide with those for the
FCC structure and are difficult to discern.)

Figs. 4(a) and (b) show that not only is the BCC struc-
ture most stable in the whole range of investigated vol-
umes but that both BOP parameterizations reproduce
well the DFT results for the FCC, HCP and SC struc-
tures even though the only fitted quantities were the co-
hesive energy and elastic moduli of the BCC structure

at its equilibrium volume. Similarly as in the case of
Mo58 and Ir59, the transferability of BOPs to the A15
structure is less satisfactory and the energy of this struc-
ture is overestimated when compared with ab initio re-
sults. In order to gain an insight into the origin of this
discrepancy, we separated the structural energy differ-
ences of the three lowest energy structures, calculated at
the BCC equilibrium volume per atom, into two parts:
The bond contribution Ebond, shown in Fig. 5(a), and
the sum of contributions from Eenv and Epair , shown in
Fig. 5(b). Fig. 5(a) also contains the total energy differ-
ences calculated by DFT. It is obvious from this figure
that for both BOPs the Ebond contribution alone predicts
the correct order of structural stability. Although the
bond contributions systematically overestimate the total
energy differences given by DFT, they follow closely the
DFT trend. However, when the Eenv and Epair contribu-
tions, shown in Fig. 5(b), are added the structural order
changes. While for the FCC and HCP structures these
contributions are negative and compensate the bond part
overestimate, for the A15 structure they are strongly pos-
itive and make the A15 structure less stable than FCC
and HCP in disagreement with DFT results. Hence, this
decomposition indicates that the errors in the prediction
of the energy difference for the A15 structure are caused
by the Eenv and Epair parts of the binding energy while
Ebond describes the bonding in this structure quite cor-
rectly. Since the first NN separations in the A15 struc-
ture are very short (almost 10% shorter than in the BCC
structure at the same volume) the errors originate most
likely from excessive short-range repulsion.

As expected, calculations using the FS potential are
not in agreement with DFT calculations. Since this po-
tential is based on the second-moment approximation of
the density of states it is unable to predict the structural
differences of transition metals41 and the stability of the
BCC structure is instead artificially imposed by fitting.
The inability of the second-moment scheme to describe
the relative stability is most evident in Fig. 5(a) where
the FS bond contributions are almost identical for all
three structures. Consequently, when using the FS po-
tential, the BCC structure is the lowest energy structure
only in a small interval around its equilibrium volume
per atom (see Fig. 4(c)). For higher densities the FCC
structure becomes more stable, while for lower densities
A15 and FCC have lower energies than BCC. This test
clearly demonstrates that the FS potential is applicable
only to situations in which the density does not deviate
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significantly from that of the ideal BCC crystal.

B. Deformation paths

Another important test, related to the previous one,
is the investigation of transformation paths. This test
probes not only the high symmetry structures but also
distorted configurations that are encountered when one
structure transforms into another. Furthermore, the de-
formation paths provide additional information about
ideal tensile and shear strengths of materials.89–91 Four
such paths, tetragonal, hexagonal, orthorhombic and
trigonal,91–93 were investigated. A detailed definition
of the tetragonal, hexagonal and trigonal paths can be
found in Ref. 93 and the orthorhombic path is defined
below. Each such path can be characterized by a param-
eter, p, and the energy was calculated as a function of
this parameter using BOP, BOP0, DFT,86,94,95 and FS
potentials. The results for all four paths are shown in
Fig. 6. Both BOP0 and BOP reproduce the ab initio

data quite closely and thus this analysis does not reveal
any substantial influence of the screening of the bond in-
tegrals. Nevertheless, these calculations again highlight
the importance of directional bonding through large de-
viations of FS results from the DFT data.

Fig. 6(a) shows the most common transformation path,
the tetragonal path, which is also known as the Bain
path.96 Along this path the body-centered tetragonal
(BCT) structure is stretched at constant volume along

the [001] axis and the high symmetry BCC and FCC
structures are obtained as special cases. The parameter
p is in this case the c/a ratio where a is the lattice param-
eter in the [100] and [010] directions and c in the [001]
direction, with c/a = 1 corresponding to the BCC and

