
Vol. 29

Eric Ras

Learning Spaces:
Automatic Context-Aware Enrichment
of Software Engineering Experience

Ph
D

 Th
eses in

 Exp
erim

en
tal So

ftw
are En

g
in

eerin
g

Editor-in-Chief: Prof. Dr. Dieter Rombach
Editorial Board: Prof. Dr. Frank Bomarius
 Prof. Dr. Peter Liggesmeyer
 Prof. Dr. Dieter Rombach

FRAUNHOFER VERLAG

PhD Theses in Experimental Software Engineering
Volume 29

Editor-in-Chief: Prof. Dr. Dieter Rombach

Editorial Board: Prof. Dr. Frank Bomarius, Prof. Dr. Peter Liggesmeyer,
 Prof. Dr. Dieter Rombach

Zugl.: Kaiserslautern, Univ.-Diss.; 2009

Printing:
IRB Mediendienstleistungen des
Fraunhofer-Informationszentrum Raum und Bau IRB, Stuttgart

Printed on acid-free and chlorine-free bleached paper.

All rights reserved; no part of this publication may be translated, reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. The quotation of those designations in whatever way does not
imply the conclusion that the use of those designations is legal without the consent of the
owner of the trademark.

© by Fraunhofer Verlag, 2009
ISBN 978-3-8396-0016-0
Fraunhofer-Informationszentrum Raum und Bau IRB
Postfach 800469, 70504 Stuttgart
Nobelstraße 12, 70569 Stuttgart
Telefon +49 7119 70 - 25 00
Telefax +49 7119 70 - 25 08
E-Mail verlag@fraunhofer.de
URL http://verlag.fraunhofer.de

Learning Spaces: Automatic Context-Aware
Enrichment of Software Engineering

Experience

Beim Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigte Dissertation
von

Dipl.-Technoinform. Eric Ras

Fraunhofer-Institut für Experimentelles Software Engineering
(Fraunhofer IESE)

Kaiserslautern

Berichterstatter: Prof. Dr. H. Dieter Rombach
 Prof. Dr. Kurt Schneider

Dekan: Prof. Dr. Karsten Berns

Tag der Wissenschaftlichen Aussprache: 07.05.2009

D 386

 ii

 iii

“Learning Spaces encompass the full range of
places in which learning occurs from real to vir-
tual, from classroom to chat room.” (M. Brown,
2004)

The term learning space is widespread and is used in many different
contexts, such as in the name of commercial products, as the synonym
for virtual classrooms, or for specific approaches as presented in this
work. They all have two things in common: motivate the learner and
promote learning as an activity for knowledge construction.

The way how learning takes place today has been shaped by the
developments of information technologies. They have brought unique
capabilities to learning spaces, such as fostering more interaction
between learners, easily accessing a diversity of information, or
efficiently creating, tagging, and aggregating of information.

Learning spaces in the context of this work enrich documented software
engineering experience with additional information in a didactical
manner. They are learner-centered because they reflect the preferences,
knowledge, and needs of the software engineer. They are dynamic and
situative in terms of their context-aware adaptation. Technically, they
consist technically of a hypermedia space of interlinked pages, composed
of information from an e-learning system and a knowledge management
system in order to support the reuse of experiences on the one hand and
knowledge acquisition on the other hand.

 iv

 v

Abstract

Software engineering consists of human-based, knowledge-intensive ac-
tivities in which new situations require new knowledge by the software
engineers. An experience factory supports these activities through the
collection, analysis, packaging, and dissemination of so-called experi-
ences packages (i.e., knowledge, products, and processes). However,
several explorative studies confirm that reuse-based approaches suffer
from three problems in practice: bad understanding of reusable artifacts
and experience packages in particular; no explicit support for the inter-
nalization of knowledge and no compliance with human information
processing; and no explicit connection between experience management
and technology-enhanced learning approaches.

This work addresses the research question of whether the enrichment of
experience packages with additional information (i.e., so-called learning
spaces) improves the understanding and application of an experience
package on the one hand and knowledge acquisition and perceived in-
formation quality on the other hand.

The presented learning space approach extends the “project support”
activity of the experience factory by automatically generating context-
aware learning spaces by merging information from the experience base
with learning content. Specified variabilities in generic learning space ar-
tifacts support adaptation on the level of structure, content, and presen-
tation to context characteristics.

The main contributions are a reference model consisting of a) a context
model for describing situations in software engineering, b) a domain
model for describing the body of knowledge in software engineering, c)
a learning space model for defining learning spaces on different levels of
abstraction (i.e., structure, content, and presentation), d) a variability
model for defining variabilities in generic artifacts and their resolution, e)
a role model for implementing the learning space approach in an organi-
zation, and f) techniques and tools for the systematic and automatic on-
demand generation of learning spaces (i.e., resolution, adaptation, and
presentation). A controlled experiment and a case study provide statisti-
cally significant results, which quantify the positive impact of learning
spaces upon the understanding and application of experience packages,
knowledge acquisition, perceived information quality of experience
packages, as well as the use, acceptance, and software ergonomics of
the developed tools. A power analysis and effect sizes provide a strong
baseline for future evaluations and meta-analysis studies.

 vi

 vii

Related Publications

The work reported in this thesis has not been submitted in support of an
application for another degree at this or any other university. Excerpts of
this thesis have been published in books, journals, conference and
workshop articles as well as technical reports. An overview of the related
publications can be found in the section Related Publications.

 viii

 ix

Acknowledgements

This work could not have been finished without the help of many people
who supported me during the last years.

In the first place, I thank Prof. Dr. Dieter Rombach for being my principal
advisor, for his guidance and support throughout the whole Ph.D.
process, and for giving me the opportunity to perform my Ph.D. work at
the Fraunhofer Institute for Experimental Software Engineering (lESE).
This provided me with a great environment for applied research. Special
thanks also go to Prof. Dr. Kurt Schneider for acting as a referee of my
work and to Prof. Dr. Nebel for chairing the Ph.D. committee.

I want to thank my colleagues at Fraunhofer IESE for many fruitful
discussions, in particular in the division of competence management. I
am grateful to Marcus Ciolkowski, who helped me to plan and design
the experiment, and to Björn Decker and Jörg Rech for bringing the
Software Organization Platform to life. Thanks to Jörg for his
encouraging and supporting way of doing efficient research, for
contributions to many publications, and for his support as a refactoring
expert. Thanks to Brigitte Göpfert for getting endless lists of articles, to
Sonnhild Namingha for correcting my English, and to Stephan Thiel for
his layout support. I would like to extend my thanks to the students who
evaluated the learning space approach. I appreciate the support of
Dimitri Ilin who contributed significantly to the development of the tools.

Thanks also go to external people whose feedback influenced my work,
namely Martin Memmel who is a great companion for conducting
workshops and tutorials, and for brainstorming about learning
approaches. Stefanie Lindstaedt and Andreas Schmidt created perfect
opportunities for sharing experiences in the domain of knowledge
management and technology-enhanced learning.

Most importantly, I thank my wife Chantal for her patience over years
and years of waiting for me while I spent nights on writing many papers
and this thesis, and for providing constructive feedback on learning
issues. Her love and encouragement in times of hard work helped me to
stay on track and strive towards the completion of this thesis. Thanks to
our daughter Noa, who always turned my mind to other things and
reminded me of the valuable little things beyond doing a Ph.D.

I would like to say apologize to those for whom I did not have enough
time during the course of this dissertation.

 x

Table of Contents

 xi

Table of Contents

Abstract...v
Related Publications...vii
Acknowledgements...ix
Table of Contents ..xi
List of Figures ..xiii
List of Tables...xvii
List of Definitions ..xxi
1 Introduction ..1
1.1 Motivation and Background ..2
1.2 Practice and Research Problems...5
1.3 Research Question and Research Objectives of this Thesis8
1.4 Research Approach and Hypotheses..11
1.5 Proposed Solution – An Overview..13
1.6 Contributions of this Thesis ...18
1.7 Structure of the Thesis ..20
2 State of the Practice..23
2.1 Problems in Software Engineering Reuse ...23
2.2 Problems in Knowledge Management ...26
2.3 Problems in Experience Management ..26
2.4 Integration of Knowledge Management and Technology-Enhanced

Learning ...28
2.5 Explorative Studies ..30
3 State of the Art ...33
3.1 Professional Acting and Experiential Learning ..34
3.2 Organizational Learning and Related Approaches43
3.3 Reuse in Software Engineering ..50
3.4 Technology-Enhanced Learning...55
4 Fundamental Modeling Concepts ..73
4.1 Research Objective and Requirements ...73
4.2 Reference Model of the Learning Space Approach...................................74
4.3 Comparison with other Reference Models ...109
5 Learning Space Approach...113
5.1 Research Objective and Requirements ...113
5.2 Lifecyle of a Learning Space ..114

Table of Contents

 xii

5.3 Experiential Learning Scenario... 115
5.4 Role Model and Related Activities ... 119
5.5 Learning Space Generation Techniques ... 149
6 Learning Space Tools.. 159
6.1 Research Objective and Requirements ... 159
6.2 Realization in the Software Organization Platform................................. 160
6.3 Frontend of Learning Space Approach .. 162
7 Empirical Evaluation – A Controlled Experiment.............................. 167
7.1 Evaluation Goal and Experiment Planning ... 168
7.2 Data Analysis Procedure.. 183
7.3 Data Preparation .. 186
7.4 Experimental Results ... 188
7.5 Hypothesis Testing.. 197
7.6 Discussion of the Analysis Results.. 215
7.7 Threats to Validity... 217
8 Use and Acceptance Evaluation... 221
9 Summary and Outlook ... 227
9.1 Results and Contributions ... 227
9.2 Limitations and Future Research.. 232
9.3 Concluding Remarks... 235
Abbreviations... 237
References .. 239
Related Publications... 255
Appendix A. Material of the Experiment ... 259
A.1. Briefing Questionnaire ... 259
A.2. Pre- & Post-Questionnaires... 262
A.3. Experience Packages for Experimentation... 277
A.4. Assignments.. 280
A.5. Debriefing Questionnaire ... 286
Appendix B. Material of the Case Study .. 289
Appendix C. Additional Statistics.. 295
C.1. Principal Component Analysis of the Briefing Questionnaire 295
C.2. Item Analysis of the Post-Questionnaire ... 301
C.3. Outlier Analysis.. 306
C.4. Test for Normality .. 311
C.5. Analyzing Confounding Effects .. 332
C.6. Testing the Assumptions for ANCOVA ... 348
Lebenslauf .. 355

List of Figures

 xiii

List of Figures

Figure 1 Reuse model of Basili and Rombach (V. R. Basili & Rombach, 1991)................ 3
Figure 2 The Experience Factory (V. R. Basili, Caldiera et al., 1994b)............................. 4
Figure 3 Practice and research problems .. 6
Figure 4 Research objectives, solution, and hypotheses .. 10
Figure 5 Instantiated reuse model .. 17
Figure 6 Extension of the experience factory .. 19
Figure 7 Experiential learning cycle of Kolb (D.A. Kolb & Fry, 1975)............................ 42
Figure 8 Reuse model of Basili and Rombach (V. R. Basili & Rombach, 1991).............. 51
Figure 9 Overall conceptual model ... 76
Figure 10 Reuse model of Basili and Rombach (V. R. Basili & Rombach, 1991).............. 77
Figure 11 Learning space model (full realization dependency depicted in Figure 16)..... 81
Figure 12 Instructional design model ... 84
Figure 13 Example of learning objectives template with learning activities.................... 85
Figure 14 Example of learning resource model... 87
Figure 15 Learning page .. 88
Figure 16 Learning resource model .. 89
Figure 17 Content element types... 90
Figure 18 Context model ... 96
Figure 19 Domain model ... 100
Figure 20 Variability model .. 107
Figure 21 Lifecycle of a learning space ... 114
Figure 22 Activity diagram of experiential learning scenario 117
Figure 23 Roles involved in the learning space approach .. 121
Figure 24 Example of first draft of context model .. 123
Figure 25 Example of context model for experience package 125
Figure 26 Example of domain model for experience package 128
Figure 27 Examples of learning pages and content components of the types

description and example .. 142
Figure 28 Examples of content component and related content elements 143
Figure 29 Relevant techniques of the learning space approach................................... 150
Figure 30 Relevant techniques of static adaptation and presentation 151
Figure 31 Relevant techniques of context observation and dynamic adaptation.......... 155
Figure 32 Schematic overview of SOP and learning space approach 161
Figure 33 Experience package.. 163
Figure 34 Annotation of learning elements .. 164
Figure 35 Authoring tool for learning elements.. 164
Figure 36 Overview of a learning space on the “remember” learning goal level 165
Figure 37 Experimental model ... 169
Figure 38 Experimental procedure ... 183
Figure 39 Data analysis procedure ... 185
Figure 40 Box-and-whisker plot for understanding correctness (ucorr) 199
Figure 41 Box-and-whisker plot for knowledge acquisition difference

(know_diff) .. 201

List of Figures

 xiv

Figure 42 Box-and-whisker plot for knowledge acquisition difference
remember (know_diff_remember) .. 202

Figure 43 Box-and-whisker plot for knowledge acquisition difference
understand (know_diff_understand) ... 203

Figure 44 Box-and-whisker plot for knowledge acquisition difference
apply (know_diff_apply) ... 204

Figure 45 Box-and-whisker plot for knowledge acquisition difference
analyze (know_diff_analyze) ... 206

Figure 46 Box-and-whisker plot for knowledge acquisition difference
create (know_diff_create) ... 207

Figure 47 Box-and-whisker plot for application efficiency (aeff) 208
Figure 48 Box-and-whisker plot for application completeness (acomp) 210
Figure 49 Box-and-whisker plot for application accuracy (aaccu) 211
Figure 50 Box-and-whisker plot for information quality (LSEP and EP)......................... 213
Figure 51 Histograms of UTAUT factors for learning spaces (experiment).................... 223
Figure 52 Histograms of UTAUT factors for learning spaces (case study) 225
Figure 53 Histograms of ISONORM factors (case study) .. 226
Figure 54 Reuse model of Basili and Rombach (V. R. Basili & Rombach, 1991) 228
Figure 55 Extension of the experience factory .. 228
Figure 56 Scree plot for exp_jp... 296
Figure 57 Scree plot for exp_ref ... 297
Figure 58 Scree plot for exp_qs .. 299
Figure 59 Scree plot for for exp_main .. 300
Figure 60 Scatter plot for discrimination index and item difficulty............................... 304
Figure 61 Scatter plot for discrimination coefficient and item difficulty of

remaining items.. 305
Figure 62 Box-and-whisker plot for ucorr (experimental group, day 2)........................ 306
Figure 63 Box-and-whisker plot for know_diff_remember

(experimental group, day 2).. 307
Figure 64 Box-and-whisker plot for know_diff_remember

(control group, day 2)... 307
Figure 65 Box-and-whisker plot for know_diff_remember

(control group, day 2)... 308
Figure 66 Box-and-whisker plot for know_diff_create (control group, day 1) 308
Figure 66 Box-and-whisker plot for know_diff_create (control group, day 2) 309
Figure 67 Box-and-whisker plot for aeff (experimental group, day 1).......................... 309
Figure 68 Box-and-whisker plot for acomp (control group, day 2) 310
Figure 69 Box-and-whisker plot for (both groups, experience package,

debriefing questionnaire).. 310
Figure 70 Q-Q-Plot for refactoring experience (exp_ref) .. 312
Figure 71 Detrended Q-Q-Plot for refactoring experience (exp_ref)............................. 313
Figure 72 Histogram and boxplot for refactoring experience (exp_ref) 313
Figure 73 Q-Q plot for refactoring experience (exp_main) .. 314
Figure 74 Detrended Q-Q plot for refactoring experience (exp_main) 314
Figure 75 Histogram and boxplot for refactoring experience (exp_main)..................... 315
Figure 76 Q-Q plot for time need (tn) ... 315
Figure 77 Detrended Q-Q plot for time need (tn).. 316
Figure 78 Histogram and boxplot time need (tn) .. 316
Figure 79 Q-Q plot for knowledge acquisition difference remember

day 2 control group (know_diff_remember).. 320

List of Figures

 xv

Figure 80 Detrended Q-Q plot for knowledge acquisition difference
remember day 2 control (know_diff_ remember).. 320

Figure 81 Histogram and boxplot for knowledge acquisition difference
remember day 2 control (know_diff_ remember).. 320

Figure 82 Q-Q plot for knowledge acquisition difference create
day 1 experimental group (know_diff_create)... 321

Figure 83 Detrended Q-Q plot for knowledge acquisition difference
create day 1 experimental (know_diff_create) .. 321

Figure 84 Histogram and boxplot for knowledge acquisition difference
create day 1 experimental group (know_diff_create) 322

Figure 85 Q-Q plot for knowledge acquisition difference create day 2
experimental group (know_diff_create) .. 322

Figure 86 Detrended Q-Q plot for knowledge acquisition difference
create day 2 experimental (know_diff_create) .. 323

Figure 87 Histogram and boxplot for knowledge acquisition difference
create day 2 experimental group (know_diff_create) 323

Figure 88 Q-Q plot for knowledge acquisition difference analyze day 1
experimental group (know_diff_create) .. 324

Figure 89 Detrended Q-Q plot for knowledge acquisition difference
analyze day 1 experimental (know_diff_create) .. 324

Figure 90 Histogram and boxplot for knowledge acquisition difference
analyze day 1 experimental group (know_diff_create) 325

Figure 91 Q-Q plot for ucorr (based on period differences) .. 327
Figure 92 Detrended Q-Q lot for ucorr (based on period differences) 327
Figure 93 Histogram and boxplot for ucorr (based on period differences)................... 328
Figure 94 Q-Q plot for know_diff_understand (based on period differences).............. 328
Figure 95 Detrended Q-Q plot for know_diff_understand (based on

period differences) ... 329
Figure 96 Histogram and boxplot for know_diff_understand (based on

period differences) ... 329
Figure 97 Q-Q plot for know_diff_create (based on period differences)...................... 330
Figure 98 Detrended Q-Q plot for know_diff_create (based on

period differences) ... 330
Figure 99 Histogram and boxplot for know_diff_create (based on

period differences) ... 331
Figure 100 Profile plot for understanding correctness (ucorr) 340
Figure 101 Profile plot for knowledge acquisition difference apply

(know_diff_apply) .. 341
Figure 102 Profile plot for test for application completeness (acomp)........................... 342
Figure 103 Plot for period effect with respect to treatment.. 346
Figure 104 Plot for period effect with respect to sequence... 347
Figure 105 Scatter plot for testing of homoscedasticity .. 353

List of Tables

 xvii

List of Tables

Table 1 Instantiation of the Reuse Candidates characteristics 13
Table 2 Instantiation of the Reuse Process characteristics .. 15
Table 3 Classification of KM and EM approaches.. 50
Table 4 Methods and techniques for adaptive navigation ... 60
Table 5 Methods and techniques for adaptive presentation 62
Table 6 Classification of learning object types... 71
Table 7 Example of transformation on structure level (idm)....................................... 80
Table 8 Examples of instructional content elements .. 91
Table 9 Adaptable concepts of the learning space approach................................... 102
Table 10 Examples of impact indicators and their consequence for the

generic artifacts ... 108
Table 11 Comparison to other reference models in adaptive hypermedia systems..... 110
Table 12 Experience package “Code smell comment” .. 118
Table 13 Role model of the learning space approach .. 120
Table 14 Activities of the competence manager.. 122
Table 15 Activities of the knowledge engineer.. 126
Table 16 Examples of learning elements ... 128
Table 17 Activities of the adaptive instructional design modeler................................ 130
Table 18 Example of learning goals and related learning objectives........................... 134
Table 19 Example of learning goals and related learning objectives........................... 135
Table 20 Examples of instructional and situational content elements 136
Table 21 Examples of learning activities for the learning goal “remember”............... 136
Table 22 Examples of learning activities for the learning goal “understand” 137
Table 23 Examples of learning activities for the learning goal “apply” 138
Table 24 Examples of impact indicators and their consequence on the

generic artifacts ... 144
Table 25 Example of a decision model and related constraints 147
Table 26 Activities of the librarian... 148
Table 27 Activities of the software developer and software manager........................ 149
Table 28 Template for describing a technique or function... 150
Table 29 Specification of resolve() of VariationPoint.. 152
Table 30 Pseudo-code of function resolve()... 152
Table 31 Specification of adapt() of GenericArtifact .. 153
Table 32 Pseudo-code of function adapt() .. 153
Table 33 Specification of present() of LearningResource and Link.............................. 153
Table 34 Pseudo-code of function present() of LearningResource and Link................ 154
Table 35 Specification of interact().. 156
Table 36 Pseudo-code of function interact().. 156
Table 37 Specification of observe() ... 156
Table 38 Pseudo-code of function observe() ... 157
Table 39 Specification of update() .. 157
Table 40 Pseudo-code of function update() .. 157
Table 41 Notations used in the controlled experiment .. 171
Table 42 Data collection of dependent variables ... 176

List of Tables

 xviii

Table 43 Data collection of disturbing factors ... 179
Table 44 Reliability analysis of scales for experience levels ... 187
Table 45 Descriptive statistics of experience level variables .. 189
Table 46 Independent samples t-test for experience level equality 189
Table 47 Non-parametric Mann-Withney U test for experience level equality............. 190
Table 48 Descriptive statistics of dependent variables (experimental group/day 1) 191
Table 49 Descriptive statistics of dependent variables (control group/day 1) 192
Table 50 Descriptive statistics of dependent variables (experimental group/day 2) 192
Table 51 Descriptive statistics of dependent variables (control group/day 2) 193
Table 52 Descriptive statistics of dependent variables (inf_qua) 193
Table 53 Relative improvement of the two two days (experimental vs.

control group) .. 194
Table 54 Descriptive statistics of disturbing factors.. 195
Table 55 Overview of confounding effects .. 197
Table 56 Disturbing variables suitable for ANCOVA... 199
Table 57 One-tailed dependent sample t-test for understanding

correctness (ucorr) .. 200
Table 58 ANCOVA results for understanding correctness (ucorr) 200
Table 59 One-tailed dependent sample t-test for knowledge

acquisition difference (know_diff)... 201
Table 60 ANCOVA results for knowledge acquisition difference (know_diff) 202
Table 61 One-tailed dependent sample t-test for knowledge

acquisition difference remember (know_diff_remember) 203
Table 62 One-tailed dependent sample t-test for knowledge

acquisition difference understand (know_diff_understand) 204
Table 63 One-tailed dependent sample t-test for knowledge

acquisition difference apply (know_diff_apply).. 205
Table 64 Two-tailed independent sample t-test for knowledge

acquisition difference apply with period effect correction
(know_diff_apply)... 205

Table 65 ANCOVA results for knowledge acquisition difference
apply with period effect correction (know_diff_apply)................................. 205

Table 66 One-tailed dependent sample t-test for knowledge
acquisition difference analyze (know_diff_analyze) 206

Table 67 One-tailed dependent sample t-test for knowledge
acquisition difference create (know_diff_create) ... 207

Table 68 One-tailed dependent sample t-test for application efficiency (aeff) 208
Table 69 ANCOVA results for application efficiency (aeff) ... 209
Table 70 One-tailed dependent sample t-test for application

completeness (acomp) .. 210
Table 71 Two-tailed independent sample t-test for application

completeness with period effect correction (acomp) 210
Table 72 ANCOVA results for application completeness with period

effect correction (acomp).. 211
Table 73 One-tailed dependent sample t-test for application accuracy (aaccu)........... 212
Table 74 ANCOVA results for application accuracy (aaccu).. 212
Table 75 One-tailed dependent sample t-test for perceived information

quality (inf_qua) ... 213
Table 76 Overview of effect size results and power analysis 215
Table 77 Descriptive statistics of UTAUT factors for learning spaces (experiment) 222
Table 78 One-sample t-test for UTAUT factors for learning spaces 223
Table 79 Descriptive statistics of UTAUT factors for learning spaces (case study)........ 224

List of Tables

 xix

Table 80 Descriptive statistics of ISONORM factors for learning
spaces (case study) ... 225

Table 81 KMO and Bartlett’s test for exp_jp ... 295
Table 82 Anti-image matrix for exp_jp.. 296
Table 83 Component matrix for exp_java ... 296
Table 84 KMO and Bartlett’s test for exp_ref .. 297
Table 85 Anti-image matrix for exp_ref .. 297
Table 86 Component matrix for exp_ref ... 298
Table 87 KMO and Bartlett’s test for exp_qs... 298
Table 88 Anti-image matrix for exp_qs ... 298
Table 89 Component matrix for exp_qs.. 299
Table 90 KMO and Bartlett’s test for exp_main... 299
Table 91 Anti-image matrix for exp_main ... 300
Table 92 Component matrix for exp_main.. 301
Table 93 Item difficulty, discrimination index, and discrimination

coefficient for selected items.. 302
Table 94 Item difficulty, discrimination index, and discrimination

coefficient for deleted items... 304
Table 95 Test for normality for experience level variables .. 312
Table 96 Test for normality for dependent variables (experimental group)................. 317
Table 97 Test for normality for dependent variables (control group).......................... 318
Table 98 Test for normality for dependent variables informatin quality 319
Table 99 Test for normality for dependent variables (based on period differences) 325
Table 100 Test for normality for dependent variables (based sequence totals)............. 331
Table 101 Overview of confounding effects.. 334
Table 102 Confounding effects in a counterbalanced, within-subject design 336
Table 103 Test of within-subjects effects for understanding completeness (ucorr)....... 339
Table 104 Test of between-subjects effects for understanding completeness (ucorr) ... 339
Table 105 Test of within-subjects effects for knowledge acquisition

difference apply (know_diff_apply)... 340
Table 106 Test of between-subjects effects for knowledge acquisition

difference apply (know_diff_apply)... 340
Table 107 Repeated measures ANOVA for sequence effect test for application

completeness (acomp).. 341
Table 108 Test of between-subjects effects for test for application

completeness (acomp).. 341
Table 109 Independent sample t-test for carry-over effect and period

by treatment interaction testing ... 344
Table 110 Two-tailed independent sample t-test for testing of period effects 347
Table 111 Mann-Whitney U test for testing for period effects..................................... 348
Table 112 Coefficients of the estimated regression models... 350
Table 113 Pearson’s correlations between the dependent variables and

disturbing factors ... 352
Table 114 P-values of treatment *disturbing factor covariate...................................... 354

List of Definitions

 xxi

List of Definitions

Definition 1 Experience knowledge .. 4
Definition 2 Experience package .. 4
Definition 3 Overall Conceptual Model... 76
Definition 4 Learning Space Model... 76
Definition 5 Context Model.. 78
Definition 6 Domain Model .. 79
Definition 7 Variability Model ... 79
Definition 8 Variability.. 79
Definition 9 Commonality .. 80
Definition 10 Instructional Design Model.. 84
Definition 11 Learning Space Structure Template ... 85
Definition 12 Learning Objective Template ... 85
Definition 13 Structure Link ... 85
Definition 14 Learning Activity ... 85
Definition 15 Learning Resource Model .. 93
Definition 16 Learning Space ... 93
Definition 17 Learning Resource... 93
Definition 18 Link .. 93
Definition 19 Learning Page ... 93
Definition 20 Page Link .. 94
Definition 21 Content Component... 94
Definition 22 Content Element... 94
Definition 23 Context Model and Context Concepts .. 97
Definition 24 Context Concept Relations.. 97
Definition 25 Domain Model and Domain Concepts... 101
Definition 26 Domain Context Relations... 101
Definition 27 Generic Artifact .. 105
Definition 28 Range ... 105
Definition 29 Variation Point .. 106
Definition 30 Decision Model ... 106
Definition 31 Resolution Model .. 108
Definition 32 Decision.. 108
Definition 33 Resolution Constraint.. 108

Introduction

 1

1 Introduction

“The hallmark of professionals is their ability
to reuse knowledge and experience to per-
form their tasks even more efficiently“
(Curtis, 1989)

Knowledge is considered an important organizational resource. The abil-
ity to learn and to effectively use this resource are two important organ-
izational capabilities. This crucial resource is embedded in organizations
through skilled individuals who apply knowledge on a day-to-day basis
or stored in knowledge management systems (KMS).

Software engineering, in particular, is de facto a human-based, knowl-
edge-intensive activity. Software engineering follows an experimental
paradigm – learning and feedback are natural activities for software
development and maintenance (V. R. Basili, Caldiera, & Rombach, 2002).
Together with sound methods, techniques, and tools, the quality of
software strongly depends on the knowledge and experience brought to
the project by its developers. In the past, developers have mostly de-
pended upon tacit knowledge. This resulted in problems when experts
left a project and new developers entered. The tacit knowledge was not
preserved within the organization, and therefore the steep learning
curve for novice developers resulted in a significant reduction in software
quality.

Several approaches have shown how parts of this knowledge and the
related experiences could be externalized and hence be easier to share
with others. Without the reuse of well proven knowledge, for instance in
the form of experience descriptions stored in an experience management
system, software engineers would have to “recreate” this knowledge on
their own or “relearn” it again and again (V. R. Basili & Rombach,
1991). Research on organizational learning has focused on cognitive, so-
cial, and organizational impediments to acquiring, sharing, and using
knowledge in organizations. In the early 1990s, Senge and Schön began
to explore the state of the art and practice of the “Learning Organiza-
tion” (Schön, 1995; Senge, 1990). In software engineering, the field of
experience management implements the vision of the “Learning Soft-
ware Organization”. Experience management (EM) is based on the con-
cepts of the Experience Factory (V. R. Basili, Caldiera, & Rombach, 2002),
case-based reasoning (Klaus-Dieter Althoff, 2001), and knowledge man-
agement (Nonaka & Takeuchi, 1995).

Software
engineering is
a knowledge-
intensive
activity

Experience
management
implements
the “learning
software
organization”

Introduction

 2

The success of experience-based approaches depends on how well the
the reuse process helps the engineer to bridge the gap between the
reuse candidate (object to be reused) and the needs (required object).
The reuse process itself can be understood as a transformation process
between reuse candidate and the required object (V. R. Basili & Rom-
bach, 1991). The learning space approach improves the description of
the reuse candidate (i.e., experience) and the reuse process in such a
way that better understanding and application (i.e., transformation of
the reuse candidate to the needs) is possible.

Section 1.1 provides a motivation for this thesis and gives basic back-
ground information about the fields of experience management and
software reuse. Section 1.2 briefly lists the state of the practice and state
of the art problems addressed by this work. The main objective of this
work is stated in Section 1.3, and the research approach and the related
hypotheses are described in Section 1.4. An overview of the developed
solution is given in Section 1.5. This chapter ends by listing the contribu-
tions to the field of software engineering and experience management,
in particular in Section 1.6, and by describing the structure of this thesis
in Section 1.7.

1.1 Motivation and Background

The discipline of software engineering (SE) was born in 1968 at the
NATO conference in Garmisch-Partenkirchen, Germany (Naur & Randell,
1968; Simons, Parmee, & Coward, 2003). At the same conference, the
methodical reuse of software components was motivated by Dough
McIllroy to improve the quality of large software systems by reusing
small, high-quality components (McIllroy, 1968).

In the early 1990s Basili and Rombach introduced a model for compre-
hensive reuse, which has subsequently as a basis for many reuse-
oriented approaches (V. R. Basili & Rombach, 1991). They state that a
reuse model must be capable of modeling reuse candidates, the reuse
requirements, and the reuse process itself. The reuse process helps to
bridge the gap between different characteristics of reuse candidates and
reuse requirements. The reuse process is the transformation of existing
candidates into required objects that satisfy established reuse needs (see
Figure 1).

The learning space approach extends the reuse model with respect to
the reuse candidates and the reuse process specification. A concrete ex-
ample can be found in Section 1.5 and the extensions in Section 1.6.

The learning
space ap-
proach adapts
reuse candi-
date and reuse
process

Structure of
this section

The reuse
process
bridges the
gap between
reuse candi-
dates and
reuse re-
quirements

Introduction

 3

Figure 1 Reuse model of Basili and Rombach (V. R. Basili & Rombach, 1991)

In software engineering, the field of experience management, which
subsumes experience reuse, has increasingly gained importance in paral-
lel to software reuse (A. Jedlitschka et al., 2002). In addition, the collec-
tion and sharing of explicit experience is one of the three key instru-
ments for implementing experimental software engineering (H. D. Rom-
bach, 2000):

� Goal-Question-Metric (GQM) approach for goal-oriented measure-
ment of software products and processes (V. R. Basili, Caldiera, Rom-
bach, & Van Solingen, 2002),

� Quality Improvement Paradigm (QIP) for continuous improvement
and technology infusion in software engineering (V. R. Basili,
Caldiera, & Rombach, 2002; V. R. Basili & Weiss, 1984), and

� Experience Factory (EF) organization for enabling the collection of ex-
plicit development experiences, their organization for sharing and
learning, and their reuse across projects and/or business units (V. R.
Basili, Caldiera, & Rombach, 2002)

The EF is an infrastructure designed to support experience management
(e.g., the reuse of knowledge, products, or processes) in software or-
ganizations and is based on the comprehensive reuse model. It supports
the collection, pre-processing, analysis, and dissemination of experi-
ences. Today, reuse approaches typically have an organizational unit
dedicated to developing, distributing, maintaining, and, often, providing
training on reusable assets (Frakes & Kang, 2005). The EF also represents
a physical or at least a logical separation of the project and the experi-
ence organization as shown in Figure 2. This separation is meant to re-
lieve the project teams from the burden of finding and preserving valu-
able new experiences that might be reused in later projects. The support-
ing crew in an EF consists of several roles with different tasks, duties,
and rights (Raimund L. Feldmann, Frey, & Mendonca, 2000).

We begin a project by characterizing the environment, setting quantifi-
able goals for successful project and organization performance and im-
provement, and choosing the appropriate processes for improvement, as
well as supporting methods and tools. We use the EF to search for reus-
able knowledge in the form of reference architectures, design patterns,

Experience
management
is based on
the concepts
of the Experi-
ence Factory

Introduction

 4

or process models based upon our project context (“Project Support”).
During the execution phase (“Execute Process”), the EF is used to re-
trieve knowledge “on demand”. During the project and at the project’s
end, it is analyzed (e.g., using a post-mortem analysis) in order to extract
reusable knowledge (e.g., experience knowledge) that might be useful in
other projects (“Analyze”). This knowledge is then packaged in order to
be more usable in future projects (“Package”).

Experience Factory

Package

Project Organization

Project
Support

Generalize

Tailor

Characterize
Set Goals

Choose Process
tailorable knowledge,

consulting

execute plans

Formalize
Analyze

environment
characteristics

Execute
Process

project analysis
Process modification

Experience
Base

data,
lessons learned

products, lessons learned,
models,

Figure 2 The Experience Factory (V. R. Basili, Caldiera, & Rombach, 2002)

In this thesis, experience knowledge is defined as:

knowledge that has been gained by acting. It may either result from
unprocessed and unreflected events in specific situations or from con-
scious reflection and interpretation about ongoing things. Experience
knowledge is knowledge that can let us act in a practiced and auto-
matic, routine way, or that helps us to judge, select, and apply an ap-
propriate problem solving strategy, method, technique, or tool.

In this thesis, an experience package is defined as:

an explicit representation of an experience that can be stored, catego-
rized, and disseminated in an organization. It stems from formalizing and
generalizing either experience knowledge or experience gained through
systematic measurement and improvement. An experience package de-
scription contains a problem statement, optionally a proposed solution
including the expected benefit/effect when applying it in a new situa-
tion, a context description, and additional administrative information.

Experience package is a commonly used term in software engineering,
because experience knowledge is “packaged” to make it reusable for fu-
ture projects.

Definition 1
Experience
knowledge

Definition 2
Experience
package

Introduction

 5

The short innovation cycles in software engineering lead to many learn-
ing situations where new knowledge is required to solve new challenges
during daily work. Experience management systems (EMS) are one pos-
sible solution because they can provide the information in the form of
experience descriptions to solve these problems. Nevertheless, their in-
tention is not to provide a learning environment where software engi-
neers can acquire new competencies in a broader sense. Hence, from
the individual learner’s perspective, the purpose of EMS is short-term
problem solving and, much less, long-term competence development.

The fact that most of our daily learning is experience-based, and that this
also applies to software engineering, requires us to take a closer look at
the related ongoing learning processes. Educational researchers have
argued that one of the key activities of learning from experience is that
of reflection (e.g., (John Dewey, 1933; David A. Kolb, 1984) have drawn
attention to the role of reflection in Lewin's experiential learning cycle,
Schön introduced the concept of the reflective practitioner (Schön, 1990,
1995), and many others have taken the idea of reflection and explored it
in the context of theory and practice in experiential learning (see also
Section 3.1 for more detailed explanations).

Rus and Lindvall stated that learning on the individual level is considered
to be a fundamental part of KM/EM because employees must internalize
(learn) shared knowledge before they can use it to perform specific tasks
(I. Rus & Lindvall, 2002). Learning from daily experiences requires reflec-
tion about the event that led to the experience and reflection during the
application of the experience. However, this reflection process and other
learning processes are still not explicitly addressed by current KM/EM ap-
proaches, which concentrate more on the product of the learning proc-
ess (i.e., knowledge) and less on the learning process itself. In the con-
text of experience reuse, not addressing learning processes will result in
problems regarding the understanding and application of experience de-
scriptions in new situations.

1.2 Practice and Research Problems

Three state-of-the-practice problems are addressed by this work (see
Section 2 for the details):

P-Problem 1 – Bad understanding of reusable artifacts in general
and experience packages in particular

Understanding is a crucial component for successful reuse. The level of
understanding impacts all phases of reuse. However, badly described ex-
periences and their related context lead to bad understandability and
applicability of the documented experience, and low perceived informa-

EMS focus less
on long-term
competence
development

Learning is
experience-
based and
strongly relies
on reflection

Individual
learning is a
fundamental
part of KM

Introduction

 6

tion quality. In addition, no adequate support for improving understand-
ing is available in software engineering reuse.

P-Problem 2 – No explicit support for internalization of knowl-
edge and no compliance with human information processing

Much R&D effort has been spent in the “upward, externalizing” direc-
tion, looking for valid experiences that can be formalized, generalized,
and tailored. However, the hard part is the “downward, internalizing”
direction. Current KM and EM approaches focus mainly on the product
of learning and less on the learning processes themselves and on the
needs of individuals. Hence, the information provided is often not struc-
tured and presented in a way that it fits human information processing.
Furthermore, novices lack background knowledge and their knowledge
is organized differently than the “routine” knowledge of experts.

P-Problem 3 – No explicit connection between KM/EM and tech-
nology-enhanced learning approaches

The conceptual as well as the technical integration of KM/EM and tech-
nology-enhanced learning is still not addressed adequately: The per-
ceived connections between KM/EM and technology-enhanced learning
are not operationalized in software engineering, i.e., the integration
ideas are rarely implemented in practice, which makes the understanding
and application of experience packages, and knowledge acquisition in
general, more difficult.

RP4b: Fixed
learning strategies

and paths

RP2b: “closed
content corpus“

problem

RP1b: Context
models do not fully

describe SE
situations

PP2c: Novices’ lack of
background knowledge;
„routine“ knowledge is
organized differently

PP1: Bad
understanding of
reusable software

engineering
artifacts

PP2b: No
compliance with

human information
processing

PP3: No
connection

between KM/EM
and e-learning

RP2a: No reuse of
adaptive content
and functionality

RP3b: “Click and
Go Metaphor“

RP4a: (Adaptive) systems
do not follow a constructive

view of learning

RP5: E-learning
standards do no
separate content
from sequencing

and learner
modeling

RP1a: No learning
object type

taxonomy for SE

RP3a: “Copy
Model“

PP2a: No explicit
support of learning

processes

Figure 3 Practice and research problems

In addition to the state-of-the-practice problems, several state-of-the-art
problems have been identified (see Section 3 for the details):

Introduction

 7

R-Problem 1 – No suitable models for learning object types and
description of context

Using the IEEE definition of a learning object as a baseline, any developer
or researcher should define certain types or categories of learning ob-
jects according to his special needs and interests. However, in software
engineering, no such learning object type taxonomy exists. Despite the
importance of a context description for experience documentation, most
of the current experience description schemas do not fully describe envi-
ronmental characteristics and use semantic relationships between the
environmental objects (e.g., product, process, project, organization, cus-
tomer, etc.)

R-Problem 2 – No reuse of adaptive content/ functionality and no
scalability regarding content

Adaptive hypermedia systems (AHS) have a common problem that limits
the reusability of their learning resource: The learning resource is inter-
twined with the logic for generating adaptive content. High cohesion
limits the reusability of that learning resource, as the embedded logic of-
ten has dependencies on other learning resources. In addition, AHS used
a closed set of documents (closed corpus): the documents are fixed at
the design stage of the system, and alternations or modifications are
hard to process, which results in bad scalability. This problem does not
allow opening up the document space or even work in an open envi-
ronment like the Web.

R-Problem 3 – No content restructuring for learning purposes

Most approaches in software engineering transfer knowledge by using
the “copy model”, i.e., no adaptation of the information and structures
takes place when expert knowledge is transferred – it is transferred as
documented by experts. In addition, many systems are based on a hyper-
text paradigm using the “click&go” metaphor for navigating through an
information space. This is a problem because navigating from one frag-
ment to the next based on semantic relationships does not support un-
derstanding and learning.

R-Problem 4 – No constructive view of learning and no learning
options

First, all Intelligent Tutoring Systems (ITS), many other AHS, and systems
in the domain of software engineering are contradictory to the construc-
tivist view of learning. They focus on providing precise instructional steps
by means of analyzing the learner’s state of knowledge in terms of the
learner’s correct knowledge or misconceptions, whereas the design of
constructivist learning environment focuses more on providing a variety
of learning paths. However, current systems constrain the learner be-

Introduction

 8

cause of fixed learning strategies and limited possibilities for the learner
to investigate topics the system believed to be of no relevance.

R-Problem 5 – No separation of content from sequencing and
learner modeling

E-learning reference models and standards do not separate learning con-
tent from sequencing and learner modeling. Learner modeling is “hard-
wired” into learning objects, i.e., the sequence of learning objects is the
same for all learners. As a result, the adaptivity of content is very limited,
since it is defined according to a specific learning approach, student
type, and a specific set of learning objectives.

1.3 Research Question and Research Objectives of this Thesis

As stated before, experience reuse has increasingly gained importance in
software engineering. Many success factors have been identified for
performing efficient and effective experience reuse: supporting the ad-
aptation of the organizational culture towards organizational learning,
convincing management about its advantages, technically building up
and maintaining an experience base, developing appropriate description
schemata for experience packages, coping with social issues such as mo-
tivation and trust, using intelligent similarity-based retrieval mechanisms,
etc. This work will concentrate on the reuse activities related to a par-
ticular experience package that has been retrieved and selected by the
software engineer for reuse. It is not about searching for experience
packages, selecting a suitable experience package from a set of candi-
dates, or modifying the experience package. This work develops models,
methods, techniques, and tools for supporting the process of under-
standing an experience package and applying an experience package in
practice. In addition to that, this work investigates the improvement in
terms of knowledge acquisition, perceived information quality, use, ac-
ceptance, and software ergonomics when the new approach is applied.
This work does not investigate whether the learning space approach im-
proves the reuse rate in experience management systems in general, en-
hances the quality of the products or processes, or decreases effort or
time needed. Granted, the more successful application of an experience
package in a new situation may lead to these improvements, but this has
not been investigated explicitly in this work.

This work addresses the research question of whether the enrichment of
experience packages with additional information (i.e., so-called learning
spaces) improves the understanding and application of an experience
package on the one hand and knowledge acquisition and perceived in-
formation quality on the other hand.

Scope of this
work and
what it does
not cover

Research
Question

Introduction

 9

Understanding in this context is defined as the understanding of the
information in an experience package in the factual and conceptual cog-
nitive knowledge dimension. This means that a reuser is able to remem-
ber the facts of an experience package and is able to understand the re-
lationships between those facts.

Application is related to the real application of an experience package in
the actual working situation. It requires a higher level of understanding,
since it requires that the knowledge acquired on the level of understand-
ing can be applied to practice: The software engineer has developed
procedural knowledge and is able to anchor this knowledge with contex-
tual knowledge, i.e., knowing when, where, and why to apply proce-
dural knowledge.

Knowledge acquisition is more related to long-term competence devel-
opment, whereas understanding and application are investigated in the
context of short-term task performance, i.e., investigating the acquired
knowledge for a concrete situation and experience package. Knowledge
acquisition investigates whether the software engineer has acquired a
deeper understanding of a specific domain and is able to transfer this
knowledge to other new situations.

Perceived information quality is related to the quality of the information
provided in an experience package, respectively learning space. It refers
to the usefulness, difficulty, clarity, completeness, etc. of the informa-
tion.

The three research objectives can be stated as follows (see also Figure 4):

Objective 1: Formally define conceptual models for enriching experience
packages with additional information.

Objective 2: Develop a method for the systematic, context-aware adap-
tation and presentation of learning spaces based on the conceptual
models.

Objective 3: Develop a tool for the systematic, context-aware adapta-
tion and presentation of learning spaces based on the conceptual mod-
els.

Understanding

Application

Knowledge
acquisition

Perceived
information
quality

Research
objectives

Introduction

 10

Figure 4 Research objectives, solution, and hypotheses

Hence, in accordance with the GQM approach, the research goal can be
stated (V. R. Basili, Caldiera, Rombach et al., 2002) as:

Analyze the effect of learning spaces on experience package reuse for
the purpose of evaluation with respect to

� understanding correctness,

� knowledge acquisition differences overall and on the cognitive levels
of remembering, understanding, applying, analyzing, and creating

� application efficiency, completeness, and accuracy,

� perceived information quality, and

� use, acceptance, and software ergonomics.

from the viewpoint of the researcher in the context of a controlled ex-
periment and case study in the domain of experience package reuse at
the University of Kaiserslautern.

The following section describes how this goal can be attained and states
the related hypotheses.

Evaluation
goal

Introduction

 11

1.4 Research Approach and Hypotheses

The research approach is the logical sequence of steps that connect the
empirical data to the initial research question and, ultimately, to its con-
clusions. To realize the learning space approach and attain the goal, the
following four steps were necessary:

The first step was to conduct several explorative literature surveys, a case
study, and a market survey. Based on the case study and the surveys,
information about the state of the practice and the state of the art was
gathered in several interdisciplinary domains such as knowledge man-
agement and experience management, cognitive science and instruc-
tional design, technology-enhanced learning in general and adaptive
educational hypermedia systems in particular, and, finally, empirical re-
search (see Section 2, Section 3).

The second step referred to the design of the different models and the
development of methods for the learning space approach. A conceptual
model was developed to describe the concepts of a learning space. A
context model allows first to describe the context of an experience pack-
age in a semi-formal way and second, to describe software engineering
situations in general. A domain ontology allows the annotation of ex-
perience packages and learning resources. A specification was developed
to formalize decision models for the adaptive generation of learning
spaces. The instructional design of a learning space is expressed by
means of specific templates for experiential learning. A learning space
generation method was defined for the systematic and automatic gen-
eration of learning spaces for experience package enrichment. This step
is described in Section 1.

The third step was related to the implementation of the different models
and the development of the system itself. In order to implement the
models, available specifications and standards (e.g., e-learning specifica-
tions) were modified and extended. The other conceptual models were
transferred to DTD schemas in order to develop valid XML documents,
which were used for generating learning spaces. In order to develop the
learning space approach, a new experience management system was
developed first, since current solutions did not allow the required techni-
cal modifications to the context model developed in this thesis. The EM
system was implemented as an extension to the Software Organization
Platform (SOP) and allows the documentation and retrieval of experience
packages, including their context description. Furthermore, a complete
authoring tool for generating learning content was developed. The au-
thoring tool as well as the learning space generation method were im-
plemented as an SOP extension and integrated with the EM system. The
resulting tools are described in Section 5.5.2.

1st step: Per-
form literature
surveys, mar-
ket survey,
case study

2nd step: De-
velop models
and methods

3rd step: Im-
plement mod-
els and tool;
integrate into
SOP

Introduction

 12

The last step covered the empirical evaluation. A controlled experiment
with undergraduate and graduate students and a case study were
conducted to investigate the impact of learning spaces upon experience
understanding and application, knowledge acquisition, perceived
information quality, use, acceptance, and software ergonomics. Five
main research hypotheses with their related metrics in parentheses were
investigated (see also Figure 4):

H1.1: Using learning spaces during experience reuse leads to an im-
provement of at least 25% regarding the understandability (i.e., under-
standing correctness) of experience packages.

