

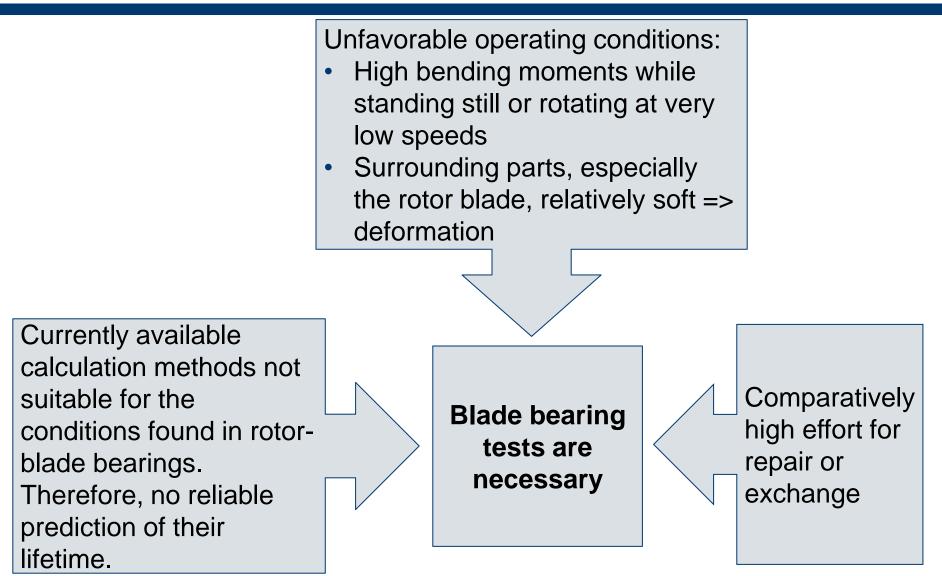
Blade Bearing Test Rig

Karsten Ohde, Sven Sagner, Senvion SE Matthias Stammler, Fraunhofer IWES DEWEK 20.05.2015

Content

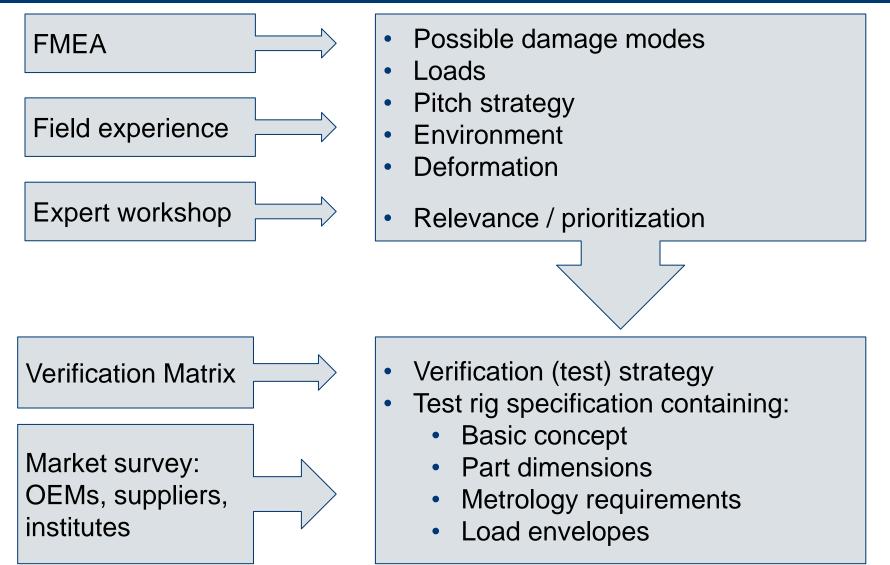
The Process of Defining a Blade Bearing Test Strategy

Some Findings


- Relevant Aspects of Blade Bearing Verification
- Verification Matrix: Possible Approaches to a Blade Bearing Verfication Strategy
- Possible Test Rig Concepts

Senvion Test Rig with Fraunhofer IWES

- The Scope
- The Rig
- The Test Strategy
- The Project Status


Motivation

Defining a Blade Bearing Test Strategy

Damage Modes

- Possible damage modes of the bearing include:
 - Fatigue
 - Edge loading
 - Core crushing
 - Ring fractures
 - Fretting
 - False brinelling

False Brinelling

Fretting Corrosion

4

Verification of lifetime!!

Assess behaviour of cage type bearings

Deformation of bearing and sealings under load

Simulation of current passages?

Suitable hardness penetration?

