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Abstract: With decades of research and development, confocal micro-
scopes have been the work horse of scientific and industrial 3D measure-
ment. However, due to its requirement for axial scanning, its range of appli-
cation is limited by its slow measurement speed. Chromatic confocal mea-
surement systems have been developed to eliminate the need for mechani-
cal scanning. Nevertheless, they are still bottle-necked by the transfer and
processing of densely sampled spectral data. In this article, Bayesian exper-
imental design is applied to the chromatic confocal measurement scheme,
allowing for more efficient spectral sampling. Recurrent neural network
(RNN) is trained to approximate full Bayesian experimental design with
much less computation. Simulations have demonstrated that experimental
design approximated by RNN provides better results than an equidistant
sampling scheme and performance close to full Bayesian experimental de-
sign.

1 Introduction

Confocal microscope has been widely applied in various fields due to its supe-
rior resolution and unique depth-discerning capability [HWS81]. In a conven-
tional confocal system, a monochromatic point source is projected into the ob-
ject space for illumination and the returning light is reflected to a pinhole which
guarantees that light gets fully transmitted to the detector only when the ob-
ject is in focus. In order to retrieve the depth information, the system has to
be shifted axially with respect to the object while the detector records intensity
measurements at different locations. This scanning generates a Gaussian-like
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Figure 1.1: Confocal microscope requires both axial and lateral scanning.

signal which can be utilized to retrieve the depth of the object. In order to get a
full 3D measurement of the object, the system has to be scanned also laterally.
Confocal measurement is slow due to its requirement for axial and lateral scan-
ning. Various technologies have been developed to accelerate these processes,
such as chromatic confocal microscope [MPPQ84] and various array scanning
microscopes [EAH02, DLY+13]. However, two fundamental problems remain
unsolved. In the axial direction, when we are dealing with confocal or chromatic
confocal signal, we are always trying to locate the location of a quasi-Gaussian
peak which directly reflects the location/depth of the object under measurement.
According to estimation theory the width of the peak is directly related to the sen-
sitivity of the system, and in this case people are always trying to build a system
with a peak as narrow as possible in order to increase the sensitivity. Neverthe-
less, a narrower peak means that the information about the object is only con-
tained within a tiny subset of support where all the rest of the signal are simply
zeros. To measure the complete signal with such sparsity like what’s typically
done in a chromatic confocal system with spectrometer is highly inefficient. The
second fundamental problem is related with the density of measurement. Light
which is not focused on the object will spread across adjacent area of a single
measurement point, limiting the minimum distance between two simultaneous
lateral measurement points that prevents crosstalk. This article aims to tackle
the first problem through simulations of Bayesian experimental design and its
accelerated approximation based on Recurrent Neural Network.
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2 Chromatic Confocal Measurement Model

The target of chromatic confocal measurement is to retrieve the depth of the mea-
surement position via the location of the Gaussian-like peak. From the point of
view of parameter estimation, the canonical way to do this is to build a mea-
surement model and apply Bayesian inference on the parameters of interest. The
measurement model is composed of two parts, the signal model and the noise
model. The signal model describes the relationship between an ideal signal, or
expectation of the signal, and the parameters to be estimated. And the noise
model represents the amount of noise added to the ideal model.

In the case of chromatic confocal measurement, we assume that the signal is a
Gaussian function expressed by the following equation:

ŷ = θ1e
− (λ−θ2)2

2σ2

where θ1 represents the amplitude of the signal and θ2 represents the location of
the signal. θ1 is mainly determined by the reflectance of the object and θ2 reflects
the axial position of the object. λ denotes the wavelength. σ represents the width
of the Gaussian-shaped chromatic confocal signal and is determined by proper-
ties of the optical system such as the numerical aperture. Assuming normally
distributed noise, the complete model is expressed as a normal distribution over
the combination of signal and noise:

y ∼ N (ŷ, σn) (2.1)

where σn describes the variance of the noise and is mainly determined by the
camera.

