
A Monitoring System for Federated Clouds
Yahya Al-Hazmi∗, Konrad Campowsky† and Thomas Magedanz∗

∗Chair of Next Generation Networks, Technical University Berlin, Berlin, Germany
∗Email: {yahya.al-hazmi,thomas.magedanz}@tu-berlin.de

†Next Generation Network Infrastructure, Fraunhofer FOKUS Institute, Berlin, Germany
†Email: konrad.campowsky@fokus.fraunhofer.de

Abstract—Cloud computing mechanisms are steadily gaining
significance in the field of IT infrastructure hosting and main-
tenance. To date, we have reached a point where a paradigm
shift can be observed. An increasing number of IT players are
rethinking the way the technical foundation of their offerings is
operated from in-house datacenter hosting towards the outsourc-
ing of infrastructure or services to specialized external cloud
computing companies. With the emergence of more and more
commercial cloud providers and offerings, combining resources
from two or more providers - in order to benefit from factors like
price differences, locality of resources, etc. - becomes increasingly
feasible for consumers of cloud services. Therefore, it is desirable
for such users to have an overarching monitoring system that
aggregates a multitude of measurements from resources of
different administrative domains in a unified manner. This paper
introduces a comprehensive monitoring solution for federated
clouds that provides data for both infrastructure providers and
cloud users. This system does not only support monitoring
resources from heterogeneous domains on both the network and
infrastructure level, but moreover provides monitoring support
that is able to operate across large numbers of end-to-end
resources at the service as well as the application level. In this
paper the design of this system as well as its implementation
is discussed, and a validation of the system within the context
of the European funded project BonFIRE is presented. The
performance of the system is shown through the conduct of
experimentation.

Index Terms—Monitoring; Federated Clouds; Test Facilities;
Federation;

I. INTRODUCTION

The noticeable success of cloud computing encourages
cloud service providers to create further enhancements to their
facilities in order to offer services with a high level of customer
satisfactions on the one hand and to adopt new technologies
to build new business models on the other.

As a matter of fact, this emerging market spurs many
cloud service players, which actually have different kind of
resources with different level of quality of services, not only
to compete but also to collaborate with each other. It is
expected that such collaboration will have many advantages,
such as complementation of the offered resources to improve
resource utilization, merging multiple services in order to offer
efficient end-to-end solutions required by the customers, and
customers have the ability to create their own environments
(e.g. Platform-as-a-Service) across multiple cloud domains.
Moreover, it enables customers to combine resources and
services from different cloud computing providers. This kind

of collaboration across multiple cloud infrastructures that inter-
operate in a standardized manner is called resource federation.

Many cloud infrastructures are available from both business
and research organizations who are providing cloud services
(Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS),
and Infrastructure-as-a-Service (IaaS)), and cloud-based test
facilities for Future Internet research and experimentation
respectively. Due to the high heterogeneity of such infras-
tructures in terms of resources, systems, tools, exchanged
information, etc., the concept of standardization and federation
is becoming of highly importance to avoid having isolated
islands in the Future Internet. Note that when referring to
a cloud user or a user in this paper, we are referring to
a customer in commercial clouds or to an experimenter in
cloud-based test facilities. Furthermore, when referring to a
cloud environment, we are referring to a cloud service (e.g.
PaaS, IaaS) in commercial clouds or to an experiment in test
facilities.

All existing cloud computing services already run monitor-
ing systems and will usually expose monitoring services to
users as well in one form or another. However, cloud users
could have resources from multiple cloud providers. Each
of these clouds has its own monitoring system. Therefore it
makes sense to have a comprehensive monitoring system that
can operate seamlessly across cloud domain borders.

