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a b s t r a c t 

Flow processes of discontinuous fiber reinforced polymers (FRPs) are the essence of several polymer-based 

manufacturing processes. FRPs show a transient chemo-thermomechanical matrix behavior and fiber-induced 

anisotropic physical properties. Therefore, they are one of the most complex materials used in volume produc- 

tion. The general flow behavior is influenced by fibers and their interactions with the matrix and other fibers. 

The consideration of individual fibers is numerically not capable for process simulation of FRP parts. Therefore, 

orientation tensors are used in macroscopic simulations, leading to a loss of information about the fiber network. 

Within this work, novel approximation schemes are presented to determine hydrodynamic and fiber-fiber con- 

tact forces with information provided by the second order fiber orientation tensor. Approximation of these forces 

can henceforth facilitate fiber breakage modeling in macroscopic process simulations. The results are verified by 

numerical simulations with individual fibers of different orientation states and lengths, showing good agreement 

with the verification results. 
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. Introduction 

Due to their possibility of low cost production and their lightweight
otential, discontinuous fiber reinforced polymers (FRP) parts become
ore focused in automotive industry, even for structural parts [1] . Since

he physical properties of the final part depend on manufacturing con-
itions, it is essential to perform an adequate process simulation, with
pecial regards to fiber properties like orientation, length distribution
nd volume content. These aspects are relevant for an realistic struc-
ural simulation and optimization [2–4] . 

The presence of fibers should be regarded in simulations. Fiber ori-
ntation, length distribution and local volume content depend on flow
eld and therefore on the process parameters. In most cases the amount
f fibers is too high to compute every single fiber. Therefore Advani
nd Tucker [5] developed a homogenization scheme to model orienta-
ion distributions with orientation tensors. This approach depends on a
ourth order orientation tensor, which needs to be calculated with a clo-
ure approximation. For this purpose, the literature offers many differ-
nt closure approximations of different complexity [6–8] . For modeling
f flow-induced fiber orientation, most of the actual models are based
n Jeffery’s model for the movement of a single ellipsoid in a viscous
uid [9] . Folgar and Tucker expanded this approach to take fiber in-
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eractions into account, enabling the possibility to reach a steady state
rientation [10] . The Folgar-Tucker model is the base for various mod-
ls with different focuses. Nowadays the most common models are the
SC-model by Wang et al. [11] for highly filled materials and ARD-
odel by Phelps and Tucker [12] for long-fiber materials. Besides these

emi-empirical approaches, the fiber movement (and hence orientation)
an be modeled on micro or meso scale by calculating the hydrodynamic
orces acting to the fibers from the matrix, as shown in [ 13 , 14 ]. Never-
heless, these approaches come along with high numerical effort, since
he forces act on single fibers. To reduce the numerical effort, Meyer
t al. [13] apply and verify the method by regarding only fiber bun-
les for a compression molding process. Although this method shows
ood results for SMC compression molding, it would not be meaningful
or injection molding simulations, since the fibers in the material are
uspended homogeneously in the matrix and not in bundles [15] . 

Other studies show that fiber-fiber interaction forces like lubrication,
riction and normal forces have significant influence on fiber behavior
uring processing [16–19] . These forces act at every contact point of two
bers. The average number of contact points of one fiber can be deter-
ined according to Toll [20] depending on orientation and volume frac-

ion. While the friction force is typically assumed to be of Coulomb type,
everal approaches with different complexity exist for calculation of lu-
e 2, 76131 Karlsruhe Germany. 
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rication force, taking single fibers, matrix viscosity or simple relative
elocity into account [21–23] . By consideration of interaction forces,
ew models to describe the rheological behavior of FRPs and the influ-
nce of interaction on fiber orientation are developed [ 17 , 22 ]. 

The present work presents an extension of the anisotropic simulation
ethod presented by Wittemann et al. [24] and builds on a reinforced

njection molding simulation framework implemented in OpenFOAM
25] . The anisotropic fourth-order viscosity tensor in [24] considers the
nfluence of fibers on the matrix/flow, representing the fiber-to-fluid
art in the balanced stress distribution. However, its counterpart, the
ydrodynamic forces acting from the fluid on the fibers, and the fiber-
ber interaction forces, are not mentioned. In the present work as well
s in [24] , the orientation tensor is used for fiber orientation model-
ng, to keep the numerical effort in an acceptable range. In addition to
24] , novel approaches to approximate hydrodynamic and fiber-fiber in-
eraction forces are developed and integrated in the simulations. These
nclude hydrodynamic drag and lift forces as well as friction and lu-
rication forces. The latter act on fiber-fiber contact points, which are
lso approximated depending on fiber volume fraction, aspect ratio and
rientation state. All needed information is deduced from the second
rder orientation tensor. Reference fibers are represented by the eigen-
ectors of the orientation tensor and the mentioned forces are acting
n these reference fibers. The approaches for force calculation are ver-
fied in numerical studies based on randomly created individual fibers,
epresenting different orientation states and fibers lengths. 

. Theory 

The calculation of fluid-fiber and fiber-fiber interaction forces is
ased on macroscopic fiber orientation modeling, which is therefore
hortly outlined at the beginning of this section. Afterwards, the hy-
rodynamic forces are calculated, acting from fluid on fibers and rep-
esenting the counterpart of the anisotropic viscosity tensor [24] in the
alanced stress distribution. Furthermore, approaches to quantify the
ber-fiber contact points are presented to calculate friction and lubri-
ation forces between fibers. The calculation of the lubrication force
uilds on a novel approach depending on the average fiber-fiber over-
ap. This also includes an approach to determine the average fiber-fiber
ngle within a fiber network. 

.1. Fiber orientation modeling 

As mentioned, the majority of actual orientation models for FRPs is
ased on Jeffery’ Equation [9] , describing the evolution of a single fiber
y 

𝑑 𝒑 

dt 
= 𝑾 𝒑 + 

𝑟 2 − 1 
𝑟 2 + 1 

( 𝑫 𝒑 − 𝒑 ( 𝒑 𝑫 𝒑 ) ) , (1) 

ith p being the normed orientation vector of the fiber, r is the fiber’s
spect ratio and D and W are the strain-rate and vorticity tensor. Since
he numerical effort to calculate the orientation of every single fiber
s too high, Advani and Tucker [5] present a homogenization scheme,
epresenting the fiber orientation by second and fourth order orientation
ensors A and 𝔸 given by 

 = ∫ 𝜓 ( 𝒑 ) 𝒑 𝒑 𝑑 𝒑 (2) 

nd 

 = ∫ 𝜓 ( 𝒑 ) 𝒑 𝒑 𝒑 𝒑 𝑑 𝒑 , (3) 

ith the probability density function 𝜓( p ) for a specific orientation. Sev-
ral evolution models for A have been developed with different speci-
cation focusing on different materials and processes. Within this work
2 
he RSC-model developed by Wang et al. [11] is used, being well suited
or highly fiber-filled materials and describing A by 

𝑑 𝑨 

dt 
+ 

𝜕 𝒖 𝑨 

𝜕 𝒙 
= 𝑾 𝑨 − 𝑨 𝑾 + 

𝑟 2 − 1 
𝑟 2 + 1 

{ 𝑫 𝑨 − 𝑨 𝑫 − 2 [ 𝔸 + ( 1 − 𝜅) 

( 𝕃 − 𝕄𝔸 ) ] 𝑫 } + 2 𝜅𝐶 I ̇𝛾( 𝜹 − 3 𝑨 ) , (4) 

Here, u is the velocity, 𝜅 and C I are the material specific strain-
eduction factor and interaction coefficient, 𝛾̇ is the scalar shear-rate
nd 𝜹 is the unity tensor. The tensors 𝕃 and 𝕄 are determined with
he eigenvectors and eigenvalues of A as described in [11] . The IBOF5
losure approximation presented by Chung and Kwon [8] is chosen to
etermine 𝔸 . 

