
 
 

 

Proceedings International Conference of Agricultural Engineering, Zurich, 06-10.07.2014 – www.eurageng.eu    1/8 

 
Ref: C0259 

Discrimination of plants and weed by multi-sensor fusion 
on an agricultural robot 

Christian Frese, Johannes Meyer and Christian Frey, Fraunhofer Institute of Optronics, Sys-
tem Technologies and Image Exploitation IOSB, Fraunhoferstr. 1, 76131 Karlsruhe, Germa-
ny 

Abstract  

This contribution presents an approach to automatically classify crop plants and weed based 
on multi-sensor information with the aim of mechanically removing the weed by an agricul-
tural robot. First, a possible sensor setup and its calibration are outlined. As the robot moves 
forward, the sensor data can be aggregated into a 3D model. To increase model quality, the 
roll and pitch angles of the robot have to be estimated and compensated. Then, different fea-
tures are computed from the sensor data and the discriminative power of the features is 
evaluated. The feature vector is input to a support vector machine classifier. The considered 
classes are crop plant, weed, and soil. The result is a 3D representation of plants and weed 
which can be used for automatic weed removal. 
As an example application, tree nurseries are considered, especially the growth of boxwood 
trees. Classification and mapping results on real data acquired by a robot are reported. 
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1 Introduction 

Weed control is in many cases a cost-intensive operation, requiring either manual work to 
mechanically remove the weed or herbicides which may be harmful also to the crop and to 
the environment in general. Agricultural robotics has the potential to make mechanical weed 
control more cost-effective, thus allowing a more frequent application. Thereby herbicides 
become dispensable to a large extent, which is often beneficial for both crop and environ-
ment. 
 
As an example application, tree nurseries are considered, especially the growth of boxwood 
trees (buxus sempervirens). Boxwood grows very slowly and requires repeated weed control 
during several years so that the possible savings of automation are notable. Typically, the 
boxwood plants are arranged in rows. Our outdoor robot IOSB.amp O1 is able to drive along 
such rows. It observes the plants from above and records sensor data of real boxwood trees 
(Figure 1). 
 
In the literature, vision-based methods are typically used for automatic weed detection 
(Slaughter et al., 2008, Bossu et al., 2009). Besides segmentation approaches based on 
color feature thresholds, artificial neural networks are commonly used as classifiers (Tang et 
al., 2003). Plant classification based solely on 3D lidar data has also been studied (Weiss et 
al., 2010). 
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This contribution proposes an approach to automatically classify crop plants and weed based 
on multi-sensor information. By multi-sensor fusion, both range and color information is 
available for each data point. This allows the computation of a highly distinctive feature vec-
tor which is then used to classify each point as crop, weed, or soil. The classification is per-
formed by a support vector machine trained with hand-labeled data. Furthermore, the range 
data can be aggregated into a 3D model of the plantation which is an important prerequisite 
for successfully removing the weed without harming crop plants. The mechanical manipula-
tion system which is developed by our project partners is outside the scope of this paper. 
 

2 Materials and methods 

2.1 Sensor setup and calibration 

The current sensor setup consists of a 2D laser range finder (line scan lidar) and a color 
camera. The lidar sensor measures range values within an inclined plane.  
 
The intrinsic and extrinsic camera parameters are calibrated using a standard planar calibra-
tion pattern. Then, the acquired lidar data of the calibration object is registered towards the 
plane estimated by the extrinsic camera calibration (Zhang & Pless, 2004). 
 
The calibration of the sensor system allows to find for each 3D point measured by the laser 
range finder the corresponding pixel in the camera image (Figure 1). 

2.2 Mapping 

As the robot moves forward, the 2D range data can be aggregated into a 3D point cloud of 
the plantation. To this end, the current position and orientation of the lidar sensor has to be 
known. The (   ) position within the ground plane and the yaw angle are obtained from the 

odometry data of the robot. The nominal height (  coordinate), roll and pitch parameters of 
the sensor are constant. However, due to the roughness of the terrain, the real height, roll, 
and pitch values of the robot will be time-variant. To increase the quality of the 3D model, 
these variations have to be estimated and compensated. This can be accomplished either by 
additional sensors such as inertial measurement units or by inferring the pose parameters 
from the range data using model assumptions. 
 