Monitoring is needed by cloud infrastructure providers and
cloud users alike. Cloud providers need to monitor their physi-
cal resource like any other infrastructure owner does to ensure
health and availability and Quality of Service (QoS) of their
facilities. In addition to this, cloud providers have additional
monitoring requirements due to the dynamic nature of their
infrastructure, which enables them to perform sophisticated
optimization of resource utilization. Cloud users on the other
hand also benefit from comprehensive monitoring solutions
since these are needed to facilitate features like service elas-
ticity. In commercial clouds, customers need to monitor their
resources (e.g. PaaS, IaaS) for performance evaluation, QoS
and Service Level Agreement (SLA) validation, comparing the
performance and the quality of resources from various cloud
providers, etc. In test facilities, experimenters are interested
in information about the actual utilization of their resources
and also about the performance of their deployed technologies,
protocols, or services.

The paper introduces a monitoring system for federated
clouds targeting cloud providers and cloud-based test facilities.



The demand for having a common monitoring system for
federated clouds has become a major interest, as disclosed
recently by the Future Generation Computer Systems Journal
(The International Journal of Grid Computing and eScience)
through its Special Issue on Cloud Monitoring Systems, due
to the fact that each application, platform or infrastructure has
its own solution and this hinder the interoperability across
federated clouds in terms of management, control charging,
etc. Furthermore, many of the EU projects that started earlier
2012 are focusing on the interoperability, portability in the
cloud domains, such as Compatibleone [1] and OpenCloud-
ware [2]. However, providing monitoring information to cloud
users about their resources deployed in different clouds is not
considered.

The rest of the paper is organized as follow. In Section 2,
the monitoring system is introduced. Section 3 presents the
implementation and validation of the system. In Section 4,
the system usability and performance are discussed through
experimentation. Finally, the paper is concluded in Section 5.

II. SYSTEM DESIGN

This section presents the design of the monitoring system,
its functionality, components and the interactions between
them. The introduced monitoring system is targeting cloud
providers and also cloud-based test facilities for Future Internet
research and experimentation. It has a twofold objective.
First, providing measurements and monitoring information for
assuring the health and the performance of the federated cloud
infrastructure and its internal services, and the stakeholder
will then be cloud infrastructure providers. Second, providing
service related measures that are consumed by cloud users
to monitor their deployed services, and the stakeholders will
therefore be cloud service (PaaS or IaaS) customers in com-
mercial clouds and experimenters in test facilities.

The monitoring system is designed following a number of
architectural principles:

• The monitoring support is based on the concept of
”Monitoring-as-a-Service”. The system is capable of pro-
viding monitoring on-demand. It leverages the paradigm
of ”everything-as-a-resource”: if it’s a resource, it can
be instrumented (via specific resource adaptors called
probes), and as such monitored. The monitoring data
provided by the probes is aggregated in one aggregator.
This aggregator offers an API, to be used by 3rd party
software, and a graphical user interface (GUI) to display
the monitoring data graphically.

• The introduced monitoring system has been designed
in a way to allow user to choose whether or not to
have Monitoring-as-a-Service. This decision can be taken
while requesting cloud resources (PaaS or IaaS in com-
mercial cloud or experiment in test facility).

• During the cloud environment deployment, the moni-
toring probes are deployed with the rest of the cloud
resources, as they are just another deployable object.
The deployment of the monitoring aggregator is also
performed, which has the responsibility to aggregate all

the measurements. All the probes are then automatically
configured to report to the aggregator. The measured data
can then be accessed via a simple web user interface,
as well as an API. The system implementation outlined
in this paper assumes that each cloud user has a single
monitoring server running on one of the virtual machines
(VMs) created as part of the cloud environment. This
scheme on the one hand assures privacy of information
and furthermore is guaranteed to work with a wide range
cloud providers since it provides monitoring as an over
the top service in a cross-domain manner.

• The user has the ability to have monitoring data perma-
nently available after the expiration or deletion his/her
cloud environment or only during its lifetime. Three cases
to be discussed here:

1) The user uses monitoring data to observe the correct
progress of his/her cloud environment. There is no
interest in keeping this information.

