
COMPRESSION OF NVH SIMULATION RESULTS

COMPRESSION OF NVH SIMULATION RESULTS

Josua Lidzba1, Matthias Rettenmeier2, Dennis Hahn2, Clemens-August
Thole2, Rodrigo Iza-Teran2

THEME

Simulation Data Management

KEYWORDS

Data compression, NASTRAN, NVH, OP2 file

SUMMARY

Crash specific data compression has become a standard technology, which is
widely used in automotive industry. This paper describes lossy data
compression of NASTRAN-OP2 files as they emerge from NVH simulations
in the automotive sector. The largest part of these files contains real or complex
eigenmodes but also element energies and stress or strain tables. During the
automotive design process a large number of simulations is performed. As a
result huge amounts of data have to be stored. Using data compression the size
of the files can be significantly reduced with less storage space required. The
reduction in file size resulting from the compression also leads consequently to
faster file transfer and I/O-times of post processing tools, which are able to
read compressed files via a specific library. Therefore, efficient compression of
OP2-files means a large benefit for NASTRAN users. To achieve very high
compression ratios a lossy data compression scheme was chosen. During
compression floating point data is quantized using a user controlled precision.
This allows the user to meet his requirements as a tradeoff between the
magnitude of errors and the compression factor. To achieve the best com-
pression ratio at a given precision the entropy of the data is reduced further by
using specially designed prediction algorithms. The technologies involved
exploit the shell and solid element connectivity information derived from the
OP2 files. To accomplish seamless workflow integration the compressed data

1 University of Cologne, Germany
2 Fraunhofer Institute for Algorithms and Scientific Computing (SCAI) , Germany

COMPRESSION OF NVH SIMULATION RESULTS

must be fast and easily accessible. Therefore the HDF5 format was chosen as
output file format. The advantages of the HDF5 file format will be exploited
during decompression. Easy and fast data access facilitates the parallelization
of the decompression using OpenMP. This is especially interesting for post
processing tools, which directly read OP2 data from the compressed files.

The software FEMZIP-N which makes use of all these features showed very
satisfying compression results on NVH simulations conducted by different
automotive companies. Compression ratios between 5.0 and 40.0 have been
achieved.

1: INTRODUCTION

Today in almost every area of research large amounts of data are produced. In
many cases it must be stored for long periods of time. Even though storage
space is getting cheaper everyday, there are some good reasons for reducing
the data instead of increasing storage space. One major problem with huge
amounts of data or – even worse – huge files is the data or file transfer from
one machine to another e.g. via local networks or the internet. Another
problem, often depending on disk speed or transfer rates, is loading huge files
into programs.

All of this applies also to the situation within the simulation sector, especially
in the automotive industry - no matter which discipline we look at: crash-,
CFD- or NVH-simulations. Each of these disciplines produces a great amount
of large files that often have to be re-used several times or must be archived
(e.g. for postprocessing purposes). To avoid these problems an obvious
approach is to reduce file sizes using data compression. Usually general
purpose compression tools do not lead to satisfying results. In most cases they
only reduce file sizes by less then 50 percent. Therefore a much better
approach is the use of specialized tools that are adapted to different file formats
and contents.

At the Frauhofer Institut for Algorithms and Scientific Computing (SCAI) the
software FEMZIP was specially designed as a lossy compression tool to
compress crash simulation results. It allows a significant reduction in file size
while maintaining the desired precision of the results. The compression of
NASTRAN OP2 output files from NVH simulations3 was recently chosen as
the first additional member of the FEMZIP tool box.

From a compression point of view the main difference between crash and NVH
simulation results is that crash simulations are time-dependent and many NVH

3 The FEMZIP version to compress NASTRAN OP2 files is called FEMZIP-N.

COMPRESSION OF NVH SIMULATION RESULTS

simulations (such as eigenvalue analysis, frequency response) are static. This
results in different requirements for the compression methods. The new
methods involved and some new features to distinguish FEMZIP for crash data
from FEMZIP for NVH data are described in this paper. Further it will
illustrate the advantages of using HDF5 (Hierarchical Data Format) as output
format for compressed data, the multi processor architecture of the
decompression, the Rice encoder and the integrated security option. First we
give a short overview of data compression in general and lossy compression of
simulation results in particular.

2: DATA COMPRESSION AT A GLANCE

Compression involves changing the form of data in a file, so that the
compressed file takes up less space than the original file. There are two types
of compression: lossless and lossy.