H1.2: Using learning spaces during experience reuse leads to an im-
provement of at least 50% regarding knowledge acquisition (i.e.,
knowledge acquisition difference in total and on five cognitive levels).

H1.3: Using learning spaces during experience reuse leads to an im-
provement of at least 25% regarding the application (i.e., efficiency,
completeness, and accuracy) of experience packages.

H1.4: Using learning spaces during experience reuse leads to an im-
provement of at least 25% regarding the perceived information quality.

H1.5: Using the learning space user interface during experience reuse
leads to significantly positive use, acceptance, and software ergonomics
(p < 0.05).

Only moderate improvements (i.e., 25%) were expected for understand-
ability, application, and perceived information quality. The reason for this
was that a lot of research and development effort has already been put
into the development and deployment of experience management ap-
proaches in practice. For example, many different templates have been
developed and investigated in the past – they evolve over time and have
improved a lot. Only a 25% improvement was expected. Nevertheless,
since current experience management solutions do not explicitly support
learning processes and because EM systems and technology-enhanced
learning are still not integrated conceptually and technically, higher im-
provements (i.e., 50%) were expected for knowledge acquisition. These
hypotheses were further refined into statistical hypotheses in Section 7,
respectively Section 8. The related measures for the first four hypotheses
(used in the experiment) can be found in Section 7.1.2.2 and Section 8
(case study).

4th step: Em-
pirical evalua-
tion

Improvement
hypotheses

Introduction

 13

1.5 Proposed Solution – An Overview

To address these problems, an approach was developed to produce so-
called learning spaces. A learning space is generated by the system when
a user accesses an experience package (i.e., experience description) from
the database during a project. The generation process enriches the ex-
perience package with additional information by following didactical
principles. From a technical point of view, a learning space consists of a
hypertext document with linked learning pages. A learning space follows
a specific global learning goal (the learning goal level is selected by the
engineer) and is created based on context information about the current
situation and context information of the experience package. The learn-
ing space is presented by means of Wiki pages (see Figure 5) in a Seman-
tic MediaWiki (MediaWiki, 2009).

In order to generate a learning space, the reuse model of Basili and
Rombach was used as a basis and a few characteristics were extended to
enable the context-aware generation of learning spaces. The following
two tables show example instantiations of the reuse candidates and re-
use process characteristics (V. R. Basili & Rombach, 1991). This example
will be used throughout the entire dissertation. Extended characteristics
are marked in double-lined boxes:

Table 1 Instantiation of the Reuse Candidates characteristics

Comprehensive Reuse Model Learning Space Reference Model
Reuse Candidates Characteristics

Object
Name (What is the name of the object?) - no changes -

“Refactor_Code_Smell_Comment” “Refactor_Code_Smell_Comment”
Function (What is the function or purpose of the object?) - no changes -

“Remove Code Smell Comments” “Remove Code Smell Comments”
Use (How can the object be used?) - no changes -

“knowledge” “knowledge”
Type (What is the type of the object?) - no changes -

“qualitative experience” “qualitative experience”
Granularity (What is the object’s scope?) - no changes -

“coding stage” “coding stage”
Representation (How is the object represented?) - no changes -

“informal description” (see Section 5.3.1 for this ex-
perience package, left out here for space reasons)

“learning space”

 Object Interface
Input/Output (What external input/output dependencies
does the object have?)

- no changes -

“Java code” “Java code”
Dependencies (What additional assumptions and
dependencies are needed to understand the object?)

as is + selected keywords from the domain
model

usually informal: ”assumes person to be knowledge-
able in refactoring and Java programming”

Related domain concepts: code smell com-
ment (knowledge); Java code (product); ex-
tract method, introduce assertion, rename
method (process)

Learning
spaces intend
primarily to
enhance ex-
perience un-
derstanding,
application,
knowledge
acquisition,
and perceived
information
quality

Introduction

 14

Comprehensive Reuse Model Learning Space Reference Model
Reuse Candidates Characteristics

Object Context
Application domain (What application domain is the
object developed for?)

- no changes -

“no specific application domain” “no specific application domain”
Solution domain (In which environment classes was the
object developed?)

as is + selected context instances from the
context model

agile software development Related Context Concepts: digital caregiver
assistant DCGA 1.0 (product), agile develop-
ment process (process), open source practica
2007 (project), Eric Ras (individual), team
“component interaction” (group), Fraunhofer
IESE (organization), IDE Eclipse (software tool)

Object Quality (What quality does the object exibit?) - no changes -
“not specified” “not specified”

The extensions are:

� Object Interface (Dependencies): instead of an informal description of
the dependencies, concepts from the software engineering domain
ontology reflect the most important facts used in the experience
package.

� Object Context (Solution Domain): a more precise description by se-
lecting concrete context instances including their semantic relation-
ships describes the context (e.g., instances from context classes:
product, process, project, individual, etc.) where the experience
package has been derived/documented.

The standard reuse process consists of the activities identifying reuse
candidates from the reuse repository, evaluating the reuse candidates
and selecting a candidate, modifying the candidate before reuse, if nec-
essary, and finally integrating or applying the experience (V. R. Basili &
Rombach, 1991). By following a learning space approach a new activity
of generating a learning space is inserted between the selection and the
evaluation process.

In order to further specify the adaptation mechanisms, further sub-
characteristics need to be added to Mechanism:

� General Adaptation: describes whether the adaptation is done by us-
ing a decision model or a feature model

� Adaptation Type: describes whether the adaptation is done only be-
fore runtime (i.e., before the learning space is presented to the user:
static) or also during run-time (i.e., when the context changes during
the usage of the learning space: dynamic)

� Adaptation Level: describes on which level the adaptation takes place
(i.e., structure, content, presentation)

� Adaptation Navigation Techniques: lists the different adaptation
techniques that are used to perform the adaptations on the level of

Introduction

 15

structure and hence adapt the navigation structure within a learning
space (see Section 3.4.1.2 and Section 4.2.4 for examples)

� Adaptation Presentation Techniques: lists the different adaptation
techniques that are used to perform the adaptations on the level of
content and presentation (see Section 3.4.1.2 and Section 4.2.4 for
examples)

Table 2 Instantiation of the Reuse Process characteristics

Reuse Process Characteristics
Activity

Name (What is the name of the activity?) - no changes -
“Adapt_Generate_Learning_Space” “Adapt_Generate_Learning_Space”

Function (What is the function performed by the
activity?)

- no changes -

“enrich experience package and present a learning
space”

“enrich experience package and present a
learning space”

Type (What is the type of the activity?) - no changes -
“generation” “generation”

Mechanism (How is the activity performed?) as is + description of adaptation mechanism
“template-based generation via context-aware adap-
tation”

“General Adaptation: decision model;
Adaptation Type: static+dynamic;
Adaptation Level: structure, content, presen-
tation;
Adaptation Navigation Techniques: Direct
Guidance, Link Hiding, Link Generation
Adaptation Presentation Techniques: Condi-
tional Text, Fragment Variants, Frame-based
Techniques”

Activity Interface
Input/Output (What external input/output dependencies
does the activity have?)

- no changes -

“global learning goal; experience package incl. actual
context characteristics, learning space structure tem-
plate, learning objective template(s), content ele-
ments, decision model / learning space”

“global learning goal; experience package
incl. actual context characteristics, learning
space structure template, learning objective
template(s), content elements, decision
model / learning space”

Dependencies (What additional assumptions and
dependencies are needed to understand the object?)

- no changes -

“performed during coding stage; knowledge about
experience package context; knowledge about re-
lated domain concepts”

“performed during coding stage; knowledge
about experience package context; knowledge
about related domain concepts”

Activity Context
Experience Transfer (What are the support mechanisms
for transferring experience across projects?)

- no changes -

“experience base” “experience base”
Reuse Quality (What is the quality of the reuse activity?) - no changes -

(see evaluation results in Section 7 & 8) (see evaluation results in Section 7 & 8)

Next, the basic concepts of a learning space will be briefly explained;
however, refer to Section 4 for a detailed description of the concepts
and to Section 5 for the underlying approach.

Introduction

 16

Figure 5 illustrates how the reuse model (i.e., reuse candidates and reuse
process) can be instantiated in the context of the learning space ap-
proach. At the beginning, the learning space is adapted based on con-
text and domain model characteristics of the experience package; it is
generated and initially presented to the user. Afterwards, the learning
space runs through the states of presentation, interaction, context ob-
servation, and dynamic adaptation. The system remains in the presenta-
tion phase as long as the user does not interact with the learning space.
User interaction may either consist of navigation activities within a learn-
ing space or changes to the user’s situation (e.g., changing software en-
gineering products such as the code). If the interaction requires an adap-
tive reaction, the context is observed and an adaptation takes place.

The generation of a learning space uses an instructional design model
(i.e., called learning space structure template) with fine-grained learning
objectives. It implements the learning process of experiential learning.
Before the template is filled with content, each learning objective is re-
fined by means of learning objective templates (see Figure 5), which are
available for each learning objective/concept type pair (e.g., remem-
ber/project, understand/product, apply/process, etc.). For each learning
objective template, content elements are retrieved based on the experi-
ence package characteristics solution domain and dependencies.

Content elements are the most basic learning resources. They are elec-
tronic representations of media, such as images, text, sound, or any
other piece of data that can serve as a learning resource when aggre-
gated with other content elements to form a content component. Con-
tent components are units of instruction that contain at least one con-
tent element. The difference between a content component and a con-
tent element is that a content component is related to a learning objec-
tive, respectively to a learning activity. In addition, it can be referenced as
a learning resource by the system (e.g., by using hyperlinks). Situational
content elements contain information about the context of the experi-
ence package (see bottom right of Figure 5: Learning Page ”6”). They
have been produced collaboratively by the system users and are stored in
a database (e.g., descriptions of projects, individuals, products, proc-
esses, organizations, customers, etc.). They should primarily support the
understanding of the context of experience packages. Instructional con-
tent elements are more dedicated to learning topics related to the ex-
perience package and to long-term competence development in general.
They are stored in the content element database (see Figure 5: rename
method, extract method, etc.).

Adaptation
and genera-
tion of a learn-
ing space

Learning
spaces are
generated
based on
templates and
continuously
adapted to the
changing
context

Content com-
ponents and
content ele-
ments are the
building
blocks of a
learning space

Introduction

 17

reuse candidates (experience package)

reuse process

Experience
Package

code smell
 comment

extract
method

java
code Individual:Eric Ras

Organization:
Fraunhofer

IESE

Project:open source
practica

...

reuse candidates (learning space)

Learning
Space

1

23

4 5

6
7

Learning
Page

Presentation

Interaction

Context Observation

Dynamic Adaptation

adaptation complete

user inactivity

user interaction / time-out

adaptive reactionobservation complete

non-adaptive reaction

Static Adaptation
and

Generation

continuous adaptation

Experience
Package +
situational

content
objects

3

reading
description

p1 p2 p3

p1 p2 p3 reading
example

re
na

m
e

m
et

ho
d

extr
ac

t m
et

hod

int
ro

du
ce

ass
er

tio
n

LOT3:

Figure 5 Instantiated reuse model

Introduction

 18

The learning space approach was implemented as an extension (kind of
a plugin) of the Software Organization Platform (SOP) (S. Weber et al.,
2008). SOP uses the Semantic MediaWiki (Semantic MediaWiki) as a
base platform. SOP intends to support specific software engineering
activities such as experience management, requirements engineering, or
project management. Hence, by integrating the learning space genera-
tion and presentation functionality into SOP, knowledge management
and technology-enhanced learning have been merged into one system.

1.6 Contributions of this Thesis

The learning space approach offers contributions to the current state of
the art in software engineering as well as that in knowledge manage-
ment, technology-enhanced learning at the workplace, and adaptive hy-
permedia approaches in particular (see also Figure 5).

From the perspective of the reuse model, three extensions were neces-
sary to enable context-aware adaptation and generation of learning
spaces:

� Object Interface (Dependencies) was extended by Related Domain
Concepts

� Object Context (Solution Domain) was extended by Related Context
Concepts

� Activity – Mechanisms was extended to characterize the generation
and adaptation activity (i.e., General Adaptation, Adaptation Type
Adaptation Level, Adaptation Navigation Techniques, Adaptation
Presentation Techniques)

From the perspective of the experience factory, the learning space ap-
proach extends the “Project Support” activity (see Figure 2). It reuses in-
formation from the software organization platform database (SOP DB),
such as situational content describing situations in software engineering,
learning content, and experience packages. This information is then
merged into a learning space; variabilities of the learning space are re-
solved based on context characteristics; the generic artifacts of a learning
space are adapted and finally presented to the user in the project. An-
other change is that the experience base is not part of the experience
factory, but is now a storage medium between the project organization
and the experience factory: different types of content are created,
stored, and reused from both sides – users have become both content
producers and consumers, which supports a more open knowledge shar-
ing community between the project organization and the experience fac-
tory.

The learning
space ap-
proach is part
of SOP

Introduction

 19

Figure 6 Extension of the experience factory

The main contributions are classified as theoretical, practical, and empiri-
cal work.

1. Theoretical work:

� State of the practice based on two case studies and a market survey

� State of the art based on different literature surveys

� Context model for describing situations in software engineering by
means of different context concepts and relationships

� Domain model for describing the body of knowledge in software en-
gineering by means of different domain concepts and relationships

� Learning space model for defining learning spaces on different levels
of abstraction (i.e., structure, content, and presentation)

� Variability model for defining variabilities on different levels of ab-
straction and their resolution

� Lifecycle model for describing the states of a learning space

� Role model for implementing the learning space approach in an or-
ganization

� Selection of appropriate learning strategies and methods for experi-
ential learning in software engineering

� Techniques for systematic and automatic, on-demand generation of
learning spaces (i.e., resolution, static and dynamic adaptation, pres-
entation of generic artifacts)

2. Practical work:

� Context model available in Wiki syntax for describing software engi-
neering situations

Introduction

 20

� Domain ontology described in OWL for annotating learning content
and experience packages

� DTD schemas for decision model, resolve model, and instructional de-
sign templates

� Authoring tool for describing and annotating learning content

� Lightweight experience management system for documenting and
retrieving experience packages

� Learning space system for enriching experience packages in a con-
text-aware manner

� Integration of learning content authoring, experience management,
and learning space generation

3. Empirical work:

� The empirical evaluations provide statistically significant results, which
quantify the impact of learning spaces upon the understanding and
application of experience packages as well as the impact on knowl-
edge acquisition and perceived information quality.

� A power analysis and effect sizes provide a strong baseline for future
evaluations and meta-analysis studies.

1.7 Structure of the Thesis

The subsequent chapters of this work are organized as follows:

Chapter 2 elaborates the state of the practice and derives the problems
by means of a literature survey stating practical examples. The three
problems are then further investigated using a market survey and two
case studies, which also raise important requirements for developing the
learning space approach.

Chapter 3 is concerned with the state of the art. It explains how experts
work and how their knowledge is organized in order to motivate why it
is difficult to transfer expert knowledge to other software engineers. It
provides a definition of the different knowledge types and explains the
process of experiential learning. The chapter describes KM and EM ap-
proaches and compares them with regard to the knowledge types they
support. A section on software reuse explains the comprehensive reuse
model and states the advantages of decision models for the adaptation
of learning spaces. The chapter ends with several subsections related to
technology-enhanced learning in order to state current problems of edu-
cational adaptive hypermedia systems, the different types of adaptivity,
the relevant e-learing specifications and standards, and finally compares
educational systems according to the learning element types they use.

Introduction

 21

Chapter 4 refers to the learning space approach and describes the two
information models of a learning space (i.e., instructional design model
and learning resource model), the variability model, the context model,
and the domain model. A comparison of the reference models with
other reference models of adaptive hypermedia systems is provided at
the end of this section and highlights the improvements to existing ref-
erence models.

Chapter 5 instantiates the models of Chapter 1 in the context of an ex-
periential learning scenario. A role model describes the different roles in-
volved in the learning space approach and gives examples of their work
products (i.e., instantiations/examples of the different models). After-
wards, the techniques related to the static and dynamic adaptation of a
learning space as well as the presentation of a learning space are elabo-
rated.

Chapter 6 briefly presents the platform into which the learning space
approach has been integrated and lists the open source tools that have
been used to develop the models. In addition, the relevant front-end
tools developed for this work are explained by means of several screen-
shots.

Chapter 7 is dedicated to the empirical evaluation of the learning space
approach by describing a controlled experiment and its results. It in-
cludes the design of the experiment, the data analysis procedure, as well
as the very detailed analysis of the gathered data. Due to the fact that
experiments related to the didactical augmentation of software engi-
neering experience packages had not been conducted before, this ex-
periment serves as an exploratory evaluation, which can be used as a
baseline for future evaluations and developments in this area. Therefore,
strong emphasis was placed upon the construction of reliable measure-
ment instruments, the selection of suitable disturbing factors for control-
ling the experiment, and upon the data analysis itself.

Chapter 8 is concerned with the use, acceptance, and software ergo-
nomics evaluation of the learning space approach: first, as part of the
experiment presented in Chapter 7 and second, in a case study mainly
focusing on the evaluation of use and acceptance as well as software er-
gonomics.

Chapter 9 concludes the thesis by summarizing the work and providing a
research agenda for future work.

Introduction

 22

State of the Practice

 23

2 State of the Practice

“We can have facts without thinking but we
cannot have thinking without facts” (John
Dewey)

A systematic literature study of the relevant conference and workshop
proceedings, journals, and books was done in order to derive a first set
of problems in practice. These findings were strengthened by five work-
shops, two case studies, and one market survey with 89 companies.

Section 2.1 addresses the problems of reuse in software engineering in
practice, Section 2.2 describes problems in knowledge management that
are relevant to this thesis, Section 2.3 emphasizes problems related to
experience reuse in practice. Section 2.4 lists conceptual as well as tech-
nical problems related to the integration of knowledge management and
technology-enhanced learning approaches. Finally, Section 2.5 reports
the results of two case studies and a market survey.

The different research activities described in this section confirm the
three problems stated in Section 1.

2.1 Problems in Software Engineering Reuse

Today, reuse-oriented software engineering covers the process of devel-
opment and evolution of software systems by reusing existing software
artifacts. The goal is to develop complex software systems within shorter
periods of time or with higher quality by reusing proven, verified, and
tested components from internal or external sources. Through systematic
reuse of these components and feedback about their application, their
internal quality (e.g., reliability) is continuously improved. But reuse of
components is only appropriate if the cost of retrieving, understanding
and evaluating, selecting, and modifying the component is either lower
or if it results in higher quality than that of a component developed from
scratch. In the beginning, only the reuse of source code was the focus of
reuse-oriented software engineering. Today, the comprehensive reuse of
all software artifacts and experiences from the software development
process enjoys increased popularity (V. R. Basili & Rombach, 1991). Be-
sides source code artifacts, requirements and design documents, test
cases, process and quality models, best practices, etc. are used to sup-
port the development and evolution of software systems. These artifacts
are collected during development or reengineering processes and are
typically stored in special, artifact-specific repositories.

Structure of
this chapter

Reuse is more
than code
reuse

State of the Practice

 24

Reuse requires that the reused artifacts are “fit for reuse”, e.g., that the
artifacts are technically developed “for reuse” (i.e., they were developed
keeping in mind that they will be reused in future development projects)
and represented in an understandable way so that other people who did
not create these artifacts are able to reuse them. Biggerstaff stated that
skilled staff willing to reuse other people’s work as crucial is necessary
(Biggerstaff, 1991).

However, despite the long tradition of software engineering reuse, sys-
tematic reuse is still facing several challenges. These challenges are
caused by insufficient support for the reuse steps search, evaluation, and
adaptation (Karlsson, 1995). Concerning search, people do not find
existing artifacts or do not even start to search due to the effort related
to it. Evaluation challenges are mostly caused by either lengthy or insuf-
ficient documentation of the artifact found. This often leads to bad un-
derstanding and thus difficulties in evaluating the retrieved artifacts. Fi-
nally, adaptation refers to the (perceived) effort needed to understand
and adapt the artifact in contrast to the effort needed for its initial crea-
tion.

Fischer, Henninger, and Redmiles (Fischer, Henninger, & Redmiles, 1991)
summarized software reuse problems (Curtis, Krasner, & Iscoe, 1988;
Reeves, 1990) as:

� Users do not have well-formed goals and plans

� Users do not know about the existence of the components

� Users do not know how to access components

� Users do not know when to use components

� Users do not understand the results that components produce for
them

� Users cannot combine, adapt, and modify components according to
their specific needs.

It can be seen that understanding in general is named as a crucial com-
ponent for successful reuse by Karlson as well as by Fischer et al. and
that is has an impact on all reuse, i.e., from the selection of artifacts to
their modification, and on the results these artifacts produce when they
are reused. Furthermore, Fischer et al. state that the reason why reuse
has not reached its potential is also that no adequate systems for find-
ing, comprehending, and modifying artifacts exist (Fischer et al., 1991).

Frakes and Pole conducted an empirical study about methods for repre-
senting reusable software components in the early 1990s. They found
that the methods were only moderately helpful in helping the student to
understand the components. They motivated that more studies about
the effectiveness of the methods for analysis and understanding of com-
ponents should be conducted (Frakes & Pole, 1994). However, even re-

Reusable
artifacts need
to be devel-
oped “for”
reuse

P-Problem 1:
Reuse strug-
gles because
of bad under-
standing

P-Problem 1:
Understanding
impacts all
reuse phases.
No adequate
support for
understanding
is available

State of the Practice

 25

cently conducted studies (e.g., (Rothenberger, Dooley, Kulkarni, & Nada,
2003) did not investigate the impact of understanding on software reuse
in practice.

In their extensive literature research about reuse programs in practice,
Mili et al. (Mili, Mili, Yacoub, & Addy, 1995) emphasize that compo-
nent/program understanding represents an important part of both the
mental effort and the cost factor in reuse (Fischer, 1987) and mainte-
nance (Maiden & Sutcliffe, 1993). In their opinion, component under-
standing can mean three things:

� understanding what it does,

� understanding how it does it, and

� understanding how to modify it in such a way that it does something
a little different.

Dusink and Van Katwijk describe the reuse process from different per-
spectives. From the engineer’s perspective, they say that for a higher
degree of reuse, the reusing engineer’s understanding of the reusable
artifacts, the process, and the actions to be taken is essential (Dusink &
Van Katwijk, 1995). A study from the late 1990s evaluates which factors
impact the rate of reuse in practice. An interesting finding was that the
hypothesis tests related to the experience level (i.e., knowledge about
specific technologies) and the software engineering domain knowledge
provided a higher significance (p < 0.05) than, for example, software de-
velopment related aspects such as development effort (p-value < 0.1)
(Lee & Litecky, 1997).

The COCOMO II model was developed to meet the need for a cost
model that accounts for future software development practices (Center
for Software Engineering, 1997). The COCOMO II size reuse model de-
scribes the non-linear reuse cost function: Only 5% of the costs are re-
lated to accessing, selecting, and assimilating the reusable component;
the modification to the component to be reused produces most of the
costs, i.e., “the cost of understanding the software to be modified, and
the relative cost of interface checking (Selby, 1988).”

Two principal solutions have been proposed to enhance reuse with re-
spect to understanding. First, Joos mentions education about reuse as a
key to gaining acceptance for software reuse in practice (Joos, 1994). A
recent study has again confirmed the importance of education in soft-
ware reuse (Rothenberger et al., 2003). Frakes and Fox found out
through an empirical evaluation that education in school and at work in-
fluences software reuse (Frakes & Fox, 1995). In addition, developers are
more likely to accept a new technology if they are trained in being suc-
cessful with it (Card & Comer, 1994). Nevertheless, Card and Comer
emphasize that reuse training is often misunderstood and more difficult
than many managers expect. Second, a very small number of systems

Understanding
is a high cost
factor in reuse

Existing
knowledge
about tech-
nologies has a
higher impact
on reuse than
software
development
related aspects

Modification
(understand-
ing and inter-
face checking)
produces most
of the reuse
costs

General reuse
education and
technology
training are
necessary

State of the Practice

 26

has been developed that intend to support the process of understanding
in reuse: Draco, for instance provides domain-specific knowledge
(Arango, Baxter, Freeman, & Pidgean, 1985), LaSSIE provides multiple
viewpoints of software modules (Devanbu, Brachmann, Selfridge, & Bal-
lard, 1991), Desire-88 supports understanding by recovering design in-
formation from the artifacts to be reused (Biggerstaff, 1989), EXPLAINER
explains the object, what it does and why (Fischer et al., 1991), and the
framework of D’Alessandro et al. provides the specification of generic
reusable components (D’Alessandro, Iachini, & Martelli, 1993). Most of
the supporting systems had been developed by the early 1990s.

2.2 Problems in Knowledge Management

KM systems focus mainly on organizational learning, i.e., where learning
leads to collecting knowledge for the organization in order to be used by
its employees or to modifying the software organization’s processes,
internal standards, objectives, or strategies. However, Rus and Lindvall
state that individual learning is considered to be a fundamental part of
applied KM because employees must internalize (learn) shared knowl-
edge before they can use it to perform specific tasks (I. Rus & Lindvall,
2002). KM systems make the assumption that the problem of continu-
ous competence development can be partially solved by using intelligent
retrieval mechanisms and benefitting from innovative presentations of
the retrieval results. KM systems focus mainly on the knowledge (i.e., the
product of learning processes), and less on the learning processes them-
selves and the needs of individuals. Organizations frequently encounter
problems in identifying the content, location and use of knowledge. A
study showed that 50 to 60 percent of KM deployments fail because or-
ganizations did not have a good KM deployment methodology or proc-
ess, if any at all (Lawton, 2001). The study stated that ”next generation”
KMS developments should focus on designing KM technologies for peo-
ple and not make people adapt to KM technologies (Lawton, 2001).

Designing KM technologies for people, which are suitable for human
information processing, means supporting people in their learning proc-
esses to ensure that the provided knowledge can be constructed and
transferred back into the work process. Enhancing learning means more
than sequencing “chunks” of knowledge. It requires an understanding
of learning goals and processes, and of the different types of learners
and their ways of information processing.

2.3 Problems in Experience Management

Despite the research done in the field of experience management and
Learning Software Organizations (LSO) (Ruhe & Bomarius, 1999), several

P-Problem 2a:
KM focuses
mainly on the
product of
learning and
less on the
learning proc-
esses

P-Problem 2b:
No compliance
with human
information
processing

State of the Practice

 27

general challenges still exist, which have to be considered when EM ap-
proaches are used in practice.

First, Conradi states that in the context of learning organizations exter-
nalizing is not the challenge, but internalizing: “Much R&D effort has
been spent in the “upward, externalizing” direction, looking for valid
experiences that can be analyzed, generalized, and synthesized in the
form of improved models and concepts. The hard part is the “down-
ward, internalizing” flow (Conradi, 1999).” Second, Simon describes the
knowledge of an engineer as 50,000 chunks, requiring as much as ten
years to accumulate (Simon, 1981). Yet, professionals cannot keep all
knowledge in their minds, and hence they rely on knowledge in the
world (Norman, 1988). Third, Orr describes experience as a socially dis-
tributed resource, stored and spread primarily through an oral culture.
Interpreting raw measurement data is difficult without extensive routines
for classifying data and other context-related information. Written and
stored information is barely recognizable to reusers, so the author usu-
ally has to be contacted for the context of the experience to be under-
stood (Orr, 1996). Fourth, the quality of the reported experience highly
depends on the individual communication skills of the contributor, e.g.,
the ability to structure the content, to formulate precisely, and to adapt
to the potential audience. It is important to realize that not everyone is
suited to be an experience communicator. Not everyone has the aptitude
and the social skills necessary to transfer their experience pedagogically.
This leads to low perceived information quality (Johannson, Hall, & Co-
quard, 1999). And finally, a general problem is the fact that learning
processes have not been explicitly addressed in the context of software
engineering reuse (K.-D. Althoff et al., 1999).

In the following, the problems related to expert knowledge and experi-
ence transfer are described (a comprehensive description of expert work
and experiential learning is given in Section 3.1). Experience is often
documented by domain experts. One reason why software engineering
knowledge is usually captured from experts is that their knowledge is as-
sumed to be concise, correct, and complete.

So, what makes the transfer of expert knowledge or experiences knowl-
edge difficult?

P-Problem 1:
Barely de-
scribed ex-
periences and
their related
context lead
to a bad un-
derstandabil-
ity, applicabil-
ity, and low
perceived
information
quality

State of the Practice

 28

First, from a cognitive science point of view, new knowledge is always
related to knowledge existing in human memories. This means that nov-
ices might have problems in relating new expert knowledge to their
existing “basics”. Novices lack software engineering background knowl-
edge and are not able to connect the experience to their knowledge
base. Hence, they often misinterpret or even do not understand other
people’s documented experience. Second, learning is a special case of
information acquisition and information storage. The learning process is
dependent first on the quality of the information to be learned and sec-
ond on the cognitive activities of learning. If those activities do not take
place because of the problem stated above, the efficiency of information
acquisition and storage is decreased. Third, there is not only a quantita-
tive difference between expert and novice knowledge bases, but also a
qualitative difference, i.e., in terms of the organization of knowledge
(Ericsson, Krampe, & Tesch-Römer, 1993). Cognitive schemata from ex-
perts cannot be transferred to the memories of novices. This fact results
from a compilation process that is performed when new knowledge is
learned: updating or forgetting old knowledge, creating new relation-
ships or rules between knowledge items and aggregating knowledge
items, etc. Fourth, asking experts about their knowledge often results in
an enumeration of many facts, methods, and principles explained in a
complex manner. Experts have forgotten how they learned those knowl-
edge chunks, and they are unable to explain why they choose certain ac-
tivities and perform them in a certain manner. The applied knowledge is
somehow “routine” (Ericsson et al., 1993) (Baumgartner, 2000) and is
difficult to externalize. In addition, Adams states that problem solving
strategies and so-called thinking strategies are always learned within a
specific context of “contents” and are embedded in content-specific
schemata, which makes it very difficult to extract them, i.e., to external-
ize them (Adams, 1989). Finally, transferring past experiences made by
others requires more than only contextual knowledge, in particular prob-
lem-solving strategies for a specific context and knowing ‘when, where,
and why’ knowledge should be used. It requires a strong anchoring with
declarative and procedural knowledge (see Section 3.1 for the types of
knowledge).

2.4 Integration of Knowledge Management and Technology-
Enhanced Learning

The connection of KM and technology-enhanced learning is still not ad-
dressed adequately: An interview-based study showed that perceived
connections between these two are not operationalized (Efimova &
Swaak, 2002), i.e., integration ideas are rarely implemented in practice.
The high potential for synergies between KM and technology-enhanced
learning seems obvious given the many interrelationships and dependen-
cies between these two fields. However, the relationships have not yet
been fully understood and harnessed. On the one hand, learning is con-

P-Problem 2c:
Novices lack
background
knowledge
and their
knowledge is
organized
differently
than the “rou-
tine” knowl-
edge of ex-
perts

State of the Practice

 29

sidered to be a fundamental part of Knowledge Management because
employees must internalize, or learn, shared knowledge before they can
use it to perform specific tasks. So far, research within KM has addressed
learning mostly as part of knowledge sharing processes and focuses on
specific forms of informal learning (e.g., learning in a community of
practice) or on providing access to learning resources or experts. On the
other hand, learning might also benefit from KM technologies. Especially
those technologies that focus on the support of technical and organiza-
tional components can play an important role with regard to the devel-
opment of professional technology-enhanced learning systems.

Schmidt states that KM and technology-enhanced learning both serve
the same purpose: to facilitate learning and competence development in
an organization. However, they follow two different perspectives. KM is
related to an organizational perspective, because it addresses the lack of
knowledge sharing among members of the organization by encouraging
individuals to make their knowledge explicit by creating knowledge
chunks that can be stored in repositories for later reuse or by participat-
ing in communities of practice; contrary to that, technology-enhanced
learning emphasizes an individual perspective, as it focuses on the indi-
vidual acquisition of new knowledge and the technical means for sup-
porting this construction process (Schmidt, 2005).

KM addresses learning mostly as part of knowledge sharing processes
and focuses on specific forms of informal learning (e.g., learning in a
community of practice) or on providing access to learning resources or
experts (Efimova & Swaak, 2002). In addition to these interviews, one
outcome of a follow-up workshop was that future KM initiatives should
shift their focus from knowledge sharing to supporting actual learning
from others and applying the experiences of these people (Efimova &
Swaak, 2003).

In order to identify and better understand the problems related to the in-
tegration of both fields in practice, we conducted a series of four
Learner-oriented Knowledge Management and KM-oriented e-Learning
workshops held in conjunction with famous KM and technology-
enhanced learning conferences in Europe (years 2005-2008). Summaries
of problems, which are relevant for this work, can be found in (Ras,
Memmel, & Weibelzahl, 2005), (M. Memmel, Ras, Weibelzahl, & Burgos,
2006), (Martin Memmel, Ras, Wolpers, & Van Assche, 2007), (Ras,
Memmel, Lindstaedt, Ley, & Albert, 2008).

Furthermore, there have been some interesting developments striving to
support lifelong learning by integrating technology-enhanced learning
systems with experience-based systems in software engineering (K-D.
Althoff & Pfahl, 2003). Nevertheless, they are seldom adjusted to the
learning demands of individuals, which are very diverse, and they do not

P-Problem 3:
Perceived
connections
between KM
and technol-
ogy-enhanced
learning are
still not im-
plemented
adequately

State of the Practice

 30

reflect the context of the individual, which is essential to providing con-
text-aware learning services.

2.5 Explorative Studies

Three main problems were identified by means of the literature study
and the workshops conducted (in Sections 2.1 through 2.4). In order to
a) add strength to what is known through this previous research, b) un-
derstand complex issues and related objects, and c) get a first set of re-
quirements for the approach to be developed, further studies were per-
formed: An extensive market survey was conducted to examine contem-
porary real-life situations in information usage, sharing, and require-
ments for intelligent assistance approaches (Section 2.5.1). Second, two
small case studies with students were conducted in order to perform a
more detailed contextual investigation of the previously stated problems
(Section 2.5.2). Summaries of the studies are provided in this work. A
technical report provides the descriptive statistics and the rationales be-
hind the findings (Ras, 2009a).

2.5.1 ’Intelligent Assistance Systems in Software Development’ – A Market
Survey

A survey with 89 companies was conducted in Germany to shed light on
the attitude towards as well as the demand for intelligent assistance in
German software organizations (Rech, Ras, & Decker, 2006a). In the fol-
lowing, only findings relevant to the demand for intelligent assistance for
learning and competence development are summarized. Results that fo-
cus more on intelligent assistance in general are available in (Rech, Ras,
& Decker, 2007a). These are the results relevant for this work:

� The participants evaluated the understandability of the information
and its suitability for learning as mediocre (29.2% saying it is good or
very good, 50.6% calling it mediocre, and 20.2% considering it bad
or very bad) – independent of their position, experience, and com-
pany size. � refers to Problem 1

� Problems and competence gaps trigger the retrieval of information.
Technology-enhanced learning systems should therefore focus on the
user’s current demands, problems, and knowledge gaps. � refers to
Problem 3

� 37% of all participants rated expert knowledge as an important in-
formation resource. It is interesting that beginners rate expert knowl-
edge as much more relevant (65%) than people with an intermediate
experience level (21%), with a statistical significance of 0.004.� re-
fers to Problem 2

� Overall, people seem to prefer textual representations for assistance
over audio-visual ones – 79.5% prefer short textual descriptions such
as tooltips. Likewise, 70.5% of the participants prefer textual assis-

State of the Practice

 31

tance in the form of lists and 69.3% would like to have visual assis-
tance in the form of pictures, graphs, or icons. However, animated
assistance (e.g., avatars) is rejected by 85.3%, audio assistance by
82.7%, and video was rejected by 59.1%.

� Regarding the reactivity of assistance systems, more than half of the
participants prefers reactive systems (53.4%) that are triggered by
the user, and more than one third prefers proactive systems (40.9%)
that automatically provide learning assistance to the user.

� The participants prefer to see all (52.8%) or at least a filtered selec-
tion of potential assistant alternatives. The realization of the pro-
posed assistance should then be triggered by the user (52.8%) and
should neither be conducted automatically after a specific period of
time nor instantly.

� The participants were asked which learning-specific aspects intelli-
gent assistance should improve (fully applicable=3, partially applica-
ble=2, not applicable=1). Short-term problem solving was rated the
highest with an average mean of 2.81.

In summary, the findings showed that there is a high demand and ac-
ceptance for unobtrusive, quickly executable, textual, and reactive assis-
tance for short-term problem solving as well as long-term competence
development, which enhance especially the understandability of the in-
formation provided.

2.5.2 Experience Reuse and Wiki Usage in Software Development – Two Case
Studies

The first case study was conducted with 14 undergraduate students
during a practicum in 2004 that lasted 13 weeks. The students refac-
tored and extended an embedded home automation system in Java by
going through all the software engineering development phases. In addi-
tion, they were asked to gather process data and to document their
experiences. In addition to conventional development tools such as SVN
and Eclipse, a Wiki (i.e., TikiWiki (TikiWiki)) with templates was available
to document their experiences. The second case study was conducted
during an open source practicum in 2006, where 16 graduate students
developed a virtual office software for John Deere. This software was
developed in order to support distributed software development. The
first version of the Software Organization Platform (SOP) with experience
package templates was used for experience management. In both prac-
tica, experience packages from past practica were offered to the stu-
dents in order to investigate the reuse of experience packages. The
“copy model” was applied for transferring the experience packages (i.e.,
the information was structured and presented as it has been docu-
mented). Two teams developed the software in both practica. In addition
to experience reuse, the suitability of Wiki technology was evaluated re-
garding its support for information exchange and effort savings in soft-

The “copy”
model was
applied during
the two case
studies, i.e., no
changes were
made to the
experience
packages

State of the Practice

 32

ware development activities, and regarding knowledge acquisition and
learning in general. The results of both case studies are discussed jointly
in the following (i.e., cs2004 stands for the first case study and cs2006
for the second case study). Most questions (marked with “*”) uses a
five-point Likert-type scale (Likert, 1932) (i.e., “strongly agree” is en-
coded as “1”, “agree” as “2”, “neutral” as “3”, “disagree” as “4”, and
“strongly disagree” is encoded as “5”). The other questions were binary
questions (marked with “**”) and “yes” was encoded as “1” and “no”
as “0”.

The results are summarized in the following:

� The highest effort savings were observed for experience management
for both case studies (cs2004: M = 2.21, SD = .52; cs2006: M = 1.79,
SD = 1.25). Hence, a Wiki-based system promises to be a good solu-
tion for light-weight experience management (*)

� The students rated the suitability of a Wiki for experience manage-
ment as moderately high (cs2004: M = 2.13, SD = .62; cs2006: M =
1.70, SD = .79) (*)

� The Software Organization Platform led to slightly better results re-
garding the reading of new facts that were unknown before and
which would not have been communicated by verbal communication
(cs2004: M = 2.94, SD = .93; cs2006: M = 2.13, SD = .59) (*)

� When asking whether the students learned about categories of spe-
cific facts, the scores for learning were much lower than for reading.
This is due to the fact that the system does not explicitly support
learning processes (*)

� Most of the new experience packages were created in the categories
of tools (cs2004: M = .63, SD = .50; cs2006: M = .64, SD = .63) and
SE processes (cs2006: M = .50, SD = .65) (**)

� Technical experience packages related to tools, SE techniques, and
processes were also the most prominent ones for reuse (e.g., for
tools: cs2004: M = 1.88, SD = .50; cs2006: M = 1.96, SD = .64). This
led to the decision that the learning space approach should be evalu-
ated in a technical phase close to implementation (*)

� Most of them agree with the fact that the experience packages were
reusable by their own team members (cs2004: M = 2.25, SD = .48;
cs2006: M = 2.50, SD = .70). However, they stated that the experi-
ence packages might not be reusable for the other team (cs2004: M
= 3.69, SD = .95; cs2006: M = 3.39, SD = 1.04) (*)

� The students rated the quality of experience package (i.e., under-
standability, applicability, etc.) as low (i.e., lower than 3.0) (*)

State of the Art

 33

3 State of the Art

“Praxis is a Greek word that means action
with reflection. (Praxis = Experience + Reflec-
tion + Action.) In educational situations, we
describe, analyze, apply, and then implement
our new learning. When we practice a skill,
analyze our practice, and then repeat the
practice at a higher level, we move practice
to praxis. We learn what we’re doing”
(Marcia L. Conner)

The previous sections have described the problems and the research
objectives that are addressed by this thesis. In order to develop an ap-
propriate solution, it is absolutely necessary to elaborate the state of the
art of relevant fields. Since this work is highly interdisciplinary, additional
fields other than software engineering) need to be emphasized to pro-
vide a profound understanding of the identified problems and to de-
velop a solution by using and adapting methods, techniques, and tools
from the different fields:

� Professional acting and experiential learning (Section 3.1): In order to
understand why the transfer of experience is so difficult, it is neces-
sary to understand the mental models of experts and the ongoing
cognitive processes when humans act and learn from their experi-
ences.

� Knowledge management and experience management (Section 3.2):
This section provides an overview of existing experience management
systems. Then, the role of context in experience management is
elaborated, since the explicit description of the context an experience
has been documented in plays a crucial role for the generation of
learning spaces. Finally, KM systems as well as EM systems are classi-
fied according to the explicit knowledge types they make use of.

� Reuse in software engineering (Section 3.3): First, the necessary ex-
tensions of the reuse model characteristics are motivated. After-
wards, the core concepts and activities of product line engineering
are explained because they played an important role during the de-
velopment of the learning space approach. In order to support the
selection of an appropriate product line technique for the learning
space approach, the advantages as well as the disadvantages of deci-
sion models and feature models are elaborated.

� Technology-enhanced learning (Section 3.4): The learning space ap-
proach can be classified as a technology-enhanced learning system.
Therefore, adaptive hypermedia systems, methods and techniques for

This work is
highly inter-
disciplinary

Structure of
this section

State of the Art

 34

adaptation, and existing e-learning reference models and standards
are described. In addition, an overview of classifications for learning
resources is given.

This chapter shall motivate why learning processes should be explicitly
supported by the learning space approach in order to enhance the un-
derstanding and application of experience packages. Furthermore, it will
shed light on the conceptual and technical challenges as well as on
available technologies for developing such an approach.

3.1 Professional Acting and Experiential Learning

This section describes professional acting and to which knowledge and
experience types it is related. Further, this section explains the process of
experiential learning – which is, de facto, skill and competence develop-
ment based on experiences. This section is essential to understanding
how the important experience knowledge is in software engineering and
how experience knowledge is created and transferred between individu-
als. Insights into the ongoing cognitive processes are necessary in order
to later develop the solution, which aims at solving the software engi-
neering problems addressed by this thesis in Section 1.2. After reading
this chapter the reader should be able to understand the learning proc-
esses if that take place when a software engineer is acting and the kinds
of problems that occur when a software engineer reuses an explicit ex-
perience that was not described by himself.

3.1.1 How Experts Act

Neuweg emphasizes that intelligent acting is not necessarily related to
defining a goal, developing a solution plan, remembering knowledge,
and predicting, but that intelligent acting can also take place in an un-
conscious, intuitive manner (Neuweg, 2000). He defines acting as ‘ability
achieved via knowledge’ (Germ. „Können mithilfe von Wissen“).

Schön as well as Rose justify and appreciate the experience of practitio-
ners (Rose, 1991; Schön, 1995). Rose emphasizes that in working situa-
tions where only incomplete information is available and where critical
decisions have to be made, appropriate acting is not controlled by formal
knowledge but by means of implicit experience knowledge.

The usefulness of work that relies strongly on experience knowledge was
already discovered in production disciplines, e.g., Forschungsverbund
“CeA – Computergestützte erfahrungsgeleitete Arbeit“ (Martin, 1995):
Craftsmen develop new beliefs and ideas based on rememberings and
intuitive-associative conceiving of and decision-making in the current
situation. New experiences arise when alternatives of acting are tried out
exploratively. These insights are not only true for the production domain

Learning proc-
esses should
be explicitly
supported by
learning
spaces

Acting =
”Können mit-
hilfe von
Wissen”

Professional
acting relies
strongly on
experts’
knowledge
and routine

State of the Art

 35

but also for software engineering. Programming, for example, is an ac-
tivity that is strongly guided by explorative acting, which leads to new
experiences. Even if professional acting in software engineering should
rely on clear goals and processes to be executed, the state of the prac-
tice shows that a lot of acting relies on the expert’s knowledge and rou-
tine and on his ability to adapt his acting to changing situations. Learn-
ing based on experiences has become more and more important in re-
cent years because formal learning scenarios can only teach a part of the
competencies needed for everyday work (Dehnbostel, 2001). Profession-
als learn during their work at the workplace in a more informal way –
e.g., by experiential learning. Rose depicts that professionals traverse an
experience cycle in which they develop ideas about their activity on their
own, which they then check and adjust during work (Rose, 1991).

The question is how experts act compared to novice practitioners and
how their mental models differ. Most experts master complex tasks that
require conceptual, procedural knowledge (see Section 3.1.2 for a defini-
tion of these terms) as well as a lot of practical experience (Rambow &
Bromme, 2000). Experts do not only know at lot about their discipline
but their knowledge also reflects a deep understanding of the subject
manner and is well organized. In combination, conceptual knowledge
and deep understanding (which includes procedure knowledge and
metacognitive knowledge, see Section 3.1.2) can help experts as they at-
tempt to apply what they have learned to new situations, thereby over-
coming some of the problems of “inert” knowledge (Germ. “Träges
Wissen”) (Renkl, 1996). An expert should have the ability to recognize
meaningful patterns (e.g., generalization, classification) and activate the
relevant knowledge of these patterns with little cognitive effort
(Bransford, Brown, & Cocking, 1999). Furthermore, expert’s knowledge
is conditionalized, i.e., they know when and where to use the knowl-
edge (Chi, Feltovich, & Glaser, 1991).

Novices lack the “expert” knowledge and the routine of applying this
knowledge. From a cognitive point of view, there is a quantitative differ-
ence between expert and novice knowledge bases and also a qualitative
difference, e.g., the way in which knowledge is organized (Ericsson et
al., 1993). Novices lack background knowledge and are not able to con-
nect the experience to their knowledge base. The organization of
knowledge at the experience provider’s and at the consumer’s makes
the transfer of knowledge between different levels of expertise ex-
tremely difficult. Expert knowledge is, as already mentioned, somehow
“routine” because a lot of working processes are performed uncon-
sciously and automatically.

This is also the reason why specific types of expert knowledge cannot be
documented explicitly. In addition, the problem solution approaches of
experts and novices differ: Experts solve the problem by starting from the
problem; novices must continuously compare the problem with each

Expert’s
knowledge is
„conditional-
ized“

P-Problem 2c:

Novice lack
background
knowledge
and their
knowledge is
organized
differently
than the “rou-
tine” knowl-
edge of ex-
perts

Experts and
novices have
different
problem solv-
ing strategies

State of the Art

 36

performed solution step – they somehow work backwards from the solu-
tion idea in order to identify whether the problem can be tackled by the
selected solution step. Rambow and Bromme state that expert knowl-
edge is subject to continuous change. This results in a huge amount of
experience knowledge that needs to be deployed before it can be ap-
plied or made explicit for later reuse. The reason is that experience
knowledge is hidden behind the abstract concepts of the domain
(Rambow & Bromme, 2000). This phenomenon is called encapsulation
(Germ. “Verkapselung”).

Even if novices have enough declarative and conceptual knowledge, e.g.,
as a result of formal education, this knowledge can often not be used in
practice (i.e., it is inert knowledge). This is due to the lack of knowledge
about when, where, and why to apply this knowledge, or to deficits in
recognizing and analyzing working situations (Renkl, 1996). The latter is
especially true for those who lack practice. This leads to a loose coupling
between declarative and conceptual knowledge.

In order to better understand the previous explanations, the next section
provides more details about the different types of knowledge and ex-
perience.