2) The user decides to keep a trace of the cloud
environment after its lifetime. As infinite disk space
is not available, keeping all monitoring data indefi-
nitely is not possible. Nonetheless, the full data for
the last day (or whatever delay is compatible with
the cloud providers’ infrastructure) is available, for
a limited time.

3) The user knows that the complete monitoring data
will be useful. In this case, while establishing the
cloud environment, the user can ask for a persistent
storage with a large enough storage size as needed.

• The user has two options on where to store monitoring
data. It can be stored either inside the aggregator VM
itself or on external storage resources. With the second
option, the database of the aggregator is stored in an ex-
ternal (and permanent if required) storage that is mounted
as an additional block device on the aggregator VM.
This option enables more flexibility, the user can set, on-
demand, the storage size for the monitoring data, and
this data is also available after the cloud environments
expiration or deletion. The default option is to create the
aggregator with an external, permanent storage with a
fixed size (e.g. 5GB).

• A group of user could work together on one cloud
environment and have the same permissions, but they are
using different credentials. In this case, the monitoring
system is responsible to enable all group members to
log in to the monitoring data using their own credentials.
Furthermore, limited access to monitoring data with read-
only permissions can be granted to other groups in the
case of cooperation projects.

These architectural principles enable the monitoring system
to provide flexible monitoring services. These services are
supported at multiple levels:

• Infrastructure-level monitoring: it addresses the physical
infrastructure of the federated clouds. Various metrics are
addressed that are used for assuring the health and the



performance of the infrastructure, like: CPU-, memory-
, disk-usage, number of VMs running on each physical
machine, ingoing and outgoing traffic, etc.

• Cloud environment-level monitoring: monitoring metrics
which address the cloud environment status at a certain
moment of time and also the number of VMs per cloud
environment.

• VM-level monitoring: status of individual computing
resources, further metrics like: CPU, memory, storage,
etc.

• Service-level monitoring: metrics which provide informa-
tion about the state of the service, its performance and
other service specific information.

As mentioned before, monitoring information is required by
the cloud infrastructure providers for purposes of infrastructure
Quality-of-Service and assurance the overall performance and
the health of their infrastructures. The infrastructure moni-
toring is the infrastructure providers’ responsibility. Through
their native APIs, the infrastructures manage and monitor
themselves using their own tools. To support the infrastructure
monitoring, an infrastructure monitoring aggregator is required
that gathers information regarding the whole infrastructure
reported by the probes that are running in the all physical
machines.

In addition to the VM-level and service-level monitoring,
a user can also get partial information about the physical
machines that host their VMs (infrastructure-level). Moni-
toring information about specific metrics is only provided,
those of users’ interest such as (CPU, memory, number of
running VMs, network characteristics). Monitoring data of
these metrics are fetched by user aggregators from infrastruc-
ture aggregators through APIs. However, when user VMs are
deployed in multiple clouds, their infrastructure aggregators
will then be accessed by the user aggregator to get the
data. To realize the infrastructure monitoring service, the user
aggregator has to be notified each time a VM is created,
updated, or destroyed. One possible solution is the use of
message queues that allow guaranteed notification delivery.
The user aggregator acts as a client to subscribe to notifications
sent when VMs’ states are changed.

It is also possible for the user to associate monitoring
results. In the user’s view, the monitoring aspects are limited
to the definition of probes, which then automatically deliver
their measurement data to a graphical interface. This data is
also accessible through the aggregator API.

The architecture of the monitoring system is shown in Fig-
ure 1. Monitoring probes, also called Agents (A) are deployed
and configured on each of the user’s VM resources. These
agents are responsible for collecting monitoring metrics on
their respective host. Their information is sent to a monitoring
aggregator (User Aggregator), which holds all monitoring
information, for direct consumption by the user (through an
API or through a GUI). In addition, the User Aggregator
fetches monitoring data about the physical infrastructure host-
ing the virtual components from the respective infrastructure’s
monitoring system (Infra Aggregator). A daemon is running

PM 

User 
Aggro GUI 

A User Aggro 
API 

User 

VM 

VM VM 

Portal 

PM PM 

A: Agent 
Aggro: Aggregator 
VM: Virtual Machine 
PM: Physical Machine 

Cloud A Cloud B 

Infra 
Aggro 

Infra 
Aggro 

API API 

A 

A 

A 

A 

A 

Fig. 1. Cloud Monitoring System

on the User Aggregator that is responsible for periodically
fetching these metrics along with their timestamps and then
storing the data into the database of the User Aggregator. This
data is provided to the user (through the API or through the
GUI of the User Aggregator) with its original timestamps.