Of course, information of individual fibers is lost within the usage
f orientation tensors. But the eigenvectors v n of A may be regarded as
eference fibers, with the corresponding eigenvalues 𝜆n as orientation
robability. The resulting formulation 

 = 

∑
𝑛 

𝜆𝑛 𝒗 𝑛 𝒗 𝑛 (5) 

s identical to Eq. (2) in case of three fibers. Here the index n indicates
he number of the eigenvector or corresponding eigenvalue. Since there
re always three eigenvectors, it is n ∈ {1, 2, 3}. Additionally, restric-
ions are A ∈ sym, so v n ⊥v m 

and | v n ⋅ v m 

| = 0 for n ≠ m . Furthermore, it
s | v n × v m 

| = 0 for n = m and the eigenvectors are normed, so all other
ross and dot products are equal to 1. 

.2. Calculation of hydrodynamic forces from fluid on fibers 

This section describes two approaches to compute the longe range
ydrodynamic forces, acting from the fluid on the fibers, as for example
lso described in [ 13 , 26 , 27 ]. Contrary to these studies, the average force
ill be approximated on macroscopic scale within this work. Due to

he orientation tensor, no position or orientation of individual fibers
s known. Nevertheless, the average hydrodynamic force 𝑭 h _ av can be
etermined with well known averaging methods. Dinh and Armstrong
27] for example give the hydrodynamic force on a fiber by 

 

h = Δ𝒖 
(
𝜁t ( 𝜹 − 𝒑 𝒑 ) + 𝜁p 𝒑 𝒑 

)
, (6) 

ith 𝜁 t and 𝜁p being the transverse and parallel drag coefficient of the
ber and Δu is the relative velocity of fiber and fluid. To determine the
verage force, Eq. (6) must be integrated over all possible orientations,
eighted with the corresponding orientation probability as described
y Advani and Tucker [5] . By considering Eq. (2) and Eq. (5) it is 

 

h _ av = ∮ 𝜓 ( 𝒑 ) Δ𝒖 
(
𝜁t ( 𝜹 − 𝒑 𝒑 ) + 𝜁p 𝒑 𝒑 

)
𝑑 𝒑 

= Δ𝒖 
( 

𝜁t 

( 

𝜹 − ∮ 𝜓 ( 𝒑 ) 𝒑 𝒑 𝑑 𝒑 
) 

+ 𝜁p ∮ 𝜓 ( 𝒑 ) 𝒑 𝒑 𝑑 𝒑 
) 

= Δ𝒖 
(
𝜁t ( 𝜹 − 𝑨 ) + 𝜁p 𝑨 

)
= Δ𝒖 

( 

𝜁t 

( 

𝜹 − 

∑
𝑛 

𝜆𝑛 𝒗 𝑛 𝒗 𝑛 

) 

+ 𝜁p 
∑
𝑛 

𝜆𝑛 𝒗 𝑛 𝒗 𝑛 

) 

, (7) 

ince it is ∮ 𝜓( 𝒑 ) 𝑑 𝒑 = 1 . Hence, the average force on fibers within one
lement can be represented by the averaging of single fibers, considering
he orientation tensor or use the eigenvalues and eigenvectors, since all
hree formulation are identical. 

The approach Dinh and Armstrong [27] is not suited to distinguish
etween drag and lift force within a macroscopic simulation with ho-
ogenized material. Therefore, also the work of Meyer et al. [13] is

onsidered, modeling hydrodynamic drag and lift force for fiber bundles
ithin a compression molding process simulation. As shown in Eq. (7) ,

he average forces can be represented by the eigenvectors and eigenval-
es of the orientation tensor, which will be also applied on the approach
f Meyer et al. The hydrodynamic forces are calculated for three refer-
nce fibers in each element. The reference fibers are represented by the



F. Wittemann, L. Kärger and F. Henning Composites Part C: Open Access 5 (2021) 100152 

e  

n  

f  

i

𝑭

w  

i  

W  

r

𝑅  

a

𝜃  

w  

𝑘  

o  

g  

m
 

d  

m  

s  

s  

t  

a  

r  

t  

m  

a

Δ

w  

t  

fi  

l  

1  

i  

i  

1  

m  

i  

s

𝑭

i

𝑘  

s

𝒒

w  

t

𝑭

 

e  

𝜆

2

 

a

𝑛  

w  

c

𝑛  

a

𝑛  

 

b

𝑓

a

𝑔

 

c  

[  

d  

n
 

p  

t  

a

𝑓

a

𝑔

 

f

𝑓

a

𝑔  

 

o  

w  

[  

u  

t  

g

 

r  

l  

u  

b  

S

𝑓  

w  

k  

r  

b  

o

igenvectors of the second order orientation tensor. The total hydrody-
amic force acting on the n -th eigenvector 𝑭 h 𝑛 is a combination of drag
orce 𝑭 d 𝑛 and lift force 𝑭 li 𝑛 , since fibers are non-spherical. The drag force
s derived from Stokes’ law by 

 

d 
𝑛 = 6 𝜋𝜂M 

𝑅̃ 𝑛 Δ𝒖 (8) 

here 𝜂M 

is the matrix viscosity, 𝑅̃ 𝑛 is the radius of a sphere and Δu

s the relative velocity between the sphere and the surrounding fluid.
ithin this work, the drag force acts on cylinders (fibers) with aspect

atio r and not on a sphere, so 𝑅̃ 𝑛 is approximated with 

̃
 𝑛 = 

𝑑 ∕ 2 ⋅ 𝑘 
d 
𝑛 = 

𝑑 ∕ 2 ⋅
[
1 − 𝛼( 𝑟 − 1 ) cos 

(
2 𝜃𝑛 

)
+ 𝛽( 𝑟 − 1 ) 

]
(9)

nd 

𝑛 = arccos 

( 

Δ𝒖 ⋅ 𝒗 𝑛 ‖Δ𝒖 ‖
) 

(10)

here d is the fiber diameter, 𝛼= 0.09 and 𝛽= 0.3125. The description of
 

d 
𝑛 , as given by Eq. (9) represents a numerical fit for hydrodynamic forces
n single fibers with different orientations and aspect ratios, within a
iven flow field. A detailed description and verification of this approxi-
ation is presented by Meyer et al. [13] . 

The material is homogenized and simulations are performed on a
iscretized mesh, hence the real velocity of the fibers is unknown in a
acroscopic process simulation. Since no fiber-matrix separation is as-

umed, the velocity of fibers and fluid within one cell is identical in the
imulations. Nevertheless, there is a relative velocity, due to the exis-
ence of the velocity gradient. For determination of Δu , it is therefore
ssumed that fibers within a cell have (on average) the velocity of the
espective cell center and that the surrounding fluid has the velocity of
he surrounding cells. This is a simplification that is necessary due to ho-
ogenization. Analogous to [13] , the relative velocity Δu is calculated

s 

𝒖 = 

∑
𝑘 ∈ 𝑁 

𝑤 

kj 

𝑊 

𝑗 

(
Δ𝒖 𝑘 − Δ𝒖 𝑗 

)
(11) 

ith w 

kj = exp( − 9 d kj 2 /(2 l 2 )) and 𝑊 

𝑗 = 

∑
𝑘 ∈ 𝑁 

𝑤 

𝑘𝑗 , where d kj is the dis-

ance between the cell centers of cells j and k , and l is the respective
ber length. N is the number of regarded neighbor cells, depending on
 and d kj . It is chosen in the way that average d kj is equal or larger than
.5 times l , but at least a minimum of one generation of cell neighbors
s always considered. The difference between [13] and this work is, that
n [13] the velocity of the surrounding elements is set in relation to a
D-fiber velocity, separated from the velocity of the fluid, creating fiber-
atrix separation, while here the velocity of the surrounding cells is set

n relation to a cell with homogenized material, without fiber-matrix
eparation. 