If lossless compression is used, the original file can be retrieved exactly from
the compressed file. Lossless compression is typical for text files, but also for
files containing sensitive numerical data, e.g. medical or meteorological data.
All Zip utilities perform lossless compression, with compression factors of
around 1.5 to 3.

On the other hand, if the compression is lossy, one cannot retrieve the original
file from the compressed file. The advantage of this approach is that the data
can be compressed to a much greater degree. Lossy compression is typically
used to compress graphic and video files, especially in the context of the
Internet. Typical lossy compression programs are JPEG and MPEG, which can
reduce the size of a file by factors of ten to fifty [1].

The main principle behind lossy compression methods is to interpret input data
in its original meaning (i.e. as physical quantity or as pixel in a picture). This
kind of information is usually stored as binary floating point data, a fact which
allows a rounding process while compressing data. This method is called
quantization. The quantization causes a loss of information that cannot be
retrieved during decompression. Therefore quantization should be carried out
carefully. If executed correctly the user will not even recognize any difference
between the original and the uncompressed file. Good examples for this
technique can be found in audio-, video- or 3D-graphics-compression. In this
area many (commercial) applications exist.

In our approach we concentrate on lossy compression schemes using the
procedures described before. Whatever kind of simulation discipline the files
emerge from, the main part of every file consists of floating point data.
However, a great fraction of each floating point number appears to be noise.

COMPRESSION OF NVH SIMULATION RESULTS

Because the output files are normally used for visualization only, this part of
each number can be truncated without loosing user-visible information. This is
carried out by the quantization that maps the floating point numbers into the
integer domain. To avoid any unwanted effects the user is in control of the
rounding precision for each floating point quantity. Quantization is the first of
three steps used in a wide range of lossy compression algorithms. The other
two steps are approximation and coding of the residual.

Figure 1:

 Visualization of an original (at the top) and a decompressed (at the
bottom) OP2 file (property of AUDI AG as provided for the European
SimDAT4 project).

The approximation contributes most to the quality of the compression algo-
rithm. The main principle is to reduce entropy by prediction methods: For
every value a prediction is made and instead of storing the original number, the
difference between original and predicted number is stored. This operation
serves as pre-conditioning for subsequent coding. If the prediction method has
worked correctly, we expect lower entropy within remaining data. That leads to
better compression results using standard entropy encoding approaches, such as
Huffman coding or arithmetic encoding.

4 www.simdat.org

http://www.simdat.org/

COMPRESSION OF NVH SIMULATION RESULTS

As mentioned before, the prediction method used (together with quantization
precision) is decisive for compression quality. Therefore one of the biggest
challenges designing new compression methods is to find appropriate
predictors. In FEMZIP for crash other prediction methods are used than in
FEMZIP-N as crash simulations are time dependent and hence powerful
prediction schemes can easily be adopted. The following paragraph describes
the approach we have chosen for FEMZIP-N and some new developments
which were used here.

3: DATA COMPRESSION OF NASTRAN NVH DATA

First, we want to point out, that FEMZIP-N was not developed to compress
OP2 files in general but to compress OP2 files emerging from NVH
simulations, which foremost means eigenvalue analysis and frequency
response simulations as they result from NASTRAN solutions 103, 108 and
111 (see [2] for more information). However, FEMZIP-N should be able to
deal with every other NASTRAN simulation result, whereas best compression
results will be reached in upper cases. In the near future we plan to improve the
efficiency of compressing other solution types. In the following we will briefly
describe the way prediction was handled in FEMZIP-N and the special features
established in this release.

3.1: Prediction scheme and handling

In FEMZIP-N some different prediction schemes are used. The most important
improvement is the way we predict the values of vertex based variables such as
coordinates or displacements. The scheme exploits mesh connectivity infor-
mation without maintaining complicated data management structures.

Almost every prediction scheme can be interpreted as linear operator. Thus we
can specify a matrix, which represents this method. These matrices often are
sparse, depending on the predictor they implement. This allows to perform a
matrix vector multiplication during compression and another matrix vector
multiplication during decompression (to retrieve the prediction step) with
sparse matrices involved. During decompression the inverse matrix is used.

The second innovation in FEMZIP-N prediction methods is the possibility to
compute these matrices while compressing the file and store the inverse matrix
in the compressed file. At the first glance, this seems to be counterproductive
because we store data into compressed file, which is not explicitly necessary.
By storing prediction methods into compressed file we achieve two things:
maximum flexibility and speed. A mechanism, which assigns a matrix to every
compressed data set in the compressed file, allows to retrieve prediction
through a simple matrix vector multiplication with an arbitrary matrix. I.e. we

COMPRESSION OF NVH SIMULATION RESULTS

can now change a method in compression software without changing the
decompression tool. More important, it is possible to realize prediction
algorithms, which could not be retrieved without additional information. This
provides possibilities for very powerful algorithms.