The technical details of gathering metrics pose a scientific
challenge themselves. Moreover, it is virtually impossible to
predict all conceivable monitoring metrics that might be of
interest for cloud users, especially when addressing the sci-
entific users. Therefore, any comprehensive cloud monitoring
solution must be extensible through user defined metrics.

III. IMPLEMENTATION AND VALIDATION

The monitoring system described in this work has been
adopted by the EU BonFIRE Multi-Cloud Test Facility [3].
BonFIRE offers a multi-site cloud testbed that supports large
scale testing of applications, services and systems over multi-
ple, geographically distributed, heterogeneous cloud testbeds.
At the core of BonFIRE are six geographically distributed
testbeds (EPCC (UK), INRIA (France), HLRS (Germany),
IBBT (Belgium), HP (UK) and PSNC (Poland)) that together
offer around 350 computing cores with 700GB of RAM and
30TB of storage. An additional 3000 cores can be added to
BonFIRE on-request. The involved testbeds are different from
one another in terms of structure, networking features and
resources. This heterogeneity is a key feature of the BonFIRE
facility.

A. BonFIRE Monitoring System

The BonFIRE monitoring system provides users (experi-
menters) with access to performance metrics for the virtualized
resources used in the experiment. It is also possible for exper-
imenters to associate monitoring results with the experiment.
The experimenter can define metrics to be monitored. Further-
more, experimenters can get partial monitoring information
about the physical infrastructure as well.



Monitoring functionality is implemented based on a server-
agent model. The server is deployed as a separate resource
and collects monitoring data reported by the agents that reside
in the experiment VM images. To implement monitoring,
BonFIRE has adopted the open source monitoring software
Zabbix [4] that fulfills the requirements of the introduced
monitoring system. This solution also supports alarms that
trigger when predefined conditions are met, for example if
the CPU load is over 90%. These alarms can be very useful
as the triggers that control elasticity actions.

Zabbix comprises two major software components: Zabbix
server and Zabbix agent. The server is referred to as an ”ag-
gregator” in the introduced monitoring system (in BonFIRE as
well). BonFIRE uses a special type of agent, the active Zabbix
agent, in order to overcome possible accessibility problems
because of NAT. In this case the agent is the one which initiates
the communication to the server and sends the monitoring
data. Agents are small software components configured to send
metric values to the server at regular intervals. Agents typically
produce metric values by executing Unix scripts written to
obtain the value. The monitoring aggregator provides both a
GUI to observe the monitoring metrics and also an API to
support programmatic access to monitoring data.

The Zabbix aggregator collects monitoring information re-
ported by the Zabbix agents in a database. It is the central
repository where all information is stored and users and agents
are managed. An aggregator can be automatically created for
each experiment set up through the BonFIRE portal. Through
the portal, experimenters have the ability to choose where to
store the database, either inside the aggregator image or stored
into an external storage resource that is attached to the aggre-
gator as an additional, external disk. Experimenter’s choice is
passed then to its experiment aggregator (User Aggregator).
This enables experimenters to store monitoring data in a
flexible way, on-demand storage size, the possibility of reusing
an external storage resource in further experimentations, etc.