3.1.2 Knowledge and Experience Types

The terms knowledge and experience are defined in multiple, more or
less formal, and often contradictory ways. Models that define these
terms and the processes that transit from one to another differentiate
between tacit and implicit knowledge (Nonaka & Takeuchi, 1995; Po-
lanyi, 1966) or between data, information, knowledge, ability, capability,
and competence (North, 2002). In addition, knowledge can be conceived
at multiple levels, i.e., at the individual level as well as at the group and
organizational level.

3.1.2.1 Knowledge and Explicit Knowledge

Knowledge can be defined as “a capacity to act” (Neuweg, 2000;
Sveiby, 1997). Whether or not knowledge leads to an effective action
depends upon people’s capacity to interpret the information, generate
meaningful options for an action, and perform an action that leads to
the desired outcome. There are positions such as that by Stenmark
(Stenmark, 2001) that consider the usage of the term “knowledge” for
information stored in a computer inappropriate. In this model, tacit
knowledge can, in fact, exist only in the heads of people, and explicit
knowledge is actually information. However, the terminology used in the
theory and practice of information systems (IS) considers knowledge to
be information stored together with its context, and I follow this conven-
tion throughout this thesis. However, in order to differentiate between

Knowledge =
“Capacity to
act”; only
exists people’s
heads

State of the Art

 37

knowledge related to IS and knowledge related to cognitive science, I
add the word “explicit” to the IS-related term of knowledge:

Explicit knowledge is information stored in information-based systems
(mostly together with contextual data), whereas knowledge is only avail-
able in people’s heads.

There are many different types of knowledge and even more terms used
to describe them (e.g., conceptual knowledge, conditional knowledge,
content knowledge, declarative knowledge, discourse knowledge, do-
main knowledge, episodic knowledge, explicit knowledge, factual
knowledge, metacognitive knowledge, prior knowledge, procedural
knowledge, semantic knowledge, strategic knowledge, tacit knowledge;
for further details, see (P. A. Alexander, Schallert, & Hare, 1991; De Jong
& Ferguson-Hessler, 1996; Dochy & Alexander, 1995; Ryle, 1984).

From among the many different classification schemas for knowledge in
cognitive science, two models shall be emphasized here, since they are
used as a reference classification for subsequent chapters. The first one is
the schema of Anderson, who developed a model of the architecture of
human knowledge. He classified knowledge not according to its content
but according to its state in the person’s long-term memory. Two types
of knowledge were defined (J. R. Anderson, 1993; Gagné, 2005):

� Declarative knowledge consists of “knowing about” – e.g., facts, im-
pressions, lists, objects and procedures, and “knowing that” certain
principles hold. Declarative knowledge is based on concepts that are
connected by a set of relations forming a network that models the
memory of a person. This leads to the conceptual and theoretical un-
derstandings that remain long after many facts are forgotten. For in-
stance, declarative knowledge items in the domain of software engi-
neering might be: a definition of “test case”, a listing of defect types,
a detailed explanation of key testing principles.

� Procedural knowledge consists of “knowing how” to do something,
i.e., skills for constructing, connecting, and using declarative knowl-
edge. Learners are doing tasks, such as understanding and processing
relationships between items (e.g., facts or objects) and creating new
connections between them. Procedural knowledge contains the dis-
crete steps or actions to be taken, and the alternatives available for
performing a given task. Procedural knowledge also consists of “if-
then” rules that describe when to perform certain actions in a spe-
cific situation. These rules are abstract, modular (i.e., they can be
combined), goal-oriented, and operate on the basis of declarative
knowledge. With sufficient practice, applying the rules of procedural
knowledge may become an automatic process, thus allowing the
person to perform a task without conscious awareness. For instance,
procedural knowledge items in the domain of software engineering
might be: knowledge about applying a method for deriving test cases

Anderson
distinguishes
between
declarative
and proce-
dural knowl-
edge

State of the Art

 38

from a requirements specification, or knowledge about applying a
method for classifying defects by choosing the right reading tech-
nique during an inspection.

Both declarative and procedural knowledge may be abstract or concrete.
The knowledge can be connected to more or less concrete information,
which can be described technically, e.g., by semantic networks. Never-
theless, knowledge about situations experienced or about evaluating
facts or determining circumstances in given situations cannot be classi-
fied as declarative or procedural knowledge. Therefore, a third form of
knowledge, conditional or contextual knowledge describing ‘when,
where and why’, has extended the spectrum of knowledge in cognitive
science (Enns, 1993). In the context of didactical design, Tennyson and
Rasch (Tennyson & Rasch, 1988) defined contextual knowledge as an-
other type of knowledge:

� Contextual knowledge consists of “knowing when, where and why”
to use or apply declarative or procedural knowledge. Contextual
knowledge is created by reflecting on the usage of declarative and
procedural knowledge in practice in different contexts. Contextual
knowledge enables the individual to be aware of commonalities be-
tween situations, and of the appropriateness or applicability of prin-
ciples or procedures in a new context. Experts possess more contex-
tual knowledge than novices.

Anderson and Krathwohl have a similar knowledge classification model,
which was developed for classroom instruction and assessment. It pro-
vides more details about the subtypes of knowledge compared to the
previous model. They separate declarative knowledge into factual and
conceptual knowledge. They prefer distinguishing knowledge about
discrete concrete elements (i.e., between terms and facts) from larger,
more organized aggregation of knowledge (i.e., general concepts, prin-
ciples, models, or theories). This distinction has also been made in (P. A.
Alexander et al., 1991; De Jong & Ferguson-Hessler, 1996).

� Factual knowledge refers to the basic elements that experts use in
communicating within their discipline, understanding it, and organiz-
ing it systematically (L. W. Anderson & Krathwohl, 2001). Factual
knowledge can seen as elements and bits of information that can be
isolated from their context. Anderson and Krathwohl refined factual
knowledge into knowledge of terminology, which includes knowl-
edge of verbal and nonverbal labels and symbols (e.g., words, nu-
merals, pictures, which basically represent conventions and agree-
ments in the field), and knowledge of specific details and elements
(e.g., events, locations, people, dates, sources of information, etc.).
These specific facts are basic information used by experts to describe
their field and to think about specific problems or topics.

� Conceptual knowledge includes knowledge of categories and classifi-
cations and the relationship between them and among them – more

Enn adds
contextual
(conditional)
knowledge to
declarative
and proce-
dural knowl-
edge

Anderson et
al. distin-
guished be-
tween factual,
conceptual,
procedural,
and meta-
cognitive
knowledge

State of the Art

 39

complex, organized knowledge forms (L. W. Anderson & Krathwohl,
2001). Several subtypes exist: knowledge of classifications and cate-
gories is more general and abstract than knowledge of terminology
and specific facts. It connects specific elements by links. Anderson
and Krathwohl state that “classifications and categories are largely
the result of agreement and convenience, whereas knowledge of
specific details stems more directly from observation, experimentation
and discovery” (p. 49). The second subtype is knowledge of principles
and generalizations. It is composed of classifications and categories
and is used to study phenomena or solve problems in a discipline.
This includes abstractions that summarize observations and phenom-
ena that have “the greatest value in describing, predicting, explain-
ing, and determining the most appropriate and relevant action or di-
rection to be taken” (p. 51). The last subtype of conceptual knowl-
edge is knowledge of theories, models, and structures, which are the
most abstract formulations of conceptual knowledge. The difference
to the previous subtypes is that a set of principles and generalizations
are related in some way to form a theory, model, or structure.

� Procedural knowledge is knowledge about how to do things – which
might range from routine exercises to solving novel problems (L. W.
Anderson & Krathwohl, 2001). It can be expressed as a sequence of
steps, collectively known as procedures. It includes knowledge of
skills, algorithms, techniques, and methods (P. A. Alexander et al.,
1991; De Jong & Ferguson-Hessler, 1996; Dochy & Alexander, 1995).
It also includes criteria about when to apply certain procedures. Pro-
cedural knowledge can be seen as knowledge of different “proc-
esses”, and factual and conceptual knowledge can be seen as
“products” – factual and conceptual knowledge are input and out-
put of the performed procedures that rely on procedural knowledge.
The first subtype knowledge of subject-specific skills and algorithms
refers to procedures (either fixed or flexible ones) that produce fixed
results. Knowledge of subject-specific techniques and methods is the
second subtype of procedural knowledge. It does not necessarily
have to lead to a single predetermined answer or solution. This kind
of knowledge includes knowledge that is mostly the result of consen-
sus, agreement, or disciplinary norms rather than knowledge as an
outcome of observation, experimentation, or discovery. The last sub-
type is related to knowledge about when to use appropriate proce-
dures. This kind of knowledge is an important prelude to a proper
use of the procedures themselves. Experts, for example, have for ex-
ample criteria that help them to make decisions about when, why,
and where to apply their knowledge. This category also comprises
knowledge about criteria for selecting an appropriate procedure for
solving a specific problem (this is related to why).

� Metacognitive knowledge is the last knowledge category of Ander-
son and Krathwohl’s knowledge classification schema. It is knowl-
edge about “cognition in general as well as awareness of and knowl-
edge about one’s own cognition” (L. W. Anderson & Krathwohl,

State of the Art

 40

2001). When people are aware of their own thinking, they will tend
to learn better (Bransford et al., 1999). Metacognitive knowledge is
divided into strategic knowledge and knowledge about cognitive
tasks, including contextual and conditional knowledge and self
knowledge. Strategic knowledge comprises strategies for learning,
thinking, and problem solving. It can be used in many different task
and subject matters. Especially knowledge about problem solving and
thinking is essential for solving ill-defined problems with no prede-
fined solution method (Baron, 2000; Nickerson, Perkins, & Smith,
1985). Contextual and conditional knowledge is knowledge about
when and where to use which strategy. Self knowledge includes
knowledge of one’s strengths and weaknesses in relation to cogni-
tion and learning (Flavell, 1992).

The work in this thesis makes use of the classification by Anderson &
Krathwohl (i.e., factual, conceptual, procedural, and metacognitive
knowledge). This classification subsumes the classification provided by
Anderson, Gagné, Enns, Tennyson & Rasch. The next section elaborates
the terms concrete experience and experience knowledge.

3.1.2.2 Concrete Experience and Experience Knowledge

Many definitions and meanings exist regarding the term “experience“.
Sometimes the word experience is used as a synonym for experience
knowledge. The definitions of experience knowledge and experience
package used for this work can be found in Section 1.1.

Rose describes experience knowledge as knowledge that has been de-
veloped through acting and where the consequences of the action have
been observed and experienced by oneself (Rose, 1991). Baumgartner
describes knowledge for example as a knowledge base of sedimented
(Germ. “sedimentierte”), situation-related experiences. He distinguishes
first between “routine” knowledge as habitual knowledge that is directly
related to the procedures performed and second, concrete experience
knowledge. Routine knowledge can be classified into skills (Germ. “Fer-
tigkeiten”), usage knowledge (Germ. “Gebrauchswissen”) and recipe
knowledge (Germ. “Rezeptwissen”). Skills are described here as normal
body functions such as speaking and walking. Usage knowledge is
knowledge related to tasks or activities that are now performed in an
automatic manner, and which have been problematic in the past. Recipe
knowledge is very similar to usage knowledge, but the related actions
are less automated and standardized. It refers to mental routine knowl-
edge (Germ. “Geistiges Routinewissen”) and becomes subject matter
specific experience knowledge when it moves away from usage knowl-
edge.

Experience
knowledge is
developed by
acting

State of the Art

 41

A concrete experience can be understood as something that has been
experienced in a specific situation. Baumgartner states that a concrete
experience requires an interpretation made by using the different human
senses before it can be integrated into the knowledge base as experi-
ence knowledge. During this sedimentation process the experience is
idealized, anonymized, and typecasted (Baumgartner, 2000).
Baumgartner’s statements are based on the work of Schütz (Schütz,
1981), who describes the emergence of the knowledge base not as a re-
sult of rational thinking processes, but as the result of sedimentation
processes that are related to subjective perceptions, respectively concrete
experiences.

Schütz’ findings were strengthened by the fact that Polanyi (Polanyi,
1966) and Nonaka and Takeuchi (Nonaka & Takeuchi, 1995), for exam-
ple, state that the most valuable experiences are tacit, and that it is very
hard to express this experience knowledge in an explicit way. Expressing
experience knowledge explicitly requires reverse deployment of the
sedimentation processes, which is impossible in most cases. Even if the
experts are able to externalize their experience knowledge, a transfer to
novices is difficult, because the expert knowledge needs restructuring
from the expert’s perspective to the novice’s perspective.

The following section elaborates more on the process of learning
through experiences – so-called experiential learning.

3.1.2.3 Experience-based Learning and Experiential Learning

Most learning is, in fact, experience-based. Whether we hear a lecture,
watch a video, read a book, or develop software – our learning is
“based” on those experiences. In order to learn effectively from experi-
ences, a learner must be able to perceive information, reflect on how the
experience will impact some aspect of his life, compare how the experi-
ence fits into his own knowledge base, and be able to think about how
this new knowledge offers new ways for to perform in new situations.

In Anglo-American research, so-called experiential learning is classified in
into two types: first, the way of learning where the learners make ex-
periences in formal learning settings, and second, as “education that oc-
curs as a direct participation in the events of life“ (Houle, 1980). The lat-
ter refers to learning based on daily situations and the reflection about
and interpretation of the experience people make in these situations.

A concrete
experience
requires dif-
ferent human
senses to
become ex-
perience
knowledge

Making ex-
perience
knowledge
explicit re-
quires a back-
ward deploy-
ment of the
aggradation
process

Most learning
is experience-
based

State of the Art

 42

On the one hand, experiential learning is based more on active “doing”
than on passive “being done to”. On the other hand, experience-based
learning (action alone) becomes “experiential” when elements of reflec-
tion, abstraction, and transfer are added to the observed experience. As
Rose states, the process of experiential learning is not initiated explicitly
(Rose, 1991).

Most of research done in the area of experiential learning is based on
the work of Kolb and Fry (D.A. Kolb & Fry, 1975). They investigate the
learning processes that take place when people learn from their experi-
ences. Their research is based on the results of Lewin (Lewin, 1951),
Dewey (J. Dewey, 1938), and Piaget (Piaget, 1971). Ideally, people could
learn effectively from experiences when all four phases of Kolb’s Experi-
ential Learning Circle (David A. Kolb, 1984) are passed: a) making a con-
crete experience, b) observing and reflecting about the occurrence by
analyzing the environmental variables and conditions, c) creating new
knowledge by forming abstract concepts (e.g., generalizations, principles
integrating the observations into sound theories) through comparison of
the experience with the existing experience knowledge, and, finally, d)
applying and testing these concepts in new situations and checking
whether the results meet the expectations (see Figure 7). This active ex-
perimentation allows the learner to try out what he has learned in new
and more complex situations and for problem-solving and decision-
making. This knowledge is used as a basis for acquiring more concrete
experiences, which in turn forms the basis for new knowledge and com-
petence development. Due to the sedimentation of experiences, individ-
ual do not depend on older experiences, since these are merged and re-
fined into a new and deeper understanding (see previous section).

Figure 7 Experiential learning cycle of Kolb (D.A. Kolb & Fry, 1975)

One cornerstone of the learning cycle is the process of reflection, since
reflection is the most important activity for to learning from experiences
(David A. Kolb, 1984). Kolb describes the ability to reflect as a prerequi-
site for the success of experiential learning. By reflecting about the ex-
periences made, a learner gains new insights and competencies. Piaget

Experience-
based learning
becomes expe-
riential learn-
ing when
reflection,
abstraction,
and transfer of
knowledge are
done

Reflection is
essential in
order to learn
from experi-
ences

State of the Art

 43

(Piaget, 1976) distinguishes between accommodation (Germ. “Reflek-
tierung“) and assimilation (Germ. “Reflexion“). Accommodation is a
constructive reflective activity and supports the development of new
concepts and schemas that arise from environmental experiences,
whereas assimilation integrates new experiences into existing knowledge
schemas. Both types of reflection interact.

3.2 Organizational Learning and Related Approaches

Agyris and Schön define organizational learning as “the detection and
correction of error”. In this context, they distinguish between three dif-
ferent levels of learning: single-loop-learning, double-loop-learning, and
deutero learning (Argyris & Schön, 1978).

� Single-loop learning – Single-loop learning occurs when errors are de-
tected and corrected and organizations continue with their present
policies, rules, and goals. Dodgson said that single-loop learning can
be compared to activities that add to the knowledge base or organi-
zation-specific competencies or routines without altering the funda-
mental nature of the organization's activities (Dodgson, 1993). Sin-
gle-loop learning has also been referred to as "Lower-Level Learning"
(Fiol & Lyles, 1985), "Adaptive Learning" or "Coping" (Senge, 1990),
and "Non Strategic Learning" (Mason, 1993).

� Double-loop learning – Double-loop learning happens when, in addi-
tion to the detection and correction of errors, the organization re-
flects on and modifies its existing standards, procedures, policies,
rules, and goals. Double-loop learning leads to changes in the or-
ganization's knowledge base or in organization-specific competencies
or routines (Dodgson, 1993). Double-loop learning is also called
"Higher-Level Learning" (Fiol & Lyles, 1985), "Generative Learning"
or "Learning to Expand an Organization's Capabilities" (Senge,
1990), and "Strategic Learning" (Mason, 1993).

� Deutero learning – Deutero learning is about knowing how to per-
form single-loop learning and double-loop learning. The first two
forms of learning will not happen if the organizations are not aware
that learning must occur.

Double-loop learning and deutero learning are concerned with the why
and how to change the organization, while single-loop learning is con-
cerned with accepting changes without reflecting about and questioning
underlying assumptions and core beliefs. Knowledge and experience
management systems have implemented these types of learning in or-
ganizations in the early 1990s up to now.

Knowledge management is the systematic and organizationally specified
process of acquiring, organizing, and communicating human knowledge
so that other employees may make use of it in order to be more effective

Single-loop,
double-loop,
and deutero
learning

Knowledge
management

State of the Art

 44

and productive in their work (Alavi & Leidner, 1999). Knowledge man-
agement systems are tools for supporting the management of knowl-
edge and are manifested in a variety of implementations (Davenport, De
Long, & Beers, 1998). These include, for example, document reposito-
ries, expertise databases, discussion lists, and context-specific retrieval.

Subsection 3.2.1 provides a short summary of the most relevant experi-
ence factories. Section 3.2.2 motivates the importance of context infor-
mation and reports on how context has been described in different ex-
perience management approaches. Finally, a classification of knowledge
and experience management approaches according to the explicit
knowledge types they support is given in Section 3.2.3. These knowl-
edge types provide first insights into what could be used as situational
learning components in learning spaces in order to enhance experience
package reuse in Section 1.

3.2.1 Experience Factories in Industry and Research

Knowledge management systems (KMS) and experience management
systems (EMS) have been developed to address the problem of knowl-
edge loss and to improve knowledge sharing in general. The Experience
Factory concept was introduced to support software development (see
also Section 2.3). This led to the development of experience-based in-
formation systems from the late 1990s on and continues until the pre-
sent day. A lot of research has been done on packaging experience by
building informal and formal models, on performing measures of various
software processes, products, and other forms of knowledge (Victor R.
Basili, Daskalantonakis, & Yacobellis, 1994), as well as on the customiza-
tion of EM systems to organizational needs (Tautz, 2001). Furthermore,
the Learning Software Organization (LSO) (Ruhe & Bomarius, 1999) re-
searches methods and techniques for the management, elicitation, and
adaptation of reusable artifacts from SE projects.

Most of the well-known Experience Factories (EF) focus on quantitative
experiences packages, i.e., new experiences are gathered through sys-
tematic and goal-oriented measurement. Nevertheless, most of the fol-
lowing examples also incorporate qualitative experience packages in
their infrastructures. Some of them consist of shorter descriptions, other
experiences are documented by reports, trainings, or even by means of
tools for cost estimation.

The NASA Software Engineering Laboratory (SEL) (Victor R. Basili,
Caldiera, McGarry et al., 1992) covers all software engineering activities
and stores experience in the form of product-, process-, tool-, relation-
ship-, management-, and data packages. Daimler-Benz uses an EF that
focuses on requirements engineering, formal reviews, risk management,
software inspections, and quality assurance (Houdek, Schneider, & Wie-

Experience
factories in-
coroporate
quantitative
and qualita-
tive experi-
ence packages

Examples of
Experience
Factories

State of the Art

 45

ser, 1998; Schneider, Hunnius, & Basili, 2002). The related LID approach
(stands for Light-Weight Documentation of Experiences) is a software
process improvement approach. It consists of a process and templates to
create reusable material for different kinds of users (Schneider, 2000).
Hughes Aircraft (Humphrey, 1991) stores their – mostly quantitative –
experiences for software process improvement in the form of written re-
ports, recommendations, and trainings. They have focused on experience
regarding cost estimation, error data, and schedule performance. Infor-
mation about technologies used in projects is stored in a technology
transfer database. The software process improvement (SPI) initiative at
Raytheon (Haley, 1996) emphasizes defect data and defect density, re-
quirements, software cost and scheduling, program design languages,
design and code inspections, design reviews, coding standards, unit test-
ing and software integration, regression testing, and prototyping. The
Experience Factory COIN at Fraunhofer IESE (Andreas Jedlitschka, Alt-
hoff, Decker, Hartkopf, & Nick, 2001) is designed to capture qualitative
experience of past software engineering research projects, i.e., experi-
ences regarding the application of specific technologies, process models,
or research approaches, etc. Motorola’s EF (Victor R. Basili et al., 1994)
focuses especially on the domain of reviews and testing, e.g., in terms of
software quality defects, software functionality, effectiveness of defect
removal activities, error and defect trends, etc. The Component Factory
(CF) as a specialization of the EF is concerned with the reuse of software
artifacts (V. R. Basili, Caldiera, & Cantone, 1992) and builds the frame-
work in which further analysis and retrieval techniques are embedded.

Another type of system that is not based on the EF concept is the Les-
sons Learned System (LLS) (R. Weber, Aha, & Becerra-Fernandez, 2001).
Amongst the definitions for lessons learned, the most complete defini-
tion as stated by Weber et al. (R. Weber, Aha et al., 2001) p.3 is: “A
lesson learned is knowledge or understanding gained by experience. The
experience may be positive, as in a successful test or mission, or nega-
tive, as in a mishap or failure.

The standard method used in practice for transferring knowledge from
experts to novices is the “copy model”: Expert knowledge is considered
as learning material and is transferred directly to the learner by using an
appropriate medium. Even if this model is commonly applied in many
different educational contexts, in KM systems as well as in EM systems, it
does not comply with the structures and processes of human informa-
tion processing (J. R. Anderson & Graf, 2001).

3.2.2 The Role of Context in Experience Management

In computing and related subjects, context is also widely used, often
with different meanings. Context has a specific meaning in AI
(Lieberman & Selker, 2000) and natural language processing (NLP)

A lesson
learned is
knowledge or
understanding
gained by
experience

R-Problem 2b:
Transferring
knowledge is
done by using
the “copy
model”

State of the Art

 46

(Lenat, 1998), which differs to a great extent from the notion of context
in operating systems and programming languages. The understanding of
context in design and user interfaces engineering is again quite different.

The context of a reusable artifact can be seen as all the information that
does not describe the artifact itself. A context description includes, for
example, knowledge about social, physical, historical, and other circum-
stances where actions or events happen (resp. where the reusable arti-
fact is applied or used) (Brézillon, 1999). In fact, this knowledge is not
part of the actions to be executed or the events that occur, but it will
constrain the execution of an action and the interpretation of an event.
When the core of the artifact/experience represents the “how”, the con-
text characterizes the “where”, “when”, “why”, “what”, “by whom”,
etc. the artifact was created/used in. In general, the artifact represents
the data, and all environmental metadata (i.e., data about data) is con-
text. Context explains the environment the knowledge was created in
and is a way of giving knowledge meaning and focus. The more under-
standable and focused it is, the most effectively it can be captured and
reused in a given situation (Araujo, Santoro, Brézillon, Borges, & Rosa,
2004)

The most widely used definition is the one of Dey. Dey defines context as
”any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user
and applications themselves.” (A. K. Dey, 2001)

The following definitions are taken from different online dictionaries.

� Context is defined as the interrelated conditions in which something
exists or occurs (Merriam-Webster, http://www.merriam-
webster.com/).

� Context is defined as 1: discourse that surrounds a language unit and
helps to determine its interpretation [syn: linguistic context, context
of use] 2: the set of facts or circumstances that surround a situation
or event; “the historical context. (WordNet®1.6,
http://www.cogsci.princeton.edu/~wn/)

� Context is that which surrounds, and gives meaning to, something
else. (The Free On-line Dictionary of Computing,
http://foldoc.doc.ic.ac.uk/foldoc/)

� Synonyms of context: Circumstance, situation, phase, position, pos-
ture, attitude, place, point; terms; regime; footing, standing, status,
occasion, surroundings, environment, location, dependence. (Online
Thesaurus, http://www.thesaurus.com)

What is con-
text?

Most common
definition of
context

State of the Art

 47

Looking at the definitions of context (such as those described above) and
more detailed explanations of context in PhD theses in the field (Schilit,
1995), (A. Dey, 2000), (Pascoe, 2001), (Mitchell, 2002), it can be ob-
served that the notion of context evolves with the work that is carried
out and that it can be seen as a multidimensional space, which by nature
cannot be determined in its entirely. In addition, context cannot be de-
fined alone, without considering the object it is related to. It is external
to this object and is restricted to the meaningful elements with regard to
this object.

The acquisition and formalization of context information plays a central
role in experience documentation and reuse. Therefore, the last part of
this section focuses on context and describes how current experience
package schemas support the formalization of contextual information.
Due to the fact that the description of context depends on the artifact it
surrounds, and that the experience management approaches differ in
terms of the artifacts they store, it is impossible to compare the context
dimensions.

Basili and Rombach state that, besides object and interface information,
context information is essential in their reuse model (V. R. Basili & Rom-
bach, 1991). Tautz says that the characterization of a reuse object must
include context information (Tautz, 2001). In addition to these ap-
proaches, much work has been done on context description for specific
types of artifacts. For example, Damiani et al. use software descriptors
and fuzzy weights to define the behavior of software components in or-
der to increase the understanding for reengineering or dynamic domain
modeling (Damiani, Fugini, & Bellettini, 1999).

So far, context information in software reuse has been used mostly for
classification and retrieval purposes. One aspect that has been addressed
frequently is the information that is necessary to help the developer
select and reuse appropriate methods, techniques, and technologies in a
certain software engineering context. For example, technology domain
models describe the class of context situations (e.g., kinds of software
projects) in which a software engineering technology can be applied
successfully. They reference the technology, its application task, its goal,
as well as the viewpoint and the overall environment for which the do-
main model has been derived (A. Birk, 2001). Birk and Kröschel intro-
duce so-called Technology Experience Packages (TEP). A TEP describes a
technology, specifies to which process (e.g., software design or meas-
urement) it can be applied, which product quality (e.g., robustness) of
which product type (e.g., information systems) can be achieved by apply-
ing it, and in which context situation this application and the quality im-
pact of the technology can be expected (A. Birk & Kröschel, 1999). An-
other interesting approach is to use the description of a problem situa-
tion as context description of a solution that can be reused (Andreas Birk
& Tautz, 1998). The combination of information about solution-problem

Context can-
not be defined
alone, without
considering
the object it is
related to

Context in-
formation is
part of the
reuse model

Examples of
context infor-
mation

State of the Art

 48

pairs, context, and object information has been used for several lessons-
learned systems. Houdek and Kempter show how the quantitative results
of a goal-oriented measurement program can be packaged in so-called
quality patterns (Houdek & Kempter, 1997). A quality pattern has a
problem-solution pair at its core, which is enhanced by further informa-
tion (i.e., abstract, context, example, explanation, related experience,
etc).

Other context models that emphasize place less emphasis on software
quality aspects and more on the collaborative characteristic of software
development focus on the description of the group context. Rosa et al.
believe that the important elements for the composition of the group
context are divided into five information categories: people, scheduled
tasks, relationships between people and tasks, environment where the
tasks are accomplished, and concluded tasks (Rosa, Borges, & Santoro,
2003). Araujo et al. base their work on Rosa’s by using the following
context facets: individual, roles, team, task, project, organization, client,
product, software engineering domain, client business domain knowl-
edge (Araujo et al., 2004). However, they do not provide any details
about those facets.

Despite the importance of a context description for experience docu-
mentation, most of the current experience description schemas do not
contain environmental data at all, or just cover a few categories men-
tioned previously: The Quality Pattern (Houdek & Kempter, 1997) tem-
plate contains a context field, but does not provide a more detailed
structure for describing the context; the same is true for an experience
template for product line software development processes (Kamel, M., &
Sorenson, 2001). A good overview of different experience repository
schemas can be found in (Lindvall, Frey, Costa, & Tesoriero, 2001). The
Q-Labs context attribute for instance, covers only customer-, project-,
and technical-area data; the Fraunhofer Maryland experience repository
schema is more detailed, and also states information about competen-
cies, process, customers, and documents, but does not cover a product
category; Birk’s TEP schema (A. Birk, 2001) covers almost all context
categories but limits the value range of the attributes by pre-defined val-
ues from taxonomies.

In the following section, different knowledge and experience manage-
ment systems from different domains are compared according to the
types of explicit knowledge they address. This overview is then utilized in
Section 1 as a basis for deriving a context vector and types of situational
learning components.

R-Problem 1b:
Current con-
text models do
not cover all
environmental
dimensions

State of the Art

 49

3.2.3 Classification of Knowledge/Experience Management Approaches

There exist many classification schemas for explicit knowledge (i.e., in-
formation stored in information-based systems, see Section 3.1.2.1).
Mittelmann, for example, distinguishes between product knowledge,
process knowledge, leadership knowledge, environmental knowledge,
social knowledge, and expert knowledge (Mittelmann, 2005). Basili and
Rombach consider product, process, and expert knowledge (V. R. Basili
& Rombach, 1991). Based on those classifications and the classfications
of (Langenbacher, 2002), (Mödritscher, 2005), (Probst, Raub, & Rom-
hardt, 1998), and (Steiger, 2000), the following explicit knowledge types
will be used to classify KM and EM approaches:

� Product knowledge is related to a specific product. This might be an
end product (e.g., software delivered to a customer) or an intermedi-
ate development artifact that was created to develop the end prod-
uct.

� Process knowledge refers to information about processes, workflows,
activities, and tasks that are understood and applied in a company. It
describes the methods and techniques used to produce and consume
products.

� Expert knowledge consists of information stored in the system that
elaborates more complex decisions about selected methods and
techniques, models, principles, laws, patterns, etc. that have been de-
rived based on observations of systematic measurement and im-
provement of products and processes.

� Leadership knowledge documents knowledge about guidance and
direction of work in an organization. It is about inspirational motiva-
tion and intellectual stimulation of individuals or groups of individu-
als, about adapting and influencing the organizational culture, and
about the strategies applied.

� Market knowledge refers to information about customers, competi-
tors, market situations, potentials, demands, etc.

� Organizational knowledge elaborates information about organiza-
tional structures, policies and rules, organizational development, and
behaviors to be followed inside and outside the organization.

Table 3 shows which explicit knowledge types are mainly supported by
the different approaches (“+” stands for basic support; “++” stands for
strong support).

It can be seen that none of the approaches covers all specific knowledge
types, since they were developed for different purposes. The system
from software engineering (mostly based on the Experience Factory
paradigm) covers mainly the types of product, process, and expert
knowledge. KMS from other domains focus more on leadership or or-
ganizational knowledge and put less emphasis on product and process

Definition of
six explicit
knowledge
types

None of the
approaches
covers all
knowledge
types

State of the Art

 50

knowledge. Only a few consider explicit knowledge about customers,
markets trends and potentials, and similar issues.

Table 3 Classification of KM and EM approaches

 Approaches Product Process Expert Leadership Market Organiza-
tion

(V. R. Basili, Caldiera, & Cantone, 1992) ++ ++
(Victor R. Basili et al., 1994) ++ ++ ++
(Chang, 2005) + ++
(Dewe, 2001) + + + +
(Falbo, 2004) + + + + +
(Fraunhofer IFF, 2006) + ++ ++
(Fröming, 2005) + + + +
(Goeken, 2005) + +
(Gronau, 2006) + + +
(Guretzky, 2002) + + + + +
(Haas, 2006) + + +
(Haley, 1996) ++ +
(Houdek et al., 1998) + + +
(Humphrey, 1991) ++ ++ +
(Andreas Jedlitschka et al., 2001) + ++ ++
(Langenbacher, 2002) + + + + +
(Lenk, 2002) + + + +
(Mittelmann, 2005) + + + + +
(Mödritscher, 2005) + + + + +
(Natali, 2002) + + + +
(Group, 2004) + + +
(I. Rus, Lindvall, M., Sinha, S., 2001) ++ ++ + +
(I. Rus & Lindvall, 2002) + ++ + +
(Steiger, 2000) + + + + +

3.3 Reuse in Software Engineering

The first section explains which categories of the comprehensive reuse
model (V. R. Basili & Rombach, 1991) need to be adapted in order to
support a context-aware enrichment of experience packages. The second
section highlights the most valuable concepts of product line engineer-
ing for realizing adaptivity in learning spaces.

3.3.1 Comprehensive Reuse Model

As stated earlier in the introduction and also in Section 3.2.2, Basili and
Rombach introduced a model for comprehensive reuse, which has been
used as a basis for many reuse-oriented approaches in the future (V. R.
Basili & Rombach, 1991), for example in the domain of maintenance,
where the activity of understanding the reuse candidates and the re-
quired objects (i.e., specification) is crucial (H. D. Rombach, 1991). Figure
8 shows the detailed reuse model.

State of the Art

 51

Nevertheless, the reuse process does not allow specifying adaptive reuse
activities such as the adaptation and generation process for the learning
space approach. Therefore, extensions are necessary to the characteristic
mechanism of the reuse process in order to specify different variations of
adaptations. In addition, an important input for the adaptation process is
context information and a more precise description of the domain con-
cepts related to a specific experience package. This information is
needed to adapt the learning space to context information of the experi-
ence package (i.e., reuse candidate) and second to know which concepts
must be understood in order to reuse the experience package. Hence,
extensions to the characteristics dependencies and solution domain are
necessary.

Figure 8 Reuse model of Basili and Rombach (V. R. Basili & Rombach, 1991)

3.3.2 Product Line Engineering Activities

Product line engineering is a software engineering reuse approach and
helps software organizations to identify commonalities and variabilities in
their lines of product variants. The product line engineering approach
uses the knowledge about these common characteristics to define the
skeleton or common core of a reuse infrastructure (Muthig, 2002).
Clements and Nothrop define a software product line as “a set of soft-
ware-intensive systems sharing a common, managed set of features that
satisfy needs of a particular market segment or mission and that are de-
veloped from a common set of core assets in a prescribed way”
(Clements & Northrop, 2001).

Product line engineering is related to domain engineering. Coplien de-
fines domain engineering as “a software design that focuses on the
abstraction of a business (a domain) with the intent of reusing design
and artifacts” (Coplien, 1998). In contrast to domain engineering, prod-
uct line engineering focuses on a set of individual products to be devel-
oped. Domain engineering is a domain analysis-based activity that ana-
lyzes an application domain completely and builds a reference model for

The character-
istics of the
reuse model
are insufficient
for adaptive
reuse activities

Family engi-
neering and
application
engineering
are the two
main activities

State of the Art

 52

software products in this domain. One part of domain engineering is the
activity of family engineering, which develops and fills a so-called artifact
base belonging to the reuse infrastructure for software systems of the
domain under consideration. Product line information describes the
characteristics of the set of systems under consideration, as well as the
related variabilities and commonalities (Muthig, 2002).

A product family is related to the solution domain and reflects a series of
products that can be built from a common set of building blocks – the
so-called assets. Assets are product line artifacts and are stored in the ar-
tifact base. A product line is related to the problem domain and refers to
a summation of products that share a common set of characteristics and
specific customer needs of a specific domain or market (Becker, 2004).

Application engineering is the activity that produces a concrete product
and uses the product line information for customizing the system to the
customer’s needs. During the instantiation of the generic assets (i.e.,
variable assets) the variabilities are resolved by using either a decision
model or a feature model (see next section). The instantiation can resolve
decisions from different phases, e.g., starting from the requirements
phase and ending with the implementation phase. The result of the in-
stantiation is a resolve model describing how the generic assets are
transformed into regular assets in which no variability is left. Additional
steps are usually necessary to develop functionalities that were not cov-
ered by the product line reuse infrastructure.

The difference between software development with and without prod-
uct line engineering is that a set of software systems is systematically
investigated regarding their commonalities in order to build a reuse in-
frastructure for supporting later reuse rather than developing system
after system from scratch without any systematic reuse. A very important
aspect is the time when variabilities are resolved. In product line engi-
neering variabilities are defined that are not related to run-time adaptiv-
ity, i.e., system-based adaptations based on input data. Muthig states
that product line engineering focuses on capturing variabilities amongst
systems that are resolved during development and not during execution
(Muthig, 2002). Nevertheless, he said that it is a strategic decision
whether variability is specified as choices during development time, or
whether it should be implemented into a system for resolution at run-
time.

Product family

Application
Engineering

Product line
engineering
usually re-
solves vari-
abilities during
development
time

State of the Art

 53

3.3.3 Modeling Variability – Feature Models and Decision Models

Generic software products differ from non-generic products by possess-
ing variabilities. Van Gurp et al. define variability as the possibility to
modify and adapt a system (Van Gurp, Bosch, & Svahnberg, 2000). Vari-
ability is modeled and defined in the related assets, which makes them
generic assets. These variabilities can be resolved during different phases
of development, i.e., variabilities may be related to requirements, design,
and code. In product line engineering the instantiation of these software
products is always done during development and not during run-time
(see previous section). The location of these variabilities is called variation
point. Variabilities determine what kind of product with different behav-
ior can be instantiated. Several techniques exist for describing variabilities
in product lines. The two most common techniques for describing and
managing variabilities are feature models and decision models.

Feature models are created in the feature-oriented domain analysis
method (FODA) (Kang, Cohen, Hess, Novak, & Peterson, 1990). This
method defines a feature as “an aspect, quality, or characteristics of a
system that is visible to the end-user”. Feature models are described by
means of feature trees. Features can be mandatory, i.e., the system must
support the feature; optional, i.e., a feature can be supported, but this is
not necessary; alternative, i.e., a feature must be supported, but it can
be chosen how it is supported and exactly one alternative has to be cho-
sen; or, a feature must be supported, but more than one alternative can
be chosen (Czarnecki & Eisenecker, 2000). Van Gurp et al., for example,
use variable features (Van Gurp, Bosch, & Svahnberg, 2001). Composi-
tion rules define the dependencies between features (i.e., require rule
and mutually exclusive rule). Trapp states that current feature models do
not support variabilities that have to be resolved during run-time and
therefore adds dynamic requires rules (Trapp, 2005).

Decision models are an alternative to feature models and are based on
the synthesis approach of Kasunic (Kasunic, 1992). Ziadi et al. describe
that “a decision model represents the set of relevant decisions and their
impacts that are needed to identify one single product in a product line”
(Ziadi, Jézéquel, & Fondement, 2003). A decision model is “a product
line artifact that captures relationships among variation points in a set of
generic artifacts” (Muthig, 2002). Hence, they are a means for structur-
ing variation points and consist of decisions with questions. Decisions
may influence other decisions. This information is described by using so-
called resolution constraints. There are three types of resolution con-
straints: complete, partial, and exclude. Complete resolution means that
a decision completely resolves a variation point. Partial resolution re-
solves a part of a variation point, i.e., other decisions are necessary to re-
solve the variation point completely. Exclude resolution constraints ex-
clude other decisions, i.e., those decisions become obsolete (Muthig,

Decision mod-
els and feature
models are the
most common
techniques for
variability
modeling

Feature model

Decision
model

State of the Art

 54

2002). Bayer et al. state that a “decision model captures variability in a
product line in terms of open decisions and possible resolutions. In a de-
cision model instance, all decisions are resolved. As variabilities in generic
workproducts refer to these decisions, a decision model instance defines
a specific instance of each generic workproduct and thus specifies a par-
ticular product line member (Bayer, Flege, & Gacek, 2000). A resolution
model consists of all decisions and the answers to their questions and is
a product line artifact. The activity of decision modeling documents and
maintains the relationships between variation points and the characteris-
tics of a product family.

Decision models are usually created iteratively in a bottom-up way and
form a hierarchy of decisions (other forms are possible; this depends on
the types of dependencies used). Nevertheless, resolving these decision
models can be done in two ways: either bottom-up or top-down. Bot-
tom-up means that that all variation points of the generic product are
resolved one by one by means of the decision model. Top-down means
that for each identified product characteristic, the decision model is re-
solved from the top to the leaf nodes (i.e., simple decisions). A resolve
model is the result of both options. The KobrA (Komponentenbasierte
Anwendungsentwicklung) method developed at Fraunhofer IESE follows
the product line approach and uses decision models for variability man-
agement (Atkinson et al., 2002). Decisions are built bottom up, i.e., for
each variability, a simple decision is created, which belongs to the lowest
level of abstraction. These decisions are combined to build so-called
complex decisions, which is an activity of decision modeling. During ap-
plication engineering, the decision model in KobrA is resolved in a top-
down manner.

3.3.4 Feature Models versus Decision Models

Decision models and feature models are essential product line artifacts of
a product line infrastructure. However, there are some major differences,
advantages, and drawbacks, which will be important when choosing the
appropriate techniques for the learning space approach during a later
stage of this thesis. Feature models, for example, document variabilities
as well as commonalities, whereas decision models only cover variabili-
ties. An advantage of decision models is that they ensure traceability
along the different software development phases (Dhungana, 2006;
Dhungana, Kepler, Rabiser, & Grunbacher, 2007). Traceability is realized
because each decision refers to all product line artifacts on different lev-
els of abstraction (i.e., requirements, design, and implementation). How-
ever, feature modeling does not support traceability because no mecha-
nism is available for connecting the feature models of the different ab-
straction layers.

Decision mod-
els can be
resolved bot-
tom-up or top-
down

Decision mod-
els support
traceability -
feature mod-
els do not

State of the Art

 55

Pech says that decision models allow modeling very complex dependen-
cies between decisions, whereas “feature models only allow modeling
dependencies for features and their sub-features, so the dependencies
are restricted to mutual exclusion of hierarchical composition dependen-
cies” (Pech, 2007). In addition, Kim et al. mention that decision models
allow defining n:m relationships between decisions – meaning that sim-
ple tree hierarchies can be easily exceeded (Kim, Kim, Shin, & Baik,
2006). However, inconsistencies in the decision model may occur when
modeling is not done carefully (Pech, 2007).

3.4 Technology-Enhanced Learning

Continuous competence development is essential to keep track with the
requirements of today’s work environments. This trend can be observed
especially in the Information and Communication Technologies sector
with its increasing flood of information, rapid deterioration and hence
ageing of knowledge, as well as the continuously changing requirements
for problem understanding and solving. As a result, these facts require
lifelong learning at the workplace to remain competitive in the informa-
tion society.

In industrial training settings, learning objectives mostly correspond to
concrete, well-defined job-related skills, specific tasks to be done, or
problems to be solved. The delivered learning material must suit the cur-
rent situation that the software developer is currently in. The situation
changes over time while the software developer is performing his work.

Learning delivered online, refers to as e-learning or technology-enhanced
learning, gives learners a self-controlled learning experience via a com-
puter. However, most conventional technology-enhanced learning offers
still suffer from one size fits all (Conklin, 1987), whereby each learner
receives an identical learning experience. These learning offerings have
had high drop out rates as learners become increasingly dissatisfied with
courses that do not engage them (Frankola, 2001). Such high drop out
rates and lack of learner satisfaction are due to the fact that most cur-
rent e-learning offerings deliver the same static content to all learners, ir-
respective of their prior knowledge, experience, preferences, or goals.

Conventional learning systems leave no space for dynamic selection and
sequencing of learning resources (Brusilovsky & Vassileva, 2003). New
types of learning services and mechanisms need to be developed and
provided because “learning becomes fragmented and bite-sized (Bonar,
1988).” As learning has become more learner-centered, technology-
enhanced learning and related technologies have also become increas-
ingly personalized (Sharples, 2000). So-called adaptive hypermedia sys-
tems have the potential to address current educational barriers of tech-
nology-enhanced learning by allowing learning to be tailored to specific

Decision mod-
els are not
limited to a
hierarchical
structure as
feature mod-
els are

Learning de-
livered online
is called e-
learning or
technology-
enhanced
learning

Learning be-
comes bite-
sized

State of the Art

 56

user needs and preferences. In order to realize on-demand and just-in-
time learning systems, learning is now based on small information
chunks (e.g., so-called learning objects) rather than on conventional
formal courses and seminars that cover broader topic areas.

Section 3.4.1 will describe the state of the art in adaptive educational
systems. Section 3.4.2 focuses more on conventional technology-
enhanced learning approaches. It explains how current standards and
specifications support adaptivity, how instructional design is done with
learning objects, and provides a classification of learning objects. Section
3.4.3 first defines instructional design and describes its history and pro-
vides second a classification of learning object types.

3.4.1 Intelligent Tutoring Systems and Adaptive Hypermedia Systems

In the domain of education, so-called intelligent tutoring systems (ITS)
were the first type of “intelligent” systems developed for technology-
enhanced learning. The first systems mainly used knowledge about the
domain to support learning (i.e., the content was structured according to
experts’ knowledge). However, such systems have continually been criti-
cized for believing that this is sufficient for effective learning to occur. In
reality, these early systems constrained the learner because of fixed
learning strategies and limited possibilities for the learner to investigate
topics the ITS believed to be of no relevance. Later ITSs not only used
knowledge about the domain but also about the learner, and about
teaching strategies, in order to support more flexible individualized learn-
ing and tutoring (Brusilovsky, 1998). One of the goals of these ITSs was
to adaptively deliver content. Most of these ITSs followed an integrated
approach and merged the information about the domain, the teaching
strategies, and the learner into one single model. Using, for example, a
different learning strategy or underlying pedagogical model involved re-
authoring of the complete model. This turned out to be very inflexible
because the learning content was difficult to reuse and the engine was
too domain-specific.

In addition, ITS were said to be contradictory to the constructivist view of
learning (Wasson, 1996). ITS focus on planning precise instructional
steps by means of analyzing the learner’s state of knowledge in terms of
the learner’s correct knowledge or misconceptions – the design of a
constructivist learning environment focuses more on providing different
learning strategies, e.g., by different learning paths. Therefore, Akhras
and Self state that system intelligence should move to a more construc-
tivist view of learning, i.e., moving from the product to the process of
learning by shifting away from a model of “what” is learned towards a
model of “how” knowledge is constructed (Akhras & Self, 2000).

R-Problem 4b:
Intelligent
tutoring sys-
tems constrain
learners be-
cause of fixed
learning
strategies

Constructivist
learning envi-
ronments
support dif-
ferent learning
strategies

State of the Art

 57

The next generation of intelligent applications for learning were devel-
oped under the label of adaptive hypermedia system (AHS) or more spe-
cifically, adaptive educational hypermedia system (AEHS).

“By adaptive hypermedia systems we mean all hypertext and hypermedia
systems which reflect some features of the user in the user model and
apply this model to adapt various visible aspects of the system to the
user (Brusilovsky, 1996).” Adaptive hypermedia systems (AHS) have en-
hanced classical hypermedia by using an intelligent agent that supports a
user during work with hypermedia. The intelligent agent is able to adapt
the content of a hypermedia page to the user’s knowledge and goals or
suggest the most relevant links to follow (Brusilovsky, 2001). Compared
to ITS, Adaptive Hypermedia is, in fact, a more recent research domain
than ITS (Brusilovsky, 1996). AHS allow the adaptation of learning to
specific user needs and requirements. They apply different types of
learner models to adapt the learning content and the links of hyperme-
dia pages to the user (Brusilovsky, 1998). Some well-known systems are
AHA!2.0, ActiveMath, ELM-ART, INTERBOOK, and KBS Hyperbook (see
Section 3.4.1.3).

In the following, the terms adaptivity and adaptation are defined and an
introduction to adaptive concepts is given, which are then detailed in
Section 3.4.1.2 by relating them to available methods and techniques.

