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SUMMARY  

Crash specific data compression has become a standard technology, which is 
widely used in automotive industry. This paper describes lossy data 
compression of NASTRAN-OP2 files as they emerge from NVH simulations 
in the automotive sector. The largest part of these files contains real or complex 
eigenmodes but also element energies and stress or strain tables. During the 
automotive design process a large number of simulations is performed. As a 
result huge amounts of data have to be stored. Using data compression the size 
of the files can be significantly reduced with less storage space required. The 
reduction in file size resulting from the compression also leads consequently to 
faster file transfer and I/O-times of post processing tools, which are able to 
read compressed files via a specific library. Therefore, efficient compression of 
OP2-files means a large benefit for NASTRAN users. To achieve very high 
compression ratios a lossy data compression scheme was chosen. During 
compression floating point data is quantized using a user controlled precision. 
This allows the user to meet his requirements as a tradeoff between the 
magnitude of errors and the compression factor. To achieve the best com-
pression ratio at a given precision the entropy of the data is reduced further by 
using specially designed prediction algorithms. The technologies involved 
exploit the shell and solid element connectivity information derived from the 
OP2 files. To accomplish seamless workflow integration the compressed data 
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must be fast and easily accessible. Therefore the HDF5 format was chosen as 
output file format. The advantages of the HDF5 file format will be exploited 
during decompression. Easy and fast data access facilitates the parallelization 
of the decompression using OpenMP. This is especially interesting for post 
processing tools, which directly read OP2 data from the compressed files. 

The software FEMZIP-N which makes use of all these features showed very 
satisfying compression results on NVH simulations conducted by different 
automotive companies. Compression ratios between 5.0 and 40.0 have been 
achieved. 

 

1:  INTRODUCTION 

Today in almost every area of research large amounts of data are produced. In 
many cases it must be stored for long periods of time. Even though storage 
space is getting cheaper everyday, there are some good reasons for reducing 
the data instead of increasing storage space. One major problem with huge 
amounts of data or – even worse – huge files is the data or file transfer from 
one machine to another e.g. via local networks or the internet. Another 
problem, often depending on disk speed or transfer rates, is loading huge files 
into programs. 

All of this applies also to the situation within the simulation sector, especially 
in the automotive industry - no matter which discipline we look at: crash-, 
CFD- or NVH-simulations. Each of these disciplines produces a great amount 
of large files that often have to be re-used several times or must be archived 
(e.g. for postprocessing purposes). To avoid these problems an obvious 
approach is to reduce file sizes using data compression. Usually general 
purpose compression tools do not lead to satisfying results. In most cases they 
only reduce file sizes by less then 50 percent. Therefore a much better 
approach is the use of specialized tools that are adapted to different file formats 
and contents. 

At the Frauhofer Institut for Algorithms and Scientific Computing (SCAI) the 
software FEMZIP was specially designed as a lossy compression tool to 
compress crash simulation results. It allows a significant reduction in file size 
while maintaining the desired precision of the results. The compression of 
NASTRAN OP2 output files from NVH simulations3 was recently chosen as 
the first additional member of the FEMZIP tool box. 

From a compression point of view the main difference between crash and NVH 
simulation results is that crash simulations are time-dependent and many NVH 
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simulations (such as eigenvalue analysis, frequency response) are static. This 
results in different requirements for the compression methods. The new 
methods involved and some new features to distinguish FEMZIP for crash data 
from FEMZIP for NVH data are described in this paper. Further it will 
illustrate the advantages of using HDF5 (Hierarchical Data Format) as output 
format for compressed data, the multi processor architecture of the 
decompression, the Rice encoder and the integrated security option. First we 
give a short overview of data compression in general and lossy compression of 
simulation results in particular. 

 

2:  DATA COMPRESSION AT A GLANCE 

Compression involves changing the form of data in a file, so that the 
compressed file takes up less space than the original file. There are two types 
of compression: lossless and lossy.  

If lossless compression is used, the original file can be retrieved exactly from 
the compressed file. Lossless compression is typical for text files, but also for 
files containing sensitive numerical data, e.g. medical or meteorological data. 
All Zip utilities perform lossless compression, with compression factors of 
around 1.5 to 3. 