c/a =
√

2 to the FCC structure. The tetragonal defor-
mation is also directly linked with evaluation of the ideal
strength for tensile loading along the [001] axis. Since,
owing to the symmetry, the BCC and FCC structures
correspond to the minimum and maximum of the energy,
respectively, the inflection point between the two struc-
tures on the path determines the ideal tensile strength.
Previous DFT calculations of Šob et al.92 and Roundy
et al.97 identified the 〈001〉 axis as the weak direction in
tension and the {001} planes as the cleavage planes. Cal-
culations employing BOPs follow closely the DFT ones
indicating that both the ideal tensile stress and strain
will be in a good agreement with the ab initio values. In
contrast, the FS potential predicts the FCC structure not
as a local maximum but as a saddle point with energy
more than a factor of two smaller than the FCC ener-
gies obtained by the other methods. Additionally, the
BOPs and DFT calculations show that if the structure
is deformed beyond the FCC local maximum it reaches
another local minimum for c/a around 1.7. It was found
recently by Luo et al.91 that this BCT structure is closely
related to a tetragonal saddle-point structure which de-
termines the ideal shear strength for the {211}〈111〉 and
{011}〈111〉 slip systems. This BCT structure can be ac-
cessed also directly via the orthorhombic deformation
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BOP, BOP0 and FS. Fig. (a) also contains the total energy
differences obtained from DFT calculations.

which can be regarded as a generalization of the Bain
path.91

During the orthorhombic deformation the BCC struc-
ture is simultaneously stretched along the [001] direction
and compressed in the [110] direction. In the coordinate
system where x, y, and z axes are parallel to [110], [1̄10],
and [001] directions, respectively, the deformation can be
described by the following Lagrangian strain tensor for
large deformations

ε11 = (p−1 − 1)/2

ε33 = (p − 1)/2

ε22 = ε12 = ε13 = ε23 = 0.

(9)

The parameter p characterizing this path is equal to 1 for
the initial BCC structure and 2 at the final point corre-
sponding again to the BCC structure with the same lat-
tice parameters as the initial structure. Along the path
the crystal has a face-centered orthorhombic symmetry
except for p =

√
2 that corresponds to a body-centered

tetragonal structure with the c/a ratio of 1.682. For this

path the energy vs p is displayed in Fig. 6(b) and it again
shows an excellent agreement between DFT and BOPs
results whereas the FS potential underestimates the en-
ergy substantially.

The hexagonal transformation path connects the BCC
and HCP structures and it differs qualitatively from the
other paths since it does not correspond to a purely ho-
mogeneous straining. Instead, it is a homogeneous de-
formation that preserves the atomic volume, combined
with shuffling of alternate close packed atomic planes in
opposite directions.93 The results of calculations for the
hexagonal path are presented in Fig. 6(c).

The trigonal path is also a deformation path between
the BCC and FCC structures, similarly as the tetrago-
nal path, but passing through the SC structure. Starting
from the BCC structure, the trigonal path concurs with
the homogeneous deformation corresponding to the ex-
tension along the [111] axis while keeping the atomic vol-
ume constant.93 The calculated dependence of the energy
per atom on the parameter p characterizing this path is
shown in Fig. 6(d). It should be noted that the extrema
for p = 1, 2 and 4, corresponding to different cubic struc-
tures, are dictated by the symmetry. However, the oc-
currence of the local minimum in the vicinity of p = 3.5
is specific to the material studied. For the FCC structure
the energy then reaches a saddle point. All these features
of the trigonal deformation path are correctly reproduced
by BOP potentials. We should note here again that in
contrast to ab initio and BOP, the FS potential leads
to a qualitatively different result – it gives only one lo-
cal minimum for the trigonal path, corresponding to the
FCC structure.

C. Phonon spectra

A complementary test to the investigation of the trans-
formation paths that lead to large deformations of the
lattice is calculation of phonon spectra where small
atomic vibrations around the equilibrium lattice posi-
tions are probed. We computed dispersion curves for
three high symmetry directions in the Brillouin zone of
the BCC lattice using the method of frozen phonons98

and compared them with experimental data.
The frozen phonons calculations were performed for

several displacements in the range ±0.02a, for which we
presume that the harmonic approximation holds. The
phonon frequencies were then calculated by fitting the
energy versus displacement data by a polynomial of sec-
ond order using the least squares method. The results
for both BOP and BOP0 are presented in Fig. 7 together
with experimental data from inelastic neutron scattering
measurements.99

Despite some minor quantitative discrepancies, the
agreement is very satisfactory for the [100] and [111] di-
rections and both potentials. However, for BOP0 the
longitudinal (L) and transverse (T2) (polarization along
[001]) phonons near the zone edge in the [110] direction
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data.99

are much softer than experiment shows. When using the
BOP with screened bond integrals the frequency of the
T2 N-phonon mode increases significantly. Changes of
the remaining two modes, while not so dramatic, also
lead to dispersion curves that are closer to the experi-

mental ones.