For the latter approach, it is assumed that the terrain is globally planar within the observed 
area. The ground plane and the scan plane of the lidar intersect in a line. The position of this 
line in the sensor coordinate system depends on the current roll, pitch, and height values. If 

Figure 1: Robot and sensor setup. Left: Mobile robot IOSB.amp O1 driving along a row of boxwood 
plants, with a detail showing the sensor system consisting of a lidar sensor and a color camera. Right:  
Measured range data plotted in the sensor coordinate system and projected into the camera image. 
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the roll angle is zero, the ground line appears to be perpendicular to the forward direction of 
the robot. If the robot is rolling, the line appears to be tilted. Depending on the pitch angle, 
the measured ground line is closer to the sensor or farther from the sensor. The equation of 
the ground line is estimated from the range data by means of the RANSAC algorithm, which 
discards local outliers not belonging to the ground plane (Fischler & Bolles, 1981). Then, roll 
and pitch angle of the sensor are reconstructed from the line equation parameters using el-
ementary, but somewhat lengthy trigonometric equations. 
 
The   position of the sensor can be estimated based on the assumption that roll and pitch 

variations even out over time. The correction of the   position is beneficial when the wheels 
of the robot do not have the same ground level as the observed plane, e.g., when the robot 
drives within the furrows of the field. 

2.3 Feature extraction 

As the sensor system is calibrated, both range and color information is available for each 
data point under consideration. Based on the sensor data, a feature vector characterizing the 
data point is computed. The individual features can be grouped into range, color, and texture 
features. 
 
Range features such as the height (  coordinate) of the point and the standard deviation of 
the height capture the typical size and surface structure of different plants. 
 
Color features are particular helpful for discriminating plants from soil. However, as the illu-
mination is uncontrolled daylight, it is important to compute features which are invariant un-
der intensity and illumination variations. Therefore, the color channels are preprocessed us-
ing histogram matching, and the employed color features are normalized by the intensity val-
ue of the pixel. 
 
Texture features characterize homogeneity, contrast, and anisotropy of local structures in the 
gray-scale image. Size, shape, and arrangement of the leaves generate a characteristic pat-
tern which helps to discriminate boxwood from other plants, e.g., grass having elongated 
structures. For each pixel corresponding to a measured 3D point, a neighborhood window in 
the image is considered in order to obtain information on the local image structure. The win-
dow size is a critical parameter which should be optimized for the considered task. Larger 
windows allow the computation of more reliable features, but impair the spatial resolution of 
the classification. The following texture features have been evaluated: mean and variance of 
gray value within the window, histograms of oriented gradients, Fourier histograms (Ursani et 
al., 2008), Laws’ texture energy (Laws, 1980), and local binary patterns (Ojala et al., 2002). 

2.4 Classification 

The feature vectors of the individual data points are classified by a support vector machine 
(Chang & Lin, 2011) into one of the classes boxwood, weed, and soil. The weed class en-
compasses all vegetation other than boxwood plants. 
 
As a basic support vector machine can handle only two classes, the one-against-one voting 
approach is used for this three-class problem. Radial basis functions are chosen as a kernel 
to transform the feature vectors. 
 
The classifier is trained on real data in which every point has been manually annotated with 
the correct class label. Points which could not be assigned unambiguously to one of the 
three classes have been omitted in the training procedure. These points can originate from 
objects not belonging to any of the three classes, e.g., withered foliage lying on the ground, 
or from mismatches between lidar and camera data due to occlusions caused by foreground 
objects. The data has been recorded during several months in a plantation of spherical box-
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wood plants having a diameter of about 40-50cm. Training and test data sets are strictly 
separated: they consist of different plants and have been acquired on different days and thus 
under different illumination conditions. 
 
Extensive grid search optimizations have been performed in order to select suitable parame-
ters for classification and feature extraction. The classifier has been trained using different 
parameter settings, and the classification success has been evaluated on the labeled test set 
each time. This procedure has been applied to optimize the parameters of the support vector 
machine, of the radial basis function kernel, and of different features, especially the window 
sizes for the texture features. 
 
Additionally, the classification performance when using feature vectors composed of varying 
feature sets has been evaluated in order to assess the distinctive power of certain groups of 
features. 
 

    
 

Figure 2: 3D mapping of the plant cultivation. Left: Top view on the uncorrected point cloud computed 
from the linescan lidar data. Center: Corrected point cloud aggregated using the estimated roll, pitch 
and   values. Right: Single scan of a Velodyne 3D lidar. The height (  value) is color-encoded as indi-
cated. 