On the other hand, if the compression is lossy, one cannot retrieve the original 
file from the compressed file. The advantage of this approach is that the data 
can be compressed to a much greater degree. Lossy compression is typically 
used to compress graphic and video files, especially in the context of the 
Internet. Typical lossy compression programs are JPEG and MPEG, which can 
reduce the size of a file by factors of ten to fifty [1].  

The main principle behind lossy compression methods is to interpret input data 
in its original meaning (i.e. as physical quantity or as pixel in a picture). This 
kind of information is usually stored as binary floating point data, a fact which 
allows a rounding process while compressing data. This method is called 
quantization. The quantization causes a loss of information that cannot be 
retrieved during decompression. Therefore quantization should be carried out 
carefully. If executed correctly the user will not even recognize any difference 
between the original and the uncompressed file. Good examples for this 
technique can be found in audio-, video- or 3D-graphics-compression. In this 
area many (commercial) applications exist. 

In our approach we concentrate on lossy compression schemes using the 
procedures described before. Whatever kind of simulation discipline the files 
emerge from, the main part of every file consists of floating point data. 
However, a great fraction of each floating point number appears to be noise. 



COMPRESSION OF NVH SIMULATION RESULTS 

Because the output files are normally used for visualization only, this part of 
each number can be truncated without loosing user-visible information. This is 
carried out by the quantization that maps the floating point numbers into the 
integer domain. To avoid any unwanted effects the user is in control of the 
rounding precision for each floating point quantity. Quantization is the first of 
three steps used in a wide range of lossy compression algorithms. The other 
two steps are approximation and coding of the residual. 

 

Figure 1:

                                                

 Visualization of an original (at the top) and a decompressed (at the 
bottom) OP2 file (property of AUDI AG as provided for the European 
SimDAT4 project). 

The approximation contributes most to the quality of the compression algo-
rithm. The main principle is to reduce entropy by prediction methods: For 
every value a prediction is made and instead of storing the original number, the 
difference between original and predicted number is stored. This operation 
serves as pre-conditioning for subsequent coding. If the prediction method has 
worked correctly, we expect lower entropy within remaining data. That leads to 
better compression results using standard entropy encoding approaches, such as 
Huffman coding or arithmetic encoding.  

 

4 www.simdat.org  
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As mentioned before, the prediction method used (together with quantization 
precision) is decisive for compression quality. Therefore one of the biggest 
challenges designing new compression methods is to find appropriate 
predictors. In FEMZIP for crash other prediction methods are used than in 
FEMZIP-N as crash simulations are time dependent and hence powerful 
prediction schemes can easily be adopted. The following paragraph describes 
the approach we have chosen for FEMZIP-N and some new developments 
which were used here. 

 

3:  DATA COMPRESSION OF NASTRAN NVH DATA 

First, we want to point out, that FEMZIP-N was not developed to compress 
OP2 files in general but to compress OP2 files emerging from NVH 
simulations, which foremost means eigenvalue analysis and frequency 
response simulations as they result from NASTRAN solutions 103, 108 and 
111 (see [2] for more information). However, FEMZIP-N should be able to 
deal with every other NASTRAN simulation result, whereas best compression 
results will be reached in upper cases. In the near future we plan to improve the 
efficiency of compressing other solution types. In the following we will briefly 
describe the way prediction was handled in FEMZIP-N and the special features 
established in this release. 

3.1:  Prediction scheme and handling 

In FEMZIP-N some different prediction schemes are used. The most important 
improvement is the way we predict the values of vertex based variables such as 
coordinates or displacements. The scheme exploits mesh connectivity infor-
mation without maintaining complicated data management structures. 

Almost every prediction scheme can be interpreted as linear operator. Thus we 
can specify a matrix, which represents this method. These matrices often are 
sparse, depending on the predictor they implement. This allows to perform a 
matrix vector multiplication during compression and another matrix vector 
multiplication during decompression (to retrieve the prediction step) with 
sparse matrices involved. During decompression the inverse matrix is used.  