In BonFIRE, an aggregator in each site (cloud infrastruc-
ture) is in charge of monitoring the whole physical infrastruc-
ture. However, experimenters can also get partial information
about the physical machines that host their VMs. Experi-
ment aggregators fetch monitoring data of predefined metrics
relating to those physical machines from the infrastructure
aggregators through their APIs. This is achieved through a per-
manently running daemon on the experiment aggregator. The
notification about the changing of VMs’ states is implemented
in BonFIRE based on the message queue RabbitMQ [5]. A
client running on the experiment aggregator is subscribed to
it.

BonFIRE offers deployable packages with regard to mon-
itoring which are called image packages. They represent the
virtual machines images with the monitoring software already
installed and configured. The following section describes the
dependencies, installation and configuration steps for the ag-
gregator and agent images packages.

B. BonFIRE Monitoring Images

The monitoring images provided by BonFIRE are Debian
images. The following sections describe the steps necessary
to deploy these images in the BonFIRE infrastructure using
Open Cloud Computing Interface (OCCI) requests. As men-
tioned before, these images have the Zabbix software already
installed and configured. Two images are available: monitoring
aggregator image and monitoring agent image.

1) BonFIRE Aggregator Image: The Bonfire aggregator
image contains both the monitoring aggregator and moni-
toring agent preinstalled. It is readily configured to support
configuration of the aggregator through the contextualization
information. This information is used for passing the requested
monitoring services, such as infrastructure monitoring, having
permanent storage, allowing the aggregator to monitor itself,
etc. These are sent along with the aggregator creation request
and will be used while booting the aggregator image. The Bon-
FIRE Portal supports the automatic creation of an experiment’s
monitoring aggregator VM and also gives access to the exper-
iment’s monitoring aggregator’s GUI or API. The BonFIRE
Resource Manager [6] gives the experimenter access to the
monitoring aggregator’s API. However, the experimenter has
the choice to create his experiment with monitoring support
or not. If monitoring-as-a-service is desired, the experimenter
should create an aggregator VM as part of the experiment.
The choice where to locate it, in which site, is left to the
experimenter.

a) Requirements: The aggregator image has a predefined
id in the BonFIRE infrastructure. This id may change during
the life time of the infrastructure. Therefore, before triggering
the OCCI installation requests (more specifically creation of
a compute resource) one must identify the image id from the
BonFIRE Broker or BonFIRE Portal [6].

b) Installation: The following OCCI request when sent
to the BonFIRE Broker triggers the creation of the image in
the specified site.

Using the context information delimited by <context> and
</context> the aggregator is automatically configured based
on the requested monitoring services.



2) BonFIRE Base Image: BonFIRE provides multiple VM
images called BonFIRE base images. These images are used
for booting virtual machines. Each base image contains an
instance of the Zabbix agent software to serve as the moni-
toring Agent. It is configured to support configuration of the
agent through contextualization information. BonFIRE’s base
images are preinstalled with monitoring agents preconfigured
for some basic metrics such as CPU usage, memory, etc.
Experimenters may configure other metrics when preparing
their VM images. Additionally, the BonFIRE Resource Man-
ager’s OCCI API supports the specification of monitoring
metrics in the contextualization section of a compute resource.
The BonFIRE base images include software to read this
contextualization information and configure the monitoring
agents accordingly. Furthermore, the experimenter has also
the ability to specify additional monitoring metrics to already
running compute resources.

a) Requirements: As described for the aggregator image,
the user needs to identify the allocated id to the monitoring
agent image before the installation is performed.

b) Installation: The following OCCI request when sent
to the BonFIRE Broker triggers the creation of the image in
the specified site.

Using the context information delimited by <context> and
</context> the Zabbix agent is automatically configured with
the IP of the Zabbix server (monitoring aggregator) and the
specific metrics defined by experimenter. These metrics must
be configured on both the agent and server side.

IV. EXPERIMENTATION

Various experiments taking advantage of the described mon-
itoring system have been conducted on the BonFIRE facility
or are currently in progress. These experiments are being
conducted by industrial and academic researchers who are
researching the behavior of cloud services under controlled
conditions. Descriptions of selected experiments and their
results in form of publications, tutorial, etc. are to be seen
in [3]. In this paper, we will not discuss the details of
specific measurements being taken, but rather shed light on its
usability, and the extent of the benefit it brings to researchers.