The lift force 

 

li 
𝑛 = 6 𝜋𝜂M 

𝑑∕2 𝑘 li 𝑛 ‖Δ𝒖 ‖[ [ 𝒒 ] ] , (12) 

s also approximated with a coefficient 

 

li 
𝑛 = 𝛼( 𝑟 − 1 ) sin 

(
2 𝜃𝑛 

)
, (13)

ee Meyer et al. [13] for derivation and verification of 𝑘 li 𝑛 . 
The direction q n must be perpendicular to Δu and is defined as 

 𝑛 = 

(
𝒗 𝑛 × [ [ Δ𝒖 ] ] 

)
× [ [ Δ𝒖 ] ] , (14) 

here [[ ⋅]] represents a normed vector defined as [[ ⋅]] = ⋅∕ ‖ ⋅ ‖. Finally,
he total hydrodynamic force is defined as 

 

h 
𝑛 = 𝑭 d 𝑛 + 𝑭 li 𝑛 = 6 𝜋𝜂M 

𝑑∕2 
(
𝑘 d 𝑛 Δ𝒖 + 𝑘 li 𝑛 ‖Δ𝒖 ‖[[𝒒 𝑛 ]]). (15) 

In summary, 𝑭 h 𝑛 is computed three times in each element, one for ev-
ry eigenvector v n and to be weighted with its corresponding eigenvalue
. 
n 

3 
.3. Calculation of fiber-fiber interactions points 

Toll [20] determines the contact points n c of an average fiber in an
rbitrary volume by 

 c = 

8 ∕ 𝜋𝜙𝑟𝑓 + 4 𝜙( 𝑔 + 1 ) , (16)

ith 𝜙 being the fiber volume fraction. Furthermore, the so-called spe-
ific number of contacts points n c 𝜙 is defined, so 

 c 𝜙 = 

8 ∕ 𝜋𝑟𝑓 + 4 ( 𝑔 + 1 ) (17)

nd 

 c = 𝜙𝑛 c 𝜙. (18)

This definition will be needed in Section 2.4 . 
The scalar invariants of the orientation distribution f and g are given

y 

 = ∮ ∮ |𝒑 𝑛 × 𝒑 𝑚 |𝜓 (𝒑 𝑛 )𝜓 (𝒑 𝑚 )𝑑 𝒑 𝑛 𝑑 𝒑 𝑚 (19) 

nd 

 = ∮ ∮ |𝒑 𝑛 ⋅ 𝒑 𝑚 |𝜓 (𝒑 𝑛 )𝜓 (𝒑 𝑚 )𝑑 𝒑 𝑛 𝑑 𝒑 𝑚 . (20) 

Since this formulation depends on single fiber orientations, it is not
apable for a macroscopic injection molding simulation. Férec et al.
17] present a possibility to compute f with the second and fourth or-
er orientation tensor. Within their work g is neglected and therefore
o approach is given. 

Within this work two new approaches for determination of f and g are
resented, based on the eigenvectors and eigenvalues of A . Therefore,
he number of fibers reduces to three for each regarded volume and f
nd g can be rewritten as 

 = 

3 ∑
𝑛,𝑚 =1 

|𝒗 𝑛 × 𝒗 𝑚 |𝜆𝑛 𝜆𝑚 (21) 

nd 

 = 

3 ∑
𝑛,𝑚 =1 

|𝒗 𝑛 ⋅ 𝒗 𝑚 |𝜆𝑛 𝜆𝑚 . (22) 

Due to the restriction of A ∈ sym, mentioned in Section 2.1 , the
ormulation of f and g can be simplified to 

 = 3 𝜋∕8 
∑
𝑛 ≠𝑚 
𝜆𝑛 𝜆𝑚 = 3 𝜋∕8 

(
2 𝜆1 𝜆2 + 2 𝜆1 𝜆3 + 2 𝜆2 𝜆3 

)
(23) 

nd 

 = 𝜆𝑛 𝜆𝑛 = 𝜆1 𝜆1 + 𝜆2 𝜆2 + 𝜆3 𝜆3 . (24)

The factor 3 𝜋/8 is introduced in [17] to fit the analytical result
f f for 3D-quasi-isotropic orientation. The eigenvector-based approach
ithin this work ( Eq. (21) ) produces identical results for f compared to

17] (see Section 3.3 and the Appendix). Therefore, the factor is also
sed within this work to calculate the invariant f . The determination of
he contact points can still be improved with the recognition of invariant
 . 

A critical look at Eq. (23) and Eq. (24) shows, that f and g can be
epresented by the eigenvalues and corresponding fitting parameters,
ike 3 𝜋/8 in case of f . Of course, the results could be further improved by
sing more than one fitting parameter. Hence, the factors f and g can also
e approximated with a polynomial fit, depending on the eigenvalues.
uch a formulation is represented by 

 = 

3 ∑
𝑛,𝑚 =1 

𝑀 𝑛𝑚 ̃𝜆𝑛 ̃𝜆𝑚 , (25)

ith M nm 

containing the polynomial coefficients and 𝜆𝑛 = ( 𝜆1 𝜆2 1 ) to
eep the function simple, since the information can be completely rep-
esented by two eigenvalues. The approximation for g is identical. The
est fitting parameters for f and g are determined with a gradient-based
ptimization algorithm based on the results in Section 3.3 . 
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Fig. 1. One node for determination of F norm , including four fibers (green) with 

three contact points. The contact points are homogeneously distributed along 

the fiber. 
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Fig. 2. Two fibers (green) with distance vector h , pointing from one fiber center 

two the other. Assumption of identical distance in all directions, so it is ℎ 1 = ℎ 2 = 
ℎ 3 = ||𝒉 ||∕ √3 . 
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.4. Calculation of fiber-fiber interaction forces 

The three forces appearing at every fiber-fiber contact point are fric-
ion force F fr , lubrication force F lu and normal force F norm . The friction
orce is assumed to be of Coulomb type and defined as 

 

fr = 𝑘 fr ‖𝑭 norm _ av ‖[[Δ𝒖 fib 

]]
(26) 

ith friction factor k fr and the normalized relative velocity of two fibers
[Δ𝒖 fib ]] . The magnitude of the average normal force may be computed
imilar to [ 23 , 28 , 29 ] by 

𝑭 norm _ av ‖ = 

32 
5 𝜋2 
𝐸 𝑑 2 𝑓 3 𝜙3 , (27) 

ith E being the elastic modulus of the fibers. Since the invariant g is
pproximated within the present work, the normal force can also be
escribed with respect to g and not only to f . The average normal force
iven in Eq. (27) is presented by Toll and Månson [29] . They define the
ormal force by one so-called node, including three fiber-fiber contact
oints as illustrated in Fig. 1 . Due to [29] the nodal force is given by 

𝑭 norm ‖ = ∫
𝜙

0 

1 
𝑎 f 𝑠 
𝑑𝜙, (28) 

ith 𝑎 f being the average node space (see Fig. 1 ) and ̄𝑠 being the average
odal compliance, given by 