3.4.1.1 Adaptivity and Adaptability

Technology-enhanced learning systems that adapt the learning experi-
ence to each individual are called personalized e-learning systems. They
allow the learner to control his learning process to some extent and pro-
vide functionalities to personalize his learning experience. The personal-
ization of learning may involve the tailoring of contents, tools, communi-
cations, connections, etc. to the needs of the learner. These systems can
be categorized into two techniques: adaptability and adaptivity
(Oppermann, Rashev, & Kinshuk, 1997). Adaptability means that the
personalization and all modifications are controlled and steered by the
user. Adaptivity refers to an automatic personalization done by the sys-
tem. Adaptivity is synthetic, a posteriori, whereas adaptability is analytic,
a priori. The main advantage of adaptable systems over adaptive systems
is that they give the users control over the process of adaptation and re-
duce the effect of incorrect system decisions. Hence, even if the main in-
terest of the adaptive hypermedia research community lies on adaptivity,
the challenge of adaptive hypermedia systems is to find a balance be-
tween adaptability and adaptivity, i.e., to find a mix between user-driven
and system-driven personalization. Personalization of learning could be
beneficial in terms of time, money, and effectiveness (O. Conlan, Dag-
ger, & Wade, 2002).

Adaptive
hypermedia
systems adapt
the content to
the user’s
knowledge
and goals

State of the Art

 58

Dagger, Wade, and Conclan list different paradigms for personalization:
Context Personalization is adapting to the preferences of the individual
and to the learner’s learning, respectively working, environment. Compe-
tency personalization is adapting to the prior knowledge of the learner in
a specific domain. Prerequisite personalization is adapting to the cur-
rently required prerequisites of the learner, such as chosen learning ob-
jectives and learning goals (Dagger, Wade, & Conlan, 2003). Dagger
mentioned that when information is adapted to a specific device, this
context personalization is called terminal adaptivity (Dagger et al., 2003).
Again, personalization may refer to adaptivity as well as adaptation. Bru-
silovsky names six classes of indicators to adapt to. They refer more to
personal attributes and less to contextual or technical ones: a) back-
ground knowledge (e.g., language skills, experiences with the e-learning
environment, etc.), b) domain-specific knowledge (e.g., knowledge
about the content domain), c) cognitive and affective abilities (e.g., intel-
lect, learning speed, motivation, etc.), d) constitutional attributes (e.g.,
physical properties of the body, concentration, age, etc.), e) preferences
(e.g., preferred presentation or navigation mode, etc.), and f) interests
and learning targets (e.g., user intention to use the system, learning
goal, etc.) (Brusilovsky, 1996).

If there are changes to the indicators above, the system can provide
methods and techniques to adapt the learning experience. The methods
and techniques are presented in the next section.

3.4.1.2 Adaptation Methods and Techniques

Over the years, many different adaptation methods and techniques have
been developed. Several classifications exist that are mostly based on the
classification of Brusilovsky (Brusilovsky, 2001). In 1993, he distinguished
between four forms of adaptation, namely adaptive navigation, struc-
tural adaptation, historical adaptation, and adaptive presentation
(Brusilovsky, Pesin, & Zyryanov, 1993).

� Adaptive navigation intends to guide the learner through the system
by changing the structure presented to the learner according to the
individual learner needs and preferences.

� Structural adaptation aims to give the student a spatial representa-
tion of the hyperspace. This representation is based on the learner
model and attempts to provide the student with a sense of position
within the learning environment.

� Historical adaptation includes traces through the system, landmarks
made during the learning process, and progression status generated
by the system, which correspond to a specific learner.

� Adaptive presentation refers to adaptation of the way content is
visually displayed to the learner based on the learner model.

Different
paradigms of
personal-
ization

State of the Art

 59

Later, in 2001, Brusilowsky differentiated between adaptive course navi-
gation support technologies (i.e., link-level adaptation), which support
the student regarding orientation in a hyperspace and navigation by
changing the appearance of visible links (this subsumes the first three
categories of classification from 1993), and adaptive presentation tech-
nologies (i.e., content-level adaptation), which adapt the content of a
hypermedia page to the user’s goals, knowledge, and other information
stored in the learner model (Brusilovsky, 2001).

In the following, methods and techniques for both forms of adaptation
are elaborated. The methods describe the general concept of adaptation
and the necessary sequence of interrelated steps of actions, each of
which is carried out according to one or more techniques. The tech-
niques implement the steps of a method. Brusilowsky defines a tech-
nique through a user model representation and an adaptation algorithm
(Brusilovsky, 1996).

1. Methods and techniques for adaptive navigation

By knowing the user’s goals and knowledge, an adaptive hypermedia
system can support users in their navigation by limiting browsing space,
providing adaptive comments to visible links, or just suggesting the most
relevant links to follow. Adaptive navigation alters the structure pre-
sented to the learner according to the individual learner characteristics.
The most popular methods of adaptive navigation are (Brusilovsky,
2001):

� Global guidance: deals with identifying of the shortest way to reach a
goal, e.g., a learning goal. A recommendation of links can be a solu-
tion for this method.

� Local guidance: deals with assistance in just one navigation step, e.g.,
the choice of the next, best learning chunk.

� Global orientation: The user should be able to understand the global
hypertext structure and his current position better, e.g., through
sitemaps or coloring of the pages already visited.

� Local orientation: improving the understanding of the local hypertext.
The links that are not relevant for the current goal or because of the
lack of experience of the user can be hidden with this method struc-
ture.

� Personalized views: deals with displaying an optimized view for the
current user of the hyperspace. Only the relevant links are presented
to the user.

Six adaptive navigation techniques are distinguished:

� Direct guidance: displays the best learning chunk for the learner to
visit. This can be done by offering only one link to the best alterna-

Adaptive
navigation
and adaptive
presentation

Methods and
techniques for
implementing
adaptation
and adaptabil-
ity

Adaptive
navigation
alters the
navigation
structure

State of the Art

 60

tive. Direct guidance always follows a certain goal, e.g., a learning
goal.

� Sorting links: deals with sorting links into the order of most rele-
vance. This could be done according to the learning difficulty, or to
learner preferences, learning goals, etc.

� Hiding links: hiding links of irrelevant pages. Learning chunks that
have prerequisite concepts to be learned first by the learner may be
hidden, or links to already known topics. Links can either be com-
pletely removed (removing links), disabled (disabling links), or hidden
(hiding links).

� Annotation links: deals with augmenting links with personal dynamic
comments in any form. This could be icons, textual tool tips, etc.

� Link generation: generating new links according to the context or
user model that were not authored during the hyperspace develop-
ment. For example, links to descriptions by experts can be generated
automatically according to the learner model.

� Map adaptation: changes the navigation structure of the hyperspace.
Maps usually graphically represent a hyperspace or a local area of a
hyperspace as a network of nodes connected by arrows. These maps
can be adapted to the learner needs. An example of such maps are
hyperbolic trees.

The following table shows which techniques can be used for implement-
ing the different adaptive navigation methods.

Table 4 Methods and techniques for adaptive navigation

 Technique
Method

Direct
guidance

Link
sorting

Link
hiding

Link
annotation

Link gen-
eration

Map
adaptation

Global guidance + + +
Local guidance + + + + +
Global orientation + + + +
Local orientation + + + + +
Personalized views + + +

It can be seen that especially the techniques related to links are suitable
for implementing several methods. They are also the most commonly
used techniques in adaptive hypermedia systems. Implementing map
adaptation is much more complex.

2. Methods and techniques for adaptive presentation

Adaptive presentation refers to content adaptation and alters the way
content is visually displayed to the user based on different models. It
deals with different forms of content explanations and sorting of infor-
mation chunks. Different content explanations may refer to displaying
additional information chunks, showing additional information based on

Adaptive
presentation
alters the
visualization
of content

State of the Art

 61

prerequisites, or showing related topics. The most popular methods of
adaptive presentation (Brusilovsky, 2001) are:

� Additional explanations: insert the suitable low-level details into the
fragment of information or leave them aside. E.g., examples could be
optionally displayed in addition to more general explanations of a
topic if the learner is able to understand them.

� Explanation variants: show different versions of the document, or a
learning chunk. For example, according to the knowledge of the
learner certain parts of a document (e.g., learning chunks) could be
left out.

� Sorting: sorts the fragments of information and emphasizes the more
important information chunks. For example, learning chunks could be
shown according to their difficulty or length.

� Prerequisite explanations: explain additional concepts before display-
ing a specific fragment of information, if they are not known yet. Ex-
ample: The general concept of software quality assurance is ex-
plained before the more specific topic of software inspections is pre-
sented.

� Comparative explanations: show only the differences and similarities
of a new concept if a related concept was already shown before. Ex-
ample: Show the difference and similarities of inspections and re-
views.

Five adaptive presentation techniques are distinguished:

� Stretchtext: deals with expanding and collapsing paragraphs to reveal
or hide details. Example: Text is hidden if it is not relevant for the cur-
rent context or non-essential text, such as footnotes, is hidden and
only shown when the learner selects it.

� Conditional text: The text is only displayed when certain conditions
are fulfilled, for example, when specific pre-requisites are fulfilled.

� Page variants: deals with the presentation of different variants of a
whole page. Example: The learning chunks on a page are sorted in
different ways and each alternative can be presented.

� Fragment variants: similar to page variants. This deals with the adap-
tation of parts of a page, e.g., exchanging single learning chunks on
a specific page.

� Frame-based technique: deals with the aggregation of several infor-
mation/learning chunks to form a hypermedia document. A frame is
a kind of container consisting of several slots. Each slot can be used
to present an information chunk. The selection and sequence of the
slots to be displayed depends on the user model or on the character-
istics of the information chunks (e.g., length, difficulty).

Table 6 shows which techniques can be used for implementing the dif-
ferent adaptive presentation methods.

State of the Art

 62

Table 5 Methods and techniques for adaptive presentation

 Technique
Method

Stretchtext Conditional
text

Page
variants

Fragment
variants

Frame-based
technique

Additional explanations + + +
Explanation
variants

 + + + +

Sorting +
Prerequisite explanations + + +
Comparative explana-
tions

 + + +

With new web technologies, such as Ajax (i.e., Asynchronous JavaScript
and XML), techniques such as stretchtext can be implemented more eas-
ily than a few years ago. The most powerful technique is the frame-
based technique, because all methods can be realized.

3.4.1.3 Adaptive Educational Hypermedia Systems

Brusilovsky names three application areas for AHS. The first application
area is online documentation systems. The second area is application
systems with advanced help and explanation facilities. The third applica-
tion area is educational systems (Brusilovsky, 2001). AHS may tailor the
educational offerings to the learner’s objectives, prior knowledge, ex-
perience level (Pérez, Lopistéguy, Gutiérrez, & Usandizaga, 1995)
(Hockemeyer, Held, & Albert, 1998; Milosavljevic, 1997), learning style
(Gilbert & Han, 1999; Specht & Oppermann, 1998), and many other
characteristics of the learner.

Some systems have been developed ten years ago and have been im-
proved over many years, e.g., ELM-ART II (G. Weber & Specht, 1997).
INTERBOOK is an approach for authoring and delivering adaptive elec-
tronic textbooks on the Web (Brusilovsky, Schwarz, & Eklund, 1998). Ac-
tiveMath (Melis et al., 2001) or AHA!2.0 adapt hypermedia pages based
on conditional fragments (P. De Bra, Aerts, Smits , & Stash, 2002). KBS
Hyperbook (N. Henze & Nejdl, 2001) is an adaptive hypermedia system
that “guides students through the information space individually by
showing the next reasonable learning steps, by selecting projects, gener-
ating and proposing reading sequences, annotating the educational
state of information, and by selecting useful information, based on a
user’s actual goal and knowledge” (N. Henze & Nejdl, 2000). KBS Hy-
perbook follows a goal-driven approach that uses a Bayesian network
technique for its user model. NetCoach (G. Weber, Kuhl, & Weibelzahl,
2001) is the follow-up to ELM-ART II (G. Weber & Specht, 1997). It pro-
vides a framework for building adaptive hypermedia systems. NetCoach
uses a knowledge base consisting of concepts, which is the basis for
adaptive navigations support. “These concepts are internal representa-
tions of pages that will be presented to the learner” (G. Weber, Kuhl et
al., 2001). Most of these systems are rule-based systems, i.e., the adap-
tation is done by executing rules when certain conditions are fulfilled.

Three main
application
areas of AHS

Examples of
AHS

State of the Art

 63

There exist several reference models for adaptive hypermedia systems,
e.g., the AHAM Reference Model (P. De Bra, Houben, & Wu, 1999) and
the Munich Reference Model (Koch, 2000), which are both informal, re-
spectively semi-formal, models (i.e., based on diagram techniques and
natural language). Both the AHAM and the Munich Reference Models
extend the Dexter Hypertext Model (Halasz & Schwartz, 1994), and de-
scribe a framework for describing the different components of adaptive
hypermedia systems. The focus of these reference models is on process
modeling and on the development of adaptive hypermedia applications,
i.e., they provide process-oriented descriptions of adaptive educational
hypermedia systems. The Dexter Hypertext Model was one of the first
reference models written in Z, which provided a basis for many succes-
sors.

The architecture of an adaptive hypermedia system (e.g., AHA!) usually
consists of three components (P. De Bra, Stash, & De Lange, 2003): a
domain model, which refers to the concepts with its relations and the
learning goals; a user model which represents the user’s characteristics,
and an adaptation model, which consists of adaptation rules. These rules
define how the concepts and related content resources are selected and
adapted according to the learning process.

Furthermore, recent developments in the domain of the Semantic Web
have led to some first approaches that introduce adaptive functionality
to the Semantic Web. Example can be found in (Brusilovsky & Nijhawan,
2002), (Conlan, Lewis, Higel, O'Sullivan, & Wade, 2003), (Dolog, Henze,
Nejdl, & Sintek, 2003), or (Frasincar & Houben, 2002). In addition, the
Semantic Web and its related technologies such as RDF, RDFS, OWL, etc.
offer up new possibilities for developing AHS. However, these systems
suffer from several problems, which are elaborated in the next section.

3.4.1.4 Problems of Adaptive Hypermedia Systems

AHS should be able to facilitate the task of a user without having nega-
tive effects when adaptive actions are not precise. Moreover, an adapta-
tion technique should provide some level of control, offer sufficient
transparency, and reduce the risk of disrupting the user’s understanding,
mental model, and orientation in the hyperspace.

However, adaptive systems suffer from three general problems (Tsandilas
& Schraefel, 2004) that can also be defined as the major challenges in
developing AHS:

� They depend on the construction of user models that are incomplete
and usually erroneous.

� They result in complex conceptual models that cannot be compre-
hended by users.

Reference
models of AHS

Typical archi-
tecture of AHS

Three main
problems of
AHS

State of the Art

 64

� They may prevent users from having control over the system’s ac-
tions.

Although research in the areas of user modeling and machine learning
tries to address the first problem, it is commonly known that no user
model can accurately describe a user. Furthermore, future intelligent
systems will not be able to predict precisely what users want. The second
problem refers to the way an adaptive system makes decisions and acts.
This process might not be clear to user because user models are hidden
from the user. Hence, the actions taken by the system may seem incon-
sistent and unpredictable. The third problem becomes critical when the
system cannot accurately infer the user’s goals and needs, which can
change rapidly. The system will not have enough evidence to capture
any shift in the user’s goals, unless the user gives detailed feedback.
Based on these three general problems, more specific problems can be
stated:

First, all Intelligent Tutoring Systems (ITS) and many of the previously
mentioned AHS are contradictory to the constructivist view of learning
(compare with (Wasson, 1996). For example, ITS focus on providing
precise instructional steps by means of analyzing the learner’s state of
knowledge in terms of the learner’s correct knowledge or misconcep-
tions, whereas the design of constructivist learning environment focuses
more on providing a variety of learning paths. Therefore, Akhras and Self
state that system intelligence should move towards a more constructivist
view of learning, i.e., moving from the product to the process of learning
by shifting away from a model of “what” is learned towards a model of
“how” knowledge is constructed (Akhras & A., 2000).

Second, Schraefel et al. argue that systems based on a hypertext para-
digm using the ‘click&go’ metaphor for navigating through an informa-
tion space are rather weak in terms of Bloom’s learning goal taxonomy
(Bloom, Engelhart, Furst, Hill, & Krathwohl, 1956) because navigating
from one fragment to the next based on some semantic relationship
does not support understanding and learning (Schraefel, Carr, & De
Roure, 2004). This is conformant to the second problem stated in Sec-
tion 1.2. Nevertheless, focusing on learning processes does not under-
mine the need for knowledge representation and user modeling in AHS.

Third, AHS have a common problem that limits the reusability of their
learning resources. This limitation is due to the design of these systems:
The learning resource is intertwined with the logic for generating adap-
tive learning experiences. High cohesion limits the reusability of that
learning resource, as the embedded logic often has dependencies on
other learning resources.

User models
cannot accu-
rately describe
the user

R-Problem 4a:
Current intel-
ligent systems
do not follow
a constructiv-
ist view of
learning

R-Problem 3b:
The “click&go”
metaphor
does not sup-
port learning
and under-
standing

R-Problem 2a:
Learning con-
tent and adap-
tive function-
ality are not
reusable

State of the Art

 65

In addition, the problem that adaptive functionality is not reusable is
related to the so-called open corpus problem in adaptive (educational)
hypermedia (Brusilovsky, 2001; N. Henze & Nejdl, 2000). So far, adap-
tive hypermedia systems have worked on a closed set of documents
(closed corpus); the documents are fixed at the design stage of the sys-
tem, and alternations or modifications are hard to process. This widely
used closed corpus explains why the document space can carry all this
adaptation-related information. On the other hand, this approach does
not allow opening up the document space or even work in an open envi-
ronment like the Web.

Fourth, another problem, which is also related to the strong cohesion
between system components, refers to the relationship between learning
resources and user characteristics. These relationships are often too
complex to model and cover them all. This complexity leads to a number
of problems with adaptation rules in rule-based systems (Wu & De Bra,
2001) (Karampiperis & Sampson, 2005):

� inconsistency, if several rules are conflicting,

� confluence, if several rules are equivalent,

� insufficiency, if one or several necessary rules are not defined, and

� because of the faulty cooperation of the adaptive rules it can happen,
that the adaptation engine does not terminate.

There are different approaches that try to avoid the problems mentioned
above. Wu and De Bra (Wu & De Bra, 2001) suggest so-called sufficient
conditions. These constraints help authors to write adaptation rules that
guarantee termination and confluence. Karampiperis et al. suggest
abandoning the adaptive rules and using so-called decision models
(Karampiperis & Sampson, 2005). The proposed alternative method at
first generates all possible learning paths that correspond to the learning
goal, and then selects the best one. The selection relies on a decision
model, which estimates the suitability of learning resources for the user.
A so-called decision-making function is used for estimating the suitabil-
ity.

3.4.2 E-Learning Standards and their Support for Adaptivity

In many publications about learning resources, terminology issues are
discussed, because there is a lack of consensus in the field of e-learning
(Self, 1992), especially concerning learning objects. Numerous initiatives
like AICC (the Aviation Industry CBT Committee), ADL (Advanced Dis-
tributed Learning), IEEE LTSC (the Learning Technology Standards Com-
mittee of the IEEE), and IMS Global Learning Consortium have made ef-
forts to establish standards. Several years ago, a number of initiatives
agreed to cooperate on the field of standards.

R-Problem 2b:
Adaptive
functionality is
strongly re-
lated to a
“closed con-
tent corpus”

Problem of
adaptation
rules

Decision mod-
els can solves
the problems
of rule-based
systems

State of the Art

 66

IEEE LTSC has developed the Learning Object Metadata Standard (LOM).
This standard specifies the syntax and semantics of learning object
metadata, defined as the attributes required to fully/adequately describ-
ing a learning object. Learning objects are defined here as “any entity,
digital or non-digital, which can be used, re-used or referenced during
technology supported learning (IEEE Learning Technology Standard
Comittee, 2002)”.

A huge amount of specifications are being developed by the IMS consor-
tium. Several of these specifications have been incorporated and in some
cases been adapted by ADL for defining the SCORM reference model,
which is relevant for this work. SCORM describes a harmonized set of
guidelines, specifications, and standards based on the work of several
distinct e-learning specifications and standards bodies. SCORM provides
a comprehensive suite of e-learning capabilities that enable interopera-
bility, accessibility, and reusability of Web-based learning content. These
specifications have one aspect in common: by separating the content
from the structure and layout, they enable the author to develop differ-
ent variants of learning material very efficiently, while relying on the
same set of learning objects. SCORM Sequencing and Navigation pro-
vides techniques for sequencing learning objects by means of Learning
Activity Trees, and the IMS Learning Design specification allows express-
ing more sophisticated pedagogical concepts by means of a more exten-
sive role concept. User profiling is addressed by the IMS Learner Informa-
tion Package specification (LIP). It allows tracking the learning process as
well as storing the characteristics of the learner. Besides, it is possible to
assign and update the competencies of a learner according to the speci-
fication IMS Reusable Definition of Competency or Educational Objective
(RDCEO). Finally, the IMS Question & Test Interoperability Specification
(QTI) allows describing tests and questions. The specification enables the
exchange of different types of questions.

Currently, these standards do not explicitly provide mechanisms for sup-
porting adaptivity. For example, there is no catalog of metadata for
adaptivity in education for use in LOM, SCORM, etc. The main reason is
that adaptive educational hypermedia systems are “too different” to
generalize for a metadata-driven description (N. Henze & Nejdl, 2004).

SCORM allows defining assets for different aggregation levels and for-
mats, languages and language levels, operating systems and platforms,
interactivity types, semantic densities, intended end user roles, typical
age ranges, difficulties, relations, etc. In spite of all these attributes,
knowledge domains are not considered at all within SCORM, so the sys-
tem cannot cross-reference from a content object to one or more con-
tent objects from other knowledge domains. In fact, SCORM separates
learning content from its Learning Management System (LMS), which al-
lows the usage of learning content by different LMS.

Learning ob-
jects (LO)

SCORM refer-
ence model

State of the Art

 67

However, it does not separate learning content from sequencing and
student modeling. In SCORM, learner modeling is “hardwired” into
learning objects, i.e., the sequence of learning objects is the same for all
learners. As a result, the adaptivity of content is very limited, since it is
defined according to a specific learning approach, student type, and a
specific set of learning objectives. In addition, it immediately excludes
adaptive use of external content (open corpus), e.g., from the Web.

In contrast, the interoperability standards, which ensure that different
components of technology-enhanced systems can work together, are
very relevant to adaptive systems when LMS systems are to be integrated
with the AHS. The interoperability standard CMI, which was originally
introduced by AICC (Aviation Industry CBT Committee, 1998) and later
adopted by IEEE LTSC and ADL, is now part of SCORM (SCORM, 2006).
CMI proposes a very comprehensive mechanism for communication be-
tween an LMS and a learning object. A learning object can store and
query information about learner performance related to multiple educa-
tional objectives in an LMS. This is similar to the overlay model in ITS,
which supports adaptation. In addition, an available course authoring
tool can relate advanced sequencing rules to a structured set of learning
objects. Hence, simple adaptation actions can be performed on the se-
quence of the learning objects. Nevertheless, using CMI for learner mod-
eling leads to conceptual as well as technical problems (O. Conlan et al.,
2002).

Despite many advanced features introduced in SCORM and other stan-
dards, their support of personalized, technology-enhanced learning falls
behind the state-of-the-art level in the field of AHS. Recently, researchers
have tried to combine several standards while extending them with addi-
tional information (Dolog, Gavriloaie, Nejdl, & Brase, 2003), which again
led to very proprietary systems with components and learning content
that are difficult to reuse.

3.4.3 Instructional Design and Learning Objects Types

Many definitions exist for instructional design. All of them are an expres-
sion of underlying philosophies and perspectives of what is relevant in
the learning process. Instructional design and development, as it has
evolved in the United States as a discipline since the late 1950s, uses a
systems methodology that focuses on clearly defined needs, goals, and
testable systems. The Applied Research Laboratory of Penn State Univer-
sity defines instructional design as:

“the systematic development of instructional specifications using learn-
ing and instructional theory to ensure the quality of instruction. It is the
entire process of analysis of learning needs and goals and the develop-
ment of a delivery system to meet those needs. It includes development

R-Problem 5:
SCORM does
not separate
learning con-
tent from
sequencing
and student
modeling

Using CMI for
adaptation
leads to con-
ceptual and
technical
problems

TEL Standards
fall behind the
state-of-the-
art of AHS

Instructional
design (Am.)
or didactic
design (EU) is
a pragmatic
discipline

State of the Art

 68

of instructional materials and activities; and tryout and evaluation of all
instruction and learner activities”.

Instructional design models are often internally consistent, i.e., they de-
fine goals and methods for achieving those goals. In Europe, instead of
�instructional design,� terms like �didactic design� are preferred. Instruc-
tional design deals with setting up spaces in which human learners can
be taught directly and where they can guide their own learning proc-
esses. It prepares learning paths such that learners with different prereq-
uisites, with different needs, in varying moods and under widely unfore-
seeable circumstances can find their way (M. Memmel, Ras, Jantke, &
Yacci, 2006). Memmel et al. stated that the purpose of instructional de-
sign is to change a learner’s knowledge, skill, or attitude. So what kind
of learning theories and principles should be followed?

According to constructivist learning theories, knowledge cannot be
transmitted to learners, but must be individually constructed and socially
co-constructed by learners (Jonassen, 1999). Learning systems should
provide learners with a wide range of services to assist and facilitate
knowledge construction, because learners may construct their own
meaningful understanding to a learning theme from different paths
rather than exposing them to a particular learning method.

Research in cognitive psychology has shown that students learn better
when they are involved in solving problems. Cognitive Apprenticeship
(Collins, Brown, & Newman, 1989), Goal Based Scenarios (Schank, Ber-
man, & Macpherson, 1999), and the 4C/ID Model (Merriënboer, 1997)
are just three of the instructional models that address problem-based
learning. Merrill proposed the First Principles of Instruction: Learning is
facilitated when previous experience is activated, when the lessons
learned are demonstrated to the learners instead of just presenting
them, when the learners are required to apply their knowledge or skill to
solve a problem, and when the learners are motivated to integrate the
new knowledge or skill into their daily work (Merrill, 2000).

Situated learning approaches developed mainly at the end of the 1980s
emphasize that a human’s tasks always depend on the situation they are
performed in, i.e., they are influenced by the characteristics and relation-
ships of the context (J. S. Brown, Collins, & Duguid, 1989). Because of
the relationship between cognition and context, knowledge and the
cognitive activities meant to create, adapt, and restructure the knowl-
edge cannot be seen as isolated psychological products – they all depend
on the situation in which they take place. Learning involves interpreting
individual situations in the world based on one’s own subjective experi-
ence structures. Learners have an active role and derive most of the in-
formation from real situations by themselves. This information is later in-
tegrated into their own knowledge structures. In consequence, a learn-

Knowledge
must be indi-
vidually con-
structed from
different
learning paths

Instructional
design should
address prob-
lem-based
learning

Cognition and
context are
strongly re-
lated
Therefore,
situated learn-
ing principles
should be
considered

State of the Art

 69

ing environment must be learning- and transfer-conducive, focusing
more on situated learning principles by gearing the learning process to-
wards the current working task.

Instructional design for learning objects could be handled in two obvious
places: (1) embedded within a learning object or (2) as a separate object
(e.g., using IMS Learning Design). The best option is to handle the peda-
gogical rules of instructional design outside the learning objects. If the
objects themselves are tagged and structured chunks of content, ade-
quate variants could then be selected and sequenced in a different layer,
providing for the highest degree of flexibility in adaptation. Learning ob-
ject oriented instructional design is a challenge that has to deal with sev-
eral issues such as syntax and semantics, granularity, and reusability (M.
Memmel, Ras, Jantke et al., 2006).

By using the IEEE definition as a baseline, any developer or researcher
should define certain types or categories of learning objects according to
his special needs and interests. Friesen states: �In order for the positive
potential of learning objects to be realized, they need to be labeled,
described, investigated, and understood in ways that make the simplic-
ity, compatibility, and advantages claimed for them readily apparent to
teachers, trainers, and other practitioners. (Friesen, 2004)�. However in
software engineering no such learning object type taxonomy exists.

In order to define a taxonomy of learning object types that can be used
in the learning space approach a literature survey has been done. Based
on this literature survey, abstractions have been derived from the termi-
nology used and definitions found. The resulting taxonomy is displayed
in Table 6.

The three main classes are learning objects containing learning objec-
tives, learning content, or situational content. Learning objectives de-
scribe the learning goal of a learning experience offered or of a part of
it. Learning content refers to the material that is presented to the learner
for constructing factual knowledge, conceptual knowledge, and for
stimulating the construction of procedural knowledge. Situational con-
tent refers to descriptions of situations/event of daily life or work by
means of descriptions of products, processes, individuals, groups, etc.
that were involved in a particular situation. The class of learning content
is further refined into fundamental, auxiliary, orientation, and resources.
Fundamental learning objects explain the basics of a topic taught. Auxil-
iary objects provide more details on the information provided by the
fundamental learning objects. Orientation objects support the learner in
understanding his current position in a learning space and the whole
hyperspace or a specific part of it. Resource objects either provide cross
references to other domain topics or links to external resources such as
books, repositories, experts, etc. The next refinement of the classes will

Instructional
design should
be stored
separately
from the
learning object

R-Problem 1a:
There exists
no learning
object type
taxonomy for
SE

Learning ob-
jecs are classi-
fied into learn-
ing objectives,
learning con-
tent, and
situational
content

State of the Art

 70

be explained further in Section 4.2.1.2. These are used to derive the
concrete learning object types used in a learning space.

It can be seen in Table 6 that most of the technology-enhanced learning
approaches and standards provide classifications for learning content
rather than for situational content, which again confirms that the ap-
proaches do not sufficiently address context in their learning environ-
ments.

St
at

e
of

 t
he

 A
rt

71

Ta
bl

e
6

C
la

ss
ifi

ca
tio

n
of

 le
ar

ni
ng

 o
bj

ec
t

ty
pe

s

Le
ar

n
in

g
 o

b
je

ct
 t

yp
es

Le
ar

n
in

g
 c

o
n

te
n

t
Si

tu
at

io
n

al
 c

o
n

te
n

t

Fu
n

d
am

en
ta

l
A

u
xi

lia
ry

Le
ar

-
n

in
g

o

b
je

ct
-

ti
ve

s
D

ef
in

i-
ti

o
n

D

es
cr

ip
-

ti
o

n

K
n

o
w

-
le

d
g

e
Ev

i-
d

en
ce

Ex

p
la

n
a-

ti
o

n

Ill
u

st
ra

-
ti

o
n

In

te
ra

ct
i-

vi
ty

A

ss
es

s-
m

en
t

O
ri

en
ta

-
ti

o
n

R

es
o

u
rc

es
Pr

o
d

-
u

ct

Pr
o

c-
es

s
Pr

o
-

je
ct

In

d
iv

i-
d

u
al

G

ro
u

p
O

rg
an

i-
za

ti
o

n

C
u

st
o

-
m

er

So
ft

-
w

ar
e

to
o

l

(I
EE

E
Le

ar
n

in
g

Te

ch
n

o
lo

g
y

St
an

d
ar

d

C
o

m
it

te
e,

20

02
)

 L
ea

rn
-

in
g

ob
je

c-
tiv

e

In
st

ru
ct

io
-

na
l c

on
-

te
nt

In
st

ru
c-

tio
na

l
co

nt
en

t

In
st

ru
c-

tio
na

l
co

nt
en

t

In
st

ru
c-

tio
na

l
co

nt
en

t

In
st

ru
ct

io
na

l
co

nt
en

t
In

st
ru

c-
tio

na
l

co
nt

en
t

In
st

ru
ct

io
na

l
co

nt
en

t
In

st
ru

ct
io

-
na

l c
on

te
nt

In
st

ru
c-

tio
na

l
co

nt
en

t

In
st

ru
c-

tio
na

l
co

nt
en

t

Pe

rs
on

O
rg

an
iz

a-
tio

n

So
ft

-
w

ar
e

to
ol

(B
an

n
an

-
R

it
la

n
d

,
D

ab
b

ag
h

,
M

u
rp

h
y,

 &

W
ile

y,
 2

00
2)

C
as

e
st

ud
y

H
ow

-t
o,

In

te
ra

ct
iv

e,

se
qu

en
ce

d
tu

to
ria

l,
st

ep
-a

ct
io

n
ta

bl
e,

 jo
b

ai
d

Ex
am

pl
e

M
od

el
in

g,

sh
ow

 m
e,

tr

y
m

e,

si
m

ul
at

io
n,

co

lla
bo

-
ra

tiv
e

ac
tiv

ity
,

in
te

gr
at

ed

pr
ac

tic
e

A
ss

es
s-

m
en

t
or

pr

e-
te

st
,

m
as

te
ry

te

st
, c

he
ck

-
yo

ur
-

un
de

r-
st

an
di

ng

Re

so
ur

ce
s

To

ol

(D
o

an
,

B
o

u
rd

a,
 &

D

u
m

it
ra

sc
u

,
20

06
)

D

ef
in

i-
tio

n,

pr
in

ci
pl

e

Pr
oc

es
s,

al

go
rit

hm
,

ru
le

,
pr

op
er

ty

La
w

, (
la

w

of
 N

at
ur

e)
,

th
eo

re
m

,
ax

io
m

re

su
m

e,

re
m

ar
k,

co

nc
lu

si
on

Ex
am

pl
e

Ex
er

ci
se

,
ev

al
ua

tio
n

Q
ue

st
io

n

Re

fe
re

nc
e

(I
M

S
G

lo
b

al

Le
ar

n
in

g

C
o

n
so

rt
iu

m
,

20
01

)

Le
ct

ur
e

Ex
er

ci
se

,
si

m
ul

at
io

n,

ex
pe

rim
en

t,

Q
ue

st
io

n-
na

ire
, s

el
f-

as
se

ss
-

m
en

t,

ex
am

Pr
ob

le
m

st

at
em

en
t

(K
är

g
er

, 2
00

6)

Po
lic

y,

pr
oc

ed
ur

e
La

w
 o

f
na

tu
re

,
th

eo
re

m

M
at

h.

de
m

on
s-

tr
at

io
n,

pr

oo
f

C
on

cl
us

io
n,

in

tr
od

uc
-

tio
n,

 r
em

ar
k

C
ou

nt
er

-
ex

am
pl

e,

ex
am

pl
e

Ex
er

ci
se

,
ex

pl
or

at
io

n,

in
vi

ta
tio

n,

re
al

-
w

or
ld

pr

ob
le

m

(K
o

p
er

, 2
00

3)

K

no
w

-
le

dg
e

ob
je

ct

K
no

w
le

dg
e

ob
je

ct

K
no

w
le

dg
e

ob
je

ct

K
no

w
l-

ed
ge

ob

je
ct

K
no

w
le

dg
e

ob
je

ct

K
no

w
-

le
dg

e
ob

je
ct

Te

st
 o

bj
ec

t
H

is
to

ry
,

ov
er

vi
ew

K
no

w
-

le
dg

e
ob

je
ct

K
no

w
-

le
dg

e
ob

je
ct

K
no

w
-

le
dg

e
ob

je
ct

St
at

e
of

 t
he

 A
rt

72

Le
ar

n
in

g
 o

b
je

ct
 t

yp
es

Le
ar

n
in

g
 c

o
n

te
n

t
Si

tu
at

io
n

al
 c

o
n

te
n

t

Fu
n

d
am

en
ta

l
A

u
xi

lia
ry

Le
ar

-
n

in
g

o

b
je

ct
-

ti
ve

s
D

ef
in

i-
ti

o
n

D

es
cr

ip
-

ti
o

n

K
n

o
w

-
le

d
g

e
Ev

i-
d

en
ce

Ex

p
la

n
a-

ti
o

n

Ill
u

st
ra

-
ti

o
n

In

te
ra

ct
i-

vi
ty

A

ss
es

s-
m

en
t

O
ri

en
ta

-
ti

o
n

R

es
o

u
rc

es
Pr

o
d

-
u

ct

Pr
o

c-
es

s
Pr

o
-

je
ct

In

d
iv

i-
d

u
al

G

ro
u

p
O

rg
an

i-
za

ti
o

n

C
u

st
o

-
m

er

So
ft

-
w

ar
e

to
o

l

(M
ed

er
, 2

00
1)

Th
eo

re
m

,
fo

rm
ul

a
de

fin
iti

on
,

te
rm

de

fin
iti

on
,

pr
in

ci
pl

e

Ru
le

, p
ro

ce
-

du
re

,
ch

ec
kl

is
t,

st

ra
te

gy
,

de
gr

ee

La
w

, l
aw

co

m
m

en
t

C
on

cl
u-

si
on

,
pr

oo
f

A
ss

um
pt

io
n

(h
yp

ot
he

si
s,

id

ea
),

re
fle

ct
io

n

Ex
am

pl
e,

co

un
te

r-
ex

am
pl

e

H
is

to
ry

,
sc

en
ar

io

(h
yp

o-
th

et
ic

al

si
tu

at
io

n,

vi
rt

ua
l

w
or

ld
),

fa
ct

s,
 s

um
-

m
ar

y,
 o

ve
r-

vi
ew

C
ro

ss
-

re
fe

re
nc

e,

do
cu

m
en

t
re

fe
re

nc
e,

co

m
m

u-
ni

ca
tio

n
re

fe
re

nc
e

(C
is

co
 S

ys
-

te
m

s,
 1

99
9)

D
ef

in
i-

tio
n,

pr

in
ci

pl
e

st
at

em
en

t

Pr
oc

ed
ur

e
ta

bl
e,

de

ci
si

on

ta
bl

e,
 c

om
-

bi
ne

d
ta

bl
e,

st

ag
ed

ta

bl
e,

 b
lo

ck

di
ag

ra
m

,
cy

cl
e

ch
ar

ts

In
tr

o-
du

ct
io

n,

an
al

og
y,

gu

id
el

in
es

Ex
am

pl
e,

no

n-
ex

am
-

pl
e,

 il
lu

s-
tr

at
io

n,

pr
oc

es
s

de
m

on
-

st
ra

tio
n

In
st

ru
ct

or

no
te

,
pr

ac
tic

e
ite

m

A
ss

es
s-

m
en

t
ite

m

Fa
ct

 li
st

(R
ec

h
, R

as
, &

D

ec
ke

r,

20
07

b
)

D

ef
in

i-
tio

n,

pr
in

ci
pl

e

Pr
oc

ed
ur

e,

ru
le

,
ch

ec
kl

is
t,

st

ra
te

gy

Th
eo

re
m

,
la

w

A

na
lo

gy
,

ex
pl

an
at

io
n,

m

od
el

Ex
am

pl
e,

co

un
te

r-
ex

am
pl

e

Pr
ac

tic
e

ite
m

, l
ea

r-
ni

ng

H

is
to

ry
,

ov
er

vi
ew

,
su

m
m

ar
y,

sc

en
ar

io
,

sp
ac

e
m

ap

Re
fe

re
nc

e

(W
el

le
r,

Pe

g
le

r,
 &

M

as
o

n
, 2

00
3)

In

st
ru

ct
io

-
na

l o
bj

ec
t

In
st

ru
c-

tio
na

l
ob

je
ct

In
st

ru
c-

tio
na

l
ob

je
ct

In
st

ru
c-

tio
na

l
ob

je
ct

In
st

ru
ct

io
na

l
ob

je
ct

In

st
ru

c-
tio

na
l

ob
je

ct

C
ol

la
bo

ra
-

tiv
e

ac
tiv

ity
,

te
ch

ni
ca

l
ac

tiv
ity

,
in

di
vi

du
al

ac

tiv
ity

,
as

si
gn

m
en

t

N

ar
ra

tiv
e

ob
je

ct
s

Fundamental Modeling Concepts

 73

4 Fundamental Modeling Concepts

“Learning is the process whereby knowledge
is created through the transformation of ex-
perience” (David A. Kolb, 1984)

Developing the learning space approach follows two main research ob-
jectives: development of conceptual models on the one hand, and de-
velopment of a method, techniques, and a system for generating learn-
ing spaces on the other hand. This section focuses on the conceptual
models. The models are independent of the learning scenario and learn-
ing method. Section 5 will describe the technique for generating con-
text-aware learning spaces by using these models.

In order to develop the approach, requirements related to the objectives
are listed in the next section. Section 4.2 explains the overall conceptual
model consisting of the following packages: The learning space model
consists of an instructional design model and a learning resource model
that refer to the didactical structure, respectively the content artifacts, of
a learning space (described in detail in Section 4.2.1.1 and Section
4.2.1.2); a context model and a domain model, which are required for
realizing the context-aware adaptation of the learning space artifacts
(Section 4.2.2 and Section 4.2.3); and, finally, a variability model, which
defines the variabilities in the two learning space models (Section 4.2.4).

4.1 Research Objective and Requirements

In Section 1, three research objectives have been stated. The first one
was related to the development of conceptual models:

Objective 1: Formally define conceptual models for enriching experience
packages with additional information.

� Develop an instructional design model for the specification of the di-
dactical structure of a learning space in order to realize different
types of learning scenarios and methods.

� Develop a learning resource model with different abstraction layers
that implements the instructional design model and defines the dif-
ferent types of artifacts used in a learning space.

� Develop a domain model for the consistent annotation of resources
for learning spaces and extend the reuse model accordingly.

� Develop a context model for the description of situations in software
engineering that covers all context dimensions required for the static

Structure of
this section

Objective 1

Fundamental Modeling Concepts

 74

and dynamic adaptation of learning spaces and extend the reuse
model accordingly.

� Develop a variability model for the specification and resolution of
variants in a learning space on a structural as well as on a content
level, which supports traceability amongst the different abstraction
levels and separates adaptation information and functionality from
learning resources.

The following section provides an overview of all the models before they
are elaborated in the subsequent sections.

4.2 Reference Model of the Learning Space Approach

In order to support the understanding of the overall reference model and
to understand the rationale behind each submodel, three scenarios are
provided: The first scenario illustrates how an experience is annotated
(i.e., provided with metadata) by the knowledge engineer (see Section 5
for the role descriptions); the second scenario shows how learning re-
sources are documented and annotated by means of the domain model;
the last scenario explains when and how a learning space is generated.

A knowledge engineer decides to document an experience in the
domain of refactoring and describes how code smells of the type

long method can be removed from Java code. He uses a template to docu-
ment the experience package and describes the problem, the solution, and
the benefit of applying the solution. Afterwards, he uses the keyword
browser to select these keywords: Java code:product; refactoring:process,
remove long method:process; code smell long method:knowledge; pro-
grammer:role, and Integrated Development Environment:software tool.
These keywords stem from a domain ontology. Then, he selects concepts
that describe the context of the situation where he has made the experience.
This is done by relating the experience package to a concrete description of a
Java system for which this refactoring has been made, to the development
process he had followed, the project he was working on, and his personal
individual profile. He saves the experience package in the experience base.

A knowledge engineer is responsible for searching for valuable
content chunks in the knowledge management system that can be

used for learning. She finds good examples of code smells of the type long
method and decides to store them in the system as a learning resource. She
reworks the examples and starts the learning element authoring tool, where
she first has to select a resource type, i.e., example, and second, select ap-
propriate keywords from a domain model browser, i.e., Java code:product;
code smell long method:knowledge. She stores the learning resource in the
repository.

Scenario 1: Annotating an
experience package

Scenario 2: Annotating
learning resources

Fundamental Modeling Concepts

 75

A software developer has to refactor for the first time the code of
his Java system. He decides to look for suitable experience packages
and finds an experience package that describes how code smells of

the type long method can be removed by the refactoring technique remove
long method. However, he is not knowledgeable about refactoring at all and
lets the system generate a learning space for his situation and the selected
experience package. The system first selects a template for experiential learn-
ing from the instructional design repository and performs queries to resolve
the variabilities in the learning space in order to adapt it to the current con-
text. The queries are forwarded to the domain model as well as to the con-
text model of the system. The queries’ results let the system resolve the deci-
sions in the decision model and let the system choose appropriate techniques
for adapting the learning space. Then, the learning space is presented by
means of a set of linked hypermedia pages: First, basic concepts of refactor-
ing are explained by presenting learning resources of different types (e.g.,
definition, explanation, etc.) about the domain concept instance code smell
long method:knowledge, the domain concept instance remove long
method:process, etc. Then, the experience package description is extended
by referring to the context concepts that were selected by the expert during
documentation, i.e., the details of the product, process, project, individual,
and software tool context concepts are shown.

Several conceptual models describe the entities and relationships of the
learning space approach, and form the basis for the approach described
later in Section 5. Figure 9 shows the different models and how they are
related. The Unified Modeling Language (UML) has been used to illus-
trate the package structure of the overall conceptual model.

In the following, formal definitions are given for the entities and rela-
tionships of the packages, i.e., the conceptual models. Predicate logic is
used to describe the models, which use non-logical symbols (i.e., predi-
cates, functions, and constants) and logical symbols (i.e., an infinite set
of variables, logical operators, quantifiers) (see also (Hamilton, 1978)).
The interpretation of the formal language is done by using a model (D,
I), where D is the domain and I is an interpretation of the elements of D.
The elements of D are predicates (denoted by uppercase letters ABC, P,
Q, R, …), functions (denoted by lowercase letter f, g, h, …), and con-
stants (denoted by lowercase letters a, b, c, …). Functions are defined as
predicates (i.e., a function such as f(x1,x2,...) will similarly be replaced by
a predicate P(x1,x2,...,y) that is interpreted as "y=f(x1,x2,...)"). Practical ex-
amples are given that make use of a specific notation, i.e., instances are
underlined, classes use a normal font, and relations are written in italic.
Instances and their class are separated by “:”.

Scenario 3: Generating a
learning space during
experience package reuse

A package
structure
describes the
conceptual
models

Predicate logic
is used to
define the
models’ con-
cepts and their
relationships

Fundamental Modeling Concepts

 76

VariabilityModel

LearningSpaceModel

ContextModel

DomainModel

adapts

11

context_impacts

1

1

domain_impacts
1

1

InstructionalDesignModel

LearningResourceModel

realized_by

1

1

Figure 9 Overall conceptual model

A learning space structures information in a didactical manner so that
learning processes are supported. In the domain of learning theory,
many different learning methods exist that can be specified and realized
by means of a specific learning space model. A concrete learning space
model implements exactly one concrete learning scenario lsci of the
complete set of the learning scenario domain LSC on the instructional
design and learning resource level. A concrete learning scenario lsci can
be understood as the scope of a specific learning space.

Overall Conceptual Model – The OverallConceptualModel OCM � LSM x
VM x CM x DM be the set of conceptual models for different learning
scenarios LSC. That is:

�lsc OCM(lcs) � �lsm LSM(lsm) � �vm VM(vm) � �cm CM(cm) � �dm
DM(dm)

with the predicates (i.e., relations):

CONTEXT_IMPACTS(cm, vm) = � CM x VM

DOMAIN_IMPACTS(dm, vm) = � DM x VM

ADAPTS (vm, lsm) = z � VM x LSM

with CM being the set of context models, DM the set of domain models,
VM the set of variability models, and LSM the set of learning space mod-
els. A learning space model consists of two submodels that define the
instructional design of the learning space and the resources used within
a learning space.

Learning Space Model – A LearningSpaceModel LSM consists of an In-
structionalDesignModel idm and a LearningResourceModel lrm. Let LSM
be the set of all potential learning space models for a specific learning
scenario lsci 	 LSC with the relation:

A learning
space realizes
exactly one
learning sce-
nario

Definition 3
Overall
Conceptual
Model

Definition 4
Learning
Space Model

Fundamental Modeling Concepts

 77

REALIZED_BY (idm, lsc, lrm) = {idm | �(lsc 	 LSC), �(lrm 	 LRM) : idm
realized_by lrm} � IDM x LRM

with IDM being the set of instructional design models and LRM the set
of learning resource models. The learning resource model and the in-
structional design model are defined in detail in Section 4.2.1.1, respec-
tively Section 4.2.1.2.

As defined in Definition 3, the learning space model is adapted by
means of a variability model. The latter is impacted by a context model
and a domain model, where the information of those two models is
used for resolving the variabilities in the variability model.

In order to support adaptation, extensions to the reuse model are neces-
sary. Figure 10 shows the extensions by an arrow.