Fig. 2. Creating an Experiment with monitoring support

Many different metrics are measured by the system starting
from low level resources (both physical and virtual) up to
applications. Measurement data of these metrics and about
partial of the infrastructure metrics that provide detailed in-
formation about the underlying physical infrastructures perfor-
mance are provided to experimenters. For whatever purpose
(e.g. QoS/SLA), some services (experiments) may need to
monitor the CPU of the physical machines that host their
VMs, how many VMs run on the same CPU, or what the
load is on a specific CPU, etc. Through an experiment, we
will show to what extent the performance and the benefit of
the infrastructure monitoring is.

As described before, using monitoring services on BonFIRE
implies having a computing resource (VM) that is running
the BonFIRE aggregator image. Consequently, creating a
BonFIRE experiment with monitoring support is facilitated by
sending a number of individual OCCI requests to the BonFIRE
resource manager API. These requests first create the actual
experiment and subsequently deploy and configure a VM to
serve as the monitoring aggregator. While this may seem as
a complicated procedure at first, BonFIRE users may choose
to perform it through the web-based BonFIRE portal, where
monitoring support can be enabled for experiments merely
by choosing which BonFIRE site the aggregator should be
deployed to, as seen in Figure 2. Infrastructure monitoring sup-
port can be enabled or disabled on demand through the portal,
as shown in Figure 2. BonFIRE offers its users elasticity-as-a-
service that allow them to run elastic experiments, as seen
in Figure 2. To support the elasticity service, an elasticity
capable aggregator image is used that is supported with
alarms that trigger when predefined conditions are met, for
example if the CPU load is over a specific threshold. The
configuration information needed to configure these alarms,
also called triggers, is sent through the contextualization. In the
experiment discussed here, we will not use elasticity service.



Fig. 3. Monitoring Aggregator User Interface

At this point, an experiment with monitoring but without
elasticity support is created. As mentioned before, the Bon-
FIRE monitoring aggregator is based on the Zabbix monitoring
framework. The aggregators web-based user interface can
be accessed seamlessly through the BonFIRE portal. This
user interface is shown in Figure 3. The experimenter can
then start creating the required experiment VMs that will be
automatically monitored along with their physical machines.
Their data will be viewed through the aggregator GUI as well.

BonFIRE offers reservation of physical machines called
clusters for exclusive use. In this experiment, a cluster is
reserved to ensure that only experimenter VMs are running
on it. On this cluster, three VMs are created. At this point,
the experiment comprises one aggregator VM running on a
physical machine (anywhere) and three VMs running on the
reserved cluster as seen in Figure 3. On the three VMs,
benchmarking is run not for testing performance but only
to investigate and show the behavior of performance metrics
like CPU load within the VMs and the cluster. The IOzone
benchmarking [7] is used for this purpose although it is
practically used for testing file I/O performance on various
filesystems. Nevertheless, the operations performed by the
benchmark consume processing power and the CPU load will
be varying based on the number of operations being executed
by the benchmarking and the filesystem that is employed.
The benchmarking was run for more than two days, Figure
4 shows the behavior of the CPU load within the physical
cluster represented by the blue line, and the average of the
CPU loads within the three virtual machines represented by the
black line. The result shown in the first graph is for one hour
while in the second graph is for twelve hours. As expected,
loads are almost similar which indicates that experimenters
can get meaningful real-time information about the underlying
infrastructure that can be used as support for suitable decision-
making. Furthermore, from the results, it is clear that the CPU
processing consumed by monitoring probes (Zabbix agents) is
almost negligible.