Measure real deformation during test campaigns

Considering stiffness of the surrounding structures

Effects types of wear and fatigue

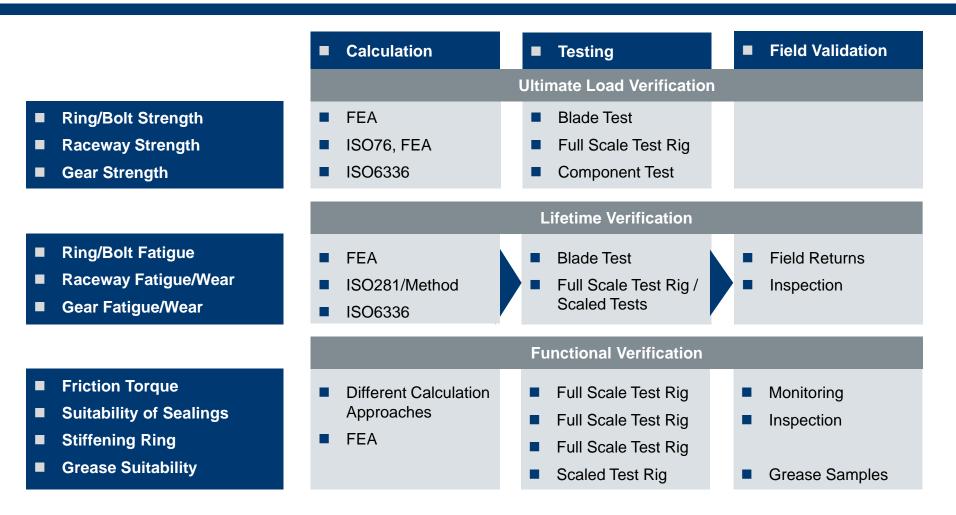
Compare cage- and separator type bearings

Comparison of different lubricating grease

Layout of the lubrication system

Know real load distribution

Findings and Ranking from Blade Bearing Workshop



Requirements / Topics to Consider / Expected Outcome	Rank	Weight
Validate FEA calculations by measurements	1	8.6%
Ensure real proportion of bending moment and radial force	1	8.6%
Consider extreme loads*	3	8.3%
Apply realistic load cases	4	7.9%
Consider operational loads	5	7.6%
Measure bearing friction	6	6.9%
Consider individual pitch control	6	6.9%
Know bolt load distribution	8	6.7%
Essential Measurements and Verifications	Rank	Weight
Measure deformation of bearing, blade brace plate, hub	1	21.4%
Estimate influence of brace plate**	2	19.0%
Consider stiffness distribution of the root	2	19.0%
Use real blade or dummy	4	16.7%
Consider nonsinusodial load introduction	5	14.3%
Estimate influence of single load introduction via one bearing**	6	4.8%
Consider effects of test rig hub position**	6	4.8%

* up to the limits of blade dummy
** done by additional feasibility study

Verification Matrix

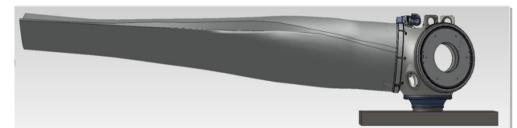
Verification concept includes: Blade test, fullscale test rig and scaled tests

Blade Bearing Test Rigs at OEMs

- Some OEMs have developed blade bearing test rigs which most likely:
 - Are pitchable under load
 - Cover nominal (mostly static) load
 - Include the surrounding structure of hub and blade

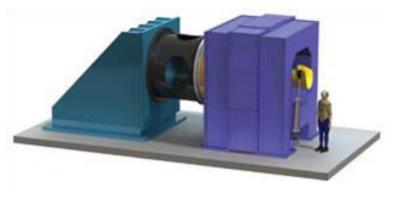
Blade Bearing Test Rigs at Suppliers' Facilities

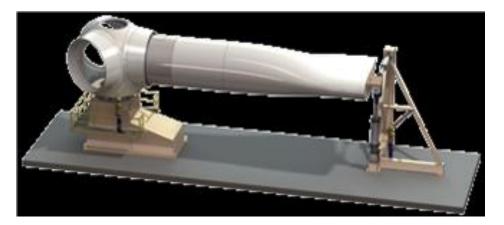
- Several suppliers use blade bearing test rigs which are:
 - Non compatible to our surrounding structure
 - Used for smaller size bearings and smaller loads


Blade Bearing Test Rigs at External Institutes

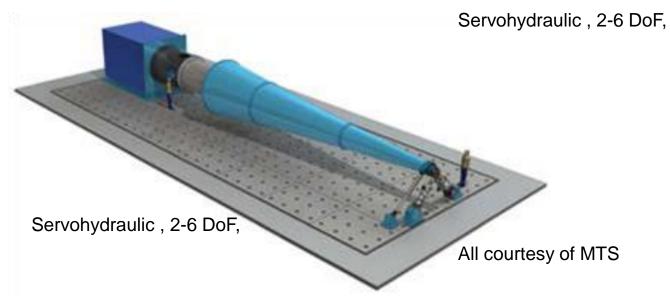
- Several big test institutes can build test rigs which:
 - Are pitchable under load
 - Cover Nominal (mostly static) load
 - Include the surrounding structure of hub and blade