̄ = 

2 𝑎 f 
3 

𝜋𝐸 𝑑 4 
. (29)

According to Fig. 1 the average node space 𝑎 f is simply given by 

 f = 2 𝑙 
𝑛 c 

= 2 𝑙 
𝜙𝑛 c 𝜙

. (30)

Furthermore, the number of nodes per volume is given by 

 node = 

4 𝜙
𝜋𝑑 2 𝑎 f 

, (31)

nd the average normal force is given by 

|𝑭 norm _ av || = 

||𝑭 norm ||
𝑛 node 𝑑 

, (32) 

s shown by Toll and Månson [29] . To this point, no assumptions or
implifications about the number of contact points are made in [29] , so
qs. (28) - (32) can be used to calculate the normal force in the present
ork. Combining Eqs. (28) - (30) leads to 

 

norm = 

𝜙

∫
0 

𝐸 𝑑 4 𝜙’ 4 𝑛 4 c 𝜙

8 𝑙 4 
𝑑 𝜙’ = 

𝐸 𝑑 4 𝜙5 𝑛 4 c 𝜙

40 𝑙 4 
. (33) 

So, the final average normal force is given by combining Eqs. (31) -
33) with 

|𝑭 norm _ av || = 

𝜋𝐸 𝑑 5 𝜙3 𝑛 3 c 𝜙

80 𝑙 3 
= 

𝜋𝐸 𝑑 5 𝜙3 

80 𝑙 3 
(
8∕𝜋rf + 4 ( 𝑔 + 1 ) 

)3 
. (34) 

It should be noted that in case of n c 𝜙 = 8 rf 𝜙/ 𝜋, which is the assump-
ion within [29] , Eq. (34) is identical to Eq. (27) . By not neglecting the
4 
 -term, the average normal force and hence the friction force is predicted
ith more detail, especially in case of short fibers or high orientations,
here g is more important. 

Since the friction force is acting on microscopic scale, the relative
elocity Δu ( Eq. (11) ) is not valid as relative velocity of two neighbor
bers. The relative velocity of two fibers centers in one cell is given by 

𝒖 fib = 𝑫 𝒉 = 

⎛ ⎜ ⎜ ⎝ 
𝐷 11 ℎ 1 + 𝐷 12 ℎ 2 + 𝐷 13 ℎ 3 
𝐷 21 ℎ 1 + 𝐷 21 ℎ 1 + 𝐷 23 ℎ 3 
𝐷 31 ℎ 1 + 𝐷 31 ℎ 1 + 𝐷 33 ℎ 3 

⎞ ⎟ ⎟ ⎠ , (35) 

ith h being the average distance vector between the fiber centers, as
hown in Fig. 2 . 

By further assuming the fiber-fiber distance to be equal in every di-

ection ( ℎ 1 = ℎ 2 = ℎ 3 = ||𝒉 ||∕ √3 ) , which is an admissible simplification
ue to the homogenization, Eq. (35) can be simplified to 

𝒖 fib = 

||𝒉 ||√
3 

⎛ ⎜ ⎜ ⎝ 
𝐷 11 + 𝐷 12 + 𝐷 13 
𝐷 21 + 𝐷 21 + 𝐷 23 
𝐷 31 + 𝐷 31 + 𝐷 33 

⎞ ⎟ ⎟ ⎠ = 

||𝒉 ||√
3 

3 ∑
𝑗=1 
𝐷 ij = 

||𝒉 ||√
3 
Δ
∼
𝐮 

fib 
, (36) 

The relative velocity is normalized for computation of the friction

orce, so ||𝒉 ||∕ √3 can be neglected and the distance vector does not need
o be determined. Finally, the friction force is given by Eq. (26) with the
verage normal force given in Eq. (34) and the relative velocity of two
bers given in Eq. (36) . 

Similar to [ 22 , 23 ] a linear model for lubrication force, depending
n matrix viscosity 𝜂M 

, projected overlapping area A ff (Section 2.5,
q. (40) ) and relative velocity Δu fib ( Eq. (36) ) is assumed. Furthermore
nd according to [22] , the lubrication force is assumed to be recipro-
al proportional to the fiber-fiber distance, since it vanishes for rising
istances. Therefore, the lubrication force is defined as 

 

lu = 

𝑘 lu ||𝒉 ||∕ √3 
𝜂M 

𝐴 ff
||𝒉 ||√

3 
Δ
∼
𝐮 fib = 𝑘 lu 𝜂M 

𝐴 ffΔ
∼
𝐮 fib , (37) 

ith k lu being the lubrication factor. 

.5. Calculation of projected fiber-fiber overlapping area 

The projected overlapping area A ff depends on the fiber-fiber angle
 and fiber diameter. Two cases must be separated, one is 𝜑 ≥ 𝜑 crit ,
here the area is a parallelogram ( Fig. 3 a and b), the other is 𝜑 < 𝜑 crit ,
here the area is a hexagon, as shown in Fig. 3 c. For most orientation

tates it is 𝜑 > 𝜑 crit making A ff independent of fiber length, if the area
s assumed to be not near the fiber ends. 

For 𝜑 ≥ 𝜑 crit , A ff is simply given by 

 f f = 

𝑑 2 

sin ( 𝜑 ) 
. (38)
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Fig. 3. Two overlapping fibers with highlighted overlap area (green). Abitrary angle 𝜑 > 𝜑 crit (a), critical angle 𝜑 crit (b) and over-critical angle 𝜑 < 𝜑 crit (c). Red 

area is substracted for calculation of overlap. 

Fig. 4. Orientation of a single fiber (green), described by two angles 𝜔 1 (ocher) 

and 𝜔 2 (blue). 
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For 𝜑 ≤ 𝜑 crit and realistic aspect ratios r , the assumption of small
ngles sin ( 𝜑 ) ≈ 𝜑 can be made, resulting in 𝜑 crit = 2/ r . The overlap
rea ( Fig. 3 c green) can then be approximated by subtracting the red
reas in Fig. 3 c from the complete projected fiber surface area, so 

 f f = 𝑑 2 𝑟 − 

𝑑 2 𝑟 2 

4 
𝜑. (39)

Finally, the overlapping area is defined as 

 f f = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑑 2 

sin ( 𝜑 ) for 𝜑 > 𝜑 crit 

𝑑 2 𝑟 − 

𝑑 2 𝑟 2 

4 𝜑 for 𝜑 ≤ 𝜑 crit 
. (40)

The average angle 𝜑 within a fiber network can be approximated
ith f by 

 = 

4 ∕ 𝜋𝑓, (41)

here the factor 4 ∕ 𝜋 is again introduced to fit the average angle of a 3D-
uasi-isotropic orientation. 

. Results and Discussion 

.1. Individual fibers model for numerical verification 

As verification cases, 22 different orientation states are regarded,
ach one built up from 500 randomly created individual fibers. The ori-
ntation of a single fiber is fully described by two angles 𝜔 1 and 𝜔 2 ,
s shown in Fig. 4 . To create different orientation states, the range of
alues for 𝜔 1 and 𝜔 2 is defined smaller for higher orientation state num-
ers. Orientation State 1 is ‘3D- quasi-isotropic’, so 𝜔 1 ∈ [0, 𝜋] and
os( 𝜔 2 ) ∈ [0, 1]. In this way, the angle change is not identical in x 2 -
nd x 3 -direction, since injection molding parts are designed thin walled
n most cases, so in one ‘non-flow-direction’ the degree of orientation
rientation is lower than in the other. 
5 
The fibers are created using the ‘rand’ function within Matlab
2019a (creating a random value between zero and one), multiplied
ith the maximum values of 𝜔 1 and cos( 𝜔 2 ) in the corresponding ori-

ntation state. 
For the ongoing orientation states, the ranges are reduced by 𝜋/20

or 𝜔 1 and 1/20 for cos( 𝜔 2 ), until Orientation State 21, where 𝜔 1 = 𝜔 2 = 0,
hich represents the full alignment in x 1 -direction. Orientation State
2 is a planar isotropic distribution in the x 1 - x 2 -plane ( 𝜔 1 ∈ [0, 𝜋] and
 2 = 0). Some examples of the orientation states with single fiber orien-

ations and corresponding orientation tensors are shown in Fig. 5 . 