The second advantage is speed: a matrix vector multiplication with a sparse
matrix engaged implements prediction twice as fast than a standard algorithm.
If many data sets are included, speed could be increased not only for
decompression but also for compression. The prediction matrix must be found
only once for every similar data set (vertex dependent variables, shell
dependent variables etc.).

But how about the loss in compression ratio through storing additional data?
As stated before we are dealing with sparse matrices. A standard approach to
store those matrices is Compressed Row Storage [3]. We combined this
approach with standard entropy encoding methods using Zlib5. The
compressed matrices occupy only 1-2 % of the compressed file for industrial
use cases, i.e. the compression ratio stays nearly the same.

3.2: New features in FEMZIP-N

HDF5 output data format: The Hierarchical Data Format HDF5 is a unique
technology suite that makes possible the management of extremely large and
complex data collections.6 The high flexibility and user friendliness was the
key reason to use HDF5 in FEMZIP-N. The way HDF5 was constructed allows
to map the OP2 file format onto an HDF5 file. This makes simple data access
possible. Additional data could easily be added. As illustrated, it proved to be
very helpful in storing the compressed matrices used to specify the prediction
algorithms and making them easily available during decompression. The
special structure of an HDF5 file and the existing API marked integral
requirements to realize the second new feature in FEMZIP-N: the ability to
decompress files using several cores.

OpenMP parallelization of the decompression: Decompression speed is one
of the most important features of every compression tool. We decided to
increase decompression speed through an OpenMP parallelization of our code.
The special characteristic of data compression tools in general and FEMZIP-N
in particular is that the proportion between arithmetic operations and data
input/output size is typically small, which means a challenge for
parallelization. We succeeded in speeding up the decompression using several
cores (see 4: “Numerical experiments”). To achieve this significant speedup
the algorithm works on various vector based quantities in parallel, for example

5 Zlib is an open source entropy encoding tool, see www.zlib.net for details.
6 For more information see www.hdfgroup.org.

http://www.zlib.net/
http://www.hdfgroup.org/

COMPRESSION OF NVH SIMULATION RESULTS

on the displacements of x-, y- and z-coordinate. Regarding a typical model
with about one million vertices each of these vectors has a size of several
megabytes. This is enough to make parallelization profitable, even if the
number of arithmetic operations for each entry is small.

Rice coding and Zlib integration: During compression, the floating point part
of input data will be mapped into integer domain. Afterwards the entropy of all
data should be reduced through prediction algorithms. The residuals that
emerge from this process are subsequently coded, normally by using an
entropy encoding scheme like Huffmann coding or arithmetic coding. Instead
of using such a coder, in FEMZIP-N most data is coded by the Rice encoder
[4]. We chose this coding scheme because of its advantages in speed and
compression ratio in combination with the compression of simulation data [5].
In addition a standard entropy encoder - the Zlib - was used to encode some
special parts of the input data like headers, or parts not interpreted7. On these
parts Zlib obtains compression ratios between 1.5 and 4.

Security Option: The original simulation results in practice are often deleted
after they were compressed. To ensure that everything has been executed
correctly and no files have been damaged during compression FEMZIP-N
provides an option that allows the user to validate the compressed output. If
this “Security Option” is activated, the tool automatically decompresses the file
temporarily after compression has finished and compares the result to the
original model. Only if no error occurs, the original model can be deleted
without risk.

4: NUMERICAL EXPERIMENTS

In this paragraph we present the results of some numerical experiments
concerning FEMZIP-N’s properties. The database we used for benchmarking
purposes was provided by automotive companies. It consists of five models,
which originate from the NVH sector. In Table 1 the properties of each of these
models are listed. Additionally the NASTRAN solution type and the included
out-put data are shown.

We will look at two different main aspects of data compression, first the com-
pression ratio and second the compression and decompression speed. We
estimate the strength of compression by means of the compression ratio cr. It is
the ratio between the size of the original file and the size of the compressed

7 Every OP2 file contains data, which will not be covered by the special compression
algorithms we developed. We call this data “not interpreted”. Regarding OP2 files from the
NVH sector its percentage should be small. Therefore the compression ratio of the whole file
does not change significantly, whether this part will be compressed or not, although it can be
reasonable to reduce its size using general compression approaches.