Summarized Scope

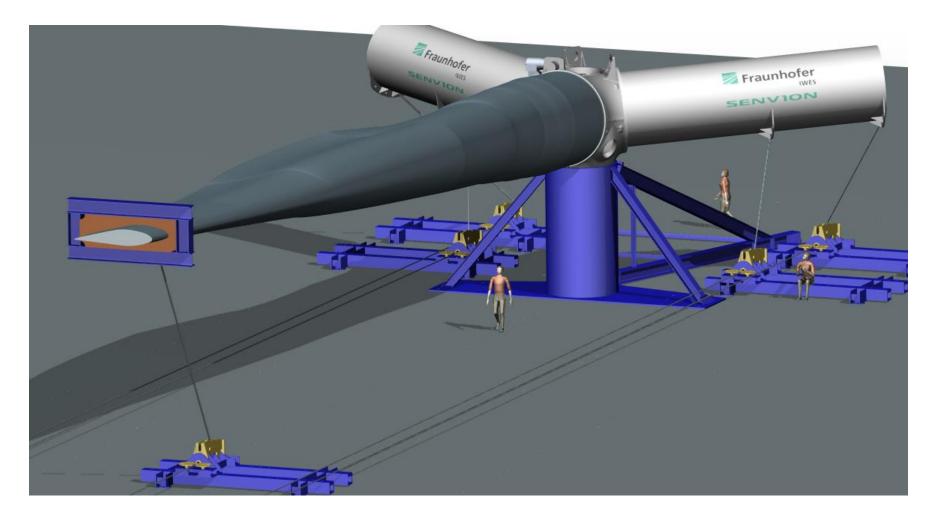

3.0M₁₂₂ 3.2M₁₁₄ 3.4M₁₀₄



- Verification at extreme loads
 - Sealing behaviour
 - Bolt stress
 - Ultimate strength of bearing rings
- Detailed evaluation of operational behavior:
 - Bearing friction under load
 - Compare different bearing concepts
 - Lubricant distribution
- Validation of models and assumptions with repeatable load cases
- Evaluate lubrication conditions as essential prerequisite for downscaled (and accelerated) life cycle verification

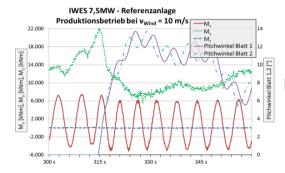

Possible Concepts

Hydrostatic, 6 DoF,



- "Star" layout for realistic hub deformation
- Components from WEC: Hub, bearing, blade, pitch drive
- Load application point at 30 m from blade root
- Load up to max. static load
- Load application under different angles
- Control software for pitch profiles
- Appr. 400 channels measurement system
- Additional standalone systems for high speed measurements

Test Rig Concept



Test Strategy

- Functional & research test
- Pitch under load with different amplitudes
- Apply maximum loads
- Derive possible endurance run profiles

Mittlere Anzahl Amplitude Zyklen		Mittlere Frequenz	Standardab- weichung Amplitude	Mres (Mittel)	Mres (Standardab- weichung)		
[deg]		[Hz]	[deg]	[normiert]	[normiert]		
0,27	4,14E+07	0,96	0,15	0,95	0,045		
0,79	3,25E+07	0,49	0,14	1,00	0,063		
1,28	2,30E+07	0,46	0,14	0,99	0,068		
1,79	1,27E+07	0,42	0,14	0,94	0,074		
2,27	7,51E+06	0,38	0,13	0,86	0,082		
2,79	5,70E+06	0,33	0,14	0,80	0,090		