.2. Numerical verification of hydrodynamic forces 

To verify the approach presented in Section 2.2 for calculating the
ydrodynamic forces based on eigenvectors, the acting forces are cal-
ulated twice: firstly, for 500 individual fibers and, secondly, for the
orresponding orientation tensor. In this way, each orientation state is
valuated for two different relative velocities. Afterwards the average
orce is determined for the fibers ( 𝑭 h _ av _ f ) and the eigenvector-based
ethod ( 𝑭 h _ av _ EV ). For the individual fibers, the average force is deter-
ined by 

 

h _ av _ f = 1∕𝑁 

𝑁 ∑
𝑛 =1 

𝑭 h _ av _ f 
𝑛 , (42) 

here N is total number of fibers, being 500 in this case and the orien-
ation probability is 𝜓( p ) = 1/ N . The average force of the eigenvectors
s weighted with the corresponding eigenvalues so 

 

h _ av _ EV = 

3 ∑
𝑛 =1 
𝜆𝑛 𝑭 

h _ av _ EV 
𝑛 (43) 

The relative velocities, matrix viscosity and fiber aspect ratio are cho-

en to be Δu a = (1 0 0) m/s, Δ𝒖 b = (1∕ 
√
3 1∕ 

√
3 1∕ 

√
3 ) m∕s , 𝜂M 

= 20 Pa
s and r = 100. The results are shown in Fig. 6 . 

In Fig. 6 a, the average drag force in dominant in x 1 -direction, since
his is the direction of Δu . With higher degree of orientation, the drag
orce (acting in x 1 -direction) decreases. 𝐹 drag _ av 2 and 𝐹 drag _ av 3 are zero
ince Δu 2 = Δu 3 = 0. In case of (planar) quasi-isotropic orientation or
ull alignment it is 𝐹 lif t _ av = 0 , due to the symmetric distribution of the
rientation states to Δu . 𝐹 lif t _ av 1 and 𝐹 lif t _ av 3 are about zero in general,
ince the orientation distribution in x 3 -direction is always symmetric to
u and the lift force is perpendicular to Δu . The fibers are created ran-
omly, hence the orientation is not exactly symmetric, and 𝐹 lif t _ av 3 is no
xactly zero. 
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Fig. 5. Visualization of different orienta- 

tion states with corresponding orientation 

state number and second order orientation 

tensor. Red dots are the orientations of the 

individual fibers on a unity sphere. 

 

F  

i  

T  

o  

c  

m
 

a  

m  

s  

v  

a  

t  

a

3

 

u  

a  

t
 

i  

i

𝒃

𝑓

 

e  

t

𝒃

 

i

𝑏

 

b

𝑓

 

e  

Table 1 

Coefficients of polynomial fit of scalar invariants f and g . 

Entry of M nm Value for approximating f Value for approximating g 

M 11 3.27 3.3011 

M 22 -6.6744 0.4173 

M 33 1.3475 1.5728 

M 12 + M 21 4.63897 4.2687 

M 13 + M 31 -4.5262 -3.8701 

M 23 + M 32 2.482 -1.9965 
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In Fig. 6 b it is 𝐹 drag _ av 1 = 𝐹 
drag _ av 
2 = 𝐹 

drag _ av 
3 due to Δu 1 = Δu 2 = Δu 3 .

or quasi-isotropic orientation the lift force is again zero, based on the
sotropic fiber distribution of the fibers towards the relative velocity.
his is also the reason for 𝐹 lif t _ av 1 = 𝐹 lif t _ av 2 = 0 in case of planar isotropic
rientation. Of course there are lift forces on individual fibers, but they
ancel each other out during averaging, which is a disadvantage of the
acroscopic approach. 

As expected within Section 2.2 the average forces for the orientation
veraging of individual fibers and for the eigenvector-based approach
atch exactly for both relative velocities. The force distribution with re-

pect to orientation and relative velocity represents meaningful results,
erifying the eigenvector-based method to be suitable to determine the
verage hydrodynamic force for an arbitrary orientation state. Never-
heless, the information cannot be set in relation to individual fibers
gain, but only to the reference fibers given by the eigenvectors. 

.3. Numerical verification of fiber-fiber contact points 

The determination of contact points by eigenvectors and eigenval-
es is verified by comparison to the calculations with individual fibers
s described in Section 3.1 and to the approach of Férec et al. [17] (in-
eraction tensor) for different orientation states and aspect ratios. 

Within their work, Férec et al. present a second and fourth order
nteraction tensor to evaluate the total strain in a FRP. The second order
nteraction tensor is defined by 

 = ∮ ∮ 𝒑 𝑛 𝒑 𝑛 |𝒑 𝑛 × 𝒑 𝑚 |𝜓 (𝒑 𝑛 )𝜓 (𝒑 𝑚 )𝑑 𝒑 𝑛 𝑑 𝒑 𝑚 . (44) 

Due to this definition, f is exactly given by 

 = trace ( 𝒃 ) = ∮ ∮ |𝒑 𝑛 × 𝒑 𝑚 |𝜓 (𝒑 𝑛 )𝜓 (𝒑 𝑚 )𝑑 𝒑 𝑛 𝑑 𝒑 𝑚 . (45) 

Consequently, this formulation is also depending on single fiber ori-
ntations. Within [17] also an approximation to represent b with orien-
ation tensors is given, so 

 = 𝑨 − 𝔸 𝑨 . (46) 

Finally, the mentioned factor (3 𝜋)/8 is used to fit to the quasi-
sotropic average value and b is defined by 

 = 

3 𝜋
8 
( 𝑨 − 𝔸 𝑨 ) . (47) 

So in case of the interaction tensor, the scalar invariant f is defined
y 

 interactiontesnor = trace ( 𝒃 ) = 𝜹
(3 𝜋

8 
( 𝑨 − 𝔸 𝑨 ) 

)
. (48) 

In a first step the computation of the scalar invariants f and g with
igenvectors and eigenvalues Eq. (23) -( (25) ) is verified. Therefore f and
6 
 are also determined with the individual fibers, using Eq. (19) and
q. (20) as well as with the method presented in [17] . The second and
ourth order orientation tensors are directly computed with the 500 indi-
idual fibers. The results are shown in Fig. 7 . Due to the correction factor
 𝜋/8, introduced in Eq. (23) in Section 2.3 , the results for the interaction
ensor [17] and for the proposed eigenvector-based approach agree with
he value of f for 3D- quasi-isotropic orientation. Both approaches show
 rise of deviation for higher orientations, with a maximum of about 90
 for Orientation State 20 (highly aligned fibers in x 1 -direction). For

ull alignment (Orientation State 21) both results are 0, and for planar
sotropic distribution (Orientation State 22) the deviation is about 7.5
. Both approaches give identical results, but for the general case the

dentity of the eigenvector method and the interaction tensor method
an only be shown, if the relation between the fourth and the second
rder orientation tensor is exactly known, since it is necessary for com-
uting the interaction tensor. The exact formulation of the fourth order
rientation tensor is only defined for a few orientation states like 3D-
uasi-isotropic and full alignment. The identity for these two cases is
hown in the Appendix. 