The problem of too soft N-point phonons in Mo and
W is common in semi-empirical TB schemes.100 It is
therefore desirable to ascertain the underlying physical
reason for the large improvement when the screening of
bond integrals is introduced. As mentioned earlier, in the
case of BOP0 the second nearest neighbor ddπ and ddδ
bond integrals are not represented with sufficient pre-
cision by simple scaling functions owing to the evident
discontinuity between the first and second nearest neigh-
bors. This is critical for the values of the second near-
est neighbor force constants, which strongly influence the
phonon spectra. Indeed, it was shown by Foiles100 that
it is the fourth moment of the density of states, i.e. the
moment which links the second nearest neighbors, that
affects the behavior of phonons in the [110] direction most
profoundly. Hence, when the screening is introduced and
the ddπ and ddδ bond integrals are reproduced with much
higher precision, the accuracy of the phonon spectra im-
proves.

When testing the constructed potentials the effect of
screening is most dramatic for the case of Γ-N branch
of the phonon spectrum. In the case of BOP0 the lon-
gitudinal (L) and transverse (T2) phonons are apprecia-
bly softer than experiments suggest, particularly near the
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N point. This is very significant for atomistic modeling
of extended crystal defects. Low, or in the worst case
imaginary, phonon frequencies may affect such simula-
tions significantly and even lead to physically incorrect
results if similar displacements occur within these de-
fects. The lattice may deform too easily in the directions
of soft phonons and this might induce unphysical relax-
ations and/or structural transformations. This danger is
obviously much smaller for BOP than for BOP0.

D. Vacancy

We modeled the vacancy using a cubic supercell of the
size 3a×3a×3a, where a is the lattice parameter, contain-
ing a total of 53 atoms, and using periodic boundary con-
ditions. The convergence of the vacancy formation en-
ergy with the system size has been verified for supercells
of sizes 4a×4a×4a and 5a×5a×5a giving almost iden-
tical results. The atomic configuration was fully relaxed
under the condition of constant volume but we found,
in accordance with DFT first principles calculations,101

that the structural relaxation decreases the total energy
only marginally. The vacancy formation energies calcu-
lated by FS, BOP and BOP0 are presented in Table V.
In the case of the FS potential the vacancy formation en-
ergy is in fact a fitted quantity and thus it agrees closely
with both the results of first principles calculations and
experimental data. The formation energy obtained using
BOP0 lies also within the range of available ab initio and
experimental results (from Refs. 100,102 and references
therein) while the screened BOP slightly overestimates
the formation energy.

It is interesting to compare our results with those of
other TB studies (see Table V). While another simple
d-TB model,101 similar to our unscreened BOP0, pre-
dicts the vacancy formation energy in an excellent agree-
ment with DFT calculations, a more sophisticated spd-
TB model103 overestimates it by almost a factor of two.
This suggests that predictions of the vacancy formation
energy can vary significantly even for closely related mod-
els. It has been shown101 that in simple TB schemes the
vacancy formation energy depends to the first order only
on the ratio between the magnitude of the bond integrals
and the magnitude of the repulsive pair interactions and
can be easily adjusted. In more complicated schemes,
such as spd-TB or screened BOP, the vacancy formation
energy is determined from a subtle interplay of more con-
tributions and a larger scatter of values is therefore likely
unless the defect is included in the fitting database.

E. Transferability and its limitations

It is obvious from the previous subsections that the
constructed BOPs cannot be expected to reach the accu-
racy of the first-principles calculations but they provide
a reliable approximation for description of atomic inter-

TABLE V: Vacancy formation energies (all values are in eV).

Ef
vac

FS 3.64
BOP0 3.83
BOP 4.30
d-TBa 3.56

spd-TBb 6.13
DFTc 3.3 − 3.8
Expc 3.5 − 4.1

aSee Refs. 101
bSee Refs. 103
cSee Refs. 100,102 and references therein.

actions in W. The transferability of any semiempirical
model is the key issue in atomistic modeling and it re-
quires a close attention, especially if the model is to be
applied to simulations of unknown configurations where
a high confidence in its predictive power is essential. In
the test cases presented in this paper we have sampled
a wide range of configurations that provide a stringent
test bed for the constructed BOPs and thoroughly verify
their transferability.