Figure 10 Reuse model of Basili and Rombach (V. R. Basili & Rombach, 1991)

The extensions to the reuse candidates are:

� Object Interface (Dependencies): Instead of an informal description of
the dependencies, instances of domain concepts DCi from a software
engineering domain ontology reflect the most important facts used in
the experience package.

� Object Context (Solution Domain): a more precise description by se-
lecting context instances including their semantic relationships de-
scribes the context CCi (e.g., instances of classes: product, process,
project, individual etc.) where the experience package has been de-
rived/documented.

The domain and context concepts and their semantic relationships will
be defined more formally below.

A learning
space model is
adapted by a
variability
model

Reuse candi-
dates

Fundamental Modeling Concepts

 78

The standard reuse process consists of the activities identifying reuse
candidates from the reuse repository, evaluating the reuse candidates
and selecting a candidate, modifying the candidate before reuse, if nec-
essary, and finally integrating or applying the experience (V. R. Basili &
Rombach, 1991). By following a learning space approach, a new activity
of generating a learning space is inserted between the selection and the
evaluation process.

In order to further specify the adaptation mechanisms, further sub-
characteristics need to be added to Mechanism:

� General Adaptation: describes whether the adaptation is done by us-
ing a decision model or a feature model

� Adaptation Type: describes whether the adaptation is done only be-
fore runtime (i.e., before the learning space is presented to the user:
static) or also during run-time (i.e., when the context is changing dur-
ing the usage of the learning space: dynamic)

� Adaptation Level: describes on which level the adaptation takes place
(i.e., structure, content, presentation)

� Adaptation Navigation Techniques: lists the different adaptation
techniques which are used to perform the adaptations on the level of
structure and hence which adapt the navigation structure within a
learning space (see Section 4.2.4 for examples)

� Adaptation Presentation Techniques: lists the different adaptation
techniques which are used to perform the adaptations on the level of
content and presentation (see Section 4.2.4 for examples)

Context Model – A ContextModel CM is used to describe a concrete
software engineering situation that is determined by a finite set of
context concepts and relations amongst instances of these context
concepts CM � CC1 x CC2 x … x CCn , where CCi 	 CC. CC is the
complete set of possible context concept sets and with a relation:

Pn(relc1, relc2,… relcn) = {(relc1, relc2,..., relcn) | relc1 	 RELC1, relc2 	
RELC2 ,..., relcn 	 RELCn} � RELC1 x RELC2 x … x RELCn

with RELC1, RELC2,…, RELCn being the sets of relations between two
context concepts:

RELCk(cci, ccy) = {cci | �(ccj 	 CCJ) : cci relates_to ccj} � CCi x CCJ

with CCi x CCJ being two disjoint sets of context concepts.

Hence, a situation can be described using concrete instances of one
to several context concepts and relations (e.g., Eric Ras:Individual works_in
Open Source Practica 2007:Project and produces Digital Care Giver Assistant
(DCGA) 1.0:Product).

Reuse process

Definition 5
Context Model

Example: Context Model

Fundamental Modeling Concepts

 79

Domain Model – A DomainModel DM is used to define the domain
classes of the software engineering domain (i.e., domain concepts) and
to define relations amongst instances of these sets of domain concepts.
Therefore DM � DC1 x DC2 x … x DCn , where DCi 	 DC. DC is the com-
plete set of possible domain concepts.

Qn(reld1, reld2,… reldn) = {(reld1, reld2,..., reldn) | reld1 	 RELD1, reld2 	
RELD2 ,..., reldn 	 RELDn} � RELD1 x RELD2 x … x RELDn

with RELD1, RELD2,…, RELDn being the sets of relations between two
domain concepts:

RELDk(dci, dcj) = {dci | �(dcj 	 DCJ) : dci relates_to dcj} � DCi x DCJ

with DCi x DCJ being two disjoint sets of domain concepts.

That is, the domain model has several main classes that each reflect
a particular concept type in software engineering. Relations between the in-
stances of these concepts are used to formalize the body of knowledge in
software engineering (e.g., the programmer:role produces java code:product
and needs_knowledge_ about_knowledge code smell comment:knowledge).

The variability model plays a central role in the overall conceptual model.
It specifies the variabilities of the entities and relations in the learning
space models and describes the queries to the context and domain
model in order to resolve the variation points (see Section 4.2.4).

Variability Model – A VariabilityModel VM defines the variabilities of the
LearningSpaceModel, i.e., the non-common characteristics of a set of
InstructionalDesignModels IDM and the non-common characteristics of a
set of LearningResourceModels LRM for a concrete learning scenario (lsc

	 LSC), which can be seen as the scope of the variabilities.

Variabilities for instructional design models idmi i =0..n, where n is the
total number of available instructional design models, are defined as:

VARIABILITY(idm, lsc) =
 LSC(idmi, lsc) - COMMONALITY(idmi, lsc)

where the predicate LSC reflects all instructional design model variants
idmi that satisfy the learning scenario lsc:

LSC(idm, lsc) ={lsc| �(idm 	 IDM) : idm satisfies lsc}

and for learning resource models as:

VARIABILITY(lrm, lsc) =
 LSC(lrmi, lsc) - COMMONALITY(lrmi,lsc) and

LSC(lrm, lsc) ={lsc| �(lrm 	 LRM) : lrm satisfies lsc}

Definition 6
Domain Model

Example: Domain model

Definition 7
Variability
Model

Definition 8
Variability

Fundamental Modeling Concepts

 80

Commonalities for instructional design models are defined as:

COMMONALITY(idm, lsc) = � CONTEXT(idm, cck, dcl)

where the predicate CONTEXT means that a concrete idm satisfies all ob-
jects (k=1..m; m=number of all instances of a context concept set) of all
defined context concept sets CCi of a context model and satisfies all the
objects (l=1..s; s=number of all instances of a domain concept set) of all
defined domain concept sets DCi of the domain model in the scope of a
specific learning scenario lsc.

CONTEXT(idm, cc, dc) = {idm | �(cc 	 CCi) �(dc 	 DCJ) : (idm satisfies
cc) � (idm satisfies dc)}

 and for learning resource models as:

COMMONALITY(lrm, lsc) = � CONTEXT(lrm, cc, dc) where

CONTEXT(lrm, cc, dc) = {lrm | �(cc 	 CCi) �(dc 	 DCJ) : (lrm satisfies
cc) � (lrm satisfies dc)}

Furthermore, the variability model transforms the instructional design
model idm and the learning resource model lrm into idm’, respectively
lrm’, based on information of a specific context model cm and a specific
domain model dm (i.e., called indicators). The transformation function
results in the following predicate that describes the transformation func-
tion:

VM(vm, cc, dc, idm, lrm, idm’, lrm’)) = {idm, lrm)| �(vm 	 VM), �(cc 	
CC), �(dc 	 DC) : f:(IDM � IDM’) V (LRM � LRM’)}

with idm 	 IDM and lrm 	 LRM being two models that are transformed
into idm’ 	 IDM’ and lrm’ 	 LRM’. The subsequent subsections refine
these five models and formally define their entities and relations. The fol-
lowing table shows an example of such a transformation on the struc-
ture level for a learning goal structure template (i.e., idm).

Table 7 Example of transformation on structure level (idm)

Impact Indicator (to
what is it
adapted?)

Value Type Generic Arti-
fact to be
adapted

Possible Artifact Variants
(transformation)

Adaptation
Level

Context experience
package (CCi)

� User is
author

� User
worked in
same
project

� User
worked in
same group

static Learning goal
structure
template

� Only show remember level
� Remember first situation

and the context
� Remember first situation

and the context & ask
colleague

� Structure
�

Definition 9
ommonality

The variability
model trans-
forms IDM and
LRM

Fundamental Modeling Concepts

 81

4.2.1 Learning Space Model

From a technical point of view, a learning space consists of a hypermedia
space with linked pages. A learning space follows a specific global learn-
ing goal and is created based on context information (and the context
description of an experience package in the case of the experiential
learning scenario). The learning space is technically presented in the
Software Organization Platform (SOP: see also Section 6 and (S. Weber
et al., 2008)).

As shown in the previous section, the package LearningSpaceModel con-
sists of two subpackages: The subpackage InstructionalDesignModel re-
fers to the specification of the overall structure of a learning space by
following a specific learning method (e.g., experiential learning, case-
based learning, etc.). The subpackage LearningResourceModel is dedi-
cated to the specification of the content structures of a learning space.
This model implements the concepts of the InstructionalDesignModel by
filling templates with content and by creating physical links between in-
stances of the conceptual artifacts (see Figure 11).

LearningSpaceModel::LearningResourceModel

LearningSpaceModel::InstructionalDesignModel

LearningSpaceStructureTemplate
<<artifact>>

+globalLearningGoalLevel

LearningObjectiveTemplate
<<artifact>>

+learningObjectiveLevel

LearningPage

realized_by

1

1

1..*

StructureLink
<<association>>

PageLink

realized_by

1

1*

*

*

*

Figure 11 Learning space model (full realization dependency depicted in Figure 16)

A learning
space is a
hypermedia
space with
linked pages

Fundamental Modeling Concepts

 82

4.2.1.1 Instructional Design Model

The instructional design model can be seen as the design of a learning
space (see Section 3.4.3). It follows several instructional design strategies
(see also Section 5.4.3) and implements one or several learning methods
by a) providing constructs for specifying an overall learning goal; b) de-
fining a network of fine-grained learning objectives, which are refined by
so-called learning objective templates; and c) providing a means for de-
scribing these templates, which are sequences of so-called learning ac-
tivities.

A learning method is a systematic procedure for learning, sustaining, or
extending knowledge, skills, and competencies. There are many methods
for reaching a learning goal (e.g., reading, writing an abstract, attending
a practicum or workshop, learning by teaching, discussing with expert).

The difference between a learning goal and a learning objective is that
usually, learning goals are broad, often imprecise statements of what
learners will be able to do when they have completed the learning space.
Learning objectives are more specific, have a finer granularity, and are
measurable by performing assessments.

Figure 14 on page 87 shows a simple example of a learning space struc-
ture template.

A global learning goal determines a concrete learning space struc-
ture template (e.g., remember refactor code smell com-

ment:experience package). This template is refined by six learning objectives
templates in this example. Each relates to a specific learning objective (e.g.,
LOT1: remember code smell comment:knowledge, LOT2: remember rename
method:process, etc.). Each learning objective consists of a tuple (learning
objective type, concept type). The set of possible concept types depends on
the context model and the domain model (see Section 4.2.2 and Section
4.2.3).

The approach uses Anderson and Krathwohl’s taxonomy of educational
objectives (L. W. Anderson & Krathwohl, 2001), which is a revision of the
original taxonomy by Bloom (Bloom et al., 1956). Hence, regarding the
cognitive process dimension, the following six different learning objec-
tive types are used in the learning space approach:

� Remembering is to promote the retention of the presented material,
i.e., the learner is able to retrieve relevant knowledge from long-term
memory. The associated cognitive processes are recognizing and re-
calling.

� Understanding is the first level for promoting transfer, i.e., the learner
is able to construct meaning from instructional messages. He builds a
connection between the “new” knowledge to be gained and his
prior knowledge. Conceptual knowledge provides the basis for un-

What an in-
structional
design model
is about

Definition of
learning
method

Learning goal
vs. learning
objective

Example: Instructional
design model

Levels of
learning objec-
tives

Fundamental Modeling Concepts

 83

derstanding. The associated cognitive processes are interpreting, ex-
emplifying, classifying, summarizing, inferring, comparing, and ex-
plaining.

� Applying also promotes transfer and means carrying out or using a
procedure in a given situation to perform exercises or solve problems.
An exercise can be done by using a well-known procedure that the
learner has developed a fairly routinized approach to. A problem is a
task for which the learner must locate a procedure to solve the prob-
lem. Applying is closely related to procedural knowledge. The associ-
ated cognitive processes are executing and implementing.

� Analyzing also promotes transfer and means breaking material into
its constituent parts and determining how the parts are related to
one another as well as to an overall structure or purpose. Analyzing
could be considered as an extension of Understanding and a prelude
to Evaluating and Creating. The associated cognitive processes are
differentiating, organizing, and attributing.

� Evaluating also promotes transfer and means making judgments
based on criteria and/or standards. The criteria used are mostly qual-
ity, effectiveness, efficiency, and consistency. The associated cognitive
processes are checking and critiquing.

� Creating also promotes transfer and is putting elements together to
form a coherent whole or to make a product. Learners are involved in
making a new product by mentally reorganizing some elements or
parts into a pattern or structure not clearly presented before. The as-
sociated cognitive processes are generating, planning, and produc-
ing.

The learning space approach addresses all the cognitive processes, with
the focus being on the first three categories (remember, understand,
apply), because these are important for reaching the upper levels and
can be taught directly, while the fourth to sixth levels (analyze, evaluate,
create) require more time and a deeper understanding of a subject mat-
ter.

Learning space
approach
focuses on
“remember,
understand,
and apply”

Fundamental Modeling Concepts

 84

LearningSpaceStructureTemplate
<<artifact>>

+globalLearningGoalLevel

LearningObjectiveTemplate
<<artifact>>

+learningObjectiveLevel

1..*

*

*

StructureLink
<<association>>

LearningActivity
<<artifact>>

1..*

LearningResource
<<artifact>>

+type

Link
<<association>>

+type

Figure 12 Instructional design model

The learning objectives are related by means of so-called structured links
(see Figure 12), which are transformed into page links (i.e., physical hy-
pertext links, see Figure 11). Then, each learning objective is refined in a
learning activity tree by means of learning objective templates, which are
available for each learning objective type/concept type pair. Each activity
tree consists of learning activities that enable the learner to reach the re-
lated learning objective (e.g., reading, thinking about a question posed,
removing a real code defect, remembering a project, asking a colleague).

The way of how a global learning goal is refined into learning objectives
and activities depends on the learning method to be followed.

For example, the learning objective of LOT3 was “understand re-
name method:process”, which means that the refactoring process

concept “rename method” should be understood by the learner. A possible
learning objective template with an activity structure is given in Figure 13
(remark: no specific learning method is implemented in this example and the
activities are only related to the type “read” in order to keep the example as
simple as possible).

Formal definitions are now provided for the conceptual artifacts and re-
lations introduced.

Instructional Design Model – An InstructionalDesignModel IDM specifies
the structure of a learning space on a didactical level for a specific learn-
ing scenario. A learning scenario lsc reflects a learning method lm and is
realized by a learning space structure template:

IDM(lsc, lm, lsst) = {lsc | �(lsst 	 LSST), �(lm 	 LM) : (LSC(lsc, idm) �
LM(lm)) � (lsst realizes lsc)}

Example: Learning activity
tree

Definition 10
Instructional
Design Model

Fundamental Modeling Concepts

 85

with LSST being the set of learning space structure templates. For the
predicate LSC, see Definition 7.

Figure 13 Example of learning objectives template with learning activities

Learning Space Structure Template – A LearningSpaceStructureTemplate
specifies the learning space on the highest level of abstraction by means
of a global learning goal glg and a set of learning objectives templates
lot � empty set. The learning objectives templates can be linked by a
structure link sl:

�lsst LSST(lsst) � � lot LOT(lsst, lot)

with LSST being the set of learning space structure templates and LOT
the set of learning objective templates. This means that for each learning
space structure template lsst, a learning objective template lot exists.

LOT(lsst, lot) ={lsst | �lot 	 LOT : lot refines lsst}

Learning objective templates are linked by structure links sl:

SL (lot, sl) = {sl | (� lot1 	 LOT), (� lot2 	 LOT) : lot1 structure_link lot2}
� LOT x LOT

Each learning objective template lot consists of a finite set of learning ac-
tivities la:

�lot LOT(lot) � � la LA(lot, la)

with LA being the set of learning activities. This means that for each
learning objective template lot, a learning activity la exists:

Definition 11
Learning
Space Struc-
ture Template

Definition 12
Learning
Objective
Template

Definition 13
tructure Link

Definition 14
Learning
Activity

Fundamental Modeling Concepts

 86

LA(lot, la) ={lot | �la 	 LA : la refines lot}

4.2.1.2 Learning Resource Model

The learning resource model can be understood as the realization of the
instructional design model. The conceptual elements of the instructional
design model are further refined and instantiated by concrete content
elements.

Figure 14 shows an example of an instantiation of a learning resource
model, which is called learning space. A learning space follows a specific
global learning goal and is created based on context information about
the current situation. The goal of a learning space is to provide a learn-
ing environment for self-directed situated learning at the workplace and
follows a specific learning method that is specified in the instructional
design model. The example of the instructional design model of the pre-
vious section has been used again in Figure 14 to show how conceptual
artifacts of the instructional design model are mapped to conceptual ar-
tifacts of the learning resource model. As can be seen, each learning ob-
jective template is realized by a learning page. Such a learning page may
contain learning content as well as content from a knowledge manage-
ment system.

Learning re-
source model
and learning
space

Fundamental Modeling Concepts

 87

Figure 14 Example of learning resource model

Figure 15 presents an example of a learning page with the learning ob-
jective remember HideMethod:process with four instructional content
components: references to other concepts are shown in the first content
component, followed by an introduction, description, and example.

Fundamental Modeling Concepts

 88

Figure 15 Learning page

The package of the LearningResourceModel is depicted in Figure 16. A
learning page is composed of so-called content components, which are
composed of so-called content elements. A LearningPage can reference
another LearningPage by using a PageLink. A ContentComponent can
link another ContentComponent of other learning pages by using a
ComponentLink. A ContentElement has no relations.

Structure of a
learning page

Fundamental Modeling Concepts

 89

LearningResourceModel

ContentElement
<<ContentArtifact>>

LearningPage
<<ContentArtifact>> *

*
PageLink

<<association>>

ContentComponent
<<ContentArtifact>>

1..*

1..*

*

*

ComponentLink
<<association>>

LearningActivity
<<StructureArtifact>>

realized_by

StructureLink
<<association>>

realized_by

1

1

LearningObjectiveTemplate
<<StructureArtifact>>

+learningObjectiveLevel

realized_by

1

1

1..*

LearningResource
<<artifact>> Link

<<association>>

Figure 16 Learning resource model

Content elements are the most basic learning resources. They are elec-
tronic representations of media, such as images, text, sound, or any
other piece of data that can serve as a learning resource when aggre-
gated with other learning elements to form a learning component. Con-
tent components are units of instruction that contain at least one con-
tent element. The difference between a content component and a con-
tent element is that a content element has a type, either situational or
instructional. Content components realize a learning activity (see Figure
16). In addition, they can be referenced by another external content
component (i.e., a content component of another learning page). The
conceptual element ContentElement in Figure 16 is an abstract class. The
inheritance structure is depicted in Figure 17.

Content com-
ponents and
content ele-
ments

Fundamental Modeling Concepts

 90

ContentElement
<<ContentArtifact>>

LearningObjective InstructionalElement SituationalElement

AuxiliaryFundamental Orientation Resource Product

Process

Project

Individual

Group

Organization

SoftwareTool

Definition

Description

Knowledge

Evidence

Explanation

Illustration

Interactivity

Assessment

Observation

Experience

Pattern

Law

Survey

Experiment

CaseStudy

Introduction

Conclusion

Remark

Example

CounterExample

Exercise

Simulation

CollaborativeActivity

IntegratedPracticeActivity

TestActivity

Overview

Summary

Scenario

Reference

CrossReference

CommunicationReference

Customer

Problem

DomainRelation

ContextRelation

Figure 17 Content element types

The reason why the type of a content element type is not simply realized
by a class attribute is that content elements of different types may have
different content structures, different metadata sets, and different pres-
entation modes.

Fundamental Modeling Concepts

 91

This type hierarchy has been derived from the literature survey on the
classification of systems according to their learning object types in Sec-
tion 3.4.3. In addition, special software engineering related types have
been added, such as Evidence and its subclasses Survey, CaseStudy, and
Experiment. In addition to the literature study, this type hierarchy has
been extended from classifications of knowledge creating approaches in
the field of software engineering, such as the experience factory (V. R.
Basili, Caldiera, & Rombach, 2002) and other research work (Endres &
Rombach, 2003), and from studying the description of comprehensive
lifecycle and product models, such as the V-Model XT (Rausch, Broy,
Bergner, Höhn, & Höppner, 2007).

The top level consists of LearningObjective, InstructionalElement, and
SituationalElement. The LearningObjective element defines a learning
objective of a LearningPage.

An InstructionalElement specifies explicit learning content and distin-
guishes between Fundamental, Auxiliary, Orientation, and Resource
content elements. Fundamental covers learning content that forms the
theory of a specific domain. Since this approach was developed for the
software engineering domain, the class Knowledge has been refined by
Observation, Experience, Pattern, and Law. Explanation elements serve
to provide a deeper understanding. A specific subtype of this category is
DomainRelation: these elements present a relation between two domain
concept instances. Illustration elements consist of concrete examples,
counter-examples, etc. and can illustrate factual and conceptual knowl-
edge from a practical perspective. Interactivity and Assessment cover
content that stimulates the learner to interact with the environment or
attend a TestActivity. Content elements of the type Orientation serve the
learner by enhancing orientation within a learning space. Resource ele-
ments link to external resources (e.g., literature, experts, etc.), or provide
cross-references within a learning space (i.e., PageLink or Componen-
tLink). The following table shows two examples of instructional content
elements.

Table 8 Examples of instructional content elements

Domain
Concept

Domain
Concept
Instance

Type Content

Process Introduce-
Assertion

Introduction Often, sections of code work only if certain conditions are
true. This may be as simple as a square root calculation
working only on a positive input value.
With an object, it may be assumed that at least one of a
group of fields has a value in it. Such assumptions often are
not stated but can only be decoded by looking through an
algorithm. Sometimes the assumptions are stated with a
comment. A better technique is to make the assumptions
explicit by writing an assertion. An assertion is a conditional
statement that is assumed to be always true. Failure of an
assertion indicates a programmer error. As such, assertion

By means of
what has this
type hierarchy
been devel-
oped?

Instructional
content ele-
ments

Fundamental Modeling Concepts

 92

Domain
Concept

Domain
Concept
Instance

Type Content

failures should always result in unchecked exceptions.
Assertions should never be used by other parts of the
system. Indeed, assertions are usually removed for
production code. It is therefore important to signal that
something is an assertion. Assertions act as communication
and debugging aids. In communication, they help the reader
to understand the assumption the code is making. In
debugging, assertions can help catch bugs closer to their
origin. It has been noticed that debugging help is less
important when self-testing code is written, but the value of
assertions is still appreciated in communication.

Knowledge CodeSmell-
Comment

Description Comments should be used to give overviews of code and
provide additional information that is not readily available in
the code itself. Comments should contain only information
that is relevant to reading and understanding the program
and should be added when the author realizes that
something is not as clear as it could be and adds a comment.
Discussion of non-trivial or non-obvious design decisions is
appropriate, but avoid duplicating information that is present
in (and clear from) the code. It is too easy for redundant
comments to get out of date. In general, avoid any
comments that are likely to get out of date as the code
evolves.
In addition, the frequency of comments sometimes reflects
poor quality of code. When you feel compelled to add a
comment, consider rewriting the code to make it clearer.
Some comments are particularly helpful: - Those that tell why
something was done in a particular way (or why it was not) -
Those that cite algorithms that are not obvious (where a
simpler algorithm will not do).
Other comments can be reflected just as well in the code
itself!
The refactorings ExtractMethod, IntroduceAssertion,
RenameMethod should be used to remove this kind of code
smells.

Situational content elements contain information that describes parts of
a situation. By combining them, a situation can be described adequately.
In contrast to the content elements, which are stored in the learning
content base, situational elements have been created in a KM/EM sys-
tem. Situational elements possess types that exactly correspond to the
contextual concepts of the context model. In order to fulfill the require-
ments of integrating technology-enhanced learning and experience re-
spectively knowledge management, on the informational level, situ-
ational content elements are merged with instructional content ele-
ments.

The learning resource model can be compared with the SCORM Content
Aggregation Model (see Section 3.4.2). In the following, the conceptual
artifacts of the learning resource model are defined formally.

Situational
content ele-
ments

Fundamental Modeling Concepts

 93

Learning Resource Model – A LearningResourceModel LRM realizes the
structure defined by an instructional design model (see Definition 4). A
learning resource model is defined as:

LRM(idm,lrm) = {lrm | �(idm 	 IDM) : lrm realizes idm)}

with IDM being the set of instructional design models. A learning re-
source model consists of a set of learning pages lpi, which are composed
of a set of content components cci. Content components are composed
of a finite set of content elements cei that represent the physical con-
tent. The learning pages are linked by page links and content compo-
nents are linked by component links. This results in the following predi-
cates (i.e., relations):

LP_REALIZE_LOT(lp, lot) = {lot | �(lp 	 LOT) : lot is_realized_by lp} �
LOT x LP (see also Definition 12 of learning objective template)

CL_REALIZE_SL(cl, sl) = {sl | �(cl 	 CL) : sl is_realized_by cl} � SL x CL
(see also Definition 13 of structure link)

CC_REALIZE_LA(cc, la) = {la | �(cc 	 CC) : la is_realized_by cc} � LA x
CC (see also Definition 14 of learning activity)

with LP being the set of learning pages, CL the set of component links,
and CC the set of content components.

Learning Space – A LearningSpace physically represents the content
presented to the learner, including its navigation structure. Hence, a
learning space consists of different types of learning resources that are
connected by different types of links:

LS(lsi) = � LR(lri) x � LI(lii) where

lsi 	 LS, lii 	LI with LS set of learning resources and LI set of links

Learning resources are defined by:

LR(lri) = � LP(lpi) x � CC(cci) x � CE(cei) and

Links are defined by:

LI(lii) = � PL(pli) x � CL(cli)

The predicate for a learning page LP can be defined as:

�lp LP(lp) � � cc CC(lp, cc)

Definition 15
Learning Re-
source Model

Definition 16
Learning
Space

Definition 17
Learning Re-
source

Definition 18
Link

Definition 19
Learning Page

Fundamental Modeling Concepts

 94

with LP being the set of learning pages and CC the set of content com-
ponents.

Page links are used to link learning pages:

PL (lp, lp) = {lp | (� lp1 	 LP), (� lp2 	 LP) : lp1 page_link lp2 } � LP x LP

with PL being the set of page links.

For every learning page a content component exists, which can be linked
by component links cl.

CC(lp, cc) = {lp | �cc 	 CC : lp is composed of cc} and

CL (cc, cl) = {cl | (� cc1 	 CC), (� cc2 	 CC) : cc1 component_link cc2 }
� CC x CC

with CC being the set of content components.

For every content component cc, a content element ce exists.

�cc CC(lp, cc) � � ce CE(cc, ce)

with CE being the set of content elements.

CE(cc, ce) = {cc | �ce 	 CE : cc is composed of ce}

In the following, the context model is defined, which also explains why
specific types of situational content elements have been chosen in this
section.

4.2.2 Context Model

Context is, in fact, a semantic element: A specific selection of informa-
tion artifacts and their relations describe a particular situation or context.
The context model is one of the two models that is used to resolve vari-
abilities in the instructional design model and the learning resource
model (see Section 4.2.4 for the variability model).

In the learning space approach, context artifacts are individual entities
that exist in the software engineer’s environment, e.g., processes, prod-
ucts, individuals, customers, etc. However, context artifacts really make
no sense on their own. They inherently describe a real or virtual entity.
For example, a product may be related to a process, a project, etc. A
product on its own does not really have any value, unless we know to
what other context artifacts it is related in order to build a comprehen-
sive description of a situation.

Definition 20
Page Link

Definition 21
Content Com-
ponent

Definition 22
Content Ele-
ment

Context con-
cepts need to
be related to
other in-
stances to
provide mean-
ing

Fundamental Modeling Concepts

 95

Therefore, developing a context model is always a matter of choosing
the context dimensions (i.e., context concepts) and a matter of defining
relations between those concepts to adequately describe situations in
software engineering.

The context model developed in this thesis has been developed during
several projects at Fraunhofer IESE in the domain of reuse in software
engineering. The model has been improved over the last years and the
context model that is described next has been used for the learning
space approach. In the RISE project (RISE stands for Reuse In Software
Engineering) the Riki system consists of the six general classes of infor-
mation: projects, products, processes, people, customers, and (further)
knowledge (Rech, Ras, & Decker, 2006b; Rech et al., 2007b).

The context model extends the solution domain characteristic of the
reuse model (see also Figure 10 in Section 4.2).

An earlier version of the model did not cover the software tool dimen-
sion (Ras, Rech, & Decker, 2006). The section about the state of the art
of context dimensions (see Section 3.2.2), and the literature survey about
the classification of KM/EM systems regarding the knowledge types they
support (see Section 3.2.3) help to identify the context dimensions of the
context model. Several approaches were used to reduce the selection of
context dimensions to a “most useful selection” (Lenat, 1998; Mitchell,
2002; Pascoe, 2001; Schmidt, 2002):

� individual context (e.g., role, skill and competence profiles, learning
preferences, activity history)

� group context (e.g., team size, team members, team competencies
and experience)

� project context (e.g., size, effort, resources, costs, customer, contract,
business domain)

� process context (e.g., activity, lifecycle model)

� product context (e.g., type of product, complexity, quality, applica-
tion context)

� organization context (e.g., competence development strategies, cor-
porate quality strategy, business targets)

� customer context (e.g., business domain, customer’s products, turn-
over, etc.)

� software tool context (e.g., tools used for development, release and
version, etc.)

A formal illustration of the context dimensions and their relations is
given in Figure 18.

Reuse model
extension

Dimensions of
the context
model

Fundamental Modeling Concepts

 96

ContextConcept
<<ContextArtifact>>

Project
<<ContextArtifact>>

Product
<<ContextArtifact>>

Process
<<ContextArtifact>>

Individual
<<ContextArtifact>>

Organization
<<ContextArtifact>>

Customer
<<ContextArtifact>>

SoftwareTool
<<ContextArtifact>>

developed_in

has_customer

Group
<<ContextArtifact>>

has_group has_project

performed_by_group

project_with

works_in_project
works_in_group

uses

produces supports

Figure 18 Context model

Relationships occupy a leading role in the context model for the learning
space approach. With the use of such relationships, a simple collection
of context artifacts transforms into a structured, semantic net. The char-
acteristics of a context or a situation can be mapped to determined roles
of the related information artifacts by using such relations. In fact, a rela-
tion between two context artifacts describes a scope in which the infor-
mation artifact is valid (or applicable):

� Individual uses SoftwareTool describes that a specific software engi-
neer uses a specific software tool (John Doe uses Eclipse)

� Individual works_in_project Project describes that a specific software
engineer is working in a specific project (e.g., John Doe
works_in_project project_embedded)

� Individual works_in_group Group describes that a specific software
engineer is working in a specific group (e.g., John Doe
works_in_group department_xyz)

� Project performed_by_group Group describes that a specific project is
done by a specific group (e.g., project_embedded per-
formed_by_group department_xyz)

� Project project_with Customer desribes that a specific project is done
for a specific customer (e.g., project_embedded project_with Bosch
GmbH)

� Product developed_in Project desribes that a product is developed in
a specific project (e.g., Controllersoftware_xyz developed_in pro-
ject_embedded)

� Process produces Product describes that a specific process in an or-
ganization produces a specific product (e.g., process_xyz produces
Controllersoftware_xyz)

Context
relations

Fundamental Modeling Concepts

 97

� Software Tool support Process describes that a specific tool supports
a specific process (e.g., Eclipse3.1.1 supports process_xyz)

� Organization has_group Group describes that a specific organization
has a specific group or department (e.g., FraunhoferIESE has_group
department_xyz)

� Organization has_project Project describes that a specific organiza-
tion has a specific project (Fraunhofer IESE has_project pro-
ject_embedded)

� Organization has_customer Customer describes that a specific or-
ganization has a specific customer (e.g., Fraunhofer IESE
has_customer Bosch GmbH)

The context model has been defined in Definition 5: A ContextModel is
used to describe a concrete software engineering situation that is deter-
mined by a finite set of context dimensions (i.e., concepts) and relations
amongst these instances of these context concepts. For the learning
space approach, context concepts have been selected that can be used
for the adaptation of learning spaces following different learning meth-
ods; because the eight dimensions can be refined further (e.g., the indi-
vidual dimension can be extended by a very detailed user model describ-
ing the competencies, preferences, learning style, etc. of a specific per-
son), Definition 5 is now adapted to the context model in Figure 18:

CM � CCIndividual x CCGroup x CCProject x CCProcess x CCProduct x CCOrganization x
CCCustomer x CCSoftwareTool

with CCIndividual being the set of the individual context concepts, CCGroup

the set of the group context concepts, etc.

The following relations are defined between two artifacts of two differ-
ent context concepts:

USES(i, swt) = {swt | �i	 CCIndividual : i uses swt} with swt	CCSoftwareTool

WORKS_IN_PROJECT(i, proj) = {proj | �i	CCIndividual : i works_in_project
proj} with proj	CCProject

WORKS_IN_GROUP(i, gr) = {gr | �i	CCIndividual : i works_in_group gr}
with gr	CCGroup

PERFORMED_BY_GROUP(proj, gr) = {gr | �proj	CCProject: proj per-
formed_by_group gr} with gr	CCGroup

PROJECT_WITH(proj, cu) = {cu | �proj	CCProject: proj project_with cu}
with cu	CCCustomer

DEVELOPED_IN(prod, proj) = {prod | �prod	CCProduct: prod devel-
oped_in proj} with proj	CCProject

Definition 23
Context Model
and Context
Concepts

Definition 24
Context Con-
cept Relations

Fundamental Modeling Concepts

 98

PRODUCES(proc, prod) = {proc | �prod	CCProduct: proc produces prod}
with proc	CCProcess

SUPPORTS(swt, proc) = {swt | �proc	CCProcess: swt supports proc} with
proc	 CCProcess

HAS_GROUP (org, gr) = {org | �gr	CCGroup: org has_group gr} with
org 	 CCOrganization

HAS_PROJECT(org, proj) = {org | �proj	CCProject: org has_project proj}
with org 	 CCOrganization

HAS_CUSTOMER (org, cu) = {org | �cu	CCCustomer: org has_customer
cu} with org 	 CCOrganization

In the following, the domain model is explained, which is required for
annotating learning resources (i.e., describing them with metadata) and
for providing the necessary input for the adaptation process, that is, re-
solving the variabilities of the instructional design model and the learning
resource model.

4.2.3 Domain Model

A DomainModel DM is used to define the so-called domain concepts of
the software engineering domain and to define relations amongst in-
stances of these sets of domain concepts (see Definition 6).

The domain model has to fulfill the following requirements:

� Be able to formally describe common software engineering bodies of
knowledge

� Be able to formally describe common process and product models
and their relationships

� Be suitable for use for annotation (i.e., create metadata) of informa-
tion artifacts in software engineering

� Be able to describe more complex phenomena, respectively relation-
ships, between different types of software engineering artifacts, that
match with human understanding

� Be able to support adaptation of the instructional design model and
the learning resource model. Hence, serve as an input parameter for
the adaptation mechanisms.

� Be as simple as possible

Requirements

Fundamental Modeling Concepts

 99

The context model developed in this work was derived from existing
software engineering bodies of knowledge such as (Guide to the Soft-
ware Engineering Body of Knowledge, SWEBOK, 2004) and guidelines
for graduate and postgraduate education such as (Joint Task Force on
Computing Curricula, 2004). In addition, reference models such as the
V-Modell® XT have been studied to define the context model (Rausch et
al., 2007). These extensive works cover the whole body of knowledge in
software engineering, describe different ways of structuring information,
and show which concept types may be used to define a body of knowl-
edge.

The context model extends the dependencies characteristic of the reuse
model (see also Figure 10 in Section 4.2).

Figure 19 depicts the domain model that has been derived. It consists of
five main domain concepts:

� Individual concept: An instance of Individual describes a role in soft-
ware engineering (e.g., requirements engineer, quality assurer, pro-
grammer)

� Process concept: An instance of Process describes a process or activity
in software engineering. This concept class also covers software en-
gineering methods and techniques (e.g., requirements analysis, in-
spection, statistical testing, refactoring, etc.)

� Product concept: An instance of Product refers to an input or output
created by a software engineering activity or process (e.g., non-
functional requirement, test case, code, etc.). They match with the
understanding of the V-Modell® XT.

� Knowledge concept: An instance of Knowledge refers to a concrete
knowledge asset that is necessary to conduct a specific process (e.g.,
models, principles, laws, policies, etc.)

� Software Tool concept: An instance of Software Tool refers to a type
of tool that supports a specific process, technique, or method (e.g.,
requirements analysis tool, Integrated Development Environment,
etc.)

Underlying
bodies of
knowledge
and reference
models have
been used as a
basis

Reuse model
extension

Domain con-
cepts instances

Fundamental Modeling Concepts

 100

Product
<<DomainArtifact>>

Process
<<DomainArtifact>>

Individual
<<DomainArtifact>>

SoftwareTool
<<DomainArtifact>>

Knowledge
<<DomainArtifact>>

DomainConcept
<<DomainArtifact>>

produces

knowledge_about_process
knowledge_about_product

knowledge_about_knowledge

uses needs

supports

Figure 19 Domain model

The following relations are used:

� Individual knowledge_about_knowledge Knowledge describes that a
specific role has specific knowledge about a specific knowledge con-
cept (e.g., project manager knowledge_about_knowledge COCOMO
II).

� Individual knowledge_about_process Knowledge describes that a
specific role has specific knowledge about a specific process concept
(e.g., project manager knowledge_about_process risk management)

� Individual knowledge_about_product Knowledge describes that a
specific role has specific knowledge about a specific product concept
(e.g., tester knowledge_about_product statistical testing)

These three relations can be understood as part of a user model (see
Section 5.4.1.1) that exactly describes the knowledge required of a spe-
cific role regarding models, principles, laws, processes, techniques,
methods, products, etc.

� Process produces Product describes that a specific process produces a
specific product (e.g., requirements elicitation produces non-
functional requirement)

� Process needs Knowledge describes that a specific process needs spe-
cific knowledge to be executed (e.g., requirements elicitation needs
quality model)

� Software Tool support Process describes that a specific type of tool
supports a specific process or activity (e.g., issue tracker supports de-
bugging)

Domain
concepts
relations

Fundamental Modeling Concepts

 101

It has to be noted that the instances of domain model concepts are not
defined on the same level of abstraction as the instances of the context
model: Domain model instances still refer to a class of requirements
analysis processes, test tools, products, etc. Instances of the context
model concepts may describe very specific versions or instantiations of a
concrete product, specific organizational processes, etc. For example, in
the domain model, the instance of SoftwareTool “Integrated Develop-
ment Environment” is used instead of “Eclipse3.1.1”, which can be used
as an instance of the domain context concept Software Tool. In the fol-
lowing, formal definitions of the domain model concepts and their rela-
tions are given:

Domain Model – The DomainModel DM consists of five domain concept
types:

DM � DCIndividual x DCProcess x DCProduct x DCKnowledge x DCSoftwareTool

with DCIndividual being the set of the individual domain concept instances,
DCProcess the set of the process domain concepts instances, etc.

The following relations are defined between two different domain con-
cepts:

KNOWLEDGE_ABOUT_KNOWLEDGE(i, knw) = {knw | �i	 DCIndividual : i
knowledge_about_knowledge knw} with knw	DCKnowledge

KNOWLEDGE_ABOUT_PROCESS(i, proc) = {proc | �i	 DCIndividual : i
knowledge_about_process proc} with proc	DCProcess

KNOWLEDGE_ABOUT_PRODUCT(i, prod) = {prod | �i	 DCIndividual : i
knowledge_about_product prod} with prod	DCProduct

PRODUCES(proc, prod) = { prod | �proc	DCProcess : proc produces
prod} with prod	DCProduct

PROCESS_NEEDS_KNOWLEDGE(proc, knw) = { knw | �proc	DCProcess :
proc produces knw} with knw	DCKnowledge

SUPPORTS(swt, proc) = {swt | �proc	DCProcess : swt supports proc} with
proc	 DCProcess

The next section defines and describes a model that is essential for speci-
fying the variabilities in the instructional design model and the learning
resource model.

Remark: In-
stances of the
domain model
are less spe-
cific than
instances of
the context
model

Definition 25
Domain Model
and Domain
Concepts

Definition 26
Domain Con-
text Relations

Fundamental Modeling Concepts

 102

4.2.4 Variability Model

In order to develop context-aware learning spaces for a specific learning
scenario, respectively learning method, the adaptation method can be
developed by first answering the following four questions (Specht,
1998):

As defined in the previous sections, a learning space consists of learning
resources and links (see Definition 16). These concepts can be adapted
regarding their structure, content, and presentation. In addition, on the
level of instructional design, learning goals and objectives as well as
learning activities can be adapted. The following table provides a more
detailed overview (the numbers in parentheses relate to examples further
below):

Table 9 Adaptable concepts of the learning space approach

 Artifact Structure Content Presentation
Learning Structure
Template

X (1, 2,4,5) X

Learning Objective
Template

X (1, 2) X (1,2)

Learning Activity X (1, 3) In
st

ru
ct

io
na

l
D

es
ig

n
M

od
el

Structure Link X
Learning Page X (6)
Content
Component

X (1, 3, 4) X (6)

Content Element X (1,4) X (6)
Page Link X X (6) Le

ar
ni

ng
 R

e-
so

ur
ce

 M
od

el

Component Link X (5) X (6)

As can be seen from the table, concepts of the instructional design
model are only adapted regarding their structure and content (e.g., the
sequence (structure) of the fine-grained learning objectives in a learning
structure template may change and the types of learning objectives may
be adapted (content)). Links are only adapted on the content and pres-
entation levels (e.g., the address (content) a link may refer to or its anno-
tation (content), or its color or formatting (presentation)). On the learn-
ing resource level, the structure is only adapted for content components
(e.g., the sequence of content elements can be adapted). The adaptation
on the resource level focuses more on the content and presentation ad-
aptation (e.g., the title or learning objective of a learning page may be
hidden (content) or the font size (presentation) of a page, component, or
a specific element may be increased).

What kind of information does the adaptation require? For the learning
space approach, the defined context concepts sets and the domain con-
cepts sets prescribe the possible variants of the instruction design model
and the learning resource model in the scope of a specific learning sce-
nario, respectively learning method (see Definition 7 and Definition 8).

Question 1

What is
adapted?

Adaptation on
the structure,
content, and
presentation
levels

Question 2

To what is it
adapted?

Fundamental Modeling Concepts

 103

For example, this could be a user model describing the topics learned by
a learner.

Why is the learning space adapted to the context and domain model?
The purpose depends on the aspects the learning space should improve,
such as perceived usefulness of the provided learning resource, technol-
ogy acceptance of the learning system, or, as in this work: understand-
ing and application of experience packages.

This question refers to the methods and techniques that adapt the ge-
neric artifacts to the context and domain model in the scope of a specific
learning scenario. The adaptation of the learning space is done by means
of a decision model. Furthermore, an overview of adaptation techniques
has been given in Section 3.4.1.2.

Section 5 will answer these questions for learning spaces for experiential
learning. In the following, a few examples cover the most relevant adap-
tations in the context of learning spaces. (These examples can be seen as
possible answers to Question 2 and the main adaptations are marked in
Table 9; other changes that result from the main changes are aban-
doned to keep the examples simple.)

A learning style is used to describe individual differences in the way
people learn. Kolb states in his Learning Style Inventory that engi-

neers have either the style of an Assimilator (50%) or a Converger (40%) and
that other styles only cover 10% (David A. Kolb, 1984). Assimilators are more
interested in ideas and abstract concepts than in people and prefer logical
approaches to those based on practical value. Convergers are actively ex-
perimenting and reflecting in order to build abstractions. They can solve
problems and make decisions by finding solutions to questions and problems.
They like more technical tasks and problems more than social or interper-
sonal issues. A user model of a specific software engineer describes that this
person is an assimilator, which means that the structure and content of a
learning space should be adapted in such a way that more abstract concepts
are presented and only a few practical examples and concrete procedures for
how to use the methods. Learning objectives are selected on the understand,
analyze, and evaluate levels and will teach factual and conceptual knowledge
during the initial stage. The different roles in software engineering can have
an influence on the learning style as well.

A learner selects a global learning goal before she accesses the
learning space. The level of the global learning goal has an impact

on the selection of the learning objectives. For example, if she selects the
“remember” level, learning objectives of higher levels such as understand,
apply, analyze, etc. should be deleted from the learning space structure tem-
plate.

Question 3

Why is it
adapted?

Question 4
How is it
adapted?

Example (1) Adapting to
the learning style

Example (2) Adapting to
the global learning goal

Fundamental Modeling Concepts

 104

A user model may cover many characteristics of a user. It may list
the known concepts of a certain domain on different levels, e.g.,

read, known, expert, etc. A software engineer is an expert in a refactoring
technique called PreserveTempWithQuery:Process. This means, for example,
that this engineer needs only a small description of this domain concept in-
stead of a bunch of examples, exercises, and assignments.

The learner selects the short variant of a learning space because he
has only a short amount of time. This means that the content must

be adapted. For example, the learning objectives of higher levels are deleted,
since they need more time to be reached; the number of content examples is
reduced, as is the amount of long descriptions elements longer than 20 lines.

The engineer who accesses the learning space was working on a
specific project and was developing a specific product that are both

relevant in the scope of this learning space (e.g., because a specific technique
that he wants to “understand” in the learning space was applied in that pro-
ject). This context information enables the system to merge this context in-
formation with related learning activities to “remember” this situation and to
connect to the concepts of the technique to be learned. In addition, compo-
nent links are added (e.g., a component relates to another component that
contains the project description).

A learner may have set his preferences to certain types of media,
such as plain text instead of formatted text, images, and non-

annotated links (e.g., without tooltips). The system will transform the content
into plain text, delete the images, and hide the tooltips.

In order to implement those examples, the variability model has to cope
with the definition of variabilities on different levels of abstraction and
their resolution during development time and run-time (see Section 3.3).
It also has to cope with the usage of adaptation methods and techniques
from the adaptive hypermedia domain to adapt the generic artifacts of
the instructional design model and the learning resource model (see Sec-
tion 3.4.1).

The variability model has to fulfill the following requirements:

� Be able to formally describe variabilities on the instructional design
model level as well as on the learning resource model level

� Be able to describe different types of variabilities (i.e., optionset, al-
ternative, parameter, etc.) and to distinguish between “adaptive
courseware generation” and “dynamic courseware generation”
(Brusilovsky & Vassileva, 2003)

� Be able to formulate dependencies between variabilities in order to
support traceability among different abstraction levels (i.e., deleting a
type of learning activity requires deleting specific of content compo-
nents)

Example (3) Adapting to
the user model

Example (4) Adapting to
time constraints

Example (5) Adapting to
working context

Example (6) Adapting to
user preferences

Requirements

Fundamental Modeling Concepts

 105

� Be able to implement adaptation while keeping structure, content,
and presentation of a learning space separated

� Separate the adaptive functionality from the content

� Be able to support adaptation during development (before the pres-
entation of the learning space) and run-time (during the presentation
of the learning space)

Variability and commonality in product line engineering are captured via
genericity. A generic artifact is an artifact that holds all possible variants
of the family, but provides some possibilities to select between them
(Special Issue on Software Product Lines, 2002).

All variabilities can be described by means of alternatives. However, as
stated by Muthig, “modeling the alternatives does not define which
characteristics are associated to which products, nor which dependencies
and interrelationships exist among variabilities”. This is captured in so-
called decision models (Muthig, 2002). According to Muthig, a decision
model structures and documents variation points, and captures relation-
ships among variation points. Each variation point has a resolve() func-
tion that resolves the variation, i.e., chooses one to several resolutions
(alternatives) from a set of choices. Figure 20 shows the variability model
of the learning space approach.

Variability (see Definition 8) and commonality (see Definition 9) have
been defined in Section 4.2 for both the instructional design model and
the learning resource model. Hence, for the adaptation process, the
variabilities of the Link and the LearningResource artifacts are relevant.
This means that all artifact types of both models may have variabilities.
Muthig defines generic artifacts as artifacts that contain variant elements
representing a variability. Non-generic artifacts do not contain any vari-
ant elements (Muthig, 2002). Hence, generic artifacts are Link and
LearningResource artifacts.

