## european society for precision engineering and nanotechnology Mould-integrated mechatronic fixture for error compensation in injection over-moulding of optoelectronic devices

Martin Schwarze, Hendrik Rentzsch, Stephan Perz







# european society for precision engineering and nanotechnology 1. Initial situation and motivation 2. Claims of the research

4. Motion and thermal analysis

**Development of concept** 

5. Conclusion and Outlook



Advance the arts, sciences and technology of precision engineering, micro-engineering and nanotechnology

3.

### 1. Initial situation and motivation



#### european society for precision engineering and nanotechnology 2. Claims of the research project Kinematic Requirements **Basic Concept** structure Installation space max. translatory travel: min $\pm 200 \, \mu m$ (micro-injection-tool) positioning accuracy: Х 0.1 µm max. rotatory angle: 1.8° positioning accuracy: $\theta_7$ 0.01° LED 20 in the second plastics optics 70 leadframe euspen 🜌 Fraunhofer Advance the arts, sciences and technology of precision engineering, micro-engineering and nanotechnology

#### 3. Development of concept

IWU





 $[10^{-7}m]$ 

lever type 80

maximum stress

[N/mm<sup>2</sup>]

movable bridge

🗜 eu spen 🗾 Fraunhofer

■ fixed bridge

stiffness [10<sup>-2</sup>N/µm]

IWU

110





IWU

#### european society for precision engineering and nanotechnology **3. Development of concept Kinematic** Requirements **Basic Concept** structure Synthesis and optimization of compliant mechanism Gesamtverformung Typ: Gesamtverformung Einheit: mm 0.6564 Max 0.5834 0,5105 $h_{1}$ 0.4376 0,3647 0,2917 u 0,2188 0,1459 0,07293 0 Min 20.000 (mm Vergleichsspannung ΔI Typ: Vergleichsspannung (von Mises) Einheit: MPa $\Delta I$ 218 187 156 93,6 62,4 piezo actuator 31,2 0.0202 Min 1<sub>PA</sub> $\mathsf{F}_{\mathsf{Block}}$ 111 euspen 🜌 Fraunhofer Advance the arts, sciences and technology of precision engineering, micro-engineering and nanotechnology



#### european society for precision engineering and nanotechnology **3. Development of concept** Mould-Kinematic **Basic Concept integration** structure additional ejector Upper Part pin in cavity plate Cavity compression spring Core additional Plate compliant mechanism for Z-translation Lower Part conventional ejector pin in mould euspen 🜌 Fraunhofer Advance the arts, sciences and technology of precision engineering, micro-engineering and nanotechnology

#### 3. Development of concept

european society for precision engineering and nanotechnology Requirements

**Basic Concept** 

Kinematic structure

Mouldintegration

#### Design of concept

- 3 capacitive sensors on cavity plate
- 1 absolute system in upper part
- Alignment of the device in the mould by 8 fine adjustment screws

#### Modular mould concept

## Injection moulding tool with standard components:

- ✓ Plates and risers
- ✓ Guidance and Ejector system
- ✓ Fasteners



Advance the arts, sciences and technology of precision engineering, micro-engineering and nanotechnology



euspen 🗾 Fraunhofer



### 4. Motion and thermal analysis



#### **Results of FE-Simulation**

european society for precision engineering and nanotechnology

| Motion                     | Value             |
|----------------------------|-------------------|
| Travel X                   | ±350 μm           |
| Travel Y                   | ±310 μm           |
| Angle O <sub>z</sub>       | ±1,88°            |
| parasitic motion in X-axis | 0,02 µm / 0,0004° |
| parasitic motion in Y-axis | 0,08 µm / 0,007°  |

#### Temperature dependency:

Maximum travel depends on the temperature

- $\rightarrow$  If temperature increases, maximum travel decreases by about 0,5  $\mu$ m/K
- ightarrow Constant temperature during operation is assumed

### 5. Conclusion and Outlook

#### **Design of concept**

european society for precision engineering and nanotechnology

- Compliant mechanisms allow high-precision positioning
- Parameter optimisation increases deflections and reduce parasitic movements
- Highly compact systems can be integrated into an injection moulding tool

#### Outlook



Realisation of the actuator system, commissioning and measurements of the adjustment ranges during operation **Benefits** 

Active error compensation inside the mould

Additional assembly steps are not necessary

Production of the electronic components can become more cost-effective