Unlike many other empirical or semiempirical schemes
(see e.g. Refs. 77,103) the BOP model is fitted to only
five most fundamental properties of the equilibrium BCC
structure. As we have already mentioned this is not only
an important advantage for a straightforward and well
defined fitting procedure but it also provides an oppor-
tunity to asses the predictive capability of our model for
simple configurations or properties that are frequently
included in more extensive fitting databases. It is com-
monly assumed that the reliability of a model increases
with the size of the fitting database used for its construc-
tion. However, fitting of a broad variety of attainable
quantities may lead to unphysical values of model param-
eters when the physical basis of the model is insufficient
for precise evaluation of the quantities fitted. Further-
more, elaborate fitting strategies may conceal inadequa-
cies of physical principles on which the model is based.
Thus a small number of fitting parameters together with
reliable tested transferability is the best measure of the
physical accuracy of the model.

Both past and present experiences with construction
of BOPs indicate that the current description of the
short-range repulsion does not mimic the influence of en-
vironment with sufficient accuracy. Even though it is
commonly assumed in TB models that all repulsive in-
teractions can be described by a pairwise potential104

the repulsive contribution has a many-body character105

and in the present study it is described by the Yukawa
type form. This environment-dependent term, which
was originally introduced to remedy the problem of fit-
ting negative Cauchy pressures,79,80 still has a central-
force form that may not be capable to describe fully
the repulsive interactions in different environments. In
fact, the inversion of the non-orthogonality matrix which
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leads to the screening of bond integrals described by
Eq. 3 yields a similar screening function for the pair-
wise overlap repulsion.80,106 Such screening function de-
pends not only on interatomic distances but also on bond
angles but this has not yet been implemented into the
BOP model. The inadequacy of the description of repul-
sive interactions makes the present BOP schemes unsuit-
able for simulations of atomic configurations where the
short-range repulsion is dominant. The most prominent
defects of this type are self-interstitals and interstitial
impurities.107,108 However, the short-range interactions
play much less important role in the extended defects
discussed in the next section and the BOPs are likely
to provide not only qualitatively but also quantitatively
accurate results, as already ascertained by the previous
study of molybdenum.58

IV. EXTENDED DEFECTS

In this section we apply the constructed potentials
to studies of low-index surfaces, symmetrical tilt grain
boundaries (STGB) and dislocations. These planar and
linear defects have a major influence on mechanical be-
havior of materials and their accurate modeling is of
paramount importance.

A. Surfaces

It has been already mentioned in the Introduction that
tungsten fails predominantly by brittle fracture when
subjected to mechanical loading at temperatures lower
than the room temperature.8 In brittle materials the cri-
terion for the mechanical instability of a crack is based
on the balance between the crack driving force, known
as the energy release rate, and the surface energy of new
surfaces created by fracture.109 Even though the crack
propagation in metallic materials always involves other
competing processes such as dislocation nucleation and
emission, or lattice trapping effects,7 the correct predic-
tion of surface energetics remains an important prereq-
uisite for successful atomistic studies of fracture.

We have investigated properties of three low-index sur-
faces – (110), (211) and (100). The surface energies
of these three relaxed unreconstructed surfaces are pre-
sented in Table VI. These results indicate that both
BOP models give a correct ordering of the surface ener-
gies and that the BOP provides an improved agreement
with DFT results and experimental values when com-
pared with BOP0. In contrast, surface energies obtained
using the FS potential are both too small and incorrectly
ordered.

Table VI also shows that the first (d12) and second
(d23) interlayer spacings in all relaxed surfaces are com-
pressed and expanded relative to the bulk, respectively.
The percentage change of the interlayer spacings de-
creases in the correct order |∆d12(211)| > |∆d12(100)| >

|∆d12(110)| which is found generally for BCC transition
metals and is related to surface roughness.114 The effect
of relaxation is smallest for the most close-packed (110)
surface. This is in agreement with both experimental and
theoretical studies which show that the environment of
this surface does not differ significantly, both electroni-
cally and structurally, from the bulk and the surface does
not undergo any reconstruction.111,115 The (211) surface
exhibits the most corrugated structure among the sur-
faces investigated and the energy of this surface is sub-
stantially lowered by relaxation. In the relaxed structure
of this surface the atoms are displaced not only in the di-
rection perpendicular to the surface but also laterally in
the [1̄11] direction parallel to the surface. This is again
in agreement with DFT calculations and experimental
observations.112 At low temperatures clean (100) surface
of W exhibits a commensurate c(2 × 2) reconstruction
which results from alternating lateral displacements of
surface atoms along the [1̄10] direction. This reconstruc-
tion has been studied in great detail both theoretically
and experimentally (for a review see Ref. 113). We found
that both BOP models predict the reconstructed (100)
surface to be more stable than the unreconstructed one
with lateral shifts of the surface layer atoms of 0.24 and
0.16 Å for BOP0 and BOP, respectively. These values
agree very well with other theoretical and experimental
data that range between 0.18 and 0.27 Å.113 In contrast,
the FS potential predicts the unreconstructed structure
as most stable.