The second innovation in FEMZIP-N prediction methods is the possibility to 
compute these matrices while compressing the file and store the inverse matrix 
in the compressed file. At the first glance, this seems to be counterproductive 
because we store data into compressed file, which is not explicitly necessary. 
By storing prediction methods into compressed file we achieve two things: 
maximum flexibility and speed. A mechanism, which assigns a matrix to every 
compressed data set in the compressed file, allows to retrieve prediction 
through a simple matrix vector multiplication with an arbitrary matrix. I.e. we 
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can now change a method in compression software without changing the 
decompression tool. More important, it is possible to realize prediction 
algorithms, which could not be retrieved without additional information. This 
provides possibilities for very powerful algorithms.  

The second advantage is speed: a matrix vector multiplication with a sparse 
matrix engaged implements prediction twice as fast than a standard algorithm. 
If many data sets are included, speed could be increased not only for 
decompression but also for compression. The prediction matrix must be found 
only once for every similar data set (vertex dependent variables, shell 
dependent variables etc.). 

But how about the loss in compression ratio through storing additional data? 
As stated before we are dealing with sparse matrices. A standard approach to 
store those matrices is Compressed Row Storage [3]. We combined this 
approach with standard entropy encoding methods using Zlib5. The 
compressed matrices occupy only 1-2 % of the compressed file for industrial 
use cases, i.e. the compression ratio stays nearly the same.  

3.2: New features in FEMZIP-N 

HDF5 output data format: The Hierarchical Data Format HDF5 is a unique 
technology suite that makes possible the management of extremely large and 
complex data collections.6 The high flexibility and user friendliness was the 
key reason to use HDF5 in FEMZIP-N. The way HDF5 was constructed allows 
to map the OP2 file format onto an HDF5 file. This makes simple data access 
possible. Additional data could easily be added. As illustrated, it proved to be 
very helpful in storing the compressed matrices used to specify the prediction 
algorithms and making them easily available during decompression. The 
special structure of an HDF5 file and the existing API marked integral 
requirements to realize the second new feature in FEMZIP-N: the ability to 
decompress files using several cores. 

OpenMP parallelization of the decompression: Decompression speed is one 
of the most important features of every compression tool. We decided to 
increase decompression speed through an OpenMP parallelization of our code. 
The special characteristic of data compression tools in general and FEMZIP-N 
in particular is that the proportion between arithmetic operations and data 
input/output size is typically small, which means a challenge for 
parallelization. We succeeded in speeding up the decompression using several 
cores (see 4: “Numerical experiments”). To achieve this significant speedup 
the algorithm works on various vector based quantities in parallel, for example 
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on the displacements of x-, y- and z-coordinate. Regarding a typical model 
with about one million vertices each of these vectors has a size of several 
megabytes. This is enough to make parallelization profitable, even if the 
number of arithmetic operations for each entry is small. 

Rice coding and Zlib integration: During compression, the floating point part 
of input data will be mapped into integer domain. Afterwards the entropy of all 
data should be reduced through prediction algorithms. The residuals that 
emerge from this process are subsequently coded, normally by using an 
entropy encoding scheme like Huffmann coding or arithmetic coding. Instead 
of using such a coder, in FEMZIP-N most data is coded by the Rice encoder 
[4]. We chose this coding scheme because of its advantages in speed and 
compression ratio in combination with the compression of simulation data [5]. 
In addition a standard entropy encoder - the Zlib - was used to encode some 
special parts of the input data like headers, or parts not interpreted7. On these 
parts Zlib obtains compression ratios between 1.5 and 4. 

Security Option: The original simulation results in practice are often deleted 
after they were compressed. To ensure that everything has been executed 
correctly and no files have been damaged during compression FEMZIP-N 
provides an option that allows the user to validate the compressed output. If 
this “Security Option” is activated, the tool automatically decompresses the file 
temporarily after compression has finished and compares the result to the 
original model. Only if no error occurs, the original model can be deleted 
without risk.  

4:  NUMERICAL EXPERIMENTS 

In this paragraph we present the results of some numerical experiments 
concerning FEMZIP-N’s properties. The database we used for benchmarking 
purposes was provided by automotive companies. It consists of five models, 
which originate from the NVH sector. In Table 1 the properties of each of these 
models are listed. Additionally the NASTRAN solution type and the included 
out-put data are shown.  

We will look at two different main aspects of data compression, first the com-
pression ratio and second the compression and decompression speed. We 
estimate the strength of compression by means of the compression ratio cr. It is 
the ratio between the size of the original file and the size of the compressed 
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file. We will see that in most cases a compression ratio around 10 can be 
achieved using a reasonable quantization precision. That means we usually 
achieve a file size reduction of 90 percent. 

