AUTONOMOUS TECHNOLOGIES

Dipl.-Wirtsch.-Ing. Univ. Hans-Christoph Burmeister

18.03.2015 – Digital Ship, Hamburg

AGENDA

1. Fraunhofer CML introduction

- 2. MUNIN overview
- 3. Autonomous Bridge
- 4. MUNIN Test-bed
- 5. Conclusion and Outlook

Introduction

Fraunhofer CML conducts applied research for the industry

- Fraunhofer CML conducts applied research for the maritime industry
- Activities (amongst others)
 - Navigational safety and risks
 - Decision support tools
 - Ship-shore-integration
 - Ship management

Introduction

Focus on commercial and navigational ship operations

Sea Traffic and Nautical Solutions

Topics

- Sea traffic's safety
- Sea traffic's efficiency
- Navigational solutions
- - Ship handling simulation
 - ENC software development
 - AIS data analysis framework

Ship and Information Management

Topics

- Maritime information management
- Ship management

Tools

- Mathematical optimization
- Operations research technologies

AGENDA

- 1. Fraunhofer CML introduction
- 2. MUNIN overview
- 3. Autonomous Bridge
- 4. MUNIN Test-bed
- 5. Conclusion and Outlook

MUNIN's overview Key facts of the project

<u>Maritime</u> <u>Unmanned</u> <u>Navigation</u> through <u>Intelligence</u> in <u>Networks</u>

- European FP7 project from Sep 2012 to Aug 2015
- 8 partners with 2.9 million € funding
- Focus:
 - Develop a concept for an unmanned merchant vessel
 - Validate concept in a simulator set-up

MUNIN's Aim Project definition of the autonomous vessel

Autonomous ship

Next generation modular control systems and communications technology [that] will enable wireless monitoring and control functions both on and off board. These will include advanced decision support systems to provide a capability to operate ships remotely under semi or fully autonomous control.

Autonomous ship

No persons on board for whole or part of the voyage. The ship, with partial help from remote control, must be able to manage the voyage on its own.

MUNIN's Vision Unmanned deep-sea voyage

MUNIN's Use Case Dry bulk carrier on deep-sea-voyage

AGENDA

- 1. Fraunhofer CML introduction
- 2. MUNIN overview
- 3. Autonomous Bridge
- 4. MUNIN Test-bed
- 5. Conclusion and Outlook

MUNIN's navigational systems

Enabling unmanned navigation during deep-sea voyage

Advanced Sensors System

Electronic lookout

- Detect small objects
- Detect weather phenomena

Autonomous Navigation System

Op. decision-making

- Avoid collisions
- Ensure stability in harsh weather

Shore Control Centre

Human element

- Monitor voyage and vessel
- Problem-solving

Autonomous Bridge

Short term use case "Watchfree bridge"

Autonomous Engine Room

- Partly unattended engine room already exists
- Class notation E-0 which is considered to meet the regulations of the International Convention for the Safety of Life at Sea (SOLAS) for unattended machinery spaces [...]
- Autonomous navigation can lead towards B-0 "watch-free bridge"
 - Flextime work for nautical officers onboard
 - Improved shore intervention possibilities
 - Less manning possible
- Important date: New SOLAS in 2024

AGENDA

- 1. Fraunhofer CML introduction
- 2. MUNIN overview
- 3. Autonomous Bridge
- 4. MUNIN Test-bed
- 5. Conclusion and Outlook

MUNIN Test-bed

Integrated simulation-based environment

© Fraunhofer

MUNIN Test-bed

Integrated simulation-based environment

© Fraunhofer

MUNIN Advanced Sensor Module

Sensor fusion approach

COLREG §5

Every vessel shall at all times maintain a proper look-out by sight and hearing as well as by all available means appropriate [...]

MUNIN Advanced Sensor Module

In-situ tests performed in Norway

MUNIN Advanced Sensor Module

In-situ tests performed in Norway

MUNIN Deep Sea Navigation System Integration of COLREG and Harsh Weather

MUNIN Deep Sea Navigation System Integration of COLREG and Harsh Weather

MUNIN Deep Sea Navigation System

Simulation and hardware prototypes

MUNIN Shore Control Center Human Centered Design

human-out-ofthe-loop syndrome

MUNIN Shore Control Center

Fully integrated prototype

MUNIN Test-bed Validation methodology

- Sensor emulation
- Four full scale In-situ test

- Ship handling simulation (WR&CA)
- Small-scale in-situ test (CA only)

ongoing

- HMI-Tests in simulator
- Stresstest in simulator

AGENDA

- 1. Fraunhofer CML introduction
- 2. MUNIN overview
- 3. Autonomous Bridge
- 4. MUNIN Test-bed
- 5. Conclusion and Outlook

Conclusions

Short-term applications of MUNIN technology developments

- Automated Lookout / Watch free bridge
- Single source of reliable data provision
- No reduced lookout capability due to fatigue

- Autonomous deep-sea navigation
 - COLREG compliance
 - Hull and motion monitoring in harsh weather

- Shore-side traffic guidance / Watch from shore
- Human-oriented information management
- Remote situation awareness concept

Combination to B0 possible

Outlook Full validation in the EMSN feasible

Outlook MUNIN on tour

Date	Event	Location
1113.05.2015	Scientific session at COMPIT	Ulrichshusen, DE
03.06.2015	3rd MUNIN Industry Workshop, Norshipping	Oslo, NO
1011.06.2015	MUNIN final promotion event	Hamburg, DE
1719.06.2015	Scientific session at TransNav	Gdynia, PL

Norshipping workshop including participation from RollsRoyce, Maritime Lawyers further more

Final workshop including technical tour through the MUNIN test-bed

Please check also:

www.unmanned-ship.org

Thank you - MUNIN receives funding under FP7-GA314286

10th – 11th June 2015 • Hamburg • 53°7,8'N 009°58,1'E

Is unmanned and autonomous shipping feasible? – And is it desirable?