A generic artifact can be formally defined as a predicate:

�x GENERIC(x) � (�vxi, �vxj 	 VX) where vxi, vxj are two variants of x
and vxi � vxj and VX the set of variants of the artifact (x	X)� Link x
LearningResource

Becker uses ranges to express the scope of a variability (Becker, 2004).
Four types of ranges exist: a) BooleanRange refers to a variability that
may exist or not. It refer to a yes/no option (e.g., keep a specific learning
objective or not; b) TypedRange refers to a variability related to a specific
type that must be defined (e.g., font); c) SelectionRange describes a
scope of a variability where more than one alternative can be chosen –
multiplicity is >1 (e.g., the alternative of keeping several different types

The variability
model uses
concepts from
the product
line approach

Decision
model

Variabilities
can be speci-
fied on the
link and learn-
ing resource
levels

Definition 27
Generic
Artifact

Definition 28
Range

Fundamental Modeling Concepts

 106

of learning objectives may be propagated to the content resource ab-
straction level, hence, the alternatives are chosen based on the available
content); d) SingleSelectionRange is a subtype of SelectionRange be-
cause only one alternative can be chosen – multiplicity is 1 (e.g., only
one learning objective level can be chosen; either remember:process,
understand:process, or apply:process):

RANGE � BOOLEANRANGE x TYPERANGE x SELECTIONRANGE x
SINGLESELECTIONRANGE

�x BOOLEANRANGE(x) � x �x

�x TYPEDRANGE(x) � x 	 [xrx…xry] where xrx and xry specify the lower
and upper bound of the range

�x1, �x2, …, �xn SELECTIONRANGE(x1, x2, …, xn) � x1 x2 … xn

�x1, �x2, …, �xn SINGLESELECTIONRANGE(x1, x2, …, xn) � (x1 � �x2 �
…� �xn) (�x1 � x2 � …� �xn) … (…�xk-1 � xk � �xk+1…) …
(�x1 � �x2 � …� xn)

Variation points realize variabilities and are part of a generic artifact.
They describe the location in a generic artifact where the adaptation will
occur. The class is specialized into four subclasses of variation points that
possess one of the four ranges: OptionVP, ParameterVP, OptionSetVP,
and AlternativeVP.

�VP(vp) � �d(d	 D)

where VP is the set of variation points and D is the set of decisions.

For each variation point, a decision exists. But one decision may refer-
ence more than one variation point. A variation point is only related to
one generic artifact, i.e., it represents a concrete variability of a Generi-
cArtifact in the instructional design model or the learning resource
model. Decisions are variations points and also have a range. The reason
for why decisions were added to the model is that decisions allow the
structuring of variation points, whereas variation points represent vari-
abilities that are resolved either during development or runtime (see Sec-
tion 5.2 for the difference), but they are not related to other variation
points or constrain the resolving of other variation points. They refer to
one location in a generic component – this is done by means of deci-
sions. Each decision d contains a question and related answers. After an-
swering the questions and selecting the answers according to the de-
fined ranges, each decision results in a resolution that resolves the varia-
tion point, e.g., chooses the alternatives.

Definition 29
Variation Point

Definition 30
Decision
Model

Fundamental Modeling Concepts

 107

�decm DECM(d, res, r) � (�d(d	 D) � �res(res	RES)) � (�d(d	 D) �
�r(r	RANGE))

and DECM � D x RES x RANGE

where DECM is the set of decision models, RES the set of resolutions,
and with r	RANGE.

LearningSpaceModel

VariabilityModel

VariationPoint
<<VariabilityArtifact>>

Decision
<<VariabilityArtifact>>

DecisionModel
<<VariabilityArtifact>>

ResolutionConstraint
<<Association>>

ResolveModel
<<VariabilityArtifact>>

results_in

Variability

realizes
1..*

*

resolves

Resolution
<<VariabilityArtifact>>

results_in

GenericArtifact

OptionVP
<<VariabilityArtifact>>

AlternativeVP
<<VariabilityArtifact>>

ParameterVP
<<VariabilityArtifact>>

Range
1..*1

BooleanRange
<<VariabilityArtifact>>

OptionSetVP
<<VariabilityArtifact>>

SingleSelectionRange
<<VariabilityArtifact>>

TypedRange
<<VariabilityArtifact>>

SelectionRange
<<VariabilityArtifact>>

ContextModel

context_impacts

1

1
DomainModel

domain_impacts

1

1

represent1..*

1

Figure 20 Variability model

The following table shows an example of a decision including the differ-
ent alternatives, the generic artifact to be adapted, the type of the varia-
tion point, an informal description of its resolution, and finally the level
of adaptation.

Fundamental Modeling Concepts

 108

Table 10 Examples of impact indicators and their consequence for the generic artifacts

Impact Indica-
tor (to what is
it adapted?)

Value/Alternatives Type Generic Artifact Type
Variation
Point

Possible
Artifact Variants

Adap.
Level

Learning
activities “low
level”�
preferences

� Perform
TestActivity

� Access
“Simulation”

� Perform
“CollaborativeActi
vity”

static Learning
objective
template

OptionSet � Keep or delete
TestActivity

� Keep or delete
Simulation

� Keep or delete
CollaborativeA
ctivity

� Struct
ure

After answering the questions and selecting the answers according to
the defined ranges, each decision results in a resolution that resolves the
variation point(s), e.g., chooses the alternatives.

�res RES(res, vp) � {vp | (�res(res	RES) : res resolves vp}

with RES being the set of resolutions (i.e., resolution model), and VP the
set of variation points.

Answering a decision is done by means of the information available in a
context and domain model. Hence, a concrete decision describes how
specific context and domain concept instances influence a specific vari-
ability of a set of generic artifacts. The decision may have an impact on
more than one variation point:

�d D(cm, dm, d) � {d | (�cmi	CM) (�dmj	DM) : (cmi impacts d)
(dmj impacts d)}

where CM is the set of context models, DM is the set of domain models,
and D is the set of decisions.

A so-called resolution constraint describes a relationship between a reso-
lution of a specific decision and a “foreign” variation point (Muthig,
2002). Hence, when a resolution has a dependency on another variation
point, this means that the constraint executes the resolution to this varia-
tion point even if the resolution, respectively the decision, was not di-
rectly related to that variation point:

�rescon RESCON(d, vprel, vpforeign, res, rescon) = {rescon|(�d	D),
(vprel	VP), (vpforeign	VP) : RES(res, vpforeign)}

with vprel � vpforeign and where RESCON is the set of resolution con-
straints, D the set of descisions, VP the set of variation point, and for
RES(res, vp) refer to Definition 31.

A comprehensive example can be found in Section 5.4.3.6 and Table 25.

Definition 31
esolution
Model

Definition 32
Decision

Definition 33
Resolution
Constraint

Fundamental Modeling Concepts

 109

4.3 Comparison with other Reference Models

Brusilovsky & Vassileva (Brusilovsky & Vassileva, 2003) present three ap-
proaches of course sequencing: a course sequencing mechanism as the
core of a course maintenance system for traditional, statically sequenced
courses; adaptive courseware generation for generating a course suited
to the needs of the students before they encounter it; and dynamic
courseware generation, where the system observes and dynamically re-
generates the course according to the student’s progress.

The learning space approach follows adaptive courseware generation
because the instructional design model as well as the learning resource
model are adapted to a context and domain model during development
time, i.e., before the learner encounters them. However, the approach
also supports dynamic courseware generation, respectively adaptation,
since the system observes the context during runtime, i.e., while the
learner is using it, and regenerates the learning space regarding struc-
ture, content, and presentation.

Table 11 classifies the most common reference models according to the
five models of the learning space approach. The Dexter Reference Model
for Hypertext Systems (Halasz & Schwartz, 1994) fulfills the requirement
of separating structure, content, and presentation by using two
interfaces: the anchoring interface between the storage layer and the
within-component layer, and the presentation interface between the
storage layer and the runtime layer. It can be seen from the table that
the Dexter model does not explicitly model instructional design rules –
they are embedded in the domain model. However, no explicit support is
given for describing such rules. The reference models Amsterdam
Hypermedia Model (AHM) (Hardman, Bulterman, & van Rossum, 1994)
and Adaptive Hypermedia Application Model (AHAM) (Wu, Houben, &
De Bra, 1998) and the Munich Reference Model (MRM) (Koch, 2000) use
the Dexter model as the underlying model. The difference is that the
AHAM model describes the pedagogical rules separately in the teaching
model and that the AHM model extends the Dexter model to support
multimedia content. The MRM uses the concepts of views from the
Dortmund Family of Hypermedia Models (DFHM) (Tochtermann &
Dittrich, 1996) and moves the adaptation functionality from the runtime
layer to the storage layer in the so-called adaptation model.
Nevertheless, the MRM is still based on the Dexter model. The MRM
adds new types of links between components in the domain model in
addition to the standard hypertext links: as part-of-prerequisite,
variant_of, on_same_page, etc. All models but the DFHM store their
content in the within-component layer.

The LS ap-
proach follows
the adaptive
and dynamic
courseware
generation
approach

Fundamental Modeling Concepts

 110

Table 11 Comparison to other reference models in adaptive hypermedia systems

Learning
Space
Approach

Dexter AHAM
(� based on
Dexter)

AHM
(� based on
Dexter)

MRM (�
based on
Dexter and
storage layer
of AHAM)

DFHM

Instructional
Design
Model

 (Teaching
model embed-
ded in domain

model)

Learning
Resource
Model

(Domain
model) +

Runtime Layer
(instantiation
of component
and presenta-

tion)

(Domain
model) +

Runtime Layer
(instantiation
of component
and presenta-

tion)

(Domain model) +
Runtime Layer

(instantiation of
component and
presentation for
multimedia con-
tent � additional
attributes such as

channel and
duration, etc.)

Domain Model
(Hypertext with
new links such

as part-of-
prerequisite,
variant_of,

on_same_page,
etc.)

Links, struc-
tures, folders

Context
Model

(user model) (user model) (user model) (user model)

Domain
Model

Storage Layer
stores informa-
tion about the

hypertext
structure

(attributes of
components)

Storage Layer :
domain model,

user model,
teaching

model with
pedagogical

rules; the
storage layer
describes the
actions of the

adaptive
engine

Storage Layer
(stored as attrib-
utes of compo-

nents)

Storage Layer:
user model,
adaptation

model, domain
model (con-

cepts)

Uses hyper-
media struc-
turing con-
cepts for

organizing
and categoriz-

ing hyper-
documents

Variability
Model

Runtime Layer
(adaptation)

Adaptive
engine as part
of the presen-
tation inter-

face

Runtime Layer
(execution of
adaptation)

Adaptation
model by using
views according

to DFHM

Views, view
nodes

Content
Storage
(Database)

Within-
Component

Layer

Within-
Component

Layer

Within-
Component Layer

Within-
Component

Layer

Hence, one problem of these reference models is that most of them do
not separate instructional design structures from content/hypertext struc-
tures. The storage layer contains the domain model, which mixes up
content with domain relationships and even pedagogical rules. One
shortcoming of the context model is that it only contains user models,
which is inadequate for adapting the hypermedia content to “situa-
tions”. Variabilities of components are described by means of relation-
ships between the variants or alternatives and not by generic artifacts.
Furthermore, prerequisite links are described on the content level instead
of putting them in the domain model. The adaptation is done based on
rules such as construction rules, acquisition rules, and adaptation rules in
MRM.

Problems of
current hy-
permedia
reference
models

Fundamental Modeling Concepts

 111

In order to cope with the previously stated problems, the overall concep-
tual model of the learning space approach separates a) instructional
design structure from content, b) the description of a domain from the
content, and c) the adaptive functionality from the instructional design
as well as from the content. In addition, a more comprehensive context
model allows adapting the learning space to more than only a user
model context.

How the learn-
ing space
approach
addresses
these prob-
lems

Learning Space Approach

 113

5 Learning Space Approach

"No man's knowledge here can go beyond its
experience" (John Locke)

This section will instantiate the models for a real learning scenario: expe-
riential learning in software engineering. The example is used through-
out the whole chapter to explain the roles involved in the learning space
approach, including their activities and the underlying techniques for
adapting and generating learning spaces.

The aim of the learning space methodology is not to address the whole
development process first, but to focus on very specific tasks first and to
extend the scope of the learning spaces later. This has the advantage
that early success in important and difficult tasks, in terms of better task
performance and competence development, can be used to motivate the
extension and further usage of the system’s scope. Especially during the
requirements and programming phases, suitable tasks can be found to
get the system started. The information that is necessary to choose such
tasks is gathered through personal interviews with software developers
and software managers, by analyzing content available in knowledge re-
positories, and by looking at produced artifacts such as code or software
documentation.

After listing the related requirements in Section 5.1, Section 5.2 presents
the lifecycle of a learning space, i.e., its static adaptation, generation,
presentation, and dynamic adaptation. Section 5.3 describes the experi-
ential learning scenario that is used to explain the approach. Section 5.4
describes the different roles that are involved in creating content for
learning spaces and defining the structures and variants of learning
spaces, and, finally, the users who access the learning spaces. This sec-
tion also covers the instantiations of the different models, i.e., the arti-
facts produced by the different roles. The last section explains in detail
the techniques related to resolving the variation points, the static and
dynamic adaptation process, as well as the techniques used for present-
ing the learning space.

5.1 Research Objective and Requirements

The second objective stated in Section 1 was related to the development
of the techniques.

Incremental
implementa-
tion of the
learning space
approach

Structure of
this section

Learning Space Approach

 114

Objective 2: Develop techniques for the systematic, context-aware adap-
tation and presentation of learning spaces based on the conceptual
models.

� Define a role model and describe their activities and the products it
produces and consumes

� Develop a technique for the systematic and automatic resolution of
static and dynamic variabilities in a learning space on the structure,
content, and presentation levels

� Develop the technique in such a way that it is able to integrate re-
sources from a technology-enhanced learning system as well as from
a experience/knowledge management system

5.2 Lifecyle of a Learning Space

Adaptive hypermedia systems in general generate content, present it to
the user, adapt the content based on context information, and reconfig-
ure it during interaction with the user. Jungmann and Paradies
(Jungmann & Paradies, 1997) outline a four-steps lifecycle model for
adaptive hypermedia systems: presentation, interaction, analysis, and
synthesis. Non-adaptive systems only use the states of presentation and
interaction. Furthermore, Koch extended this model, which is now
adapted for the learning space (see Figure 21).

Figure 21 Lifecycle of a learning space

Objective 2

Four-states
lifecycle model

Learning Space Approach

 115

The model of Koch has been changed by explicitly considering adapta-
tion during development and during runtime. The reason for this distinc-
tion is that the indicators that lead to an adaptation of the learning
space can be divided into two categories (Brusilovsky, 1996): a) static or
slowly changing indicators; second, b) dynamic indicators that are highly
dependent on the situation and the user’s behavior – this kind of indica-
tors can alter within minutes.

An adaptive environment has to consider and manage both static and
dynamic indicators. Slowly changing indicators are handled by the learn-
ing space approach before the presentation, i.e., during development
time. In contrast, the system adapts the context model for fast changing
indicators during runtime, i.e., during the usage of the learning space in
a concrete situation. According to the definitions of adaptivity and
adaptability (Oppermann, 1994), dynamic indicators are often handled
by adaptive systems, i.e., adaptation is done without explicit request by
the user.

At the beginning, the learning space is adapted based on static indica-
tors, generated and initially presented to the user. Afterwards, the learn-
ing space runs through the states of presentation, interaction, context
observation, and adaptation. The initial creation of the learning space
uses parts of the context model and the domain model as static indica-
tors to adapt the instructional design model and generate the first page
of the learning space. The system remains in the presentation phase as
long as the user does not interact with the learning space. User interac-
tion may either consist of navigation activities within a learning space or
changes of the user’s situation (e.g., changing software engineering
products such as the code in an IDE). If the interaction requires an adap-
tive reaction, the context is observed and an adaptation takes place.

A description of the techniques related to the different states can be
found in Section 5.5.

5.3 Experiential Learning Scenario

This section will answer Question 3 of Section 4.2.4 “Why is the learning
space adapted?” The answer to this question is related to the research
question in Section 1.3: The learning space is adapted to the experiential
learning scenario and the related learning method in order “to improve
the understanding and application of an experience package on the one
hand and knowledge acquisition and perceived information quality on
the other hand”.

To support the reader in understanding the roles and related activities
(see Section 5.4) as well as the adaptation and generation techniques

Static and
dynamic indi-
cators for
adaptation

Adaptation
during devel-
opment and
runtime

Five-states
lifecycle model
of the learning
space ap-
proach

Answer to
Question 3
Why is it
adapted?

Learning Space Approach

 116

(see Section 5.5), a scenario “Experiential Learning” is depicted in Figure
22.

When a software developer or a knowledge engineer documents an
experience for later reuse (i.e., which is usually done by creating

abstractions), he profits from being involved in the situation that leads to the
experience, and from his own observation and reflection about the happen-
ing. Later, a specific situation triggers another software developer to search
for experience packages (e.g., a code smell was found by a discovery tool, or
a difficulty occurred during the execution of a code inspection). When ex-
perience packages can be found in the experience base, the developer evalu-
ates the set of retrieved packages and selects one. When a software devel-
oper wants to reuse this documented experience, he or she is usually en-
gaged in active problem-solving while reading, understanding, abstracting, or
instantiating the experience package, and trying to apply the gathered
knowledge to the real problem situation. To get support, the developer acti-
vates the learning space generation and selects a related global learning goal
(e.g., apply experience package). The domain model and the context model
are used to resolve the variabilities in the VariabilityModel. After the static
adaptation, the learning space is generated and presented to the user. The
developer accesses the information in the learning space to understand the
experience package. If the interaction of the user with the learning space re-
quires an adaptation, the VariabilityModel is again used to perform a dy-
namic adaptation of the learning space and probably to update the Con-
textModel. Afterwards, the user applies the knowledge acquired from the
experience package to his situation.

The other questions of Section 4.2.4: What is adapted? To what is it
adapted? How is it adapted? will be answered in the next sections,
where the roles including their work products will be explained in the
context of experiential learning. The light will be put on the shaded areas
of Figure 22 because the other activities are outside the scope of this
work.

Experiential learning
scenario

Learning Space Approach

 117

Software Engineer/Project Manager System

Search experience packages

Retrieve experience packages

Evaluate and select experience package

[ContextModel]

Resolving decision model + static
adaptation and presentation of

learning space

Select global learning goal level

[Learning space]

Interact with learning space and
understand experience package

Apply experience

[Problem situation occured > 0]

[Retrieved experience packages > 0

[Retrieved experience packages = 0]

[Problem situation occured = 0]

[ExperiencePackage]

[LearningGoalLevel]

[DomainModel]

[InstructionalDesignModel]

[LearningResourceModel]

[VariabilityModel]

Observe context and
dynamic adaptation

Figure 22 Activity diagram of experiential learning scenario

5.3.1 Experiential Learning Example – Experience Package

Table 15 shows a shortened experience package example according to
the A2E structure (Rech & Ras, 2007) as used for this work. The detailed
description (D) has been left out), only the reuse model characteristics
are listed.

A2E structure
for experience
packages

Learning Space Approach

 118

Table 12 Experience package “Code smell comment”

 Attribute Value
A. Action Abstract Comments serve for better communication and explanation of

code. It is surprising how often the code is badly commented
and that the comments are there because the code is bad.
Hence, comments can be substituted by refactoring methods.

 Problem Comments are often used to explain bad code. Programmers
must add a lot of comment to explain their classes and methods
because their naming does not give a hint as to what they
intend to do.

 Solution The first action in refactoring is to remove the bad code smells.
When this is done, many comments become superfluous. In
fact, the goal of a routine can often be communicated as well
through the routine's name as it can through a comment. The
following refactorings should be used to reduce the comments
and to improve the code:
When a comment explains a block of code, you can often use
the refactoring ExtractMethod to pull the block out into a
separate method. The comment will often suggest a name for
the new method. When a comment explains what a method
does (better than the method’s name), use the refactoring
RenameMethod using the comment as the basis of the new
name. When a comment explains preconditions, consider using
the refactoring IntroduceAssertion to replace the comment with
code.

B. Benefit Effect Improves communication. May expose duplication
C. Context Product Context Digital Care Giver Assistant (DGCA) 1.0
 Process Context Agile development process
 Project Context Open Source Practica 2007
 Individual Context Eric Ras
 Group Context Team of component “Interaction”
 Organization Context Fraunhofer IESE
 Customer Context Care center
 Software Tool Context IDE Eclipse
D.
Description

Characteristics Name: Code Smell Comment
Function: Remove Code Smell Comments
Use: knowledge
Type: qualitative experience
Granularity: coding stage
Representation: informal description
Input/Output: Java code
Dependencies: assumes person be knowledgeable in refactoring
and Java programming � See Related Domain Knowledge,
Related Domain Products, and Related Domain Process
Application Domain: no specific
Solution Domain: � see C. Context section
Object Quality: see E. Evidence section

 Detailed Description (Left out for space reasons)
 Related Domain

Knowledge (keywords)
Code smell comment

 Related Domain
Products (keywords)

Java Code

 Related Domain Process
(keywords)

Extract Method, Introduce Assertion, Rename Method

 Related Domain
Individual

Programmer

 Rel. Dom. Software Tool -
E. Evidence -

Learning Space Approach

 119

5.4 Role Model and Related Activities

In the Encyclopedia Britannica, a role is introduced in sociology as de-
scribing a “comprehensive pattern of behavior that is socially recognized,
providing a means of identifying and placing an individual in society”
(Encyclopedia Britannica Online) Feldmann et al. describe roles as an
“abstract” concept. Roles assign semantical meaning, can be hierarchi-
cally arranged and define a set of associated activities and permissions”
(R. L. Feldmann, Frey, Habetz, & Mendonca, 2000). Several classifica-
tions have been defined in the past: Rombach et. al. describe roles from
the perspective of software development environments in the Multi-View
Process Modeling (MVP) project. They describe roles as associated tasks
of one or more persons in a software project. The first type of role modi-
fies a project’s state, whereas the other roles only have observant tasks.
They map persons in projects to roles and map roles to processes and ac-
tivities. A role is only a “set of activities” (H. D. Rombach, Birk, Broeck-
ers, Lott, & Verlage, 1994). Verlage defines roles as “a set of associated
tasks that are assigned to one or more agents” (Verlage, 1996).

Feldman et al. distinguish two classes of roles in software development,
namely, technical roles developing the software (i.e., requirements engi-
neer, high-level design engineer, low-level design engineer, coder, veri-
fier, system integrator, engineer, validater), and management roles for
planning and managing project executions (i.e., product manager, pro-
ject planner, project manager, quality assurer). They added further roles
for reuse, which are also relevant for this work in the context of experi-
ence management (R. L. Feldmann, Frey, Habetz et al., 2000) (Trapp,
2002): a) the experience manager, who is responsible for improving and
maintaining the quality of experience in the repository, b) the experience
engineer, who is responsible for extracting experience knowledge from
the projects, c) the project supporter, who serves as a consultant for
running projects and supports project execution, d) the librarian, who
enters data in the repository and implements the data structures, e) the
experimenter, who designs, supervises, and draws conclusions from ex-
periments. This classification has been detailed with a stronger support
for experiments and an access control system was developed for the SFB
501 repository based on user names and the role concept (R. L.
Feldmann, 1999).

The roles of the learning approach model can be mapped to the role
models of Rombach et al. and Feldman et al. as shown in Table 13.

The experience manager determines the structure (i.e., schema) and the
content of the experience base. These activities are performed by the
competence manager in the learning space approach. In addition to
conceptually developing the context model and the domain model, he
decides about the learning scenarios and opportunities for competence

What is a role
in software
engineering?

Roles for reuse

Roles for the
learning space
approach

Learning Space Approach

 120

development in the organization (see Section 5.4.1). The experience en-
gineer has a lot of domain knowledge in order to package and analyze
experience packages. His tasks are undertaken by the knowledge engi-
neer. His main task is to extract and annotate content for learning spaces
by means of the context and domain model (see Section 5.4.2). The role
of the adaptive instructional design modeler is not covered by the other
role models. His main responsibility is to develop instructional design
models for certain learning scenarios and to specify variants of the learn-
ing space, i.e., to develop the variability model. Hence, the adaptive in-
structional design modeler must have a strong pedagogical background,
knowledge about how to model variants by means of decision models,
and knowledge about adaptation methods and techniques (see Section
5.4.3). The librarian is experienced in using data management systems
and supports the competence manager and knowledge engineer in im-
plementing the related data structures (see Section 5.4.4).

Table 13 Role model of the learning space approach

Reuse Roles in the Context of Experience Management Learning
Space
Roles

Technical
Roles

Mgt.
Roles

experience
manager

experience
engineer

project
supporter

librarian experimenter

competence
manager

 x x

adaptive
instructional
design
modeler

knowledge
engineer

 x

librarian x
software
developer

x

software
manager

 x

The software developer and the software manager match with the tech-
nical, respectively the management, roles. They are the users of the
learning space in a concrete situation. Both roles have been kept sepa-
rated because they have different preferences and learning goals (e.g., a
manager needs to learn in a way that he can make important decisions
and a developer needs more practical knowledge that helps him not only
to understand the concepts but also who him how he can apply meth-
ods and techniques to produce specific products) (see Section 5.4.5).
Figure 23 shows the different roles and their activities in the context of
the learning space approach by means of a use case model.

The aim of the next sections is to describe the activities of the different
roles by answering guiding questions, while considering the products
these activities produce and consume, which are mainly related to the
instantiation of the models.

Learning Space Approach

 121

System

Adaptive Instructional Design Modeler

Knowledge Broker

Software Developer

Develop Instructional Design Model and Variability Model

Extract and Annotate Resources

Interact with Learning Space

Resolve, Adapt, and Generate Learning Space

Software Manager

Competence Manager
Develop Context Model and Domain Model

Figure 23 Roles involved in the learning space approach

5.4.1 Competence Manager

The main activities of the competence manager are to decide about the
learning scenarios that can be realized by the learning approach and to
develop the context model (see Table 14). Together with the adaptive
instructional design modeler, he selects the most promising learning
scenarios and defines the target group for the learning spaces. This is
done by identifying the most relevant domains for improving task per-
formance and competence development. Selecting a domain also de-
pends on the amount of available domain-related information in the sys-
tems. It makes no sense to choose a domain where no content is avail-
able for reuse. Learning scenarios for this approach are always close to a
concrete situation during daily work, e.g., a detected problem to be
solved, a small knowledge gap, etc. A concrete scenario example has
been provided in Section 5.3, which describes how experience packages
can be enriched by a learning space to enhance its understanding and
application in the current situation. The instructional designer proposes a
learning method that has to be followed by the learning spaces gener-
ated for this scenario.

Another important issue is to find out which situations trigger a learning
need. The generation of a learning space is demand-driven, i.e., learning
spaces are created based on an indicator (see Section 5.2).

Selecting
learning sce-
nario and
defining tar-
get group

Two types of
triggers exist
for generating
learning
spaces

Learning Space Approach

 122

Table 14 Activities of the competence manager

Product Question Activity Man./
Opt. Consumed Produced

Other In-
volved Roles

What are the
learning
scenarios and
opportunities
for
competence
development
in the
organization?

Derive a set of learning
scenarios including target
group, domain, learning
goal

Discuss learning methods
with adaptive
instructional design
modeler

Man. - List of learning
scenarios,

target groups,
and learning

methods

Adaptive
instructional
design mod-

eler

What are the
indicators for
the need of a
learning
space?

Identify the situations
that indicator a learning
need, respectively start
the generation of a
learning process

Man. List of learning
scenarios and
target groups

List of indica-
tors

-

What are the
available
resources and
relations in the
repository?

Analyze the structure of
the repository and derive
a list of resource types
and their relationships.
Inform the knowledge
engineer about the
resource needs

Man. Knowledge
management
and technol-

ogy-enhanced
learning sys-

tem

List of re-
sources and
relationships

Knowledge
engineer

What kind of
resources can
be used to
describe
situations (i.e.,
context)?

Identify, from the list of
resources and
relationships, those
resources that can be
used to describe
situations, and develop a
first ContextModel

Man. List of re-
sources and
relationships

First draft of
ContextModel

-

What context
dimensions are
missing and
need to be
added?

Extend the first draft of
the ContextModel with
additional context
concepts and
relationships.
Ask support from ad.
instructional design
modeler for the variants
of the learning spaces

Opt. First draft of
ContextModel

Initial version
of Con-

textModel

Adaptive
instructional
design mod-

eler

How can the
user be
stimulated to
provide
missing
resources?

Inform the knowledge
engineer about the
added concepts and
relationships and tell him
which resources are
needed to describe
situations adequately

Opt. Initial version
of Con-

textModel

- Knowledge
engineer

How can it be
implemented?

Contact the librarian to
implement or extend the
ContextModel

Man. Final version of
ContextModel

Implemented
ContextModel

Librarian

The next activity of the competence manager is to look for suitable re-
sources that may be used first to describe situations in software engi-
neering. This is done by analyzing the concepts and relationships used in
the KMS and technology-enhanced learning system (if any). He classifies
these classes of resources, identifies relationships between them, and
decides which resources and relationships can be used to describe a

Developing
context model

Learning Space Approach

 123

situation. One possibility to describe this first draft of the context model
is to use a class diagram as depicted in Figure 24. It can be seen that
several context concepts are missing for describing a comprehensive con-
text model as in Section 4.2.2: individual, organization, and software
tool are missing. Therefore, the competence manager has to extend the
model of Figure 24 with the missing concepts and relations. The final
version of the context model is depicted in Figure 18.

ContextConcept
<<ContextArtifact>>

Project
<<ContextArtifact>>

Product
<<ContextArtifact>>

Process
<<ContextArtifact>>

developed_in

Group
<<ContextArtifact>>

performed_by_group

produces

Figure 24 Example of first draft of context model

The competence manager can inform the knowledge engineer about
changes to the data structure that are implemented by the librarian. This
ensures that the knowledge engineer aims at providing resources to the
new concepts and adding missing relationships between the resources.
The learning space approach does not prescribe how a project, process,
product, etc. should be formulated. The information in those descrip-
tions will be used in a learning space as they have been documented. For
example, if a learning space needs a resource that describes a specific
project, then this information is reused without any changes from the
KM repository. The relationships between the concepts are important
because they help the users to reconstruct a situation’s meaning; e.g.,
they may want to know with which tools and processes a product has
been developed, who was the customer and who was involved in devel-
oping the product.

For the scenario of experiential learning, the adaptive instructional de-
sign modeler has to decide “what the learning space will be adapted
to”. Therefore, close cooperation with the competence manager is nec-
essary, for example for defining the user model. A concept that is often
missing in the first draft of the context model is the individual context
concept. However, it is extremely important because it models the needs
and preferences, and maybe the knowledge status of the software de-

The user
model is often
missing in the
context model

Learning Space Approach

 124

veloper or manager who will use the learning space. Therefore, a short
overview of possible dimensions is given next.

5.4.1.1 User Model

There exist many different ways of defining a user model because it
depends on the context it is developed for. In adaptive hypermedia, the
characteristics about users can be categorized into six classes of static
and dynamic indicators to adapt to (Brusilovsky, 1996). This categoriza-
tion has been used as a basis for user models for adaptation in learning
spaces.

If a system detects that the learner does not understand a phrase or
word, this fact may be the result of a lack of general knowledge or lan-
guage skills (R. M. Felder & Henriques, 1995). According to the language
registered in the user profile, the system could present additional infor-
mation (e.g., explanation or translation). In addition, the system could
provide background knowledge graded to the expertise level of the users
(e.g., novice, advanced, and expert users).

Domain-specific knowledge defines the knowledge about a specific do-
main, which is covered, for example, by a learning space. A user model
could mark those concepts that have been accessed by the user. These
models are sometimes called knowledge models. Domain concepts may
be marked by different levels (e.g., read, known, forgotten, etc.). The
way of how these levels are accessed depends on the system. Either a
system chooses the level based on the time the user stays on a hypertext
page, or it changes the state by analyzing the activities users perform,
e.g., solving a problem or answering a question correctly.

Cognitive and affective abilities like the user’s intellect, learning speed,
spatial cognition, the ability to concentrate or reflect, or the motivation
to learn, do have a strong impact on the learning process itself. This class
of indicators may be mapped and reduced to the seven types of “Multi-
ple Intelligence” described in (H. Gardner, 1983).

Constitutional attributes describe physical properties of the body such as
disability, age, etc., or constitutional states of the user like tiredness,
concentration, etc. Age, for example, might have an impact on the selec-
tion and presentation of content (e.g., difficulty, font size).

The learner’s preferences include attributes like the preferred presenta-
tion of contents, the desired way of navigating through a learning space,
the preferred learning style, or technical preferences such as bandwidth,
screen resolution, etc. Preferences are partially dependent on cognitive
and affective abilities as well as on constitutional attributes, which both
describe what the user is able to do. Especially learning styles are often
used in the preferences of a user model. Two good classifications of

Six classes of
static and
dynamic indi-
cators

Background
knowledge

Domain-
specific
knowledge

Cognitive and
affective abili-
ties

Constitutional
attributes

Preferences

Learning Space Approach

 125

learning styles, which have been used as underlying models for the
learning space approach, are the learning style inventory of Kolb (David
A. Kolb, 1984) and the index of learning styles of Felder and Silverman
(M. Felder & Silverman, 1988).

Interests and personal targets are important indicators for the adaptation
of a learning space. These targets can be related to getting expertise for
applying new methods or techniques or becoming an expert in a certain
domain. These interests do not need to match with the selected learning
goal of a learning space or the situation a user is currently in.

Following the insights stated in the last paragraph, the learning ap-
proach has to consider and manage static and dynamic indicators from
all six classes.

5.4.1.2 Experiential Learning Example – Context Model

In this scenario, the context model has also been used to describe the
context of an experience package (see Table 12). Describing the context
of experiences has several advantages: context attributes help the soft-
ware engineer to search for and find appropriate experiences for reuse;
many of the context attributes can use a faced classification, which
means that the related values are part of taxonomies (e.g., Birks faced
classification for technology experience packages (A. Birk, 2001).); con-
text categories can help the reusing person to understand, judge the ap-
plicability, and hence tailor the experience better to a new context (Rech
& Ras, 2007). The following figure illustrates the instantiated context
model for this example (names of relationships were left out for reasons
of simplicity reasons, see Figure 18).

Open Source Practica : Project

Digital Care Giver Assistant (DGCA) 1.0 : Product

Agile Development Process : Process

Eric Ras : Individual

Team of Component “Interaction” : Group

Fraunhofer IESE : Organization Care center : Customer

Eclipse : SoftwareTool

Figure 25 Example of context model for experience package

Interests and
personal tar-
gets

Advantages of
describing the
experience
context of
packages
context

Learning Space Approach

 126

5.4.2 Knowledge Engineer

The two main tasks of the knowledge engineer are first, to develop the
domain model with its concepts and its relationships, and second, to
extract and annotate resources either from the KMS or the technology-
enhanced learning system, i.e., the building blocks of a learning space.
Most of the KMS and learning systems already use metadata schemas
for annotating their resources. These metadata data structures need to
be extended and adapted so that they can be used for generating learn-
ing spaces. This is first done by analyzing those existing metadata struc-
tures that are used to annotate resources and second, to analyze the
underlying domain model (if there is one). This first draft of the domain
model is then extended to develop a complete domain model for soft-
ware engineering. As stated before, the knowledge engineer is very
knowledgeable in the domain and should therefore be able to develop
the domain model with the support of the librarian regarding technical
issues. The development of the initial domain model should be discussed
with the competence manager and the adaptive instructional design
modeler in order to select the right domain and create relationships that
are useful for adaptation.

Table 15 Activities of the knowledge engineer

Product Question Activity Man./
Opt. Consumed Produced

Other
Involved

Roles
How are
resources
annotated?

Analyze the current
metadata schema for
annotation resources

Man. Knowledge
management
and technol-

ogy-enhanced
learning system

Metadata
schema

-

How is the
domain
modeled?

Analyze the data
structures for annotating
resources and derive a
first domain model

Man. First draft of
DomainModel

-

What is the
relevant
domain and
what domain
concepts and
relationships
are missing?

Extend the first draft of
the ContextModel with
additional domain
concept and relations.
Ask support from the
competence mgr. and the
ad. instructional design
modeler

Man. First draft of
DomainModel

Initial version
of Domain-

Model

Compet-
ence man-

ager,
Adaptive

instructional
design

modeler

How must the
metadata
schema be
adapted?

Extend or adapt the
metadata schema for
resources so that the
concept of the domain
model can be used
Ask the librarian to
implement it

Man. Metadata
schema

Extended and
implemented

metadata
schema

Librarian

How can it be
implemented?

Contact the librarian to
implement or extend the
DomainModel

Man. Final version of
DomainModel

Implemented
DomainModel

Librarian

Define domain
model

Learning Space Approach

 127

Product Question Activity Man./
Opt. Consumed Produced

Other
Involved

Roles
How can
learning
resources be
extracted?

Based on the domains
identified for the learning
scenarios, relevant
resources are identified,
revised, and extracted as
learning resources (i.e.,
learning elements)

Man. Revised and
extracted

learning ele-
ment

-

How can
learning
elements be
annotated with
metadata?

For each learning element
extracted, provide
metadata by using the
domain model and store
it in the database

Man. Extracted
learning ele-

ment

Annotated and
stored learning

element

-

How can
knowledge
resources be
annotated?

Revise existing knowledge
resources in the system
and add relationships
based on the context
model

Man. Knowledge
resource (ex-

perience pack-
ages, lessons
learned, pro-
ject descrip-

tions, process
descriptions,

etc.)

Revised knowl-
edge resource
with additional
relationships of

the context
model

-

In addition, the knowledge engineer is responsible for extracting re-
sources from the system and classifying them either as valuable knowl-
edge assets (e.g., lessons learned, experience packages; the role corre-
sponds to the role in the context of experience management) or as learn-
ing elements. Both types of information need to be annotated by means
of the domain model. The knowledge engineer is allowed to revise the
content before storing it (e.g., shortening a description of a concrete
domain concept or making a project description consistent with a project
description template). It depends on the culture of the organization
whether more than one knowledge engineer will extract resources. In
extreme cases, for example in organizations where an open knowledge
sharing culture is established, every employee may be a knowledge en-
gineer (i.e., knowledge producer) as well as a knowledge consumer.
Therefore, the idea is not to change existing policies and rules for con-
tent authoring. Learning spaces and hence the learning elements should
be adapted to the existing situations, knowledge, and information within
an organization.

5.4.2.1 Experiential Learning Example – Domain Model

The following figure illustrates the instantiated domain model for this
example (names of relationships left out for reasons of simplicity, see
Figure 19).

Extract and
annotate
resources

Learning Space Approach

 128

CodeSmellComment : Knowledge

RenameMethod : Process

ExtractMethod : Process

IntroduceAssertion : Process

JavaCode : Product

Programmer : Individual

Figure 26 Example of domain model for experience package

5.4.2.2 Experiential Learning Example – Learning Elements

Common instructional design theories often speak of the following ele-
ments in the design of instruction: generalities, examples, explanations,
practice items, test items, overviews, advance organizers, and analogies,
among others (Yacci, 1999). For the example in this work, the learning
element taxonomy of Figure 17 in Section 4.2.1.2 was used. In the fol-
lowing, a few examples are given including their types and the domain
concept instances they are related to.

Table 16 Examples of learning elements

Domain
Concept

Domain Concept
Instance

Type of
Learning
Element

Content

Process IntroduceAssertion Introduction Often sections of code work only if certain
conditions are true. This may be as simple as a
square root calculation working only on a positive
input value.
With an object, it may be assumed that at least one
of a group of fields has a value in it. Such
assumptions often are not stated but can only be
decoded by looking through an algorithm.
Sometimes the assumptions are stated with a
comment. A better technique is to make the
assumptions explicit by writing an assertion. An
assertion is a conditional statement that is assumed
to be always true. Failure of an assertion indicates a
programmer error. As such, assertion failures should
always result in unchecked exceptions. Assertions
should never be used by other parts of the system.
Indeed, assertions are usually removed for
production code. It is therefore important to signal
that something is an assertion. Assertions act as
communication and debugging aids. In
communication, they help the reader to understand
the assumption the code is making. In debugging,
assertions can help catch bugs closer to their origin.
It has been noticed that debugging help is less
important when self-testing code is written, but the
value of assertions is still appreciated in
communication.

Learning Space Approach

 129

Domain
Concept

Domain Concept
Instance

Type of
Learning
Element

Content

Process RenameMethod Description Check to see whether the method signature is
implemented by a superclass or subclass. If it is,
perform these steps for each implementation.
Declare a new method with the new name. Copy
the old body of code over to the new name and
make any alterations to fit.
Compile.
Change the body of the old method so that it calls
the new one.
If you have only a few references, you can
reasonably skip this step.
Compile and test.
Find all references to the old method name and
change them to refer to the new one. Compile and
test after each change.
Remove the old method.
If the old method is part of the interface and you
cannot remove it, leave it in place and mark it as
deprecated.
Compile and test.

Knowledge CodeSmellComment Description Comments should be used to give overviews of code
and provide additional information that is not readily
available in the code itself. Comments should
contain only information that is relevant to reading
and understanding the program and should be
added when the author realizes that something is
not as clear as it could be and adds a comment.
Discussion of non-trivial or non-obvious design
decisions is appropriate, but avoid duplicating
information that is present in (and clear from) the
code. It is too easy for redundant comments to get
out of date. In general, avoid any comments that are
likely to get out of date as the code evolves.
In addition, the frequency of comments sometimes
reflects poor quality of code. When you feel
compelled to add a comment, consider rewriting the
code to make it clearer.
Some comments are particularly helpful: - Those that
tell why something is done a particular way (or why
it was not) - Those that cite algorithms that are not
obvious (where a simpler algorithm will not do).
Other comments can be reflected just as well in the
code itself!
The refactorings ExtractMethod, IntroduceAssertion,
RenameMethod should be used to remove this kind
of code smells.

5.4.3 Adaptive Instructional Design Modeler

The adaptive instructional design modeler plays the most important role
in the learning space approach besides the competence manager. He
serves as a consultant for many other roles. Besides pedagogical knowl-
edge about learning theories and methods, the instructional designer
needs competencies in the domain of interest (but not as much as the

Serves as a
consultant for
many other
roles

Learning Space Approach

 130

knowledge engineer, who can be asked). He needs competencies in
technically specifying instructional designs, and must be able to reflect
about all the different variants of a learning space while keeping in mind
the impacting contextual indicators. One of the key activities of the
adaptive instructional design modeler is to define a content elements
taxonomy, and to use a domain ontology as a means for modeling the
learning resource model and the related variabilities. The other activities
are more related to the definition of the instructional design (see Section
5.4.3.1) and the explicit description of variabilities by means of decision
models (see Section 5.4.3.5).

In general, learning spaces can have two general purposes. First, a learn-
ing space can improve short-term task performance, i.e., by providing
solutions in order to solve problems more efficiently or by offering dif-
ferent methods or tools that enhance a specific task. The domain (i.e.,
concepts/topics) under consideration is very narrow. Second, long-term
competence development refers to learning scenarios not directly tar-
geted at solving a problem at hand, but to learning settings where the
user addresses competence gaps by using comprehensive learning
spaces, which do not only cover topics related to the current working
situation.

The following table shows the activities of this role. The instructional
designer assigns learning goals and learning methods to the identified
learning scenarios and target group. Afterwards, each learning goal is re-
fined into so-called learning objectives and learning activities (see exam-
ples below). Based on the context model, the instructional designer se-
lects indicators and their impact on the learning space artifacts by listing
their possible variants. The last step is related to the modeling of the de-
cision model and related resolving operations (i.e., adaptation tech-
niques).

Table 17 Activities of the adaptive instructional design modeler

Product Question Activity Man./
Opt. Consumed Produced

Other
Involved

Roles
What are the
learning
scenarios and
opportunities
for
competence
development
in the
organization?

Discuss the set of
learning scenarios
including the target
group, and the domain
with the competence
manager, develop
learning goals, and
choose learning methods

Man. List of learning
scenarios,

target groups

Set of global
learning goals
and learning

methods

Comp.
manager

In general,
learning
spaces have
two main
purposes

Related activi-
ties

Learning Space Approach

 131

Product Question Activity Man./
Opt.

Consumed Produced

Other
Involved

Roles

How can the
learning goal
be achieved?

Break down the global
learning goal by means
of learning objectives

Man. Set of global
learning goals
and learning
methods

Set of related
learning objec-
tives for each
global goal

-

How can the
learning
objectives be
achieved?

Break down each
learning objective by
means of learning
activities and develop a
taxonomy of learning
element types

Man. Set of related
learning objec-
tives for each
global goal

Set of learning
activities for each
learning objective

(� Instruction-
alDesignModel)
and a learning
element type

taxonomy

-

What are
factors that
influence the
learning
space?

Identify the context
factors that have an
influence on the learning
space. Discuss context
model with competence
manager. Identify
variants of the learning
space

Man. ContextModel,
Instruction-

alDesignModel

List of influencing
indicators and
variants of the
learning space

Comp.
manager

How can the
variabilities be
described?

Describe the variabilities
by means of a decision
model

Man. List of influ-
encing indica-
tors and vari-
ants of the

learning space

VariabilityModel
(decision model +
resolving opera-

tions)

-

5.4.3.1 Instructional Design for Learning Spaces in General

The philosophy of learning has started to move away from the instruc-
tional teacher-centered paradigm towards learner-centered teaching and
learning practices building on socio-cognitive knowledge construction
and situated learning principles. Individuals learn by developing knowl-
edge and understanding through the forming and re-forming of con-
cepts based on their current situation and context. “The focus of con-
structivism is on learners’ control, with learners making decisions that
match their own cognitive states and needs” (Farmer & Taylor, 2002).
Today, learning is less a reaction to “being learned” more the reaction to
varied requirements of learning situations and learning environments.
The short innovation cycles in software engineering lead to many learn-
ing situations where new knowledge is required to solve new challenges
during daily work.

In the future, learning within an organization will balance out structured,
directed learning and unstructured, autonomic learning. Autonomic
learning consists of learning without direct teaching. Learners define
their own learning goals according to given situations and select the
learning steps as well as their sequence to reach the goals. Autonomic
learning is more a way of explorative learning than learning based on
given procedures and rules. Directed learning will be launched by the or-

Learning has
moved from a
teacher-
centered to a
learner-
centered
paradigm

Autonomic vs.
directed learn-
ing

Learning Space Approach

 132

ganization to communicate and change its strategy, culture, products,
and services, which involves individuals, teams, or the entire organiza-
tion. Autonomic learning originates within the organization, initiated by
individuals and communities of practice.

In Section 3.4.3, it has been mentioned that a human’s tasks always de-
pend on the situation they are performed in, i.e., they are influenced by
the characteristics and relationships of the context (J. S. Brown et al.,
1989), and that knowledge is individually constructed by following dif-
ferent learning paths (Jonassen, 1999).

Many instructional design theories exist – even if they are difficult to
apply to the learning object domain. One reason is that no explicit rules
are available on how learning objects (such as learning elements in the
context of this work), in general, should be selected and sequenced to
make instructional sense (Knolmayer, 2003). Goodyear states that the
means by which instructional design experience is shared – mainly by
text – needs improvement (Goodyear, 2005). The last point makes it ex-
tremely difficult, especially for non-instructional designers, to create their
learning material, since good instructional design still requires much pro-
fessional experience.

5.4.3.2 Instructional Design for Experiential Learning in Particular

In Section 3.1.2.3 is has been stated that experience-based learning
becomes experiential learning when reflection, abstraction, and transfer
of knowledge take place. Furthermore, a cornerstone of Kolb’s learning
cycle is the process of reflection (David A. Kolb, 1984). By reflecting
about the experiences made, a learner gains new insights and compe-
tencies. A learning space must support the reflective activities assimila-
tion and accommodation, which are interleaved (Piaget, 1976). Accom-
modation is a constructive reflective activity and supports the develop-
ment of new concepts and schemas that arise from environmental ex-
periences, whereas assimilation integrates new experiences into existing
knowledge schemas.

The instructional design developed for the learning scenario “experiential
learning” should stimulate the phases of Kolb’s Experiential Learning
Circle (i.e., making concrete experience, observation and reflection, for-
mation of abstract concepts, and testing in new situations). It should
follow Merrill’s first principles of instruction (i.e., solving real-world prob-
lems, activating existing knowledge as a foundation for new knowledge,
demonstration of new knowledge, application of new knowledge by the
learner, integrating new knowledge into the learner’s world) (Merrill,
2000).