For the polynomial fit ( Eq. (25) ), the parameters are determined by a
radient-based optimization, based on the calculations with individual
bers. The resulting parameters are given in Table 1. The polynomial ap-
roximation of f is not zero for full alignment, nevertheless this case will
ot be reached in a real process. Besides full orientation, the maximum
eviation is about 8.1 % for Orientation State 10. The mean square error
s 0.0099 for the eigenvector-based and interaction tensor-based results
nd 0.00099 for the polynomial approximation, being 10 times smaller.

Fig. 7 b shows the results of g for individual fibers, the eigenvector
nd the polynomial approach. The interaction tensor is not compared,
ince Férec et al. [17] does not propose an approach for g . The deviation
f the eigenvector method to the solution with individual fibers is recip-
ocal to f , fitting for full alignment and having the maximum deviation
or 3D- quasi-isotropic state. The maximum deviation is about 33 % and
ower than the deviation for the calculation of f . For planar isotropic ori-
ntation, the deviation is about 20 %, being nearly three times higher
ompared to f . Due to the good agreement, no correction factor is used
or determination of g . The polynomial approach shows the maximum
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Fig. 6. Comparison of average hydrodynamic forces cal- 

culated with individual fibers (drag = black, lift = red) and 

orientation tensor (drag = green, lift = blue) for 22 different 

orientation states (cf. Figure 5 ). The relative velocities are 

Δu a = (1 0 0) m/s (a) and Δ𝒖 b = (1∕ 
√
3 1∕ 

√
3 1∕ 

√
3 ) m∕s 

(b). 
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7  

d  

a  
eviation for planar isotropic orientation with about 2.5 %. The mean
quare error is 0.016 for the eigenvector based and 0.000033 for the
olynomial approximation, being about 484 times smaller. 

Fig. 8 compares the results for calculation of average fiber-fiber con-
act points according to Eq. (16) . The results represent a fiber volume
raction of 𝜙 = 0.35 and a fiber aspect ratio of r = 10 ( Fig. 8 a) or r = 100
 Fig. 8 b). For both aspect ratios, the novel approaches are always closer
o the individual fibers than the interaction tensor method [17] , due to
onsidering g , being more significant for small aspect ratios. The offset
s 4 𝜙( g + 1), see Eq. (16) . The recognition of g is more important for
7 
igher orientations, since g rises with the degree of orientation while f
ecreases. 

Hence, the interaction tensor deviates more for higher orientation
tates, compared to the eigenvector-based approach, which is getting
loser to the individual fiber solution again. 

The polynomial approximation shows the best results for most ori-
ntation states, with slightly too high predictions for Orientation States
-11 and for the planar isotropic Orientation State 22. The maximum
eviation is observed at full alignment (State 21) with 29.2 % for r = 10
nd 291 % for r = 100. Full alignment is the only orientation state, at
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Fig. 7. Values of f (a) and g (b) for the different approaches. Comparisson of eigenvector approach (red, + ) and polynomial approximation (yellow, ×) to solution 

with individual fibers (green, □) and interactions tensor based method presented in [17] (blue, ○). 

Fig. 8. Computed number of fiber-fiber contact points for 𝜙= 0.35 and r = 10 (a) and r = 100 (b). Comparisson of eigenvector approach (red, + ) and polynomial 

approximation (yellow, ×) to solution with individual fibers (green, □) and interactions tensor based method presented in [17] (blue, ○). 
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hich the eigenvector method provides better results than the polyno-
ial approximation. The maximum deviation of the eigenvector method

s 29.4 % for r = 10 at Orientation State 17 and 66 % for r = 100 at Ori-
ntation State 19. The mean square error is about 1.0132 for r = 10 and
2.85 for r = 100 in the eigenvector case, while it is 0.0917 for r = 10 and
.85 for r = 100 in the polynomial fit case, approximately 10 times lower
or both aspect ratios. 

In summary the results of the eigenvector approach are in acceptable
greement to the ones of the individual fibers and fit better than the
urrent state of research. Therefore, Eq. (16) , (23) and (24) are qual-
fied for determination of fiber-fiber contact points. Nevertheless, the
olynomial approximation provides significantly better results than the
igenvector-based approach. The better results of the polynomial ap-
roach are meaningful, since the input for both approaches is the same
eigenvalues), but the polynomial approach includes more individual
tting parameters. For the 3D-simulations in Section 4 , consequently,
he polynomial approach is used to determine the scalar invariants f

nd g . 

a  

8 
.4. Verification of fiber-fiber angle approximation 

Similar to the contact points the approach to determine the average
ber-fiber angle is novel and must be verified. The mean angle is verified
ith the same 22 orientation states, computed with 500 individual fibers
s described in Section 3.1 . 

There are 500 fibers per orientation state, one angle includes two
bers and the angle of a fiber with itself is not considered, hence, there
re 124500 individual angles per orientation state. Afterwards, the av-
rage of these 124500 angles is built for comparison to Eq. (41) . 

The angle of two individual fibers p n and p m 

is given by 

 fibers = co s −1 
(
𝒑 𝑛 ⋅ 𝒑 𝑚 

)
. (49) 

The f needed do determine the average angle with Eq. (41) is also
omputed with the individual fibers ( Eq. (19) ), since the aim of this
ection is to verify the approximation of the average angle not any ap-
roximation of f . The results are shown in Fig. 9 . The predicted average
ngle fits well for orientation states with low numbers and is slightly
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Fig. 9. Computed average fiber-fiber angle by averaging single angles of indi- 

vidual fibers (black, □) and approximation based on f given by Eq. (41) (green, 

∆). 
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Fig. 11. 3D-Model for injection molding simulations. Square plate with circular 

inlet in red, outlet in green and cutting plane for results. 
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oo high for higher orientation, having a maximum deviation of about
6 % for orientation state 20. The mean square error is 8.4587, so on
verage the approximation deviates about 2.26°. Eq. (41) is linear in f
o the deviation when using an approximation for f corresponds to the
eviation of the approximation towards the f computed with individual
bers. 

.5. Numerical verification of fiber-fiber overlap area 

In a next step, the approximation of the fiber-fiber overlap area needs
o be verified, being relevant for the calculation of the lubrication force.
gain, the approximated results are compared to calculation with in-
ividual fibers explained in Section 3.1 . For the individual fibers, the
ndividual overlap areas are computed, based on Eq. (40) . Here, the in-
ividual angles presented in Section 3.4 ( Eq. (49) ) are used, so there
re 124500 overlap areas for each orientation state, which get averaged
or comparison. Since the eigenvectors are always perpendicular to each
ther (see Section 2.1 ) the calculation of individual overlap areas is not
eaningful for the eigenvector-based and the polynomial approxima-
ig. 10. Computed average fiber-fiber overlap area in mm 

2 for r = 10 (a) and r = 100 (b

yellow, ×) to solution with individual fibers (green, □). 

9 
ion approach. Therefore, Eq. (41) is used to determine the average 𝜑
nd afterwards the average A ff based on Eq. (40) for the orientation
tates and the two novel approaches is computed. 