Even though the BOP models do not reach the ac-
curacy of the DFT calculations, e.g. for magnitudes of
some surface relaxations that depend sensitively on sub-
tle changes of the electronic structure,113 both BOP mod-
els are able to capture qualitative trends in the energetics
and structure of tungsten surfaces.

B. Grain boundaries

The microstructure of polycrystalline materials has a
profound effect on their mechanical properties. For in-
stance, during drawing and swaging tungsten wires and
also wires made from other BCC metals develop a pro-
nounced 〈110〉 texture.116,117 The drawn wires show a
preferred orientation, in which the 〈110〉 direction is par-
allel to the wire axis, and they are composed of a large
number of highly elongated and curved grains whose
length exceeds significantly their diameter. In the case
of tungsten, this fibrous microstructure significantly im-
proves the mechanical properties of the wires and gives
them an increased ductility and strength compared to an-
nealed tungsten that is very brittle at room temperature.
However, the large number of grain boundaries (GBs)
makes the wires more prone to intergranular fracture
since they hinder the motion of dislocations and resid-
ual stresses may be more easily relaxed by decohesion
along the GBs than by plastic deformation.117 Knowl-
edge of structure and energetics of GBs is therefore an
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TABLE VI: Surface energies (in mJ m−2) and interlayer relaxations (in %) for unreconstructed relaxed low-index surfaces.

(110) (211) (100)
Erelaxed

surf ∆d12 ∆d23 Erelaxed
surf ∆d12 ∆d23 Erelaxed

surf ∆d12 ∆d23

FS 2575 −0.5 +0.1 3046 −4.8 +1.1 2924 −0.7 −0.6
BOP0 2364 −0.4 +0.3 2588 −14.8 +6.5 3152 −3.2 +0.3
BOP 2604 −1.0 +0.6 3003 −7.9 +2.1 3805 −2.5 −0.4
DFTa 4005 −3.6 +0.2 4177 - - 4635; 4780 −6 ± 0.5 0.5 ± 0.5
Expa 3265; 3675 −2.7 ± 0.5 0.0 ± 0.3 - −12.4 +9.0 - −6,−4 ± 10 -

aSee Refs. 110–113 and references therein.

TABLE VII: Energies of several GBs (in mJm−2). For the
Σ3(112) GB, energies of both the reflection (R) and isosceles
(I) structures are shown.

Σ3(112) Σ3(111) Σ5(310) Σ5(210)
(R) (I)

FS 395 461 2364 1807 2151
BOP0 780 762 2398 1769 2477
BOP 1000 1004 3284 2718 3023
DFT 703 745 3196 2235 2781

important prerequisite for studies of dislocation-GB in-
teractions or intergranular fracture.

We computed structures and energies of four symmet-
rical tilt GBs. The calculated energies of these GBs are
presented in Table VII. One of the most studied GBs in
the BCC metals is the Σ3(112) STGB associated with
the process of low temperature deformation twinning.
The atomic structure of this boundary has been investi-
gated extensively both theoretically and experimentally
in various materials (see e.g. Ref. 118 and references
therein). Both atomistic simulations and transmission
electron microscopy observations have revealed existence
of two possible translation states of this GB that are
energetically almost degenerate. In one of them, there
is no relative displacement of the two grains away from
the exact coincidence and the mirror symmetry across
the boundary plane is preserved. This is so-called “re-
flection” structure. The second structure does not pos-
sess the mirror symmetry with respect to the boundary
plane and the upper grain is displaced with respect to
the lower grain parallel to the boundary plane by the
vector 1/12[111̄]. The corresponding structure is called
“sheared” or “isosceles”.119,120 Table VII shows that re-
sults for W are very much the same as the results of
previous DFT calculations for Mo,118 namely that the
reflection structure is more stable and that the energy
difference between the reflection and isosceles structures
is very small. Both BOPs as well as the FS potential
correctly predict the very small energy difference be-
tween the two translation states but the magnitude and
even the sign of the difference are not reproduced accu-
rately. Hence, the present results support the conclusion
of Ref. 118 that it is beyond the predictive power of semi-
empirical models to capture quantitatively such subtle

energy differences. It should be noted, however, that the
central-force FS scheme gives the GB energy almost fac-
tor of two smaller than the DFT and BOP calculations.
This potential will therefore strongly favor twinning over
other possible deformation mechanisms which may lead
to unphysical results.121 The reason is that in the twin
boundary the separation of the first and second neighbors
is the same as in the ideal crystal and thus in any central-
force scheme only the third and more distant neighbors
contribute to the energy. However, the bond angles are
different even for the NN and the much higher energy
predicted by BOPs therefore again emphasizes the im-
portance of the directional bonding.