Problem:
instructional
design experi-
ence is mainly
shared by text

Reflection is
crucial for
experiential
learning

Kolb’s learning
cycle and
Merrill’ first
principles of
instruction

Learning Space Approach

 133

It seems that reflection is crucial for the success of experiential learning.
The value of reflection has already been proven in situated cognition
theory (e.g., Cognitive Apprenticeship and Anchored Instruction). Schön
distinguishes between two types of reflection that facilitate the learning
and activity of professionals: reflection-in-action and reflection-on-action
(Schön, 1990, 1995). Short-term reflection-in-action is performed while
people act and experience. The activity is reshaped while the activity is
performed. Reflection-on-action is retrospective thinking about an ex-
perience after an activity or during an interruption. Other persons could
be involved. The latter provides an understanding of practice and is a
way practitioners may learn from their experience. Both reflective activi-
ties are relevant; however, reflection-in-action should be supported more
by the learning space approach, since it happens directly when the ex-
perience’s element of surprise happens (i.e., when something fails to
meet our expectations) (Schön, 1990). Reflection-in-action will restruc-
ture strategies of action in software engineering and the understanding
of phenomena, or change the way of framing (i.e., interpreting) prob-
lems. In addition, reflection-in-action will motivate the engineer to do
on-the-spot experiments because he wants to try out and explore what
he has learned immediately in the situation. Schön states that the main
difference between reflection-in-action and other forms of reflection is
“its immediate significance for action”.

One has to distinguish between familiar and unfamiliar situations in
software engineering. Unfamiliar situations require a much higher
amount of reflection-in-action than familiar situations because it is pos-
sible to apply rules, methods, and techniques in a routined way (i.e.,
executing in terms of the learning objectives of Anderson and Krathwohl
(L. W. Anderson & Krathwohl, 2001). This distinction must also be made
in a learning space.

Concerning the implementation of the previously stated requirements,
an example will be given for the learning goal structure template and the
learning activities. The knowledge types and the learning objective tax-
onomy, which have been described in detail in Section 3.1.2 and Section
4.2.1.1, are used for defining the artifacts of an instructional design
model.

5.4.3.3 Experiential Learning Example – Learning Goal Structure Template

The following decisions are made for the experiential learning scenario in
Section 5.3. Here, the underlying theory is constructivism with situated
cognition. The underlying pedagogical models are:

� experiential learning cycle (David A. Kolb, 1984)

� anchored instruction (Bransford, Sherwood, Hasselbring, Kinzer, &
Williams, 1990)

The learning
space ap-
proach should
support reflec-
tion-in-action

A learning
space must
distinguish
between
familiar and
unfamiliar
situations

Underlying
pedagogical
models

Learning Space Approach

 134

� problem-based learning (Jonassen, 1999)

� learning-by-doing (Schank et al., 1999) as models for situated learn-
ing, and

� elaboration theory (Reigeluth, 1999).

All models bridge theory and practice. Experiential learning is the under-
lying situative pedagogical model; learning-by-doing is also a situated
pedagogical model; anchored instruction and problem-based learning
are both cognitive pedagogical models, and, finally, elaboration theory
refers to an associative pedagogical model (see next section). The learn-
ing goal structure template should:

� Stimulate reflection-in-action

� Promote on-the-spot experimentation (i.e., during learning)

� Anchor the instruction with the situation, concrete problems, and re-
lated learning goals that are “owned” by the learner

� Represent a specific ill-defined or ill-structured problem as an exam-
ple of a larger set of issues

� Support self-directed learning and self-exploration of the content

� Provide instruction that consists of experiences that facilitate knowl-
edge construction

� Enhance cognitive flexibility as a basic principle of constructivism (i.e.,
by offering different perspectives on the instructional content)

� Use elaboration as a concept for instructing complex concepts, do-
main theories (e.g., laws, principles, etc.), and task/procedures (e.g.,
methods, techniques, etc.)

� Embed the concepts into real-world stories in order to enhance prob-
lem building (i.e., construction) and problem solving

According to the comparison framework for instructional strategies by
Reigeluth and Moore (Reigeluth & Moore, 1999), this strategy for sup-
porting experiential learning can be classified as:

Table 18 Example of learning goals and related learning objectives

Framework Learning space for experiential learning
Type of Learning Focus on understanding relationships and

applying generic skills
Control of Learning Focus on student-centered control
Focus of Learning Focus on learning domain-specific topics and

problem-oriented learning
Grouping of Learning Focus more on individual and less on group

learning
Interaction of Learning Focus on student<-> tool,

student<-> information, and
student<-> environment

Support for Learning Focus on cognitive support

Requirements
of the learning
goal structure
template

Classification
of the instruc-
tional strategy

Learning Space Approach

 135

Based on the learning scenario (see Section 5.3), the adaptive instruc-
tional design modeler defines three learning goals and related learning
objectives (see Section 4.2.1.1 for their formal definitions).

Table 19 Example of learning goals and related learning objectives

Learning Goal (according to
(L. W. Anderson & Krathwohl,
2001))

Learning Objectives

Remember experience package � Remember the domain knowledge concept(s) from this experience
package

� Remember the domain product concept(s) from this experience
package

� Remember the domain process concept(s) from this experience
package

� Remember the domain individual concept(s) from this experience
package

� Remember the domain software tool concept(s) from this
experience package

� Remember the situation describing the context from this experience
package

� Summative Self-Assessment: Remember experience package
Understand experience package � Understand the domain knowledge concept(s) this experience

package
� Understand the domain product concept(s) from this experience

package
� Understand the domain process concept(s) to from this experience

package
� Understand the domain individual concept(s) from this experience

package
� Understand the domain software tool concept(s) from this

experience package
� Understand the situation describing the context of this experience

package
� Summative Self-Assessment: Understand experience package

Apply experience package � Understand the domain knowledge concept(s) from this experience
package

� Understand the domain product concept(s) from this experience
package

� Understand the domain individual concept(s) from this experience
package

� Apply the domain software tool concept(s) from this experience
package

� Apply the domain process concept(s) from this experience package
� Understand the situation describing the context of this experience

package
� Summative Self-Assessment: Apply experience package

As can be seen from the previous table, the adaptive instructional design
modeler decides to have a sequential structure for the learning objec-
tives, each referring to a certain domain concept (or several concepts)
that is related to the experience package. The overall learning goal is as-
sessed by a summative test activity for each of the learning objectives.
The next section shows how each learning objective can be refined by
learning activities.

Learning Space Approach

 136

5.4.3.4 Experiential Learning Example – Learning Objective Templates

The following decisions are made for the experiential learning scenario in
Section 5.3. The adaptive instructional design has to decide which con-
tent element types are available in the repositories, respectively which
types of content may be extracted from the KMS by the knowledge en-
gineer. The following table shows the selected instructional and situ-
ational content elements of this learning scenario:

Table 20 Examples of instructional and situational content elements

Instructional Content
Elements

Description

Learning objective States the selected overall learning objective
Definition Provides a definition of a domain concept instance
Description Provides a more detailed description of a domain concept instance
Example Provides an example of a domain concept instance
Experience Provides the detailed description of an experience package
Scenario Explains a domain concept instance by means of a practical scenario
Exercise Shows an exercise that can be solved by the learner
Simulation Illustrates a domain concept instance by a simulation
Collaborative activity Provides a contact to a knowledgeable colleague
Domain Relation Shows a relationship between two domain concepts instances
Integrated Practice Activity Performs a practice activity in one’s own working environment
Situational Content
Elements

Description

Product Provides a description of the product of the relevant situation
Process Provides a description of the process of the relevant situation
Project Provides a description of the project of the relevant situation
Individual Provides a description of the individual of the relevant situation
Group Provides a description of the group of the relevant situation
Organization Provides a description of the organization of the relevant situation
Customer Provides a description of the customer of the relevant situation
Software Tool Provides a description of the software tool of the relevant situation
Context Relation Shows a relationship between two context concept instances

Based on these content element types, learning activities can be speci-
fied for each learning objective listed before. Each learning activity is de-
scribed by a tupel (activity, contentElementType). The sequences of the
learning activities support the previously stated requirements for the
learning goal structure template. Some of the requirements are ad-
dressed on the next lower abstraction level (Section 5.4.3.5).

Table 21 Examples of learning activities for the learning goal “remember”

Learning Goal Learning Activities
Remember the domain knowledge
concept(s)

� Read concept description
� Read concept example

Remember the domain product
concept(s)

� Read concept description
� Read concept example

Remember the domain process
concept(s)

� Read concept description

Remember the domain individual
concept(s)

� Read concept description

Learning Space Approach

 137

Learning Goal Learning Activities
Remember the domain software tool
concept(s)

� Read concept description

Remember the situation � Read experience (i.e., read the complete experience package)
� Read product
� Read process
� Read individual
� Read group
� Read organization
� Read project
� Read customer
� Read softwareTool

Summative Self-Assessment:
Remember experience package

� Read learningObjective
� Read domainRelation: “Knowledge x is needed for using

process y for product z”
� Read domainRelation: “Individual x has knowledge about

product y”
� Read domainRelation: “SoftwareTool x support process y”

Table 22 Examples of learning activities for the learning goal “understand”

Learning Goal Learning Activities
Understand the domain knowledge
concept(s)

� Read concept definition
� Read concept description
� Read concept example
� Read domainRelation: “Knowledge x is needed for using

process y for product z”
Understand the domain product
concept(s)

� Read concept definition
� Read concept description
� Read concept example
� Read domainRelation: “Process x produces product y”

Understand the domain process
concept(s)

� Read concept definition
� Read concept description
� Read domainRelation: “Process x is supported by softwareTool

y”
Understand the domain individual
concept(s)

� Read concept description
� Read domainRelation: “Individual x has knowledge about

process process y”
� Read domainRelation: “Individual x has knowledge about

product product y”
� Read domainRelation: “Individual x has knowledge about

software tool softwareTool y”
Understand the domain software tool
concept(s)

� Read concept description

Understand the situation � Read experience (i.e., read the complete experience package)
� Read product
� Read process
� Read individual
� Read group
� Read organization
� Read project
� Read customer
� Read softwareTool
� Read contextRelation: “Process x produces product y”
� Read contextRelation: “Product x developedin project y”

Learning Space Approach

 138

Learning Goal Learning Activities
� Read contextRelation: “Individual x works in project project y”
� Read contextRelation: “Individual x works in group group y”
� Read contextRelation: “Organization x has project project y”

Summative Self-Assessment:
Understand experience package

� Read learningObjective
� Perform testActivity “What were the most important concepts

in the experience package” � Recall
� Perform testActivity “Illustrate how the experience package

concepts are related” � Exemplify
� Perform testActivity “Explain the cause and effect when this

experience is applied to your situation”
� Perform testActivity “Summarize in your own words what the

experience package is about”
� Perform testActivity “Compare your situation with the

situation of the experience package”
� Perform testActivity “Compare your problem with the problem

stated in the experience package”

Table 23 Examples of learning activities for the learning goal “apply”

Learning Goal Learning Activities
Understand the domain knowledge
concept(s)

� Read concept definition
� Read concept description
� Read concept example
� Read concept counterExample
� Read domainRelation: “Knowledge x is needed for using

process y for product z”
Understand the domain product
concept(s)

� Read concept definition
� Read concept description
� Read concept example
� Read concept counterExample
� Read domainRelation: “Process x produces product y”

Understand the domain individual
concept(s)

� Read concept description
� Read domainRelation: “Individual x has knowledge about

process process y”
� Read domainRelation: “Individual x has knowledge about

product product y”
� Read domainRelation: “Individual x has knowledge about

software tool softwareTool y”
Apply the domain software tool
concept(s)

� Read concept description
� Perform integratedPracticeActivity “Use the tool”

Understand the situation � Read experience (i.e., read the complete experience package,
especially the probably ill-defined problem)

� Read product
� Read process
� Read individual
� Read group
� Read organization
� Read project
� Read customer
� Read softwareTool
� Read contextRelation: “Process x produces product y”
� Read contextRelation: “Product x developed in project y”
� Read contextRelation: “Individual x works in project project y”
� Read contextRelation: “Individual x works in group group y”
� Read contextRelation: “Organization x has project project y”

Learning Space Approach

 139

Learning Goal Learning Activities
� Organizing “Structure your situation. What is the problem?”

Apply the domain process concept(s) � Read concept definition
� Read concept description
� Read concept example
� Read domainRelation: “Process x is supported by softwareTool

y”
� Read concept scenario
� Read concept observation
� Perform collaborativeActivity (e.g., contact knowledgeable

colleague)
� Access concept simulation
� Perform concept exercise

Summative Self-Assessment: Apply
experience package

� Read learningObjective
� Perform testActivity “What were the most important concepts

in the experience package” � Recall
� Perform testActivity “Illustrate how the experience package

concepts are related” � Exemplify
� Perform testActivity “Explain the cause and effect when this

experience is applied to your situation”
� Perform testActivity “Summarize in your own words what the

experience package is about”
� Perform testActivity “Compare your situation with the

situation of the experience package”
� Perform testActivity “Compare your problem with the problem

stated in the experience package”
� Perform integratedPracticeActivity “Use the process in your

situation”
� Perform testActivity “Compare your solution with the solution

stated in the experience package”
� Perform testActivity “Conclude your solution and write down

an observation”

The following section shows how these learning activities are realized by
learning pages, which consist of content components and content ele-
ments, by first providing a list of underlying theories.

5.4.3.5 Experiential Learning Example – Content Components and Content Ele-
ments

First, the elaboration theory (Reigeluth, 1999) was used as the underly-
ing theory for structuring learning spaces on the component and ele-
ment level because it belongs to the learner-centered instructional de-
sign strategies and helps to select and sequence content in a way that it
optimizes the attainment of the learning objectives. Reigeluth distin-
guishes between conceptual, theoretical, and simplifying conditions
elaboration sequences. Hence, the sequence of content elements may
depend a) on relationships between the different topics (i.e., the rela-
tionships between the domain concepts), b) on the topics themselves
(i.e., each domain concept is taught one by one until the required depth
of understanding is reached), or c) on spirals (i.e., the learner masters a
topic gradually in several passes; first the basics of each topics and then

Elaboration
theory is used
on the struc-
ture and con-
tent levels

Learning Space Approach

 140

the details). Interrelationships between topics may be learned more easily
by spiral sequencing, hence topical and spiral sequencing should be seen
as a continuum and not as two separate sequencing techniques.

� Conceptual elaboration follows the fact that people store concepts
under a broader, more inclusive concept in their cognitive structure:
present the easiest, inclusive, most familiar organizing concepts that
an engineer has not yet learned first, and then proceed to narrower,
less inclusive concepts. Conceptual elaboration can be realized by
topical or spiral sequencing.

� Conceptual elaboration is used for the learning space product,
individual, and software tool domain concept instances

� Theoretical elaboration is suitable for learning spaces that focus on a
set of interrelated principles, which are usually elaborations of each
other. These principles are interrelated by causal relationships among
the changes of specific concepts and exist in a broader and narrower
sense (i.e., separation of concerns in general, or separation of con-
cerns on the design level). Unlike concepts, the broader principles are
easier to learn than the narrower ones. Ausubel states that a principle
is stored under a broader, more inclusive one in the cognitive struc-
tures. Again, this elaboration technique starts with the principles on
the highest level and progresses to the narrower principles or pro-
vides more details about a principle (e.g., What else happens? When
does this cause have this effect? Why and which way do things
change? How much do they change?). Theoretical elaboration can be
realized by topical or spiral sequencing and move from the simple to
the complex.

� Theoretical elaboration is used for learning space knowledge
domain concept instances

� The simplifying conditions method first teaches the easiest and sim-
plest version of a task or procedure and then progressively more
complex versions of it by making the learner aware of the difference
between the different versions, respectively complexity levels, of the
task. The steps should be presented in order of their performance.
This is different from the hierarchical sequencing approach (i.e., sub-
skills are taught first, and the main skills related to a task/procedure
are taught at the end). The advantage is that the learner gets the
whole picture of the task from the beginning by offering complete
real-world realizations.

� Simplifying conditions method is used for learning space proc-
ess domain concept instances

Second, the engineer should be involved in three cognitive processes
(Mayer, 1999): attending the relevant information (i.e., selecting), men-
tally organizing the information into a coherent mental representation
(i.e., organizing), and integrating the information with existing knowl-
edge (i.e., integrating). Mayer’s approach is used on the presentation
level of the content:

Mayer’s
approach is
used on the
presentation
level

Learning Space Approach

 141

� Selecting information can be supported by using highlighting (e.g.,
headings, italics, bold face, arrows, icons, underlining, margin notes,
repetition, white space, and captions), instructional objectives, and
summaries.

� Organization of information can be supported by using outlines (e.g.,
comparison/contrasts structure, classification structure, enumeration,
generalization and cause-effect structures), signaling headings,
pointer words, structured illustrations, and coherent text structures.

� Integration of information is fostered by using advanced organizers,
captioned multiframe illustrations, narrated animations, worked-out
examples, and elaborative questions (Mayer, 1999).

Third, Gardner presents in his Multiple Approach for Understanding the
concepts for selecting significant topics, using so-called entry points, and
gives analogies and examples (H. E. Gardner, 1999). Relevant entry
points that could engage the learner in the topics for this work are:

� telling stories,

� using quantitative patterns and statistics,

� active engagement through hands-on activities, and

� social interaction by collaborative arrangement and providing group
settings.

Telling analogies places a learner in the center of a disciplinary topic,
stimulates his interests, and ensures cognitive commitment for further
exploration.

Because of the limited amount of space, only a few examples for learn-
ing activities � learning components/element transformations are given.

Figure 27 shows the example that has already been used for other
explanations in earlier chapters. This example shows the learning structure
template and the other learning space artifacts for the overall learning goal
remember code smell comment:experience package with seven learning ob-
jectives as listed in Table 21.

Gardner’s
Approach for
Understanding
is used the on
structure and
content levels

Example: Learning goal

Learning Space Approach

 142

Figure 27 Examples of learning pages and content components of the types description and example

The following example shows the realization of LOT3 remember the
domain process concepts, i.e., domain concepts that are related to the ex-
perience package. In this case, the experience is related to the process con-
cepts rename method, extract method, and introduce assertion. In the exam-
ple, the two related learning activities are simply realized by one component
by following the elaboration theory: first, an overview of all processes is given
by means of three learning elements of the type description. Afterwards, ex-
amples of each process are given.

Example: Learning objec-
tive template

Learning Space Approach

 143

Figure 28 Examples of content component and related content elements

Implementations (i.e., presentations) of the learning components and
elements can be found in Section 6.

5.4.3.6 Experiential Learning Example – Variability Model

The first activity of the adaptive instructional design modeler is to iden-
tify together with the competence manager a set of indicators that im-
pact the variability model. Indicators are directly related to the context
model. Table 24 shows an example of such an indicator list developed by
the instructional designer. Each indicator is described by means of its lo-
cation in the context model (see Section 5.4.1.2), possible values, its type
(i.e., static/dynamic; see Section 5.2), the generic artifact(s) it refers to,
the type of variation point (see Section 4.2.4), possible adaptations to
the generic artifact(s), and, finally, the level of adaptation (i.e., structure,
content, presentation; see Section 4.2.4).

Le
ar

ni
ng

 S
pa

ce
 A

pp
ro

ac
h

14

4

Ta
bl

e
24

Ex

am
pl

es
 o

f
im

pa
ct

 in
di

ca
to

rs
 a

nd
 t

he
ir

co
ns

eq
ue

nc
e

on
 t

he
 g

en
er

ic
 a

rt
ifa

ct
s

ID

Im
p

ac
t

In
d

ic
a-

to
r

(t
o

 w
h

at
 is

it

 a
d

ap
te

d
?)

V
al

u
e

In
d

.
ty

p
e

G
en

er
ic

 A
rt

if
ac

t
Ty

p
e

va
ri

a-
ti

o
n

 p
o

in
t

Po
ss

ib
le

 A
rt

if
ac

t
V

ar
i-

an
ts

A

d
ap

ta
ti

o
n

Le

ve
l

D
1

Le
ar

ni
ng

 s
ty

le
 �

co
nt

ex
t_

pr
ef

er
e

nc
es

�
A

ss
im

ila
to

r
�

C
on

ve
rg

er

st
at

ic

Le
ar

ni
ng

 o
bj

ec
tiv

e
te

m
pl

at
e

A
lte

rn
at

iv
e

�
Pr

ov
id

e
ab

st
ra

ct

in
st

ru
ct

io
na

l e
le

m
en

t
ty

pe
s

(d
ef

in
iti

on
,

de
sc

rip
tio

n)
, d

el
et

e
C

ol
la

bo
ra

tiv
eA

ct
iv

ity
,

in
te

gr
at

ed
Pr

ac
tic

eA
ct

iv
i

ty
, s

im
ul

at
io

n
�

Pr
ov

id
e

m
or

e
co

nc
re

te

ty
pe

s
(e

xa
m

pl
e,

ex

er
ci

se
, s

im
ul

at
io

n)

an
d

ab
st

ra
ct

 c
on

ce
pt

s
to

 t
he

 e
nd

�
St

ru
ct

ur
e

D
2

Le
ar

ni
ng

ac

tiv
iti

es
 “

to
p

le
ve

l”
�

co

nt
ex

t_
pr

ef
er

e
nc

es

�
Re

ad
 “

le
ar

ni
ng

 o
bj

ec
tiv

e”

�
Re

ad
 “

le
ar

ni
ng

 c
on

te
nt

”
�

Re
ad

 “
si

tu
at

io
na

l c
on

te
nt

”

st
at

ic

Le
ar

ni
ng

 o
bj

ec
tiv

e
te

m
pl

at
e

O
pt

io
nS

et

�
K

ee
p

or
 d

el
et

e
le

ar
ni

ng

ob
je

ct
iv

e
�

K
ee

p
or

 d
el

et
e

le
ar

ni
ng

co

nt
en

t
�

K
ee

p
or

 d
el

et
e

si
tu

at
io

na
l c

on
te

nt

�
St

ru
ct

ur
e

D
3

Le
ar

ni
ng

ac

tiv
iti

es
 “

lo
w

le

ve
l”
�

co

nt
ex

t_
pr

ef
er

e
nc

es

�
Pe

rf
or

m
 T

es
tA

ct
iv

ity

�
A

cc
es

s
“S

im
ul

at
io

n”

�
Pe

rf
or

m

“C
ol

la
bo

ra
tiv

eA
ct

iv
ity

”

st
at

ic

Le
ar

ni
ng

 o
bj

ec
tiv

e
te

m
pl

at
e

O
pt

io
nS

et

�
K

ee
p

or
 d

el
et

e
Te

st
A

ct
iv

ity

�
K

ee
p

or
 d

el
et

e
Si

m
ul

at
io

n
�

K
ee

p
or

 d
el

et
e

C
ol

la
bo

ra
tiv

eA
ct

iv
ity

�
St

ru
ct

ur
e

Le
ar

ni
ng

 S
pa

ce
 A

pp
ro

ac
h

14

5

ID

Im
p

ac
t

In
d

ic
a-

to
r

(t
o

 w
h

at
 is

it

 a
d

ap
te

d
?)

V
al

u
e

In
d

.
ty

p
e

G
en

er
ic

 A
rt

if
ac

t
Ty

p
e

va
ri

a-
ti

o
n

 p
o

in
t

Po
ss

ib
le

 A
rt

if
ac

t
V

ar
i-

an
ts

A

d
ap

ta
ti

o
n

Le

ve
l

D
4

Ti
m

e
�

co

nt
ex

t_
pr

ef
er

e
nc

es

�
 t

 <
 5

m
in

�

5m
in

 �
 t

 <
 1

5m
in

�

 1
5m

in
 �

 t

st
at

ic

le
ar

ni
ng

 g
oa

l s
tr

uc
tu

re
 t

em
pl

at
e,

le

ar
ni

ng
 o

bj
ec

tiv
e

te
m

pl
at

e,

co
nt

en
t

co
m

po
ne

nt

A
lte

rn
at

iv
e

�

N
o

as
se

ss
m

en
t

LO
T,

de

le
te

 d
ef

in
iti

on
 in

ge

ne
ra

l;
on

ly
 o

ne

ex
am

pl
e

pe
r

co
nc

ep
t,

fir

st
 c

on
cr

et
e

th
en

m

or
e

ab
st

ra
ct

, o
m

it
C

E
lo

ng
er

 t
ha

n
20

 li
ne

s

�
N

o
in

di
vi

du
al

 L
A

, m
ax

 3

ex
am

pl
es

 p
er

 C
C

�

N
o

ac
tio

n;
 k

ee
p

al
l

co
nt

en
t

�
St

ru
ct

ur
e

�

C
on

te
nt

D
5

K
no

w
le

dg
e

m
od

el
 �

do

m
ai

n
sp

ec
ifi

c
kn

ow
le

dg
e

�
D

om
ai

n
co

nc
ep

t
in

st
an

ce

no
t

ac
ce

ss
ed

�

D
om

ai
n

co
nc

ep
t

in
st

an
ce

ac

ce
ss

ed

st
at

ic
 /

dy
n.

C

on
te

nt
 E

le
m

en
t

A
lte

rn
at

iv
e

�
D

on
’t

 m
ar

k
C

E
�

M
ar

k
C

E
as

 “
re

ad
”

�

Pr
es

en
ta

tio
n

D
6

C
on

te
xt

ex

pe
rie

nc
e

pa
ck

ag
e

�
Le

ar
ne

r
is

 a
ut

ho
r

�
Le

ar
ne

r
w

or
ke

d
in

 s
am

e
pr

oj
ec

t
�

Le
ar

ne
r

w
or

ke
d

in
 s

am
e

gr
ou

p

st
at

ic

Le
ar

ni
ng

 g
oa

l s
tr

uc
tu

re
 t

em
pl

at
e

O
pt

io
nS

et

�
O

nl
y

sh
ow

 r
em

em
be

r
le

ve
l

�
Re

m
em

be
r

fir
st

si

tu
at

io
n

an
d

th
e

co
nt

en
t

�
Re

m
em

be
r

fir
st

si

tu
at

io
n

an
d

th
e

co
nt

en
t;

 a
sk

 c
ol

le
ag

ue

�
St

ru
ct

ur
e

�

St
ru

ct
ur

e

�
C

on
te

nt

D
7

G
lo

ba
l l

ea
rn

in
g

go
al

�

G
LG

=
re

m
em

be
r/

un
de

rs
t/

ap
pl

y
st

at
ic

Le

ar
ni

ng
 g

oa
l s

tr
uc

tu
re

 t
em

pl
at

e
A

lte
rn

at
iv

e
�

Se
le

ct
 L

G
ST

“r

em
em

be
r”

�

Se
le

ct
 L

G
ST

“u

nd
er

st
an

d”

�
Se

le
ct

 L
G

ST
 “

ap
pl

y”

�
St

ru
ct

ur
e

D
8

Fo
nt

 s
iz

e
�

co

nt
ex

t_
pr

ef
er

e
nc

es

�
4

<
 f

_s
iz

e
<

32

st
at

ic

/d
yn

.
Le

ar
ni

ng
 p

ag
e,

co

nt
en

t
co

m
po

ne
nt

,
co

nt
en

t
el

em
en

t

Pa
ra

m
et

er

�
C

ha
ng

e
fo

nt
 s

iz
e

�
Pr

es
en

ta
tio

n

D
9

H
ea

di
ng

s�

co
nt

ex
t_

pr
ef

er
e

nc
es

�
he

ad
in

g=
ye

s/
no

Le
ar

ni
ng

 p
ag

e,

co
nt

en
t

co
m

po
ne

nt
,

co
nt

en
t

el
em

en
t

A
lte

rn
at

iv
e

�
U

se
 h

ea
di

ng
s

�
do

n’
t

us
e

he
ad

in
gs

�

Pr
es

en
ta

tio
n

Le
ar

ni
ng

 S
pa

ce
 A

pp
ro

ac
h

14

6 ID

Im
p

ac
t

In
d

ic
a-

to
r

(t
o

 w
h

at
 is

it

 a
d

ap
te

d
?)

V
al

u
e

In
d

.
ty

p
e

G
en

er
ic

 A
rt

if
ac

t
Ty

p
e

va
ri

a-
ti

o
n

 p
o

in
t

Po
ss

ib
le

 A
rt

if
ac

t
V

ar
i-

an
ts

A

d
ap

ta
ti

o
n

Le

ve
l

D
10

G

ui
da

nc
e
�

co

nt
ex

t_
pr

ef
er

e
nc

es

�
Lo

ca
l g

ui
da

nc
e=

ye
s/

no

�

st
at

ic

St
ru

ct
ur

e
lin

k/
pa

ge
 li

nk

co
m

po
ne

nt
 li

nk

A
lte

rn
at

iv
e

�
U

se
 lo

ca
l g

ui
da

nc
e

�
D

on
’t

 u
se

 lo
ca

l
gu

id
an

ce

�
St

ru
ct

ur
e

D
11

G

ui
da

nc
e
�

co

nt
ex

t_
pr

ef
er

e
nc

es

�
G

lo
ba

l g
ui

da
nc

e
st

at
ic

C

on
te

nt
 c

om
po

ne
nt

A

lte
rn

at
iv

e
�

U
se

 o
ve

rv
ie

w
 C

C

�
D

on
’t

 u
se

 o
ve

rv
ie

w
 C

C
�

C
on

te
nt

D
12

Re

so
lu

tio
n
�

co

nt
ex

t_
pr

ef
er

e
nc

es

�
D

iff
er

en
t

re
so

lu
tio

ns

st
at

ic

Le
ar

ni
ng

 p
ag

e,

co
nt

en
t

co
m

po
ne

nt

Pa
ra

m
et

er

�
M

ax
 3

 C
E

pe
r

le
ar

ni
ng

pa

ge

�
Pr

es
en

ta
tio

n

D
13

La

ng
ua

ge
 �

Ba

ck
gr

ou
nd

�

D
iff

er
en

t
la

ng
ua

ge
s

st
at

ic

Le
ar

ni
ng

 p
ag

e,

co
nt

en
t

co
m

po
ne

nt
,

co
nt

en
t

el
em

en
t

A
lte

rn
at

iv
e

�
Pr

es
en

t
co

nt
en

t
ac

co
rd

in
g

to
 s

el
ec

te
d

la
ng

ua
ge

�
Pr

es
en

ta
tio

n

D
14

M

ed
ia

ty
pe

 �

co
nt

ex
t_

pr
ef

er
e

nc
es

�
Se

le
ct

 p
re

fe
rr

ed

m
ed

ia
ty

pe
s

st
at

ic

C
on

te
nt

 e
le

m
en

t
O

pt
io

nS
et

�

Pr
es

en
t

on
ly

 c
on

te
nt

el

em
en

t
of

 t
he

 s
el

ec
te

d
ty

pe
(s

)

�
C

on
te

nt

D
15

D

om
ai

n
kn

ow
le

dg
e,

in

di
vi

du
al

,
pr

od
uc

t,

pr
oc

es
se

s,

so
ft

w
ar

e
to

ol
 �

Pe

rs
on

al

in
te

re
st

s

�
Pr

ef
er

re
d

do
m

ai
n

co
nc

ep
t

in
st

an
ce

s
(i.

e.
, t

op
ic

s)

w
he

re
 t

he
 le

ar
ne

r
w

an
ts

 t
o

ac
qu

ire
 c

om
pe

te
nc

ie
s

in
de

pe
nd

en
t

of
 t

he

se
le

ct
ed

 le
ar

ni
ng

 s
pa

ce

st
at

ic

C
on

te
nt

 c
om

po
ne

nt

Pa
ra

m
et

er

�
Pr

es
en

t
ad

di
tio

na
l

co
nt

en
t

co
m

po
ne

nt
s

re
la

te
d

to
 t

he
 t

op
ic

s
of

in

te
re

st

�
C

on
te

nt

Learning Space Approach

 147

As explained in Section 4.2.4 and Figure 20, decisions, which are varia-
tion points, result in a concrete resolution when they are resolved. The
resolution of a concrete decision may have an impact on other variation
points. The following table describes a few variabilities of Table 24 by
means of the decisions, the related queries to resolve them, and the con-
straints.

Table 25 Example of a decision model and related constraints

ID Query of Decision Type of
Variation
Point

Choices (query results) Constraint Adaptation
Operation

D2 select
(top_level_types)
from con-
text_preferences

OptionSet 1. Learning_objective
2. Instructional_content
3. Situational_content

2(No):
exclude 3

1(yes):Present_LA(learning_obje
ctive) else exclude
2(yes): Present_LA (instructio-
nal_content
) else exclude
3(yes): Present_LA (situatio-
nal_content) else exclude

D3 select
(low_level_types)
from con-
text_preferences

OptionSet 1. TestActivity
2. Simulation
3. CollaborativeActivity

- 1(yes):present_CC(TestActivity)
else exclude
2(yes): present_CC(Simulation)
else exclude
3(yes): pre-
sent_CC(CollaborativeActivity)
else exclude

D4 select(time) from
context_preferences

Alternative 1. t < 5min
2. 5min � t < 15min
3. 15min � t

1(yes):
part_resolve
D3.1(no)

1(yes):exclude_CC(definition)
 present(max=1, CC_example)
 sequence(illustration, funda-
mental)
 present(length=20, CE_all)
2(yes):exclude_DC(individual)
 present(max=1, CC_example)
3(yes): nop

Decision D2 queries the preferred content types on the top level, i.e,
on the learning objective level. Since the type of the variation point is an Op-
tionSet, more than one choice can be selected by the learner. Each choice
(i.e., answer to the decision) results in an adaptation operation. For example,
when the learner select “yes” for “learning objective”, then the learning ob-
ject will be presented. When the learner selects “no” for instructional con-
tent, this resolution has a constraint that excludes decision D3. Another type
of constraint only impacts part of a variation point, i.e., a choice. For example
when the learner prefers to get short learning spaces with an expected learn-
ing time less than five minutes, this requires that “test activities” are ex-
cluded from a learning space and that choice 1 of decision D3 is resolved
with “no” in the resolution model.

Section 5.5 will describe the generation process of a learning space in
detail and will elaborate the resolve and adaptation operations.

Decisions and
their resolu-
tions

Example: Contraints

Learning Space Approach

 148

5.4.4 Librarian

The activities of the librarian have a more technical nature, because the
librarian supports the other roles by implementing their models, tax-
onomies, metadata vocabularies, data structures in repositories, etc. He
helps the other roles to use specific tools for developing their products.

Table 26 Activities of the librarian

Product Question Activity Man./
Opt. Consumed Produced

Other
Involved

Roles
How can a
domain model
be
implemented?

Implement the context
model

Man. ContextModel Implemented
ContextModel

Competence
manager

How can a
context model
be
implemented?

Implement the domain
model

Man. DomainModel Implemented
DomainModel

Knowledge
engineer

How can a
metadata
vocabulary for
knowledge
resources be
implemented?

Implement the metadata
vocabulary

Man. MetadataVo-
cabulary

MetadataVo-
cabulary

Knowledge
engineer

How can
resources be
stored?

Develop data structures
for storing resources

Man. Data structures Knowledge
engineer

5.4.5 Software Developer and Software Manager

The software developer and the software manager are the two main
types of people who will access and use a learning space in a working
situation. Their working activities are different – the activities related to
the learning space approach are not different. Both roles may document
software engineering artifacts such as products, processes, customers,
projects, etc. The knowledge engineer can help the software developer
and the software manager to annotate the artifacts or to use relation-
ships of the context model. The other activity is related to access to and
interaction with the learning space. Especially the interaction with the
learning space (e.g., accessing the learning pages, reading learning ele-
ments, following links, solving assignments, etc.) and interactions within
working situations are important, since they may ask for dynamic adap-
tations of the learning space or the user model (see Section 5.2).

Software
developer and
software
manager have
different
learning needs

Learning Space Approach

 149

Table 27 Activities of the software developer and software manager

Product Question Activity Man./
Opt. Consumed Produced

Other
Involved

Roles
How can
knowledge be
documented?

Document knowledge by
using the concepts of the
context model

Opt.. - Knowledge
resource,

context model

Knowledge
engineer

How can
knowledge
resources be
annotated?

Add relationships based
on the context model to
the knowledge resource

Opt. Knowledge
resource

Knowledge
resource with

additional
relationships of
context model

-

How can I use
a learning
space?

Access a learning space
and interact with it in a
specific situation by
following the instructions

Opt. Learning space Interaction
activities

-

5.5 Learning Space Generation Techniques

After presenting the different roles as well as the related activities and
the products they consume and produce, this section concentrates on
the description of techniques for:

1. resolving a decision model – the resolution technique uses the mod-
els developed by the different roles in the previous sections to resolve
the decisions of the decision model. The technique produces a so-
called resolve model, which consists of operations for adaptation (1
in Figure 29).

2. statically adapting and presenting the learning space – the static ad-
aptation technique (i.e., adaptation during development time) exe-
cutes the operations of the resolve model and adapts the learning
space on the structure, content, and presentation levels. Then, the in-
structional design model artifacts are instantiated by searching for
appropriate content (2 in Figure 29).

3. observing context and dynamically adapting the learning space – the
dynamical adaptation technique (i.e., adaptation during run-time)
adapts the learning space based on interactions between the user
and the learning space or based on other contextual observations (3
in Figure 29).

Main steps for
generating a
learning space

Learning Space Approach

 150

Software Engineer/Project Manager System

Search experience packages

Retrieve experience packages

Evaluate and select experience package

[ContextModel]

Resolving decision model + static
adaptation and presentation of

learning space

Select global learning goal level

[Learning space]

Interact with learning space and
understand experience package

Apply experience

[Problem situation occured > 0]

[Retrieved experience packages > 0

[Retrieved experience packages = 0]

[Problem situation occured = 0]

[ExperiencePackage]

[LearningGoalLevel]

[DomainModel]

[InstructionalDesignModel]

[LearningResourceModel]

[VariabilityModel]

1 + 2

3

Observe context and
dynamic adaptation

Figure 29 Relevant techniques of the learning space approach

These techniques will be elaborated in the next sections by using the fol-
lowing template, which is also used to specify important subfunctions:

Table 28 Template for describing a technique or function

Name Name of the technique or function
Short description A short description of the technique or function
Initiating Event Description of the initiating events that trigger the start of the

process
Stopping Event Description of the stopping events that trigger the end of the

process.
Preconditions Conditions that need to be met before the process can be

started.
Postconditions Conditions that need to be met before the process has stopped.
Input Data Documents, data, or other input needed during the execution

of the process.
Output Data Documents, data, or other output created during the execution

of the process.

Learning Space Approach

 151

In addition to these tables, pseudo-code is used to describe some of the
algorithms, since pseudo code is an environment-independent descrip-
tion of the key principles of an algorithm (Dalbey, 2003). Details about
data initialization procedures and data structure conversions (e.g., creat-
ing a DOM model from the DTD schemas or database tables from the
OWL ontology) can be found in (Ilin, 2008).

5.5.1 Resolution, Static Adaptation, and Presentation Technique

The purpose of this technique is to resolve the variation points in the
variability model. This is done by performing several queries on the con-
text and domain models. The resulting resolve model contains all the
resolutions of the decisions and hence, adapts the generic artifacts by
calling their adapt() functions. Finally, the present function generates
the content artifacts of the learning space. Figure 30 illustrates the high-
level steps of the resolution and static adaptation techniques.

[LearningGoalLevel]

Select LearningSpaceStructureTemplate

[LearningSpaceStructureTemplate]

Resolve

[DecisionModel]

[ResolveModel]

Adapt(static)

[LearningGoalsStructureTemplate]

[LearningObectiveTemplate]

[LearningActivity]

[StructureLink]

[LearningPage]

[ContentComponent]

[ContentElement]

[PageLink]

[ComponentLink]

[LearningSpace]

[DomainModel] [ContextModel]

Present

Figure 30 Relevant techniques of static adaptation and presentation

Pseudo code

Learning Space Approach

 152

After selecting a learning goal level (which is done by the software de-
veloper/manager in the experiential learning scenario), a Learning-
SpaceStructureTemplate is retrieved by the system. This template
has a dependency on a concrete DecisionModel, which is used for re-
solving the variation point (i.e., decision).

Table 29 Specification of resolve() of VariationPoint

Name resolve()
Short description The resolve function performs several queries on the context

and domain models to resolve the static variation points. While
doing this, resolution constraints are considered.

Initiating Event Learning space generation activated by user or system
Stopping Event All variation points (i.e., decisions in the decision model) are

resolved
Preconditions LearningGoalLevel selected
Postconditions No decisions open
Input Data LearningSpaceStructureTemplate, DecisionModel
Output Data ResolveModel

The next table explains the principle algorithm of resolve().

Table 30 Pseudo-code of function resolve()

resolve()
resolve(){
 FOR each decision in decisionModel where type=static DO
 result = performquery(decision.query)
 IF decision TYPEEQUAL paramVP DO
 intialize(decision, result)
 ELSE deletechoice(decision, result)
 update(resolveModel)
 ENDIF
 IF resolution has resolution contraint DO
 resolve (variationPoint) //recursion
 ENDIF
 ENDFOR
 store(resolveModel)

}

The resolution is done by means of the query result, which determines
which choices of a decision should be deleted or initiated in the case of a
variation point of the type ParamVP. The ResolveModel is then used
to statically adapt the generic learning space artifacts. This is done by
calling the adapt() function of the generic artifacts.

Resolving

Adaptation

Learning Space Approach

 153

Table 31 Specification of adapt() of GenericArtifact

Name adapt()
Short description The adapt function uses the resolve model adapt to the generic

artifacts
Initiating Event Resolve() terminated
Stopping Event All generic artifacts adapted to the context
Preconditions ResolveModel available where all decisions have been resolved
Postconditions All adaptations successful and all variabilities resolved
Input Data LearningSpaceStructureTemplate, LearningObjectiveTemplate,

LearningActivity, StructureLink, LearningPage, ContentCompo-
nent, ContentElement, PageLink, ComponentLink

Output Data Adapted generic artifacts

The next table explains the principle algorithm of adapt().The adapta-
tion depends on the selected adaptation technique chosen by the adap-
tive instructional design modeler. For the experiential learning scenario,
adaptation techniques according to the adaptation level in Figure 29
were chosen. Describing the detailed algorithms for adapting the generic
artifacts would be outside the scope of this work.

Table 32 Pseudo-code of function adapt()

adapt()
adapt(){
 FOR each resolution in resolutionModel DO

staticadapt(resolution.genericartifact, resolu-
tion.adapttech)

 ENDFOR
}

Finally, the present function of each learning space artifact of the first
learning objective is called to retrieve suitable content elements (i.e., ei-
ther instructional or situational) and to construct the first learning page
by means of content components, content elements, page links, and
component links. The subsequent learning pages are created dynamically
during runtime when the learner accesses them by using a link (either a
page link or a component link).

Table 33 Specification of present() of LearningResource and Link

Name present()
Short description The present function instantiates instructional design artifacts

that have been requested by the learner and retrieves situ-
ational as well as learning content that should be presented
elements from the database

Initiating Event Adapt() terminated
Stopping Event none
Preconditions All adaptations successful and all variabilities resolved
Postconditions All artifacts of the learning page presented successfully
Input Data LearningSpaceStructureTemplate, LearningObjectiveTemplate,

LearningActivity, StructureLink, LearningPage, ContentCompo-
nent, ContentElement, PageLink, ComponentLink, Domain-
Model, ContextModel

Output Data Presented LearningPage consisting of ContentComponent(s),
ComponentElements, PageLink(s), and ComponentLink(s)

Presentation

Learning Space Approach

 154

The selection of content is done based on information from the domain
and context models. This depends on the learning scenario to be imple-
mented. Therefore, the following descriptions are kept generic and do
not depend on a specific learning scenario. For example, for the experi-
ential learning scenario, the input for the queries comes from the con-
text description of the selected experience package. However, other
learning scenarios may provide this input from the working environment
(e.g., an IDE).

The next table explains the principle algorithm of present().

Table 34 Pseudo-code of function present() of LearningResource and Link

present()
present(){
 next=1
 FOR next LearningObjectiveTemplate DO

FOR each LearningActivity DO
 dom_result = retrieve domain input for query
//e.g., from experience package

 con_result = retrieve context input for query
//e.g., from experience package

 keyworddom = query domainontology()
 keywordcon = query contextontology()
 initiate related contentComponent (keyworddom, key-
wordcon)

 FOR each contentComponent DO
 retrieve contentElement(keyworddom, keywordcon)
 present contentElement()
 ENDFOR
 IF ANY
 present componentLink()
 ENDIF
 Present pageLink() // link to other learning pages
respectively learning objectives

 WAITUNTIL interaction from user //the next page is
presented on demand

 INCREMENT next
ENDFOR

 ENDFOR
}

5.5.2 Context Observation and Dynamic Adaptation Technique

The previous section has described the static adaptation of a learning
space. A variation point has a type, either static or dynamic. As pre-
sented in the lifecycle model in Figure 21, dynamic variabilities are re-
solved during runtime, i.e., while the learner accesses the learning space
and works in his environment. This adaptation is triggered by an interac-
tion of the learner by means of a so-called adaptation event by the sys-
tem. Such an adaptation event leads to an observation (e.g., a query to
the knowledge model of the user model or a system-based diagnosis of
code smells). The result of such an observation is a dataset that describes
relevant characteristics of a situation. These characteristics determine the
adaptation of the learning space. Dynamic adaptation is done on the
learning resource artifacts and not on the instructional design artifacts.

Learning Space Approach

 155

Figure 31 illustrates the high-level steps of the context observation and
dynamic adaptation technique.

[InteractionLearningSpace]

Interact

[Situation]

[AdaptationEvent]

Observe

Adapt (dynamic)

Update

adaptive reaction
non adaptive reaction

[LearningPage]

[ContentComponent]

Resolve

[ContentElement]

[PageLink]

[ComponentLink]

[ResolveModel]

Present

[ContextModel][DomainModel]

[LearningSpace]

[DecisionModel]

[InteractionWorkingEnvironment]

Figure 31 Relevant techniques of context observation and dynamic adaptation

After accessing the first page of the learning space, the learner interacts Interaction

Learning Space Approach

 156

with the learning space and his working environment. Each interaction is
checked by the interaction function as to whether the system should re-
act in a non-adaptive manner or whether it should adapt the learning
space.

Table 35 Specification of interact()

Name interact()
Short description The interact function decides whether an interaction requires an

adaptation or not
Initiating Event Learning space accessed by the user
Stopping Event None, continuous
Preconditions User interacts with learning space of working environment
Postconditions Decision made about adaptation or not
Input Data InteractionLearningSpace, InteractionWorkingEnvironment
Output Data Null or AdaptationEvent

The next table explains the principle algorithm of interact().

Table 36 Pseudo-code of function interact()

interact()
interact(){
 access eventBase
 FOR each interaction DO
 IF interaction is adaptive event DO
 generate adaptiveEvent
 ELSE NOP
 ENDFOR
}

The function interaction() accesses an eventBase that contains
all possible monitored events in the learning space of the working envi-
ronment. When an interaction is marked as adaptive event in
eventBase, then an adaptiveEvent artifact is created. Such an arti-
fact specifies what needs to be observed during the next step. The fol-
lowing steps describe the observe()function.

Table 37 Specification of observe()

Name observe()
Short description The observe function observes the current situation and creates

a situation object that specifies the characteristics of a situation
Initiating Event Initiate function returns an adaptiveEvent
Stopping Event None
Preconditions AdaptiveEvent available
Postconditions Situation object created
Input Data AdaptiveEvent
Output Data Situation

The next table explains the principle algorithm of observe().

Observation

Learning Space Approach

 157

Table 38 Pseudo-code of function observe()

observe()
observe(){
 FOR each context attribute of adaptationEvent DO
 situation.attribute = retrieveSituationattri-

bute(adaptationEvent.attribute) // retrieve current
context

ENDFOR}

For each adaptationEvent that specifies the context characteristics
to be retrieved, queries are performed to retrieve the current context. For
example, a learner reads a specific content element, which is related to a
specific domain concept instance “refactoring”. An adaptiveEvent speci-
fies that the time for reading this learning page must be accessed. This
value is used to resolve a dynamic variability. For example, when the time
for reading this page has exceeded five minutes, then this domain in-
stance is marked as “read” in the user’s knowledge model of the con-
text model by using the function update().