The results are shown in Fig. 10 for two different aspect ratios r = 10
 Fig. 10 a) and r = 100 ( Fig. 10 b). Both approaches predict a too small
verlap for low- number orientation states ( < 15) for both aspect ratios.
hile the calculated area is too high for the eigenvector-based approach

or higher orientation states ( > 15), the polynomial fit predicts well. One
xception is again full alignment, where the eigenvector-based approach
ts perfect and the polynomial approach shows is maximum deviation
ith about 28 % for r = 10 and about 870 % for r = 100, again, this
rientation state will not be reached in a real process. The deviation of
lanar-isotropic orientation in case of polynomial fit is about 75 % for
 = 10 and about 184 % for r = 100, while it is about 65 % for r = 10
nd about 164 % for r = 100 in case of the eigenvector-based method.
esides full alignment and planar-isotropic, the maximum deviation of
he polynomial approach is about 41 % for r = 10 and about 55 % for
 = 100 at orientation states 10 and 11, while it is about 44 % for r = 10
nd about 73 % for r = 100 at orientation states 17 and 20 for the
igenvector approach. The mean square error of the polynomial fit is
.5e-14 for r = 10 (1.45e-14 without full alignment) and 1.84e-11 for
or r = 100 (3.3e-13 without full alignment). 

For the eigenvector-based approach it is 6e-14 for r = 10 (6.4e-14
ithout full alignment) and 8.5e-12 for r = 100 (8.8e-12 without full
lignment). Ignoring the unrealistic case of full alignment, the polyno-
ial approach creates the better results with a mean square error be-

ng about 4.4 times smaller for r = 10 and about 26.6 times smaller
or r = 100, compared to the eigenvector-based approach. In general,
oth approaches are able predict the overlap area quite adequate, where
). Comparisson of eigenvector approach (red, + ) and polynomial approximation 
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Fig. 12. Injection molding simulation results. Plate cut through the x 2 -plane of symmetry (cf. Fig. 11 ) Fiber orientation component A 11 (a), average hydrodynamic 

force magnitude (b), friction force magnitude (c) and lubrication force magnitude (d). 
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gain the polynomial approach creates better results and is used in the
imulations in Section 4 . 

. 3D Injection molding simulation 

.1. 3D Injection molding simulation model 

Injection molding simulations are performed on a square plate 3D-
odel. The geometry is given in Fig. 11 . The plate is meshed with hex-

hedral elements having 1 mm in x 1 - and x 2 -direction and 0.3 mm in
 3 -direction. The fibers’ aspect ratio is chosen to 75, resulting in a fiber
ength of 1.125 mm, being similar to the simulation model used in [24] .
he cavity is filled with a constant volume flow of 50 cm 

3 /s perpen-
icular to the inlet surface. According to [23] the value for k fr is 0.3.
he approach for the lubrication force is novel, so k lu is also set to 0.3.
his value is arbitrary, since it must be determined with experimental
ata, but within this work, only the principal distribution is regarded.
he inlet boundary condition of the orientation tensor is A 11 = 0.8 at
he top and bottom walls (normal to the x 3 -direction) and 𝐴 11 = 0 . ̄3 at
he plane of symmetry in x 3 -direction, with parabolic distribution in be-
ween. The other entries are A 22 = 4/5 ⋅ (1 − A 11 ), A 33 = 1/5 ⋅ (1 − A 11 )
nd A 12 = A 13 = A 23 = 0. All other material, orientation and flow mod-
ls as well as boundary conditions and parameters are identical to the
imulation model in our previous work [24] . 

.2. 3D Injection molding simulation model results 

Fig. 12 shows the results of the 3D injection molding simulation,
pecifically the fiber orientation as well as the average hydrodynamic,
riction and lubrication forces. The forces show a reasonable distribu-
ion to the corresponding fiber orientation, being high orientated in flow
irection near the walls and more randomly orientated in the core re-
ion. The hydrodynamic force is quite low near the walls and in the
ore center line, since Δu is low in these regions. The region with high
ydrodynamic forces match with the zones where fiber breakage is ob-
erved in the process (near the walls and less in core regions), although
he forces directly on the surface layers are lower. Here other effects like
all interactions are more important, but not content of this simulation.
he friction force is higher within the core region, since it depends on
10 
 

3 
c 𝜙 ( Eq.(26) and Eq. (34) ) and 𝑛 3 c 𝜙 is higher in less orientated regions,
s shown in Section 3.3 . Contrary to the other forces, the friction force
s not higher near the inlet, since it is not depending on the absolute
alue of any relative velocity. The knowledge about fiber-fiber friction
ith respect to orientation may be the base for fiber-matrix separation,
here this is an important aspect. 

In contrast, the lubrication force shows higher values near the wall,
n the high orientated regions, since the overlap area A ff ascends with
igher orientations grades and the velocity gradient is lower in the core
egion. Furthermore, the lubrication force is higher near the inlet, due
o the higher velocity gradient. The higher velocity gradient also creates
igher lubrication forces near the flow front, being not as high as in the
all near regions with higher degree of orientation, due to the lower
 ff. 

Regarding the complete part all forces differ off about magnitudes,
hich is of course due to the change of velocity but also due to change
f fiber orientation. Especially in case of friction force it is only due to
hange of fiber orientation, highlighting the importance of an orienta-
ion dependent modeling. Although these forces do not inflect the flow
imulation within this work, they do in reality, leading to fiber breakage
nd fiber matrix separation. Of course, this also infects the stress distri-
ution within the material and hence the complete flow and viscosity
ehavior of the material in the real process. 

. Conclusion 

New approaches to approximate the forces acting on discontinuous
bers in polymer flow processes are presented. The forces comprise hy-
rodynamic drag and lift force (from fluid on fibers) as well as friction
nd lubrication forces (fiber contact forces). The latter two depend on
he number of fiber-fiber contact points and on the contact area between
he fibers. For friction force, the state-of-the-art approach is extended to
onsider both scalar invariants of orientation. The presented models are
ased on information provided by the second order fiber orientation
ensor. The eigenvectors of the orientation tensor represent reference
bers, with the orientation probability of the corresponding eigenvalue.
he reference fibers enable the calculation of averaged hydrodynamic
orces with single fiber based existing approaches in macroscopic simu-
ations. For calculation of contact forces, the contact points of the fibers
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re needed. Therefore, two approaches, based on the reference fibers
nd a polynomial fit are presented to determine the average number of
ontact points within a fiber network. Here, the polynomial fit showed
etter results regarding different orientation states and fiber lengths. To
pproximate the lubrication force, an approach to determine the aver-
ge fiber-fiber overlap within a fiber network is presented. The approach
s based on the average fiber-fiber angle, which is determined based on
he same models as the contact points. 

To verify the new approaches, numerical experiments with individ-
al fibers in different orientation states and lengths are performed. All
pproaches show good agreement with the numerical results. Further-
ore, a 3D injection molding simulation is performed, showing reason-

ble distribution of the forces within the cavity in relation to the corre-
ponding fiber orientation. 

The new methods provide more information of the material state
uring processing, useful for ongoing works. The new knowledge of ma-
erial internal forces can build the base for extension or modification of
ber orientation and fiber breakage models as well as fiber matrix sepa-
ation models. Furthermore, the interaction forces can be considered in
he momentum equation, which would enable a more detailed and re-
listic flow modelling. Additionally, future studies should focus on the
acroscopic modeling of fiber bending forces, which are also an impor-

ant process phenomenon with significant influence on the mentioned
oints. Besides the mentioned forces, further investigations in modeling
f fiber-wall interactions are meaningful to further improve the predic-
ion accuracy for molding simulation of fiber-reinforced polymer com-
onents. 
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ppendix 

The identity of the determination of f for the method presented in
17] (interactions tensor, IT) and the eigenvector (EV) based approach
 Eq. (23) ) will be shown here for the two orientation states 3D- quasi-
sotropic and full alignment. Only these two states are regarded, since
he exact formulation of the fourth order orientation tensor is known
or these states. 