Based on Bayes theorem, the parameter estimation task is relatively straight-
forward by calculating the posterior probability distribution of the parameters
based on the measurement model. In this case, the parameters of interest are
θ = {θ1, θ2}, where θ1 contains information of the object texture and θ2 con-
tains the depth information. The posterior is proportional to the product of prior
and likelihood. Without any prior knowledge, the prior distribution is considered
to be flat across the valid support so that all parameter values are equally possible
when no measurements are made. The likelihood comes directly from the mea-
surement model, as shown in Eq. (2.1). Therefore, the posterior distribution can
be calculated up to a certain scale factor:

p(θ|y) = p(θ)p(y|θ)
p(y)

∝ p(θ)p(y|θ)



4 Ding Luo

Figure 2.1: Posterior sampling after measurements are made.

In practice, calculating the posterior distribution with certain resolution is of-
ten computationally prohibitive, and therefore people have been using sampling
techniques such as Markov-Chain Monte Carlo (MCMC) method. In our case,
an ensemble sampler which is affine-invariant [GW] is utilized for drawing the
posterior samples. Once samples are drawn from the posterior distribution, the
estimation becomes trivial by calculating the average of all samples.

Figure 2.1 demonstrates the procedure of posterior sampling for chromatic mea-
surement through simulation. In the left figure, the signal to be measured is
denoted by ŷ and simulated measurements with normally distributed noise are
contained in Y . The middle figure illustrates the posterior probability distribu-
tion of the parameters to be estimated and the right figure shows samples drawn
from such distribution.

The Bayesian framework has two major advantages for parameter estimation.
Firstly, the uncertainty of the estimation can be easily derived by calculating
the variance of the samples. Secondly, the posterior distribution of the parameter
allows for the selection of optimal measurement location in the next measurement
through Bayesian experimental design, as will be discussed in the next section.

3 Bayesian Experimental Design

Bayesian experimental design is the subject of making decisions under uncertain-
ties with limited resource. In our case of measuring a chromatic confocal signal,
conventional systems utilize a spectrometer which disperse various wavelength
onto hundreds of pixels. A major drawback for such approach is that the transfer
of the intensity data can be quite slow. Additionally, in the case of multi-point
chromatic confocal system, the application of multiple spectrometers is often
prohibitive, due to either cost or mechanical constrains. Therefore, wavelength
scanning of the light source is used instead to acquire the chromatic signal. Nev-
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Figure 3.1: Adaptive measurement of a chromatic confocal signal. First row:
each measurement step. Second row: utility function after each measurement
step.

ertheless, such process can be time-intensive depending on the scanning speed of
the light source.

Instead of an equidistant measuring scheme, Bayesian experimental design al-
lows for an adaptive measuring scheme, where location for new measurement
is determined by measurements already conducted. For example, With a tunable
light source whose wavelength can be tuned programmably, suppose that we have
measured intensities of five wavelengths, the question that Bayesian experimen-
tal design tries to answer is which wavelength we should look at next so that
estimation could be made most efficiently in the end.

The profit generated by measurement at a certain wavelength is described by a
utility function over the design space. There are various different utility functions
which focuses on different aspects of the design. Here we will take the Kullback-
Leibler divergence between the posterior and the new posterior with the new
measurement. The utility function is expressed as the expectation of this KL
divergence under the posterior predictive distribution [Rya03]:

U(d) = Ey|d[DKL(p(θ|Y, y, d)‖p(θ|Y ))]

=

∫∫
p(θ|Y, y, d) log p(θ|Y, y, d)

p(θ|Y )
dθp(y|Y, d)dy

=

∫∫
p(θ|Y )p(y|θ, d)

[
log p(y|θ, Y, d)

− log[

∫
p(θ|Y, d)p(y|θ, Y, d)dθ]

]
dθdy
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≈ 1

N

N∑
i=1

{
log p(yi|θi, d)− log

[ 1

M

M∑
j=1

p(yi|θij , d)
]}

{θi} ∪ {θij} ∼ p(θ|Y ), {yi} ∼ p(y|θi, d)

where d represents possible design, i.e. next wavelength to be measured. Cal-
culation of the double integral for this utility function cannot be conducted an-
alytically and therefore is solved by a nested Monte Carlo approximation using
posterior samples drawn for parameter estimation.

Finally, the task is to find the d∗ which maximizes the utility function above.
Although there are stochastic optimization techniques for such problems, peo-
ple typically calculate the utility functions for a grid of design points and take
the maximum one. Notice that this approach is based on the so-called myopic
design. It means that only one further step is considered based on current situa-
tion. This does not guarantee true optimal design for an experiment with multiple
measurements, but in general works very well as a greedy method.