				Pitch								Ultruschall	
Testmanner	Statistic	Endwinkel	Zei- eschwindiekeit	Institucione	atien	Pause	Annuture	Blatt - Botrae	Set - Weld	and the second	Hebel- Winkel	Pusition	Oward 1
1.1	0.00*	90.00*	0.15%	50.07.07	20	0.5 M		word			THE R.D.	Marc	6.0
	0.00"	90.00	0.75%	50.00714	20	0.5 000		Eigengewicht Eigengewicht			Mitte	20	
1.2	6.00	50.007	1.25%	50.00714	20	0.5 m		Generaldt				Lime	1.2
14	6.00	90.00	LWA	50.007.02		0.5 (4)					Mille	0.0	
15	0.00"	90.00	2.35%	50.071/	10	0.5 sea		_	Eigengewicht			Mille	0.6
1.5	0.00*	90.00	2.15%	50.071/	10	0.5 90		Egengewicht Egengewicht			Miller	0.5	
12	6.00	20.00	5.157/2	50.007.02		0.5 50					Millio	0.4	
18	0.00"	90.00	3.75%	50.007/52		0.5 50					Mar	0.	
1.0	0.007	90.00	4.35%	50.00732	30	0.5 m		_	Cerre			Marco .	0.4
1.10	0.00"	90.00	4.75%	50.00714	20	0.5 m			Cleane			Miller	0.3
1.11	6.007	50.007	5.25%	50.00714		0.5 m		_	Gerry			Lime.	0.2
1.12	0.00*	90.00	5.75%	50,007,07	10	0,5 000		-				ALC: NO.	0.3
1.17	0.00	90.00	6,3570	50,00714		0.5 sea		_	Eigeng			Mille	0.3
1.14	-0.50*	89.50	6.35%	50.0073/	10	0.5 set			Eigene			Miller	0.0
1.15		88,52			10	0.5 50		Eigengewicht		Mille			
1.15	-1.00*	85.00	6,25%	50,00%				-				Miller	0,1
1.16	-5.86*	85.00	6.25%	50,007/5	50	0.5 set		_	Eigene			Mille	
1.17					50			Egengewicht			0,2		
	-0.50*	89,50"	6,25%	50.00%		1,0 969				Mille	0,3		
1.19	-0,50*	89,50*	6,25'/s	50,00"/\#	30	1,5 666		_	Eigang			Mitte	0,2
1.20	-0,50*	89,50*	6,25'/s	\$0,00°/*	20	2,0 664			Eigeng			Mitte	0,2
1.21	-4,54*	88,54*	6,251/6	\$0,00°/*	20	5,0 644			Eigeng			Mitte	0,3
	-0,50*	89,50"	6,25%	\$0,007/5*	30	10,0 sev			Eigengewicht Eigengewicht Eigengewicht		Mille	0,3	
1.29	-0,50*	89,50*	3,25%	\$0,00"/5"	10	0,5 50		_			Mitte	0,6	
1.24	-1.00*	89.007	3,15%	50,007/58	30	0.5 501		-			Mitte	0,4	
1.25	-5,00*	85.00"	3,25%	50.00%	50	0,5 50				Egengewicht Egengewicht		Mitte	0,4
1.26	-10.00*	80,00"	3,25%	50,007/58	30	0,5 99						Mille	0,4
	-0.50*	89,50	3,25%	50,00°/h ^a	50	1,0 501			Eigengewicht Eigengewicht Eigengewicht		Mitte	0,4	
1.28	-0,50"	89,50"	3,25'/s	\$0,00"/*	30	1,5 000					Mitte	0/	
1.29	-4,50*	89,50*	3,251/6	\$0,00°/\r	30	2,0 664		_			Mitta	0,4	
1.30	-0,50*	88,50"	3,25%	50,00"/\v#	30	5,0 see		Eigengewicht		Mille	0,5		
1.81	-0,50*	89,50*	3,25%	\$0,00°/\r	30	23,0 sev			Eigene	rwicht		Mitte	0,5
												new Zeit Test 1	26,8
				Keine Mithibi				334		47 101			0,5
				Keine Pitchbo				671		94 kM	6		0.5
2.9				Keine Pitchbe				1004		141 kM			0,3
				Keine Pitchbo				1554			(0,5
				Keine Pitchbo				1671		236 kM			0,5
				Keine Pitchbo				2004		283 kN	6		0,5
				Keine Pltchbo				233 4		330 km	6		0,5
				Keine Pitchbo				2671		327 km	6		0,1
	-5.00*	5.00*	8,351/6	25,007/14	50		Gigenbourgung / Ma Einfuß Last	334		47 kN		- Mitte	0,3
	-5,00*	5,00"	4,15%	25,007/58	10	2,0 561		33.4		42 101		Mille	0,1
	-5,00*	5,00"	5,25%	25,007/58	10	2,0 541		334		47 850		Mitte	0,0
	-5.00*	5.00"	6,15%	25,007/58	10	2,0 501		35 k		47 101		Mitte	0,0
		5.007	8.25%		10	2.0 50		55.6	N IT	47 10		C Miller	0.0

Test Rig – Current Status

Status Full Scale Test

Achieved

- Test rig based on original hub and strengthened blade
- Start of friction test series
- Senvion parts and steel structures on site

Upcoming

- Produce instrumented bearing
- Design an produce lubrication sensor
- Commissioning
- Start functional testing