 

3 Results 

3.1 Mapping 

Figure 2 shows a detail of the 3D point cloud acquired by the robot while driving along the 
row of boxwood plants. The spherical shape of the boxwood trees is clearly visible in the col-
or-encoded view from above onto the point cloud. In the uncorrected point cloud shown on 
the left, an apparent “hill” can be seen in blue color. This is however a false estimation 
caused by the robot heavily rolling and pitching due to a pot-hole in the ground which can be 
seen in yellow next to the second boxwood plant. Such artifacts can be avoided when esti-
mating the sensor pose from the lidar data as proposed in Section 2.2. Then, the respective 
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area appears to be more or less flat and the map is generally smoother. Ground truth data of 
the scene has been acquired by a Velodyne 3D lidar sensor in a single scan. By comparing 
the point clouds in Figure 2, it can be verified that the “hill” occurring in the uncorrected data 
is indeed an artifact. 
 
Similar results are obtained by a quantitative analysis. The deviation of the points outside the 
row of plants from an idealized plane model is more than halved when using the corrected 
pose during the aggregation of the point cloud. It reaches about the same value as on the 
Velodyne point cloud. Additionally, the height mismatch of the computed point cloud to the 
Velodyne data is significantly reduced compared to the uncorrected point cloud. 
 

3.2 Classification 

Feature vectors on the margin of the classes in the feature space are selected as support 
vectors by the training algorithm. Figure 3 shows the corresponding image pixels for support 
vectors of the two-class decision problems boxwood against weed and soil against weed, 
respectively. These examples indicate that the support vectors indeed represent the limiting 
cases in the training data. In total, about 6.4% of the training data points have been selected 
as support vectors. This percentage represents an estimate for the expected classification 
error (Cristianini & Shawe-Taylor, 2006). 
 
On the different test sets, an average classification success of 95.41% has been obtained. 
Furthermore, only 0.39% of the boxwood points have been incorrectly classified to be weed. 
Hence the classification of the boxwood plants is very reliable, whereas weed and soil are 
mixed up sometimes, especially if they are in close vicinity. But this is uncritical as the me-
chanical manipulator will always treat a region a little larger than the detected weed area. 
Figure 4 illustrates typical classification results obtained by the proposed method. 
 
An iterative feature selection procedure has been applied in order to assess the performance 
of different groups of features with regard to the classification task. The procedure can be 
illustrated by means of the excerpt of the results shown in Figure 5. First, the classification 
 
 

        
 
 

        
 

Figure 3: The data points marked in red have been selected as support vectors for the discrimination 
of boxwood against weed (top row) and soil against weed (bottom row). 
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success rate for each group of features is evaluated individually. The most successful group 
is selected, in this case the range features. Then, the union of the selected feature set with 
each of the remaining groups is evaluated on the same test set. In Figure 5, the addition of 
the color features showed the largest increase in classification performance. In the third step, 
the statistical texture features (mean and variance of gray value within a local window) have 
been chosen in addition to the previous set of range and color features. Among the ad-
vanced texture features, local binary patterns performed best, followed by Fourier histo-
grams, Laws’ texture energy, and histograms of oriented gradients. 
 
Figure 6 shows the benefits of the multi-sensor approach using both range and image fea-
tures by plotting the classification success for different groups of features. 
 

4 Conclusions 

This contribution has presented a multi-sensor approach to distinguish crop plants from 
weed. The acquired range and image data allows both weed detection and 3D mapping of 
the plantation. Weed detection has been performed by classifying each data point based on 
range, color, and texture features. The classifier has achieved good success rates on real 
test data. 
 
The resulting data can be used for mechanical weed control as well as for other applications 
such as cutting the boxwood trees into the desired (spherical) shape or rating the health of 
the plants. 
 
Further work will address the optimization of the computational performance and the evalua-
tion on different data sets encompassing, e.g., boxwood plants of different sizes. Additionally, 
the integration of range data and classification results into a model based on geometric primi-
tives will be investigated. 
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Figure 4: Examples of classified data points projected into the camera image. 
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Figure 6: Classification success when using different groups of features. While a 
good performance can be achieved using only image features (color & texture), 
the addition of the range features further improves the classification success. 
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Figure 5: Results of the iterative feature selection procedure. Each feature set 
encompasses all features mentioned to the left of it, as suggested by the  
notation “… &”. 
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