As an example, Figure 3.1 demonstrates the adaptive measurement of a chro-
matic confocal signal. The first row shows the signal to be measured and the
corresponding measurement in each step. In these graphs, ŷ denotes the signal to
be measured, y represents new measurement in each step and Y contains all mea-
surements conducted. The second row shows the utility function over the design
space in each step. In this example, measurement starts by recording intensity of
the wavelength in the middle. Based on the measurement result, parameter esti-
mation is conducted and the utility function over all wavelengths is calculated. In
the next step, intensity is measured at the wavelength which has the largest utility
value.These two steps can be repeated multiple times until utility functions for
all positions drops to zero, indicating that new measurements do not bring any
additional information. The wavelength is normalized to a range from zero to
one as the calculations are all based on simulations.

Figure 3.2 shows the comparison between equidistant measurement scheme and
adaptive measurement scheme based on Bayesian experimental design. As seen
from the posterior samples, with same number of measurement steps, the adap-
tive approach typically generates much concentrated samples, indicating less un-
certainty for parameter estimation. The reason is that the adaptive approach tends
to make new measurements at locations where more information is expected to
be gained about the parameters.
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Figure 3.2: Comparison between equidistant measurement and adaptive mea-
surement. First row: equidistant measurement and its corresponding posterior
estimation. Second row: adaptive measurement and its corresponding posterior
estimation.

4 Accelerated Experimental Design with RNN

As discussed in Section 3, the utility function in Bayesian experimental design
can be approximated by a nested Monte Carlo method:

U(d) ≈ ÛN,M ≡
1

N

N∑
i=1

{
log p(yi|θi, d)− log

[ 1

M

M∑
j=1

p(yi|θij , d)
]}

where {θi} ∪ {θij} are drawn from p(θ|Y ) and {yi} are drawn from p(y|θi, d).

One major disadvantage of Bayesian experimental design is its slow speed. The
nested MC approximation of the utility function shown above is only asymptot-
ically unbiased as an estimator of the utility function. The bias and variance of
estimator depends on the number of posterior samples. As shown in previous
study [Rya03], the variance can be represented as A(d)/N +B(d)/NM and the
bias can be represented to leading order byC(d)/M , whereA,B andC are terms
depending on the sampling distribution. The number of samples needed for ex-
perimental design is naturally much larger than that for inference. To make things
even worse, the inner loop of this nested MC is performed for each design can-
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Figure 4.1: Graph representations of feed-forward neural network and recurrent
neural network.

didate respectively. Due to these reasons, even with faster computers nowadays,
full Bayesian experimental design is only implemented in limited fields, such as
pharmaceutical studies and astronomy. What’s common about these fields is that
although the model behind is often very complex, the time interval between two
experiments are also very long, thus allowing a good design to be found in a
Bayesian way.

The problem of measuring the chromatic confocal signal is exactly opposite.
Real-time decisions have to be made based on a relatively simple model. If the
design speed is not fast enough, it would be more efficient to simply scan the
whole wavelength range like a spectrometer. To accelerate the Bayesian exper-
imental design process, a specific type of neural network, i.e. recurrent neural
network (RNN) can be trained as an approximation.

The inspiration for using this model originates from a recent topic in computer
vison society, called Visual Attention Model [BMK14]. For pattern recognition
task, the researchers try to mimic the human vision system using a recurrent
network. Instead of performing classification on the complete image, a small
image patch is processed by the RNN and the output is both the classification
result and where to look next. The training is implemented with reinforcement
learning. It seems quite obvious that the visual attention model and Bayesian
experimental design share an incredible amount of similarities as both attempt to
gain more information through a series of adaptive measurements/observations.

For a conventional feed-forward neural network with a single hidden layer, the
propagation of data can be expressed as:

s = f1(Ux+ b1)

o = f2(V s+ b2)

where x denotes the input signal, o and s represent the activation of the hidden
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layer and the output layer respectively. The matrices U and V contain weights
describing connections between layers. The non-linear activation functions with
various choices are labeled as f1(·) and f2(·) with b1 and b2 representing biases.
More layers can be added to form more complex networks.