V. RELATED WORK

Monitoring is a fundamental part of any management sys-
tem. In the domain of cloud computing, examples for cloud

Fig. 4. CPU Load within a physical machine (blue) and the average CPU
Load within three virtual machines running on the physical machine (black)

monitoring systems or systems that are used within such
are EVEREST [8], Ganglia [9], Nagios [10], Groundwork
[11], MonALISA [12], and Zabbix [4]. Furthermore, there
are several monitoring architectures already deployed in cloud
environments [13] [14] [15] [16] [17] [18] [19]. Monitoring
in the OPTIMIS project [13] is one of the OPTIMIS Toolkit’s
software components that is used to provide monitoring in-
formation about the virtual and the physical resources of
the involved cloud infrastructures and services in order to
support self-management and optimization processes. The
service oriented monitoring framework in [14] is using the
monitoring Toolkit Nagios, which is extended through the
implementation of NEB2REST to interact with a RESTful web
service for monitoring resources and services. The monitoring
frameworks in [15] (which is based on the open source Globus
Toolkit 4) and in [16] are used for QoS measurements at
application and infrastructure levels for supporting real-time
QoS guarantees. The authors in [17] introduced a private cloud
monitoring system (PCMONS), which is based on the open
source Nagios tool. The elastic monitoring framework intro-
duced in [20] enables monitoring resources from low-level
metrics from operating systems to higher level application-



specific metrics derived from services.
However, these systems and architectures are addressing the

monitoring of cloud environments but not federated clouds
in which a large number of resources from heterogeneous
infrastructures are offered to customers.

The cloud related project RESERVOIR has introduced a
monitoring system fit to its needs as well [21]. Its main
functionality is to provide wide monitoring information about
services deployed in federated clouds for service management
purposes, such as service billing, service elasticity, access
control, SLA management, etc. However, this system does not
consider providing monitoring information to cloud customers.
The Amazon monitoring system CloudWatch [22] on the
other hand provides monitoring data to customers about their
running services, rather than providing data for infrastructure
and service management.

In contrast to the above mentioned systems, we introduce a
comprehensive monitoring solution for federated clouds that
provides data for both infrastructure management and cloud
customers as well. The introduced monitoring system does not
only support monitoring on network and infrastructure levels
from heterogeneous domains, but also provide monitoring sup-
port that run across large populations of end-to-end resources
at the service and application levels.

VI. CONCLUSION AND FUTURE WORK

This paper introduces a comprehensive monitoring solution
for federated clouds that provides data for both infrastructure
providers and cloud users. This system supports monitoring
resources (both physical and virtual) from heterogeneous
domains on both the network and infrastructure level, and
moreover provides monitoring support at the application level.
In this paper the design of this system as well as its im-
plementation is discussed, and a validation of the system
within the context of the European funded project BonFIRE
is presented. The usability and the benefit of the system are
discussed in form of conducting experimentation on BonFIRE
facility. For future work, this system will be the first step
toward developing a generic monitoring system for federated
Future Internet infrastructures not only in cloud domains but
also others. This generic system will be developed within
the context of the upcoming European funded project Mobile
Cloud Networking. Deciding how to collect measurements
to minimize the impact on the experiments themselves, and
how to analyze these data to arrive at scientifically sound
conclusions remain a large challenge which is left for future
work as well.

ACKNOWLEDGMENT

This work was undertaken in the context of the BonFIRE
project which is funded by the European Union Seventh
Framework Programme (FP7/2007-2013) under grant agree-
ment number 257386. The authors would like to thank all
BonFIRE development team for their contribution and support
to deploy the introduced monitoring system, in particular, Irina
Boldea, Abdulrahman Hamood, and Maxence Dunnewind.

REFERENCES

[1] CompatibleOne, “Compatibleone project,” Website, available online at
www.opencloudware.org, last visited on July 6, 2012.

[2] OpenCloudware, “Opencloudware project,” Website, available online at
www.compatibleone.org, last visited on July 6, 2012.

[3] BONFIRE, “European funded project bonfire - testbeds for internet of
services experimentation,” Website, available online at www.bonfire-
project.com, last visited on July 6, 2012..