 

Name Size 
(MB) #Nodes Solution OUGV1 ONRGY1 ONRGY2 OES*/ 

OSTR* 

sim1.op2 3435 1428719 103 yes yes yes no 

sim2.op2 353 528132 103 yes no no no 

sim3.op2 391 1432541 108 yes no no no 

sim4.op2 545 1432541 111 yes no no no 

sim5.op2 524 844520 111 yes no no no 

 Table 1: Properties of the models used for testing 

The compression or decompression speed will be specified as throughput. 
Regarding the compression it evaluates the ratio between the original file size 
and the absolute time needed to compress the file. Regarding decompression it 
is the ratio between the size of the uncompressed file and the absolute time 
measured for decompression. Both values are given in MB/sec. The speed 
benchmarks were conducted on a SUN Fire X4600 with eight 2.6 GHz dual 
cores and 64 GB RAM and a SUSE LINUX OS. We want to point out that the 
speed measurements include I/O-times. In this case it is not without risk 
because there are several aspects which could lead to unreliable results. 
Sometimes more time is used to write the decompressed file to disk than to 
compute it during decompression. This effect is becoming more problematic if 
multi core benchmarks should be performed. The graph presented in Figure 2 
shows directly the effect of our OpenMP parallelization. These benchmarks 
were conducted without measuring the time needed to write output to disk. On 
the other hand read-in times often could not be appropriately taken into account 
because the file has been already cached by the operating system. This leads to 
wrong results because reading from cache is much faster than reading from 
disk. We tried to avoid this effect within our measurements. 

4.1: Compression ratio 

Table 2 and Figure 2 show the results of our benchmarks regarding the com-
pression factors FEMZIP-N achieves. For each of the five models two different 
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quantization precisions were chosen and the results with or without rotations8 
were measured respectively. The quantization error depends on the relative 
precision pr which the user chooses for every data object that will be quantized 
and its absolute maximum Ma over all of its values. The deviation between 
each original value and its equivalent after decompression is smaller than the 
chosen precision which computes as p = (Ma · pr)/100. The compression ratios 
shown in the first and second row of Table 2 were computed with pr = 0.01 for 
the coordinates (GEOM1 block) and pr = 0.1 for displacements and rotations 
(OUGV1 blocks). In row three and four of Table 2 we chose pr = 0.001 for the 
coordinates and pr = 0.01 for displacements and rotations. The results in row 
two and four correspond to skipped rotations.  In both cases we chose pr = 
0.0001 for all energies in ONRGY* blocks. Therefore the compression ratios 
of sim1.op2 do not differ as much as the ratios of the other models. We did not 
change pr for ONRGY blocks to a coarser level because the values are 
distributed very unbalanced over their domain. If a large maximum appears 
together with many small values, all the small values could be zero after de-
quantization if a high precision is used. 

Table 2 shows that an average compression ratio of about 10 is achieved using 
a reasonable quantization precision. We also see that it can be useful to delete 
information from the file during decompression (as seen here for rotations). 
However, this option should be used very carefully because this data cannot be 
reconstructed during decompression. If we allow a visible loss of information 
much higher compression ratios can be achieved. 

Name Low 
prec 

Low 
prec/rot 
skipped 

High 
prec 

High 
prec/rot 
skipped 

Comp. 
(MB/s)

Decomp 
Proc. 1 
(MB/s) 

Decomp 
Proc. 2 
(MB/s) 

Decomp 
Proc. 4 
(MB/s) 

sim1.op2 10.41 10.45 9.05 9.28 38.6 42.4 49.8 70.1 

sim2.op2 22.20 25.45 12.89 16.59 39.2 44.1 50.4 58.8 

sim3.op2 17.06 17.74 12.40 13.66 35.6 43.5 55.7 65.2 

sim4.op2 18.14 19.48 11.71 13.72 36.3 41.9 54.5 60.6 

sim5.op2 12.69 12.80 9.59 10.01 12.8 43.7 47.6 65.5 

 Table 2: Benchmark results: On the left side we see the compression ratio using 
different precisions, on the right side we see the throughput 