A recurrent neural network is capable of ”memorizing” previous input data due
to the introduction of a feedback loop in the hidden layer. Although more so-
phisticated variations have been developed, the simplest form of a RNN can be
expressed as:

st = f1(Uxt +Wst−1 + b1)

ot = f2(V st + b2)

where t stands for the time-stamp and W is a matrix describing the weights of
the feedback loop.

To train a RNN for approximation of Bayesian experimental design, a series of
experiments are simulated based on the measurement model and full Bayesian
experimental design. Each simulated experiment consists of ten measurement
steps of one chromatic confocal peak. The measurements and the corresponding
utility functions are stored as training data for the RNN, which can be expressed
in the following form:

lt = Uλt + bl

mt = V it + bm

st = lt ◦mt

kt = LSTM(W, st, st−1, bk)

ot = ReLU(Okt + bo)

where lt is a hidden layer with 200 neurons to encode the measurement location,
mt is a hidden layer also with 200 neurons to encode the measured intensity.
st merges lt and mt by taking element-wise multiplication with the Hadamard
operator denoted by ◦. kt is a sophisticated recurrent layer, namely Long Short-
Term Memory (LSTM) [HS97], which memorizes information from previous
measurement steps of an experiment. ot is the output layer with rectified linear
unit (ReLU) as the activation function. U , V , W , O contains weights describing
each layer and bl, bm, bk, bo describe biases for the corresponding layers. The
target of training is to find the weights and biases which best fit the simulated
experiments and the training is conducted through RMSProp optimizer with the
objective of minimizing the mean squared logarithmic error. The whole process
is implemented in Python based on Theano and Keras, and is computed using
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Figure 4.2: Comparison of different measurement schemes.

Quadro K1100M graphics card by Nvidia. The training takes a couple of hours,
but during measurement, the feed-forward calculation of a RNN is much faster
than full Bayesian experimental design which requires multiple nested MC sam-
plings.

As a comparison, 300 experiments of chromatic confocal measurements are sim-
ulated using three approaches: full Bayesian experimental design, approximation
using RNN, and equidistant measurement. Parameters of the signal are drawn
randomly. As can be seen from Figure 4.2, measurement with Bayesian experi-
mental design has a lower average estimation bias compared with an equidistant
measurement method when the number of measurements are equal. The approx-
imation by recurrent neural network does not perform as well as the Bayesian ex-
perimental design, due to the errors generated in the utility functions. However,
it still yields lower bias for parameter estimation compared with the equidistant
measurement scheme.

Conventional feed-forward neural network with even just a single hidden layer,
is proven to be a universal approximator [Cyb89]. It means that any function
can be approximated by a neural network with a single hidden layer as long as
the layer is large enough. RNN is even better and has been proven to be Turing-
complete [Sie95]. While training of feed-forward neural network can be seen as
optimization over functions, training of recurrent neural network can be seen as
optimization over programs. There exists theoretically one RNN which perfectly
approximates Bayesian experimental design of a specific model.
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5 Conclusion

In this article, Bayesian experimental design is applied to chromatic confocal
measurement technology in order to accelerate the measurement process through
an adaptive procedure. Simulations based on Markov-Chain Monte Carlo sam-
pling are conducted to calculate the expected Kullback-Leibler divergence of the
posterior distribution after a new measurement step, which serves as the util-
ity function for guiding the next measurement step. Although experiments con-
ducted through Bayesian experimental design demonstrate better parameter infer-
ence accuracy than common equidistant measurement schemes, the computation
for the nested MC approximation of the utility function is very intensive. There-
fore, a recurrent neural network based on LSTM is trained in order to approx-
imate full Bayesian experimental design with much faster speed. Simulations
have shown that accelerated experimental design with RNN provides better re-
sults than an equidistant sampling scheme and performance close to full Bayesian
experimental design.

All results presented in this report are derived from simulations based on an ideal
measurement model with Gaussian-shaped confocal signal. Although widely ac-
cepted, such Gaussian signal model might not truly reflect practical situations,
where the confocal peak can be asymmetric depending on the specific optical
setup. Therefore, a more accurate measurement model should be built based on
the actual hardware implementation. Real measurements based on Bayesian ex-
perimental design should be recorded to serve as the training data for the RNN
to get a more valid approximation.
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