COMPRESSION OF NVH SIMULATION RESULTS

file. We will see that in most cases a compression ratio around 10 can be
achieved using a reasonable quantization precision. That means we usually
achieve a file size reduction of 90 percent.

Name Size
(MB) #Nodes Solution OUGV1 ONRGY1 ONRGY2 OES*/

OSTR*

sim1.op2 3435 1428719 103 yes yes yes no

sim2.op2 353 528132 103 yes no no no

sim3.op2 391 1432541 108 yes no no no

sim4.op2 545 1432541 111 yes no no no

sim5.op2 524 844520 111 yes no no no

 Table 1: Properties of the models used for testing

The compression or decompression speed will be specified as throughput.
Regarding the compression it evaluates the ratio between the original file size
and the absolute time needed to compress the file. Regarding decompression it
is the ratio between the size of the uncompressed file and the absolute time
measured for decompression. Both values are given in MB/sec. The speed
benchmarks were conducted on a SUN Fire X4600 with eight 2.6 GHz dual
cores and 64 GB RAM and a SUSE LINUX OS. We want to point out that the
speed measurements include I/O-times. In this case it is not without risk
because there are several aspects which could lead to unreliable results.
Sometimes more time is used to write the decompressed file to disk than to
compute it during decompression. This effect is becoming more problematic if
multi core benchmarks should be performed. The graph presented in Figure 2
shows directly the effect of our OpenMP parallelization. These benchmarks
were conducted without measuring the time needed to write output to disk. On
the other hand read-in times often could not be appropriately taken into account
because the file has been already cached by the operating system. This leads to
wrong results because reading from cache is much faster than reading from
disk. We tried to avoid this effect within our measurements.

4.1: Compression ratio

Table 2 and Figure 2 show the results of our benchmarks regarding the com-
pression factors FEMZIP-N achieves. For each of the five models two different

COMPRESSION OF NVH SIMULATION RESULTS

quantization precisions were chosen and the results with or without rotations8
were measured respectively. The quantization error depends on the relative
precision pr which the user chooses for every data object that will be quantized
and its absolute maximum Ma over all of its values. The deviation between
each original value and its equivalent after decompression is smaller than the
chosen precision which computes as p = (Ma · pr)/100. The compression ratios
shown in the first and second row of Table 2 were computed with pr = 0.01 for
the coordinates (GEOM1 block) and pr = 0.1 for displacements and rotations
(OUGV1 blocks). In row three and four of Table 2 we chose pr = 0.001 for the
coordinates and pr = 0.01 for displacements and rotations. The results in row
two and four correspond to skipped rotations. In both cases we chose pr =
0.0001 for all energies in ONRGY* blocks. Therefore the compression ratios
of sim1.op2 do not differ as much as the ratios of the other models. We did not
change pr for ONRGY blocks to a coarser level because the values are
distributed very unbalanced over their domain. If a large maximum appears
together with many small values, all the small values could be zero after de-
quantization if a high precision is used.

Table 2 shows that an average compression ratio of about 10 is achieved using
a reasonable quantization precision. We also see that it can be useful to delete
information from the file during decompression (as seen here for rotations).
However, this option should be used very carefully because this data cannot be
reconstructed during decompression. If we allow a visible loss of information
much higher compression ratios can be achieved.

Name Low
prec

Low
prec/rot
skipped

High
prec

High
prec/rot
skipped

Comp.
(MB/s)

Decomp
Proc. 1
(MB/s)

Decomp
Proc. 2
(MB/s)

Decomp
Proc. 4
(MB/s)

sim1.op2 10.41 10.45 9.05 9.28 38.6 42.4 49.8 70.1

sim2.op2 22.20 25.45 12.89 16.59 39.2 44.1 50.4 58.8

sim3.op2 17.06 17.74 12.40 13.66 35.6 43.5 55.7 65.2

sim4.op2 18.14 19.48 11.71 13.72 36.3 41.9 54.5 60.6

sim5.op2 12.69 12.80 9.59 10.01 12.8 43.7 47.6 65.5

 Table 2: Benchmark results: On the left side we see the compression ratio using
different precisions, on the right side we see the throughput

8 The OUG1/OUGV1blocks in NASTRAN OP2 file format include not only displacements for
every vertex but also rotations. These rotations often are not used in practice. FEMZIP-N
provides the possibility to skip every floating point data object that must be quantized during
compression. If a data object was skipped it cannot be reconstructed during decompression.