In the remaining three GBs both interatomic separa-
tions and bond angles are different from the ideal crystal
for all neighbors, which is reflected in significantly higher
energies than that of the deformation twin. Even though
the BOP systematically overestimates the GB energies
it gives the best agreement with the DFT calculations.
This can be attributed to the most robust and accurate
description of bonding.

C. Dislocations

It has been firmly established by many experimental
and theoretical studies that lattice dislocations control-
ling the plastic properties of BCC metals are 1/2〈111〉
screw dislocations (for reviews see Refs. 13,14,20,21,23,
25,27). The reason is that their cores are non-planar and
they are, therefore, much more difficult to move than
dislocations of other orientations. However, the possibil-
ity to observe the atomic structure of the core of screw
dislocations directly is very limited.122,123 Consequently,
it is an excellent topic for atomistic simulation and we
present such study using the constructed BOPs.

A large number of atomistic simulations of dislocations
in BCC metals have been made in the past using a broad
variety of descriptions of interatomic interactions (for re-
views see Refs. 23,124). In all these studies the core
was found to spread into three {110} planes, specifically
(1̄01), (01̄1) and (1̄10) for the 1/2[111] dislocation. Two
types of the core were found that differ by invariance with
respect to the [101̄] diad. In one case the core is spread
asymmetrically into these three planes and is not invari-
ant with respect to this symmetry operation while in the
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other case it is invariant and spreads symmetrically.67

Which of the core structures is found depends on the
material but both types have been found for nominally
the same metal when using different descriptions of in-
teratomic interactions. For example, for molybdenum,
calculations employing FS potentials,65,67 as well as cal-
culations employing potentials derived from generalized
pseudopotential theory,125,126 showed the asymmetrical
configuration. In contrast, the symmetrical configura-
tion was found in recent DFT calculations33,62,63,127 as
well as in calculations employing the recently constructed
BOP for molybdenum.58

γ-surfaces

Prior to the study of dislocation cores, it is always
useful to investigate γ-surfaces for the planes into which
the dislocation may be spreading. This theoretical con-
struct represents the energy of a “generalized” stacking
fault, formed by displacing the two parts of the crys-
tal relative to each other along a crystal plane, as a
function of this displacement. When calculating the γ-
surface, relaxation perpendicular to the plane of the fault
but not parallel to this plane is carried out. This con-
cept was originally introduced when searching for possi-
ble stacking faults in BCC metals72 and since then it
has been employed extensively in atomistic studies of
dislocations and stacking faults in a broad variety of
materials.20,23,24,26,65,126,128–134 Minima on such surfaces
indicate possible metastable stacking faults and in BCC
metals analysis of γ-surfaces for {110} planes can pre-
dict whether in a given material the core of the screw
dislocations will be symmetrical or not.65

Using the constructed BOPs for W the γ-surface was
calculated for the (1̄01) plane. Its overall profile is the
same as that found in many previous calculations (see
e. g. Ref. 124). The unrelaxed and relaxed [111]
cross-section of this γ-surface is shown in Figs. 8(a) and
(b), respectively. Besides the calculation employing the
screened BOP we also present calculations made using
BOP0, FS potential, and results of our own DFT calcu-
lations86 together with those of Frederiksen et al.131

While the agreement between the ab initio and BOP
results is very good for both unrelaxed and relaxed γ-
surfaces it is appreciably worse for BOP0 and the worst
for the FS potential. This suggests that, similarly as in
molybdenum,58 the agreement with ab initio calculations
is the better the more accurately the dependence of the
energy on bond angles is described. This dependence
is included much more precisely in BOP than in BOP0

owing to the screening of bond integrals which reflects
the influence of environment.