[4] ZABBIX, “Zabbix - enterprise-class open source monitoring solution,”
Website, available online at www.zabbix.com, last visited on July 6,
2012.

[5] RabbitMQ, “Rabbitmq,” Website, available online at
www.rabbitmq.com, last visited on July 6, 2012.

[6] A. C. Hume et al., “Bonfire: A multi-cloud test facility for internet of
services experimentation,” in Testbeds and Research Infrastructures for
the Development of Networks & Communities, TRIDENTCOM 2012. 8th
International Conference on. IEEE, 2012, pp. 1–13.

[7] I. Benchmarking, “Iozone benchmarking,” Website, available online at
www.iozone.org, last visited on July 6, 2012.

[8] G. Spanoudakis, C. Kloukinas, and K. Mahbub, “The serenity runtime
monitoring framework,” Security and Dependability for Ambient Intel-
ligence, pp. 213–237, 2009.

[9] Ganglia, “Ganglia monitoring system,” Website, available online at
www.ganglia.sourceforge.net, last visited on July 6, 2012.

[10] NAGIOS, “Nagios monitoring tool,” Website, available online at
www.nagios.org, last visited on July 6, 2012.

[11] GroundWork, “Groundwork,” Website, available online at
www.gwos.com, last visited on July 6, 2012.

[12] MonALISA, “Monalisa: Monitoring agents uasing a large inte-
grated services architecture,” Website, available online at monal-
isa.caltech.edu/monalisa.htm, last visited on July 6, 2012.

[13] J. Tordsson et al., “Towards holistic cloud management,” in European
Research Activities in Cloud Computing, D. Petcu and J. L. Vazquez-
Poletti, Eds. Cambridge Scholars Publishing, 2012, pp. 122–150.

[14] G. Katsaros, R. Kübert, and G. Gallizo, “Building a service-oriented
monitoring framework with rest and nagios,” in Services Computing
(SCC), 2011 IEEE International Conference on. IEEE, 2011, pp. 426–
431.

[15] G. Katsaros, G. Kousiouris, S. Gogouvitis, D. Kyriazis, and T. Var-
varigou, “A service oriented monitoring framework for soft real-time
applications,” in Service-Oriented Computing and Applications (SOCA),
2010 IEEE International Conference on. IEEE, 2010, pp. 1–4.

[16] G. Katsaros, R. Kübert, G. Gallizo, and T. Wang, “Monitoring: A fun-
damental process to provide qos guarantees in cloud-based platforms,”
Cloud computing: methodology, systems, and application, pp. 327–339,
2011.

[17] S. De Chaves, R. Uriarte, and C. Westphall, “Toward an architecture for
monitoring private clouds,” Communications Magazine, IEEE, vol. 49,
no. 12, pp. 130–137, 2011.

[18] G. Katsaros, G. Gallizo, R. Kübert, T. Wang, J. Fitó, and D. Henriksson,
“A multi-level architecture for collecting and managing monitoring
information in cloud environments,” in Cloud Computing and Services
Science, 2011 CLOSER. 1st International Conference on. IEEE, 2011,
pp. 1–4.

[19] G. Katsaros, G. Gallizo, R. Kübert, T. Wang, J. Fitó, and D. Espling,
“An integrated monitoring infrastructure for cloud environments,” Cloud
Computing and Services Science, pp. 149–164, 2012.

[20] B. Koenig, J. M. A. Calero, and J. Kirschnick, “Elastic monitoring
framework for cloud infrastructures,” IET Communications, to appear
in the IET Digital Library.

[21] S. Clayman, G. Toffetti, A. Galis, and C. Chapman, “Monitoring services
in a federated cloud - the reservoir experience,” in Achieving Feder-
ated and Self-Manageable Cloud Infrastructures: Theory and Practice,
M. Villari, I. Brandic, and F. Tusa, Eds. IGI Global, 2012.

[22] CloudWatch, “Amazon cloudwatch,” Website, available online at
www.aws.amazon.com/cloudwatch, last visited on July 6, 2012.