It is 

 𝐄𝐕 = 2 𝜆1 𝜆2 + 2 𝜆1 𝜆3 + 2 𝜆2 𝜆3 (A.1)

nd 

 IT = 𝛿𝑖𝑗 
(
𝐴 𝑖𝑗 − 𝐴 𝑖𝑗𝑘𝑙 𝐴 𝑘𝑙 

)
. (A.2)

Full alignment: 
11 
In this case the eigenvalues are 𝜆1 = 1 and 𝜆2 = 𝜆3 = 0, so it is 

 EV = 0 . (A.3)

According to [6] the fourth order orientation tensor for full align-
ent is given by A ijkl = A ij A kl , so 

 IT = 𝛿𝑖𝑗 
(
𝐴 𝑖𝑗 − 𝐴 𝑖𝑗 𝐴 𝑘𝑙 𝐴 𝑘𝑙 

)
, (A.4)

ith A kl A kl = 1 the final result is 

 IT = 𝛿𝑖𝑗 
(
𝐴 𝑖𝑗 − 𝐴 𝑖𝑗 

)
= 0 . (A.5)

3D- quasi-isotropic orientation 

In this case the eigenvalues are 𝜆1 = 𝜆2 = 𝜆3 = 1/3, so it is 

 EV = 

6 ∕ 9 = 

2 ∕ 3 . (A.6)

According to [6] the fourth order orientation tensor for 3D- quasi-
sotropic orientation is given by 

 𝑖𝑗𝑘𝑙 = 

−1 ∕ 35 
(
𝛿𝑖𝑗 𝛿𝑘𝑙 + 𝛿𝑖𝑘 𝛿𝑗𝑙 + 𝛿𝑖𝑙 𝛿𝑗𝑘 

)
+ 

1 ∕ 7 
(
𝐴 𝑖𝑗 𝛿𝑘𝑙 + 𝐴 𝑖𝑘 𝛿𝑗𝑙 + 𝐴 𝑖𝑙 𝛿𝑗𝑘 + 𝐴 𝑘𝑙 𝛿𝑖𝑗 + 𝐴 𝑗𝑙 𝛿𝑖𝑘 + 𝐴 𝑗𝑘 𝛿𝑖𝑙 

)
(A.7) 

Furthermore, it is 

 IT = 𝛿𝑖𝑗 
(
𝐴 𝑖𝑗 − 𝐴 𝑖𝑗𝑘𝑙 𝐴 𝑘𝑙 

)
= 𝛿𝑖𝑗 𝐴 𝑖𝑗 − 𝛿𝑖𝑗 𝐴 𝑖𝑗𝑘𝑙 𝐴 𝑘𝑙 = 1 − 𝛿𝑖𝑗 𝐴 𝑖𝑗𝑘𝑙 𝐴 𝑘𝑙 (A.8)

nd 

𝑖𝑗 𝐴 𝑖𝑗𝑘𝑙 𝐴 𝑘𝑙 = 

−1 ∕ 35 𝛿𝑖𝑗 
(
𝛿𝑖𝑗 𝛿𝑘𝑙 + 𝛿𝑖𝑘 𝛿𝑗𝑙 + 𝛿𝑖𝑙 𝛿𝑗𝑘 

)
𝐴 𝑘𝑙 

 

1 ∕ 7 𝛿𝑖𝑗 
(
𝐴 𝑖𝑗 𝛿𝑘𝑙 + 𝐴 𝑖𝑘 𝛿𝑗𝑙 + 𝐴 𝑖𝑙 𝛿𝑗𝑘 + 𝐴 𝑘𝑙 𝛿𝑖𝑗 + 𝐴 𝑗𝑙 𝛿𝑖𝑘 + 𝐴 𝑗𝑘 𝛿𝑖𝑙 

)
𝐴 𝑘𝑙 . 

(A.9) 

Simplifying the first term leads to 

ir st t erm = 

−1 ∕ 35 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝛿𝑖𝑗 𝛿𝑖𝑗 
⏟⏟⏟

3 

𝛿𝑘𝑙 𝐴 𝑘𝑙 
⏟⏟⏟

1 

+ 𝛿𝑖𝑗 𝛿𝑖𝑘 
⏟⏟⏟
𝛿𝑗𝑘 

𝛿𝑗𝑙 𝐴 𝑘𝑙 
⏟⏟⏟
𝐴 𝑗𝑘 

+ 𝛿𝑖𝑗 𝛿𝑖𝑙 
⏟⏟⏟
𝛿𝑗𝑙 

𝛿𝑗𝑘 𝐴 𝑘𝑙 
⏟⏟⏟
𝐴 𝑗𝑙 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
ir st t erm = 

−1 ∕ 35 ( 3 + 1 + 1 ) = 

−1 ∕ 7 . 
(A.10) 

Simplifying the second term leads to 

second term = 
= 1 ∕ 7 𝛿𝑖𝑗 

(
𝐴 𝑖𝑗 𝛿𝑘𝑙 + 𝐴 𝑖𝑘 𝛿𝑗𝑙 + 𝐴 𝑖𝑙 𝛿𝑗𝑘 + 𝐴 𝑘𝑙 𝛿𝑖𝑗 + 𝐴 𝑗𝑙 𝛿𝑖𝑘 + 𝐴 𝑗𝑘 𝛿𝑖𝑙 

)
𝐴 𝑘𝑙 

 ∕ 7 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝐴 𝑖𝑗 𝛿𝑖𝑗 
⏟⏟⏟

1 

𝛿𝑘𝑙 𝐴 𝑘𝑙 
⏟⏟⏟

1 

+ 𝛿𝑖𝑗 𝐴 𝑖𝑘 
⏟⏟⏟
𝐴 𝑗𝑘 

𝛿𝑗𝑙 𝐴 𝑘𝑙 
⏟⏟⏟
𝐴 𝑗𝑘 

+ 𝛿𝑖𝑗 𝐴 𝑖𝑙 
⏟⏟⏟
𝐴 𝑗𝑙 

𝛿𝑗𝑘 𝐴 𝑘𝑙 
⏟⏟⏟
𝐴 𝑗𝑙 

𝛿𝑖𝑗 𝐴 𝑘𝑙 𝛿𝑖𝑗 𝐴 𝑘𝑙 
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

1 

+ 𝛿𝑖𝑗 𝐴 𝑗𝑙 
⏟⏟⏟
𝐴 𝑖𝑙 

𝛿𝑖𝑘 𝐴 𝑘𝑙 
⏟⏟⏟
𝐴 𝑖𝑙 

+ 𝛿𝑖𝑗 𝐴 𝑗𝑘 
⏟⏟⏟
𝐴 𝑖𝑘 

𝛿𝑖𝑙 𝐴 𝑘𝑙 
⏟⏟⏟
𝐴 𝑖𝑘 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
= 1 ∕ 7 

(
1 + 𝐴 𝑗𝑘 𝐴 𝑗𝑘 + 𝐴 𝑗𝑙 𝐴 𝑗𝑙 + 1 + 𝐴 𝑖𝑙 𝐴 𝑖𝑙 + 𝐴 𝑖𝑘 𝐴 𝑖𝑘 

)
= 1 ∕ 7 

(
1 + 1 ∕ 3 + 

1 ∕ 3 + 1 + 
1 ∕ 3 + 

1 ∕ 3 
)
= 10 ∕ 21 . 

(A.11) 

Hence, 

 IT = 1 + 

1 ∕ 7 − 

10 ∕ 21 = 

14 ∕ 21 = 

2 ∕ 3 . (A.12)
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