As mentioned above, the γ-surface can be used to as-
sess which of the two types of the core the screw dis-
location is likely to adopt. Following Ref. 65, the sym-
metrical core, invariant with respect to the diad, is fa-
vored if 3γ(b/3) > 6γ(b/6) and vice versa for the non-
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FIG. 8: Comparison of [111] cross sections of the {110} γ-
surface; (a) unrelaxed, (b) relaxed. DFT calculations of the
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symmetrical core. Based on the γ-surface cross-sections
shown in Fig. 8, the symmetrical core is favored for both
BOP and BOP0 and, indeed, this is what the computer
modeling of the core structure shows. In fact, according
to the ab initio calculations in Ref. 131 the symmetrical
cores are likely to be found in all BCC transition met-
als. The reason is, presumably, the dominance of the
d-bonding that invokes the strong dependence of the en-
ergy on bond angles, which leads to a rapid increase of the
γ-surface with the displacement.58 This aspect of bond-
ing is well captured by BOP but not by the central-force
FS potential.

Core structure and effect of externally applied stress

The core structure of the 1/2[111] screw dislocation in
tungsten was studied using a molecular statics method,
similarly as in earlier calculations.58,65,66 The block of
atoms was a parallelepiped with edges identified with co-
ordinate axes as follows: x parallel to [1̄21̄], y parallel
to [1̄01] and z parallel to [111]. The dislocation with its
Burgers vector along the z direction was inserted in the
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FIG. 9: Core structure of the 1/2[111] screw dislocation de-
termined using BOP for tungsten. The atomic arrangement is
shown in the projection perpendicular to the direction of the
dislocation line (the [111] axis), and circles represent atoms
within one period; their positions in three successive (111)
planes are distinguished by shading. The [111] (screw) com-
ponent of the relative displacement of the neighboring atoms
produced by the dislocation is depicted as an arrow between
them. The length of the arrows is proportional to the mag-
nitude of these components. The arrows, which indicate out-
of-plane displacements, are always drawn along the line con-
necting neighboring atoms and their length is normalized such
that the longest arrow is equal to the separation of these
atoms in the projection.

middle of the block by applying to all atoms in the block
the displacement in accordance with the anisotropic elas-
tic field of the dislocation.18 Periodic boundary condi-
tions were imposed in the z direction, i. e. parallel to
the dislocation line. Perpendicular to the dislocation, in
x and y directions, the block consisted of an active region
in which all the atoms were fully relaxed and an inactive
region where the positions of atoms were held fixed but
the atoms interact with those in the active region. The
active, fully relaxed region contained 711 atoms and the
inactive region 858 atoms. The result of this study is
shown in Fig. 9 using the usual differential displacement
map, defined in the captions of this figure. The core is
invariant with respect to the [101̄] diad and spreads sym-
metrically into the three {110} planes, as envisaged by
analyzing the γ-surface. This core structure is virtually
the same as that found for molybdenum when employing
both the BOP58 and a DFT method.33,62,63

Analysis of the core structure is only the first step
in studies of dislocations. The ultimate goal is under-
standing their glide behavior under the effect of exter-
nal loads. When applying a stress the elastic displace-
ment field corresponding to this stress was evaluated us-

ing anisotropic elasticity theory and superimposed on the
dislocation displacement field for the atoms in both the
active and inactive regions. The relaxation then pro-
ceeded as in the unstressed case. Here we present a cal-
culation of the effect of pure shear stress acting in the
direction of the Burgers vector with various orientations
of the maximum resolved shear stress plane (MRSSP).
The orientation of the MRSSP is defined by the angle
χ which this plane makes with the (1̄01) plane. Ow-
ing to the crystal symmetry it is sufficient to consider
−30◦ ≤ χ ≤ +30◦. However, it is important to note
that orientations corresponding to positive and negative
angles χ are not equivalent. For χ < 0◦ the nearest
{112} plane, (1̄1̄2), is sheared in the twinning sense and
for χ > 0◦ the nearest {112} plane, (2̄11), is sheared in
the anti-twinning sense. This relates to the well-known
twinning-antitwinning asymmetry of the yield stress ob-
served in many BCC metals and is usually regarded as
the principal reason for the break-down of the Schmid
law (for reviews see Refs. 13,14,21,23).