COMPRESSION OF NVH SIMULATION RESULTS

4.2: Compression speed

Table 2 also illustrates the speed benchmark results. In row five we see the
compression throughput measured in megabytes per second. The average of the
first four models adds up to the satisfying result of 37.4 MB/sec. For sim5.op2
this value is much smaller due to the special nature of two of the three included
OUGV1 blocks. These blocks contain several thousand different modes with
only a few vertices per mode. This leads to suboptimal results while analyzing
the file for compression purposes.

In most cases it is more important to have a faster decompression than a fast
compression algorithm. Therefore we concentrated on the acceleration of the
decompression. Normally decompression is automatically somewhat faster
than compression due to fewer analysis the algorithms have to accomplish (we
can see this effect if we compare row five and six of Table 2). To accelerate
decompression further we decided to make use of multi core CPUs (see
“OpenMP parallelization of the decompression”). If we look at the last three
rows of Table 2 we see that throughput increases by approximately 10-20
percent if we use two cores for decompression and up to 65 percent on four
cores. That is no amazing speed up. But we could not expect perfect scalability
due to the writing time overhead mentioned before. If we take into account that
a modern system can write only 80 MB per second to disk, it is obvious why
parallelization does not scale better: On four cores almost the whole time is
used to write data to disk, the calculating time hides behind this amount.

We investigated the effect of our parallelization approach more precisely. We
compiled a special decompression executable, which does not write any output.
Figure 2 presents the benchmarks made with this tool. We decompressed
sim1.op2 several times and took the average for each number of processors (1,
2, 4, 8 and 16) over all measurements. As we can see this application
accelerates better on more cores. But it also does not perfectly scale: It only
works twice as fast if we use four cores. On the one hand it depends on a basic
problem of data compression (regarding parallelization approaches): Much data
is moved but only a few calculations are executed. On the other hand one part
of the program was not parallelized. It reconstructs the original OP2 file
format. This part is not easy to parallelize because there is only one stream to
build. All of the threads should be working on it at the same time.

COMPRESSION OF NVH SIMULATION RESULTS

Figure 2: Effect of the OpenMP parallelization of FEMZIP-N on decompression
speed

One of the main purposes of our decompression tool (as a library version) will
be the decompression of compressed NASTRAN OP2 simulation results on the
fly, during the read-in process of a postprocessing software. For this purpose
the parallelization effort exemplarily shown in Figure 2 will be fully taken into
account because this kind of software does not write output data to disk.

5: CONCLUSION AND OUTLOOK

In this paper we described the advantages of data compression and introduced
the FEMZIP-N software that was developed for a lossy compression of
NASTRAN OP2 simulation results out of the NVH sector. Further more we
saw that the use of this tool can save up to 90 percent storage space and that it
does not need a significant amount of time for decompression and even
compression. The throughput of both applications is approximately located at
40 MB/s. The decompression time can be increased further using multi core
machines. This is particularly interesting for postprocessing applications where
no output must be written to disk. In this case reading in compressed models
can be faster than reading the original data.

In FEMZIP-N several future-oriented technologies were introduced. These
features give us the possibility to further improve its performance. First, there
is the possibility of new prediction schemes that could easily be integrated due
to our matrix approach and might increase compression ratio or could be

COMPRESSION OF NVH SIMULATION RESULTS

applied on OP2 data blocks not supported yet. This could lead to a FEMZIP-N
version that would not be specialized on data from NVH simulations. Second,
the use of HDF5 could be further exploited. HDF5 is a very modern data ma-
nagement approach, which currently captures the area of simulation appli-
cations. We plan to use HDF5 filter technology to compose a self inflating file
format based on the HDF5-API.

Finally, there are other file formats waiting to be compressed. Almost every
profession in the simulation area struggles with huge amounts of data.
Especially in the CFD disciplines huge amounts of data are produced.
Therefore the next augmentation of the FEMZIP family will probably be a tool
to compress STAR-CD output data.

REFERENCES

[1] R.IZA-TERAN, R. LORENTZ - Lossless Compression of Meteoro-
logical Data, ERCIM News, No. 61, p. 41, April 2005

[2] MSC, Basis Dynamic Analysis User’s Guide, MSC, 2004

[3] J. BAI, J. DONGARRA, A. RUHE, H. VAN DER VORST, Templates
for the solution of algebraic eigenvalue problems, Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 2000.

[4] P.-S. YEH, The CCSDS Lossless Data Compression Recommendation
for Space Applications, Lossless Compression Handbook, K. Sayood,
Academic Press, pp. 311, 2003

[5] M. RETTENMEIER, Zwei Strategien zur verlustfreien Kompression von
Simulationsergebnissen, Diploma Thesis at the Mathematical Institute of
the University of Cologne, 2007