                                                 

8 The OUG1/OUGV1blocks in NASTRAN OP2 file format include not only displacements for 
every vertex but also rotations. These rotations often are not used in practice. FEMZIP-N 
provides the possibility to skip every floating point data object that must be quantized during 
compression. If a data object was skipped it cannot be reconstructed during decompression.  
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4.2: Compression speed 

Table 2 also illustrates the speed benchmark results. In row five we see the 
compression throughput measured in megabytes per second. The average of the 
first four models adds up to the satisfying result of 37.4 MB/sec. For sim5.op2 
this value is much smaller due to the special nature of two of the three included 
OUGV1 blocks. These blocks contain several thousand different modes with 
only a few vertices per mode. This leads to suboptimal results while analyzing 
the file for compression purposes.  

In most cases it is more important to have a faster decompression than a fast 
compression algorithm. Therefore we concentrated on the acceleration of the 
decompression. Normally decompression is automatically somewhat faster 
than compression due to fewer analysis the algorithms have to accomplish (we 
can see this effect if we compare row five and six of Table 2). To accelerate 
decompression further we decided to make use of multi core CPUs (see 
“OpenMP parallelization of the decompression”). If we look at the last three 
rows of Table 2 we see that throughput increases by approximately 10-20 
percent if we use two cores for decompression and up to 65 percent on four 
cores. That is no amazing speed up. But we could not expect perfect scalability 
due to the writing time overhead mentioned before. If we take into account that 
a modern system can write only 80 MB per second to disk, it is obvious why 
parallelization does not scale better: On four cores almost the whole time is 
used to write data to disk, the calculating time hides behind this amount.  

We investigated the effect of our parallelization approach more precisely. We 
compiled a special decompression executable, which does not write any output. 
Figure 2 presents the benchmarks made with this tool. We decompressed 
sim1.op2 several times and took the average for each number of processors (1, 
2, 4, 8 and 16) over all measurements. As we can see this application 
accelerates better on more cores. But it also does not perfectly scale: It only 
works twice as fast if we use four cores. On the one hand it depends on a basic 
problem of data compression (regarding parallelization approaches): Much data 
is moved but only a few calculations are executed. On the other hand one part 
of the program was not parallelized. It reconstructs the original OP2 file 
format. This part is not easy to parallelize because there is only one stream to 
build. All of the threads should be working on it at the same time. 
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Figure 2: Effect of the OpenMP parallelization of FEMZIP-N on decompression 
speed 

One of the main purposes of our decompression tool (as a library version) will 
be the decompression of compressed NASTRAN OP2 simulation results on the 
fly, during the read-in process of a postprocessing software. For this purpose 
the parallelization effort exemplarily shown in Figure 2 will be fully taken into 
account because this kind of software does not write output data to disk. 

5:  CONCLUSION AND OUTLOOK 

In this paper we described the advantages of data compression and introduced 
the FEMZIP-N software that was developed for a lossy compression of 
NASTRAN OP2 simulation results out of the NVH sector. Further more we 
saw that the use of this tool can save up to 90 percent storage space and that it 
does not need a significant amount of time for decompression and even 
compression. The throughput of both applications is approximately located at 
40 MB/s. The decompression time can be increased further using multi core 
machines. This is particularly interesting for postprocessing applications where 
no output must be written to disk. In this case reading in compressed models 
can be faster than reading the original data.  

In FEMZIP-N several future-oriented technologies were introduced. These 
features give us the possibility to further improve its performance. First, there 
is the possibility of new prediction schemes that could easily be integrated due 
to our matrix approach and might increase compression ratio or could be 
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applied on OP2 data blocks not supported yet. This could lead to a FEMZIP-N 
version that would not be specialized on data from NVH simulations. Second, 
the use of HDF5 could be further exploited. HDF5 is a very modern data ma-
nagement approach, which currently captures the area of simulation appli-
cations. We plan to use HDF5 filter technology to compose a self inflating file 
format based on the HDF5-API. 

Finally, there are other file formats waiting to be compressed. Almost every 
profession in the simulation area struggles with huge amounts of data. 
Especially in the CFD disciplines huge amounts of data are produced. 
Therefore the next augmentation of the FEMZIP family will probably be a tool 
to compress STAR-CD output data. 
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