The calculations always started with the relaxed stress-
free core structure. The applied shear stress in the [111]
direction in the MRSSP was built up incrementally, in
steps of 0.001C44 and full relaxation was carried out at
every step. The stress at which the dislocation started to
move was identified with the critical resolved shear stress
(CRSS) for the dislocation glide at 0K, i. e. the Peierls
stress. At lower stresses the dislocation core transforms
but these transformations are purely elastic in that the
atomic structure returns to its unstressed configuration if
the stress is removed. The calculations were carried out
using both BOP and BOP0 and the dependence of the
CRSS on χ is displayed for both cases in Fig. 10. The
difference between the results of the two potentials is sig-
nificant. In the case of BOP the dislocation moved along
the (1̄01) plane for all angles χ. For the BOP0 the dis-
location also moved along the (1̄01) plane for χ > 0◦

but for χ < 0◦ the dislocation moved by elementary
steps on (1̄01) and (01̄1) planes resulting in the glide
along the (1̄1̄2) plane on average. This behavior is re-
flected in the CRSS vs χ dependence. For BOP0 the
twinning-antitwinning asymmetry is very pronounced, i.
e. for positive χ the CRSS is significantly larger than
for negative χ. In contrast, for the BOP the twinning-
antitwinning asymmetry is negligible. Furthermore, since
the slip plane is in this case always (1̄01), the dependence
of the CRSS on χ should have the form 1/ cosχ accord-
ing to the Schmid law. This dependence is shown as the
dashed curve in Fig. 10 and it is seen that the Schmid law
is obeyed closely for the pure shear in the slip direction
by BOP but not by BOP0.

However, the insignificant twinning-antitwinning
asymmetry in pure shear does not imply that yielding in
tungsten follows the Schmid law for any mode of loading.
In fact, investigations of the effect of shear stresses per-
pendicular to the Burgers vector suggest strong tension-
compression asymmetries and thus remarkable deviations
from the Schmid law. These deviation are similar to
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FIG. 10: Orientation dependence of the CRSS for loading by
shear stress parallel to the slip direction and acting in the
MRSSP characterized by the angle χ.

those found in molybdenum69 in which the twinning-
antitwinning asymmetry in pure shear in the slip direc-
tion, found when using the BOP, is significantly stronger
than in tungsten.58 The details of these studies will be
published in a separate paper. Since experimental in-
vestigations of the yielding are usually made in tension,
compression or employing more complex stress applica-
tions, such as indentation, there are no experimental data
that would indicate whether in tungsten the twinning-
antitwinning asymmetry is strong or weak for pure shear
parallel to the slip direction. However, no experimen-
tal data suggest that the slip in tungsten is on {112}
planes while {110} planes appear to be ubiquitous slip
planes.28,29,135–137 Hence, the BOP rather than BOP0

appears to describe correctly the glide of screw disloca-
tions in tungsten. This again underscores the importance
of screening of bond integrals that leads to accurate de-
scription of angularly dependent bonding mediated by
d-electrons.

V. CONCLUSIONS

In this work we have constructed and tested two vari-
ants of the bond-order potential for tungsten. The BOP

scheme provides a real-space description of interactions
between the atoms, which is based on the parameterized
tight-binding approximation to the electronic structure
and is therefore capable to treat mixed metallic and co-
valent bonding of transition metals and their alloys. This
is crucial for atomic-level modeling of extended defects
in these materials since the angular character of bonding
may govern both their structures and properties. Con-
sidering the extensive testing presented in this paper we
can conclude that the bond-order potential developed in
this study is eminently suitable for atomistic studies of
extended crystal defects in tungsten. This potential not
only guarantees the stability of the BCC structure and re-
produces a number of equilibrium properties but reflects
accurately the very important feature of mixed metal-
lic and covalent bonding, the dependence of the cohesive
energy on bond angles arising due to the partially filled
d-band. The screening of bond integrals implemented in
the BOP model enhances considerably its transferabil-
ity to structures that deviate significantly from the ideal
BCC structure. Hence, atomistic studies employing this
potential are likely to reveal correctly the structures and
properties of those lattice defects, that induce changes in
both bond lengths and bond angles while the short-range
repulsions remain close to those in the ideal lattice. This
is the situation encountered in many extended defects,
such as surfaces, grain boundaries and dislocations, that
control a variety of physical and mechanical properties.
However, the present description of the short-range repul-
sion discourages the application of the constructed BOP
to studies of point defects, in particular interstitials.

VI. ACKNOWLEDGEMENTS

This research was supported in part by the German
Science Foundation, Grant no. Gu 367/25 (M.M.), by
the U.S. Department of Energy, BES Grant no. DE-
PG02-98ER45702 (R.G., A.G.B., V.V.), and by the EX-
TREMAT project, EURATOM and the United Kingdom
EPSRC (D.N-M.). The authors gratefully acknowledge
collaborations and fruitful discussions with David G. Pet-
tifor, Ralf Drautz and Peter Gumbsch.

∗ Electronic address: matous.mrovec@iwm.fraunhofer.de
1 A. T. Peacock, V. Barabash, W. Dänner, M. Rödig,
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