Table 39 Specification of update()

Name update()
Short description The update function updates the context model before the

learning resource artifacts are adapted
Initiating Event Observe function and Situation object
Stopping Event None
Preconditions Situation object available
Postconditions contextModel updated
Input Data Situation, contextModel
Output Data contextModel

The next table explains the principle algorithm of update().

Table 40 Pseudo-code of function update()

update()
update(){
 FOR each attribute of situation DO
 change contextModel(situation.attribute)
 ENDFOR
 store(contextModel)

}

The other steps of the context observation and the dynamic adaptation
technique are the same as for static adaptation, except that variation
points with the type dynamic are resolved and that only artifacts of the
learning resource model are adapted during runtime. Therefore, these
steps are not described again.

Update

Learning Space Tools

 159

6 Learning Space Tools

“Wiki: The simplest online database that
could possibly work” (Leuf & Cunningham,
2001)

Web 2.0 concepts (e.g., collaboration, sharing), features (e.g., tagging,
folksonomies), and tools (e.g., Wikis, blogs) support quick and easy shar-
ing of knowledge as well as creation of learning content in a software
organization (S. Weber et al., 2008). Web 2.0 refers to a class of Web-
based applications that harness collective intelligence through user-
generated content, enable collaborative work, and deliver rich user ex-
periences via desktop-like interfaces (Greaves, 2007; O'Reilly, 2005). To-
day, Web 2.0 has made its way into knowledge management as well as
into technology-enhanced learning.

Therefore, it has been decided to develop the Software Organization
Platform (SOP) based on Web 2.0 tools. SOP 1.0 was developed at
Fraunhofer IESE initially by Rech, Decker, and Ras and is based on the
basic principles and concepts of the RIKI system of the project RISE (Rech
et al., 2007b). SOP intends to support specific software engineering ac-
tivities such as experience management, process modeling, requirements
engineering, and project management (Decker, Ras, Rech, Jaubert, &
Rieth, 2007; Ras, Carbon, Decker, & Rech, 2007). The main motivation
of an SOP is to provide integrated access to information, experiences,
and learning content.

The learning space approach has been implemented as a plugin in SOP
(see Section 6.2), including tools for describing and annotating experi-
ence packages and learning content (see Section 6.3). This supports the
conceptual as well as technical integration of knowledge/experience
management and technology-enhanced learning. In addition, open
source tools that have been used to develop the domain ontology and
the instructional design models are named.

6.1 Research Objective and Requirements

Objective 3: Develop a tool for the systematic, context-aware adaptation
and presentation of learning spaces based on the conceptual models.

� Develop a lightweight experience management system

� Develop a tool for the easy creation and annotation of instructional
and situational content elements as well as experience packages

SOP supports
experience
management,
requirements
engineering

Structure of
this section

Objective 3

Learning Space Tools

 160

� Develop algorithms for adapting and generating learning spaces

6.2 Realization in the Software Organization Platform

A Wiki system, by definition, is “the simplest online database that could
possibly work” (Leuf & Cunningham, 2001). Wikis have been used as
platforms for documentation, minutes, glossaries, or repositories for ad-
ditional learning materials. Their advantages are fast installation, easy
adaptation to educational purposes, no acquisition costs, and intuitive
usage. In the RISE project, Wikis proved that they are a good facility for
one place publishing, meaning that there is only one version of a docu-
ment available that is regarded as the current version; simple and safe
collaboration, which refers to versioning and locking mechanisms that
most Wikis provide; easy linking, meaning that documents within a Wiki
can be linked by their title using a simple markup; description on de-
mand, which means that links can be defined to pages that have not
been created yet, but might be filled with content in the future (Decker,
Rech, Ras, Klein, & Hoecht, 2006).

Therefore, SOP 1.0 consists of a MediaWiki application with the Seman-
tic MediaWiki extension installed, and a set of plugins (as depicted in
Figure 32). The following plugins have been developed for this work
(white areas in Figure 32):

� Experience management plugin – serves to create, edit, and annotate
new experience packages

� Learning element authoring plugin – serves to create or extract learn-
ing content from the Wiki, edit, and annotate learning elements; a
vocabulary editor is used to define the metadata set for learning ele-
ments

� Learning space generation plugin – serves to adapt and present learn-
ing spaces in SOP

It can be seen that SOP supports both the experience factory and the
project organization. The Wiki is used to document software engineering
artifacts, classify them, and build relationships between them. These
structures realize the domain model described in Section 4.2.3. Three
main plugins developed in this work support the creation of experience
packages and learning content on the one hand and the automatic, con-
text-aware generation of learning spaces on the other hand. The adap-
tive navigation techniques of direct guidance, link sorting, link hiding,
link generation, and map adaptation have been implemented in addition
to the adaptive presentation techniques conditional text, page variants,
fragment variants, and frame-based technique.

Advantages of
Wikis

Plugins devel-
oped for this
work

SOP supports
the experience
factory and
the project
organization

Learning Space Tools

 161

Ontologies are becoming a widely used tool for modeling knowledge in
adaptive web systems (see, for example, (Chen & Mizoguchi, 2004; De-
naux, Dimitrova, & Aroyo, 2004; N. Henze, 2005). The languages RDF
(Manola & Miller, 2004), RDF-Schema (Brickley & Guha, 2004), and OWL
(Smith, Welty, & McGuinness, 2004) define language constructs that can
be used to define ontologies in a way suitable for machine reasoning.
Therefore, the domain model was realized by means of a refined ontol-
ogy in the OWL-DL format by using the software engineering Body of
Knowledge ontology (Guide to the Software Engineering Body of
Knowledge, SWEBOK, 2004) and the classification of the Association for
Computing Machinery (Consortium, 2005) as a baseline, which has been
extended. The open source ontology editor Protégé was used for devel-
oping ontologies and exporting the OWL-DL files. The application pro-
gramming interface RAP-RDF API was used for the building, storage, and
retrieval of the RDF models, and the RDF query language SPARQL was
used as the query language for the OWL files.

Figure 32 Schematic overview of SOP and learning space approach

The learning space structure template, the learning goal structure tem-
plate, the decision model, the user model (as part of the context model),
and the resolve model are stored in XML and are conformant to corre-

An ontology
was devel-
oped to realize
the domain
model

Several mod-
els were de-
veloped in
XML

Learning Space Tools

 162

sponding XML schemas. The Reload editor was used to build a learning
space structure template conformant to the IMS Learning Design.

The whole learning generation approach was implemented using the ob-
ject-oriented programming language PHP 5. All the databases together
form the SOP database, which contains the information of the experi-
ence factory as well the project organization’s information documented
in the Wiki. MySQL was used as relational database management system
for all the plugins.

6.3 Frontend of Learning Space Approach

The Wiki technology promises a lightweight solution for capturing, or-
ganizing, and distributing emergent knowledge, and serves as a basis for
structuring and presenting learning spaces. The following sections pro-
vide short descriptions and screen shots of the user frontend when using
Wiki technology.

6.3.1 Situational Content and Experience Package

SOP harnesses collaborative generation (i.e., quick and easy page crea-
tion and linkage) and semantic annotations (e.g., tagging) of content via
the Wiki for the software engineering artifacts products, processes, pro-
jects, individuals, groups, customers, organizations, and software tools.
These situational content elements form the context model of the learn-
ing space approach.

In order to classify these core Wiki pages, Wiki categories (syntax:
[[Category:categoryName]]) are used. They classify the Wiki
pages into multiple, freely named categories. In addition, by using the
features of the Semantic MediaWiki, specific semantic relationships (syn-
tax: [[relationshipName::wikiPageName]]) can be defined be-
tween instances of the Wiki pages and categories. These categories are
predefined by the context model – the instances (i.e., concrete Wiki
pages) are referenced when an experience package’s context is de-
scribed.

SOP offers functionality for creating, editing, and deleting new experi-
ence packages. The edit function also provides the functionality to anno-
tate the experience package by relating it to existing Wiki pages in SOP
in order to describe its context.

Figure 33 shows an example of an experience package in SOP. A tab in
the top left corner can be used to generate a learning space for the ex-
perience package shown (see Figure 15 for an example of a learning
space).

Situational
content ele-
ments build
the context
model

Wiki catego-
ries and se-
mantic rela-
tionships

Learning Space Tools

 163

Figure 33 Experience package

6.3.2 Instructional Content

Besides the Wiki pages of the specific software engineering categories,
other kinds of software engineering information may be described, e.g.,
definitions, explanations, conclusions, etc. The knowledge engineer can
easily transform Wiki pages into learning elements. The requirement of
easy annotation of learning elements is fulfilled by a set of pre-defined
values and metadata attributes for classifying learning elements being
offered. This metadata set is defined in SOP by using the Vocabulary
Manager (see Section 6.3).

A so-called vocabulary manager allows creating, editing, and deleting
metadata attributes as well as related values (e.g., attribute: illustration;
values: example, counter-example), i.e., it is used by the knowledge en-
gineer to develop the learning element taxonomy.

Wiki pages can
be trans-
formed into
learning ele-
ments

Vocabulary
manager

Learning Space Tools

 164

In addition to the classification of learning elements, keywords can be
used to annotate the learning elements. These keywords are retrieved
from the software engineering domain ontology.

Figure 34 Annotation of learning elements

Figure 35 illustrates the main entry of the learning element authoring
plugin.

Figure 35 Authoring tool for learning elements

Annotate
learning ele-
ments by
using key-
words

Learning Space Tools

 165

6.3.3 Learning Space

When the software developer or the project manager decides to access a
learning space, he clicks on the button above the experience package
description Figure 33. After selecting an overall learning goal, an over-
view of the learning space is shown (see Figure 36). In this example, the
user has chosen the overall learning goal level of “remember”. One in-
stance of the domain concept knowledge and seven instances of the
domain concept process are listed.

Figure 36 Overview of a learning space on the “remember” learning goal level

Empirical Evaluation – A Controlled Experiment

 167

7 Empirical Evaluation – A Controlled
Experiment

“Experimentation in software engineering is
necessary but difficult. Common wisdom,
intuition, speculation, and proofs of concept
are not reliable sources of credible
knowledge” (V. R. Basili)

The goal of a learning space is to improve the understanding of the in-
formation provided by an experience package. Better understanding of
the experience package is expected to lead to more efficient application
of the experience package to the current working situation. The applica-
tion of the experience creates new factual, conceptual, and procedural
knowledge, which is the basis for new skills and competence develop-
ment (i.e., knowledge acquisition). Further, the improvement of the per-
ceived information quality was assessed.

The statistical data analysis revealed that all eleven null hypotheses
related to understanding (i.e., understanding correctness), knowledge
acquisition variables (i.e., in general and for five different cognitive
levels), application (i.e., efficiency, completeness, accuracy), and
perceived information quality could be rejected, which means that
learning spaces have a high potential for improving experience package
reuse. Learning spaces provide significantly higher:

� understanding correctness (p = .002, 21% improvement < 25%)

� knowledge acquisition in general (p = .000, 219% improvement >
50%)

� knowledge acquisition at the level of remembering (p = .001,
230% improvement > 50%)

� knowledge acquisition at the level of understanding (p = .001,
275% improvement > 50%)

� knowledge acquisition at the level of applying (p = .006, 81%
improvement > 50%)

� knowledge acquisition at the level of analyzing (p = .004, 198%
improvement > 50%)

� knowledge acquisition at the level of creating (p = .029, 121%
improvement > 50%)

� application efficiency (p = .006, 53% improvement > 25%)

� application completeness (p = .006, 51% improvement > 25%)

Goals of a
learning space

Results

Empirical Evaluation – A Controlled Experiment

 168

� application accuracy (p = .049, 28% improvement > 25%)

� perceived information quality (p = .013, 18% improvement <
25%)

The related measures of these metrics can be found in Section 7.1.2.2.

In order to investigate the effect of learning spaces on experience reuse,
a counterbalanced, within-subject, two-factorial experiment was con-
ducted with 19 undergraduate and graduate students of the University
of Kaiserslautern. Due to the fact that experiments related to the didacti-
cal enrichment of software engineering experience packages have not
been conducted before, this experiment serves as an exploratory evalua-
tion that can be used as a baseline for future evaluations and develop-
ments in this area. Therefore, a strong emphasis has been put upon the
construction of reliable measurement instruments, the selection of suit-
able disturbing factors for controlling the experiment, and upon the data
analysis.

In this chapter, the experiment planning includes the detailed research
hypotheses, the experimental variables, the experimental design, as well
as the experiment execution and the procedure for data analysis. After-
wards, the execution of a principal component analysis will be described
for the disturbing factors related to the experience levels of the subjects
in order to increase the reliability of these scales. A detailed item analy-
sis, which is usually applied in educational test construction, was applied
for selecting suitable test items for the questionnaire related to knowl-
edge acquisition. The central part of this chapter is the description of the
experiment’s results. Particular emphasis is placed on the analysis of con-
founding effects. A literature survey was necessary to clarify the termi-
nology and identify the different statistical approaches for the identifica-
tion and the correction confounding effects. The reason for this survey
was that these effects are either mostly neglected in empirical software
engineering or examined incorrectly. The hypothesis tests were only per-
formed when their assumptions were fulfilled. Especially for the usage of
the analysis of covariance, several detailed tests were compulsory. A
post-hoc power analysis and threats to validity conclude this chapter.

7.1 Evaluation Goal and Experiment Planning

Figure 37 shows the experimental model and the metrics used to investi-
gate understanding, knowledge acquisition, application, and perceived
information quality (in italics).

The experi-
ment is an
exploratory
evaluation
that builds a
strong base-
line for future
research

Empirical Evaluation – A Controlled Experiment

 169

Figure 37 Experimental model

Hence, in accordance with the GQM approach the research goal can be
stated (V. R. Basili, Caldiera, Rombach et al., 2002) as:

Analyze the effect of learning spaces on experience package reuse for
the purpose of evaluation with respect to

� understanding correctness,
� knowledge acquisition differences in total and on the cognitive levels

of remembering, understanding, applying, analyzing, and creating

� application efficiency, completeness, and accuracy,
� perceived information quality

from the viewpoint of the researcher in the context of a controlled ex-
periment in the domain of experience package reuse at the University of
Kaiserslautern.

All the dependent variables can only be measured indirectly:

Understanding correctness was measured by the total score of correctly
answered questions related to the experience package, which were part
of the post-test questionnaire (see Appendix A.2). The questions were
weighted according to their difficulty by means of assigning different
numbers of points.

Metrics related to knowledge acquisition were measured based on the
correctly answered questions with different numbers of points according
to their difficulty (see Appendix A.2).

GQM goal

Measuring
understanding
correctness

Empirical Evaluation – A Controlled Experiment

 170

Knowledge acquisition difference was calculated as the difference be-
tween the score of a pre-test and the score of a post-test. The pre-test
consists of a set of weighted questions (see Appendix A.2), which were
answered by the students before the experimental run. The post-test is
composed of the same questions as the pre-test, but was filled out after
the experimental run. These questions of the pre-test and post-test make
use of new application examples, i.e., new situations (e.g., unknown
software code) in order to investigate the ability to transfer newly ac-
quired knowledge to unknown problems.

Knowledge acquisition difference regarding the different cognitive levels
was also calculated based on the difference between the scores of the
pre-test and the post-test. But only questions assigned to the same cog-
nitive level (i.e., remember, understand, apply, analyze, and create) were
considered for each of the five levels.

Metrics related to application were measured by analyzing the outcome
of practical assignments in the domain of refactoring (see an example of
such an assignment in Appendix A.4). The assignments were based on
two main tasks: first, identifying and marking code smells in code frag-
ments on paper and second, describing how they can be removed and
writing down the result after refactoring. Scores for both tasks were as-
signed before the experiment was performed by two refactoring experts
according to the difficulty of the code smells’ identification and removal.

Application efficiency was determined by means of dividing the total
score for identification and removal by the time spent.

Application completeness was measured by means of dividing the total
score for identification and removal of code smells by the highest score
possible for all assignments in the experimental run.

Application accuracy focuses on the identification of code smells. It was
measured by means of the number of correct defects found in the code
divided by the defects indicated as a defect by the subjects.

Perceived information quality was captured by specific questions in the
debriefing questionnaire (see Appendix A.5). The questions asked the
subject how useful, boring, easy, clear, and complete the provided in-
formation in an experience package, respectively learning space, was.

A more formal definition of the data collection of these dependent vari-
ables can be found in Section 7.1.2.2 in Table 42.

Knowledge
acquisition
difference (in
total)

Knowledge
acquisition
difference on
cognitive
levels

Application
efficiency

Application
completeness

Application
accuracy

Perceived
information
quality

Empirical Evaluation – A Controlled Experiment

 171

The experiment was conducted with 19 undergraduate as well as gradu-
ate computer science students of the University of Kaiserslautern. The
problem with experiments in software engineering is that they have to
be executed with a small number of subjects, compared, for example, to
empirical investigations in social science where the number of subjects is
higher and the results are more representative of the whole population.
In addition, software engineering is a young field of research, which has
only existed for about 40 years. Hence, in many software engineering
fields, significant results from empirical research are either just not avail-
able or experiments have focused on many factors with a small number
of subjects – further replications would be necessary in order to produce
significant findings with acceptable power. Therefore, this experiment
relies on only two independent factors with only two alternatives each
and tries to find significant results based on a small number of students
(<20). A detailed experiment documentation and analysis ensures that
the experiment can be easily replicated in the future to confirm the re-
sults of this experiment. Before the hypotheses are stated in the next
section, the different variables and their formal notations are introduced.

Table 41 Notations used in the controlled experiment

Term Definition
 LSEP Experience package enriched with a learning space

 EP Conventional experience package with no learning
space augmentation

Independent Variables

 treatment - Experience package enriched with a learning space
(EP)
- Conventional experience package with no learning
space enrichment (LSEP)

 sequence - sequence LSEP | EP
- sequence EP | LSEP

Dependent Variables

 ucorri (EP, LSEP) The individual understanding correctness for subject i
when using (EP, LSEP)

 know_diffi (EP, LSEP) The individual knowlegde acquisition difference for
subject i when using (EP, LSEP)

 know_diff_x (EP,
LSEP)

The individual knowlegde acquisition difference for
subject i for the cognitive dimension (remember,
understand, apply, analyze, create) when using (EP,
LSEP)

 aeffi (EP, LSEP) The individual application efficiency for subject i when
using (EP, LSEP)

 acompi (EP, LSEP) The individual application completeness for subject i
when using (EP, LSEP)

 aaccui (EP, LSEP) The individual application accuracy for subject i when
using (EP, LSEP)

 inf_quai (EP, LSEP) The individual perceived information quality for subject i
when using (EP, LSEP)

The experi-
ment relies
only on two
independent
factors in
order to find
significant
results

Empirical Evaluation – A Controlled Experiment

 172

Disturbing Factors

 exp_devi The individual software development experience of
subject i

 exp_jpi The individual Java programming experience of subject i
 exp_refi The individual refactoring experience of subject i
 exp_sqai The individual quality assurance experience of subject i
 exp_maini The individual software maintenance experience of

subject i
 tni The individual time needed of subject i
 pre-testi The individual pre-test score of subject i
 inf_qua_LSEPi The individual perceived information quality (LSEP) of

subject i
 inf_qua_EPi The individual perceived information quality (EP) of

subject i

7.1.1 Detailed Statistical Hypotheses

For the experiment, alternative statistical hypotheses were derived from
the first four hypotheses stated in Section 1.4.

H1.1 “Average understanding correctness” – The average under-
standing correctness ucorr of the experimental group (related to
the usage of (LSEP)) is higher than the average understanding
correctness ucorr of the control group (related to the usage of
(EP)).

)()(EPLSEP ucorrucorr �� �

H1.2.1 “Average knowledge acquisition difference” – The average

knowledge acquisition difference of the experimental group (re-
lated to the usage of (LSEP)) is higher than the average knowl-
edge acquisition difference of the control group (related to the
usage of (EP)).

)_()_(EPLSEP diffknowdiffknow �� �

Hypothesis H1.2.1 has been refined further with regard to the different
cognitive processes:

H1.2.2.x “Average overall knowledge acquisition difference related to
the cognitive processes” – The average knowledge acquisition
difference of the experimental group (related to the usage of
(LSEP)) is higher than the average knowledge acquisition differ-
ence of the control group (related to the usage of (EP)) for the
cognitive processes X (remember, understand, apply, analyze,
and create):

)__()__(EPLSEP xdiffknowxdiffknow �� �

Statistical
alternative
hypotheses

Empirical Evaluation – A Controlled Experiment

 173

H1.3.1 “Average application efficiency” – The average application effi-
ciency aeff of the experimental group (related to the usage of
(LSEP)) is higher than the average application efficiency aeff of
the control group (related to the usage of (EP)).

)()(EPLSEP aeffaeff �� �

H1.3.2 “Average application completeness” – The average application

completeness acomp of the experimental group (related to the
usage of (LSEP)) is higher than the average application com-
pleteness acomp of the control group (related to the usage of
(EP)).

)()(EPLSEP acompacomp �� �

H1.3.3 “Average application accuracy” – The average application accu-

racy aaccu of the experimental group (related to the usage of
(LSEP)) is higher than the average application accuracy aaccu of
the control group (related to the usage of (EP)).

)()(EPLSEP aaccuaaccu �� �

H1.4 “Average information quality” – The average perceived infor-

mation quality inf_qua_LSEP of the experimental group (related
to the usage of (LSEP)) is higher than the average perceived in-
formation quality inf_qua_EP of the control group (related to
the usage of (EP)).

)(inf_)(inf_ EPLSEP quaqua �� �

The alternative hypotheses express that learning spaces lead to higher
competence development and a higher number of well understood and
hence correctly applied experience packages, while the quality of the
provided information increases. The following null hypotheses have to be
tested:

H0.1 “Average understanding correctness” – The average understanding
correctness ucorr of the experimental group (related to the us-
age of (LSEP)) is equal to or lower than the average understand-
ing correctness ucorr of the control group (related to the usage
of (EP)).

)()(EPLSEP ucorrucorr �� �

H0.2.1 “Average knowledge acquisition difference” – The average

knowledge acquisition difference of the experimental group (re-

Statistical null
hypotheses

Empirical Evaluation – A Controlled Experiment

 174

lated to the usage of (LSEP)) is equal to or lower than the aver-
age knowledge acquisition difference of the control group (re-
lated to the usage of (EP)).

)_()_(EPLSEP diffknowldiffknow �� �

H0.2.2.X “Average knowledge acquisition difference related to the cogni-

tive knowledge dimension” – The average knowledge acquisi-
tion difference of the experimental group (related to the usage
of (LSEP)) is equal to or lower than the average knowledge ac-
quisition difference of the control group (related to the usage of
(EP)) for the cognitive process dimensions X remembering, un-
derstanding, applying, analyzing, and creating.

)__()__(EPLSEP xdiffknowxdiffknow �� �

H0.3.1 “Average application efficiency” – The average application effi-

ciency aeff of the experimental group (related to the usage of
(LSEP)) is equal to or lower than the average application effi-
ciency aeff of the control group (related to the usage of (EP)).

)()(EPLSEP aeffaeff �� �

H0.3.2 “Average application completeness” – The average application

completeness acomp of the experimental group (related to the
usage of (LSEP)) is equal to or lower than the average applica-
tion completeness acomp of the control group (related to the
usage of (EP)).

)()(EPLSEP acompacomp �� �

H0.3.3 “Average application accuracy” – The average application cor-

rectness aaccu of the experimental group (related to the usage
of (LSEP)) is equal to or lower than the average application cor-
rectness aaccu of the control group (related to the usage of
(EP)).

)()(EPLSEP aaccuaaccu �� �

H0.4 “Average perceived information quality” – The average per-

ceived information quality inf_qua of a learning space is higher
than the average perceived information quality inf_qua of an
experience package.

)(inf_)(inf_ EPLSEP quaqua �� �

Empirical Evaluation – A Controlled Experiment

 175

7.1.2 Experimental Variables

During the experiment, three types of variables are under observation:
independent variables (i.e., factors), dependent variables (i.e., response
variables), and disturbing factors (i.e., undesired variables).

7.1.2.1 Independent Variables

Two independent variables exist. The first independent variable treat-
ment is related to the information provided to the subject during the
reuse of an experience package. Two alternatives are used during the
experiment. Alternative 1, i.e., (EP), refers to the usage of standard ex-
perience package descriptions used in the past. Alternative 2, i.e., (LSEP),
refers to providing the subject with augmented experience packages,
i.e., learning spaces enriching an experience package. The second vari-
able sequence is used for the investigation of sequence effects, i.e.,
whether the order of treatments has an impact on the treatment effect
(see Section 7.4.6 and Section C.5.2 for further details).

7.1.2.2 Data Collection of Dependent Variables

In the following, the measurement of the dependent variables is made
explicit by providing formulas and descriptions of the direct measures
used. The detailed questionnaires can be found in the Appendix.

Treatment

Sequence

Em
pi

ric
al

 E
va

lu
at

io
n

–
A

 C
on

tr
ol

le
d

Ex
pe

rim
en

t

17

6

Ta
bl

e
42

D

at
a

co
lle

ct
io

n
of

 d
ep

en
de

nt
 v

ar
ia

bl
es

Depemdemt
Variable

Name

Formula

Range

Direct Meas-
ures

Description

uc
or

r

Understanding cor-
rectness

� �qu
es
tio
ns

uc
or
r

i
i

qu
es
tio
n

uc
or
r

_
#

1
_

Su
m

 o
f

al
l q

ue
st

io
ns

 a
sk

in
g

th
e

su
bj

ec
t

fa
ct

s
an

d
re

la
tio

ns
hi

ps
 a

bo
ut

 t
he

 e
xp

er
ie

nc
e

pa
ck

ag
e

an
d

its

re
la

te
d

co
nt

ex
t.

 F
or

 e
ac

h
qu

es
tio

n,
 a

 m
ax

im
um

nu

m
be

r
of

 p
oi

nt
s

ca
n

be
 o

bt
ai

ne
d

w
he

n
it

is

an
sw

er
ed

 c
or

re
ct

ly
.

�
�

m
ax

_
,0
sc
or
e

R
�

uc
or

r_
qu

es
tio

n
i

Th
e

an
sw

er
s

to
 s

pe
ci

fic
 q

ue
st

io
ns

 a
re

 e
va

lu
at

ed

re
ga

rd
in

g
th

ei
r

co
rr

ec
tn

es
s.

 T
he

y
ar

e
pa

rt
 o

f
th

e
po

st
-

te
st

 q
ue

st
io

nn
ai

re
 a

nd
 h

av
e

ei
th

er
 a

 b
in

ar
y

sc
al

e
w

ith

co
rr

ec
t

an
sw

er
s

en
co

de
d

as
 “

1”
 a

nd
 in

co
rr

ec
t

an
sw

er
s

en
co

de
d

as
 “

0”
, o

r
a

nu
m

er
ic

al
 s

ca
le

 t
ha

t
de

pe
nd

s
on

 t
he

 d
iff

ic
ul

ty
 o

f
th

e
qu

es
tio

n.

po
st

t_
qu

es
tio

n
i

Th
e

an
sw

er
s

of
 t

he
 e

nt
ire

 k
no

w
le

dg
e

qu
es

tio
nn

ai
re

ar

e
ev

al
ua

te
d

re
ga

rd
in

g
th

ei
r

co
rr

ec
tn

es
s.

 T
he

y
ha

ve
 a

bi

na
ry

 s
ca

le
 w

ith
 c

or
re

ct
 a

ns
w

er
s

en
co

de
d

as
 “

1”
 a

nd

in
co

rr
ec

t
an

sw
er

s
en

co
de

d
as

 “
0”

, o
r

a
nu

m
er

ic
al

sc

al
e

th
at

 d
ep

en
ds

 o
n

th
e

di
ff

ic
ul

ty
 o

f
th

e
qu

es
tio

ns
.

Th
e

te
st

 is
 p

er
fo

rm
ed

 a
ft

er
 t

he
 e

xp
er

im
en

t
tr

ea
tm

en
t.

kn
ow

_d
iff

Knowledge acquisition difference

�� ��

�

qu
es
tio
ns

i
i

qu
es
tio
ns

i
i

qu
es
tio
n

pr
et

qu
es
tio
n

po
st
t

#

1

#

1

__

D
iff

er
en

ce
 b

et
w

ee
n

th
e

su
m

 o
f

al
l p

os
t-

te
st

 q
ue

st
io

ns

as
ki

ng
 t

he
 s

ub
je

ct
 f

ac
ts

 a
nd

 r
el

at
io

ns
hi

ps
 a

bo
ut

 t
he

in

fo
rm

at
io

n
pr

ov
id

ed
 in

 a
n

ex
pe

rie
nc

e
pa

ck
ag

e,

re
sp

ec
tiv

el
y

le
ar

ni
ng

 s
pa

ce
, m

in
us

 t
he

 s
um

 o
f

al
l p

re
-

te
st

 q
ue

st
io

ns
. F

or
 e

ac
h

qu
es

tio
n

a
m

ax
im

um
 n

um
be

r
of

 p
oi

nt
s

ca
n

be
 o

bt
ai

ne
d

w
he

n
it

is
 a

ns
w

er
ed

co

rr
ec

tly
. Q

ue
st

io
ns

 a
dd

re
ss

 a
ll

th
e

co
gn

iti
ve

 le
ve

ls
 o

f
re

m
em

be
rin

g,
 u

nd
er

st
an

di
ng

, a
pp

ly
in

g,
 a

na
ly

zi
ng

,
an

d
cr

ea
tin

g.

�
�

m
ax

_
,0
sc
or
e

R
�

pr
et

_q
ue

st
io

n i
Th

e
te

st
 c

on
si

st
s

of
 t

he
 s

am
e

qu
es

tio
ns

 a
s

th
e

po
st

-
te

st
 a

nd
 is

 p
er

fo
rm

ed
 b

ef
or

e
th

e
ex

pe
rim

en
t

tr
ea

tm
en

t.

kn
ow

_d
iff

_x

Knowledge
acquisition diff.

on cog. level

�� ��

�

x
qu
es
tio
ns

i
i

x
qu
es
tio
ns

i
i

x
qu
es
tio
n

pr
et

x
qu
es
tio
n

po
st
t

_
#

1

_
#

1

_
_

_
_

�
�

m
ax

_
,0
sc
or
e

R
�

po
st

t_
qu

es
tio

n
_x

i
Th

e
an

sw
er

s
of

 t
he

 q
ue

st
io

ns
 f

or
 a

 c
og

ni
tiv

e
le

ve
l x

ar

e
ev

al
ua

te
d

re
ga

rd
in

g
th

ei
r

co
rr

ec
tn

es
s.

 T
he

y
ha

ve
 a

bi

na
ry

 s
ca

le
 w

ith
 c

or
re

ct
 a

ns
w

er
s

en
co

de
d

as
 “

1”
 a

nd

in
co

rr
ec

t
an

sw
er

s
en

co
de

d
as

 “
0”

, o
r

a
nu

m
er

ic
al

sc

al
e

th
at

 d
ep

en
ds

 o
n

th
e

di
ff

ic
ul

ty
 o

f
th

e
qu

es
tio

ns
.

Th
e

te
st

 is
 p

er
fo

rm
ed

 a
ft

er
 t

he
 e

xp
er

im
en

t
tr

ea
tm

en
t.

Em
pi

ric
al

 E
va

lu
at

io
n

–
A

 C
on

tr
ol

le
d

Ex
pe

rim
en

t

17

7

pr
et

_q
ue

st
io

n_
x i

Th
e

te
st

 c
on

si
st

s
of

 t
he

 s
am

e
qu

es
tio

ns
 a

s
th

e
po

st
-

te
st

 a
nd

 is
 p

er
fo

rm
ed

 b
ef

or
e

th
e

ex
pe

rim
en

t
tr

ea
tm

en
t.

sc
or

e_
id

en
t

Ea
ch

 s
ub

je
ct

 h
as

 t
o

id
en

tif
y

an
d

m
ar

k
de

fe
ct

s
(i.

e.
,

co
de

 s
m

el
ls

) i
n

as
si

gn
m

en
ts

. E
ac

h
as

si
gm

en
t

is
 r

el
at

ed

to
 a

n
ex

pe
rie

nc
e

pa
ck

ag
e,

 r
es

pe
ct

iv
el

y
le

ar
ni

ng
 s

pa
ce

.
Sc

or
e_

id
en

t
co

ns
is

ts
 o

f
po

in
ts

 r
ec

ei
ve

d
fo

r
co

rr
ec

tly

id
en

tif
yi

ng
 a

nd
 m

ar
ki

ng
 a

 s
pe

ci
fic

 d
ef

ec
t.

sc

or
e_

re
m

ov
e

Ea
ch

 s
ub

je
ct

 h
as

 t
o

re
m

ov
e

th
e

id
en

tif
ie

d
de

fe
ct

s
in

th

e
as

si
gn

m
en

ts
. S

co
re

_r
em

ov
e

co
ns

is
ts

 o
f

po
in

ts

re
ce

iv
ed

 f
or

 c
or

re
ct

ly
 r

em
ov

in
g

a
de

te
ct

ed
 d

ef
ec

t.

ae
ff

Application
 efficiency

tim
e

n
ap
pl
ic
at
io

re
m
ov
e

sc
or
e

id
en
t

sc
or
e

de
fe
ct
s

i

de
fe
ct
s

i
i

i

_

_
_

#
#

�
�

�

D
iv

is
io

n
of

 t
he

 t
ot

al
 s

co
re

 f
or

 id
en

tif
yi

ng
 a

nd

re
m

ov
in

g
de

fe
ct

s
by

 t
he

 t
ot

al
 t

im
e

sp
en

t
on

re

fa
ct

or
in

g.

�
�

R

ap
pl

ic
a-

tio
n_

tim
e

Ti
m

e
us

ed
 f

or
 t

he
 id

en
tif

ic
at

io
n

an
d

re
m

ov
al

 o
f

a
de

fe
ct

.

sc
or

e_
id

en
t,

sc

or
e_

re
m

ov
e

Se
e

ab
ov

e
ac

om
p

Application
completeness

sc
or
e

re
m
ov
e

sc
or
e

id
en
t

sc
or
e

de
fe
ct
s

i

de
fe
ct
s

i
i

i

m
ax

_

_
_

#
#

�
�

�

D
iv

is
io

n
of

 t
he

 t
ot

al
 s

co
re

 f
or

 id
en

tif
yi

ng
 a

nd

re
m

ov
in

g
de

fe
ct

s
by

 t
he

 h
ig

he
st

 s
co

re
 p

os
si

bl
e

fo
r

al
l

as
si

gm
en

ts
 in

 t
he

 e
xp

er
im

en
ta

l r
un

.

�
� 1,0

�
R

m
ax

_s
co

re

Th
e

m
ax

im
um

 s
co

re
 o

f
12

.

#c
or

-
re

ct
_d

ef
ec

ts
_f

ou
nd

C
or

re
ct

_d
ef

ec
ts

_f
ou

nd
 c

on
si

st
s

of
 t

he
 n

um
be

r
of

co

rr
ec

t
de

fe
ct

s
fo

un
d

by
 a

 s
ub

je
ct

.
aa

cc
u

Application
accuracy

de
fe
ct

as
in
di
ca
te
d

de
fe
ct
s

fo
un
d

de
fe
ct
s

co
rr
ec
t

_
_

_
#

_
_

#

D
iv

is
io

n
of

 t
he

 t
ot

al
 n

um
be

r
of

 c
or

re
ct

 d
ef

ec
ts

 f
ou

nd

in
 t

he
 c

od
e

by
 t

he
 d

ef
ec

ts
 in

di
ca

te
d

as
 a

 d
ef

ec
t

by
 t

he

su
bj

ec
ts

.

�
� 1,0

�
R

#d
e-

fe
ct

s_
in

di
ca

te
d

_a
s_

de
fe

ct

Th
is

 m
ea

su
re

 c
or

re
sp

on
ds

 t
o

th
e

to
ta

l n
um

be
r

of

de
fe

ct
s

id
en

tif
ie

d
as

 a
 d

ef
ec

t
by

 t
he

 s
ub

je
ct

.

qu
es

-
tio

n_
in

f_
qu

a_
s

co
re

i

Ea
ch

 q
ue

st
io

n
us

es
 a

 s
ev

en
-p

oi
nt

 L
ik

er
t-

ty
pe

 s
ca

le

(L
ik

er
t,

 1
93

2)
. I

t
re

fle
ct

s
th

e
su

bj
ec

tiv
e

pe
rc

ep
tio

n
of

th

e
su

bj
ec

ts
 a

bo
ut

 t
he

 q
ua

lit
y

of
 t

he
 in

fo
rm

at
io

n
pr

ov
id

ed
 in

 a
n

ex
pe

rie
nc

e
pa

ck
ag

e,
 r

es
pe

ct
iv

el
y

a
le

ar
ni

ng
 s

pa
ce

. F
iv

e
po

ss
ib

le
 d

im
en

si
on

s
w

er
e

as
se

ss
ed

 (“
us

ef
ul

”
vs

. “
us

el
es

s”
, “

ab
so

rb
in

g”
 v

s.

“b
or

in
g”

, “
ea

sy
”

vs
. “

di
ff

ic
ul

t”
, “

cl
ea

r”
 v

s.

“c
on

fu
si

ng
”,

 “
co

m
pl

et
e

vs
. i

nc
om

pl
et

e”
.)

in
f_

qu
a

Perceived information
quality

qu
es
tio
ns

qu
a

sc
or
e

qu
a

qu
es
tio
n

qu
es
tio
ns

qu
a i

i

_
in

f_
#

_
in

f_
_

_
in

f_
#

1� �

�
� 7,1

�
R

#i
nf

_q
ua

_q
ue

s
tio

ns

#i
nf

_q
ua

_q
ue

st
io

ns
 =

 5

Empirical Evaluation – A Controlled Experiment

 178

7.1.2.3 Data Collection of Disturbing Factors

The values of the undesired variables are measured by questionnaires
that all subjects must complete (see Table 37). Part of the questions were
filled in before the experiment started (i.e., briefing questionnaire), the
other questions after the experimental periods (i.e., debriefing question-
naire). The following table provides a more detailed description of the
disturbing factors.

7.1.3 Experiment Description

7.1.3.1 Subjects

The experimental subjects were undergraduate and graduate students
with an average study time in computer science of 3.5 years and an
average software development experience of 4.2 years. The students of
the University of Kaiserslautern were enrolled in a three-semester class
about software engineering fundamentals and special software engi-
neering courses. Some of them had attended specific SE courses (e.g.,
quality assurance, process modeling, or project management). The
courses were supplemented by practical sessions. All subjects took part
in a practicum, where a software system was developed during a 13-
week period. One requirement of the experiment’s design was that the
experiment must be perfectly integrated into the system’s development
process. This ensured that the students were motivated.

Subjects:
undergraduate
and graduate
students

Em
pi

ric
al

 E
va

lu
at

io
n

–
A

 C
on

tr
ol

le
d

Ex
pe

rim
en

t

17

9

Ta
bl

e
43

D

at
a

co
lle

ct
io

n
of

 d
is

tu
rb

in
g

fa
ct

or
s

Response
Variable

Name

Formula

Range

Direct Meas-
ures

Description

qu
es

-
tio

n_
ex

p_
de

v
_s

co
re

i

Th
e

qu
es

tio
ns

 o
f

th
is

 c
at

eg
or

y
m

ea
su

re
 t

he
 e

xp
er

ie
nc

e
le

ve
l i

n
so

ft
w

ar
e

de
ve

lo
pm

en
t

in
 g

en
er

al
 (S

ee
 A

pp
en

di
x

A
.1

).
Th

e
qu

es
tio

ns
 u

se
 a

 7
-p

oi
nt

 L
ik

er
t-

ty
pe

 s
ca

le
 (L

ik
er

t,
 1

93
2)

. E
ac

h
an

sw
er

 w
as

 m
ap

pe
d

to
 t

he
 v

al
ue

 r
an

ge
 o

f
R

=
 [0

,6
] a

ss
um

in
g

eq
ua

l d
is

ta
nc

es
 b

et
w

ee
n

po
ss

ib
le

 a
ns

w
er

s
(“

no
 e

xp
er

ie
nc

e”
 is

en

co
de

d
as

 “
0”

, “
ve

ry
 lo

w
 e

xp
er

ie
nc

e”
 is

 e
nc

od
ed

 a
s

“1
”,

“l

ow
 e

xp
er

ie
nc

e”
 a

s
“2

”,
 “

ne
ut

ra
l”

 is
 e

nc
od

ed
 a

s
“3

”,

“m
ed

iu
m

 e
xp

er
ie

nc
e”

 is
 e

nc
od

ed
 a

s
“4

”,
 “

hi
gh

 e
xp

er
ie

nc
e”

 is

en
co

de
d

as
 “

5”
,a

nd
 “

ex
pe

rt
”

is
 e

nc
od

ed
 a

s
“6

”)
.

ex
p_

de
v

Experience in software devel-
opment

qu
es
tio
ns

de
v

sc
or
e

de
v

qu
es
tio
n

qu
es
tio
ns

de
v i

i

_
ex

p_
#

_
ex

p_
_

_
ex

p_
#

1� �

�
� 6,0

�
R

#e
xp

_d
ev

_q
u

es
tio

ns

A
n

ex
pe

rie
nc

e
qu

es
tio

nn
ai

re
 g

at
he

rs
 t

he
 e

xp
er

ie
nc

e
of

 t
he

su

bj
ec

ts
. D

iv
id

in
g

th
e

to
ta

l s
co

re
 b

y
th

e
nu

m
be

r
of

 q
ue

st
io

ns

pr
ov

id
es

 a
 n

or
m

al
iz

ed
 v

al
ue

 r
an

ge
 o

f
R

=
 [0

,6
].

qu
es

-
tio

n_
ex

p_
jp

_s
co

re
i

Th
e

qu
es

tio
ns

 o
f

th
is

 c
at

eg
or

y
m

ea
su

re
 t

he
 e

xp
er

ie
nc

e
le

ve
l i

n
Ja

va
 p

ro
gr

am
m

in
g.

 T
he

 q
ue

st
io

ns
 a

re
 c

od
ed

 t
he

 s
am

e
as

ex

p_
de

v.

ex
p_

jp

Experience
in java

program-
ming

qu
es
tio
ns

jp

sc
or
e

jp
qu
es
tio
n

qu
es
tio
ns

jp

i
i

_
ex

p_
#

_
ex

p_
_

_
ex

p_
#

1� �

�
� 6,0

�
R

#e
xp

_j
p_

qu
es

tio
ns

D

iv
id

in
g

th
e

to
ta

l s
co

re
 b

y
th

e
nu

m
be

r
of

 q
ue

st
io

ns
 p

ro
vi

de
s

a
no

rm
al

iz
ed

 v
al

ue
 r

an
ge

 o
f

R
=

 [0
,6

].
qu

es
-

tio
n_

ex
p_

re
f_

sc
or

e i

Th
e

qu
es

tio
ns

 o
f

th
is

 c
at

eg
or

y
m

ea
su

re
 t

he
 e

xp
er

ie
nc

e
le

ve
l i

n
re

fa
ct

or
in

g.
 T

he
 q

ue
st

io
ns

 a
re

 c
od

ed
 t

he
 s

am
e

as
 e

xp
_d

ev
.

ex
p_

re
f

Experi-
ence in

refactor-
ing

qu
es
tio
ns

re
f

sc
or
e

re
f

qu
es
tio
n

qu
es
tio
ns

re
f i

i

_
ex

p_
#

_
ex

p_
_

_
ex

p_
#

1� �

�
� 6,0

�
R

#e
xp

_r
ef

_q
ue

st
io

ns

D
iv

id
in

g
th

e
to

ta
l s

co
re

 b
y

th
e

nu
m

be
r

of
 q

ue
st

io
ns

 p
ro

vi
de

s
a

no
rm

al
iz

ed
 v

al
ue

 r
an

ge
 o

f
R

=
 [0

,6
].

ex
p_

sq
a

ence in
soft-
ware

quality
assur-

qu
es
tio
ns

sq
a

sc
or
e

sq
a

qu
es
tio
n

qu
es
tio
ns

sq
a i

i

_
ex

p_
#

_
ex

p_
_

_
ex

p_
#

1� �

�
� 6,0

�
R

qu

es
-

tio
n_

ex
p_

sq
a

_s
co

re
i

Th
e

qu
es

tio
ns

 o
f

th
is

 c
at

eg
or

y
m

ea
su

re
 t

he
 e

xp
er

ie
nc

e
le

ve
l i

n
so

ft
w

ar
e

qu
al

ity
 a

ss
ur

an
ce

. T
he

 q
ue

st
io

ns
 a

re
 c

od
ed

 t
he

 s
am

e
as

 e
xp

_d
ev

.

pr
e-

te
st

Pre-test
score

� �

qu
es
tio
ns

i
i

pr
et

qu
es
tio
n

#

1
_

�

m
a

,0
�

R

qu
es

-
tio

n_
pr

et
i

Th
e

an
sw

er
s

of
 t

he
 c

om
pl

et
e

kn
ow

le
dg

e
pr

e-
te

st

qu
es

tio
nn

ai
re

 f
ro

m
 t

he
 f

irs
t

da
y

ar
e

ev
al

ua
te

d
in

 t
er

m
s

of
 t

he
ir

co
rr

ec
tn

es
s.

 T
hi

s
m

ea
su

re
 c

or
re

sp
on

ds
 t

o
th

e
to

ta
l s

co
re

ob

ta
in

ed
 b

y
a

su
bj

ec
t.

Em
pi

ric
al

 E
va

lu
at

io
n

–
A

 C
on

tr
ol

le
d

Ex
pe

rim
en

t

18

0 Response
Variable

Name

Formula

Range

Direct Meas-
ures

Description

#e
xp

_s
qa

_q
u

es
tio

ns

D
iv

id
in

g
th

e
to

ta
l s

co
re

 b
y

th
e

nu
m

be
r

of
 q

ue
st

io
ns

 p
ro

vi
de

s
a

no
rm

al
iz

ed
 v

al
ue

 r
an

ge
 o

f
R

=
 [0

,6
].

qu
es

-
tio

n_
ex

p_
m

ai
n_

sc
or

e i

Th
e

qu
es

tio
ns

 o
f

th
is

 c
at

eg
or

y
m

ea
su

re
 t

he
 e

xp
er

ie
nc

e
le

ve
l i

n
so

ft
w

ar
e

m
ai

nt
en

an
ce

. T
he

 q
ue

st
io

ns
 a

re
 c

od
ed

 t
he

 s
am

e
as

ex

p_
de

v.

ex
p_

m
a

in

Experience
in software

main-
tenace

qu
es
tio
ns

m
ai
n

sc
or
e

m
ai
n

qu
es
tio
n

qu
es
tio
ns

m
ai
n i

i

_
ex

p_
#

_
ex

p_
_

_
ex

p_
#

1� �

�
� 6,0

�
R

#e
xp

_m
ai

n_
q

ue
st

io
ns

D

iv
id

in
g

th
e

to
ta

l s
co

re
 b

y
th

e
nu

m
be

r
of

 q
ue

st
io

ns
 p

ro
vi

de
s

a
no

rm
al

iz
ed

 v
al

ue
 r

an
ge

 o
f

R
=

 [0
,6

].
qu

es
tio

n_
tn

i
Fi

ve
 q

ue
st

io
ns

 w
er

e
po

se
d

ab
ou

t
th

e
Ti

m
e

N
ee

de
d.

 If
 a

 s
ub

je
ct

ha

d
th

e
fe

el
in

g
th

at
 t

he
re

 w
as

 n
ot

 e
no

ug
h

tim
e

to
 f

ul
fil

l a

sp
ec

ifi
c

ta
sk

, t
he

n
“y

es
”

(e
nc

od
ed

 a
s

“1
”)

 is
 m

ar
ke

d,

ot
he

rw
is

e
“n

o”
 (e

nc
od

ed
 a

s
“0

”)
.

tn

time needed

qu
es
tio
ns

tn

tn
qu
es
tio
n

qu
es
tio
ns

tn

i
i

_
#

_
_

#

1� �

�
� 1,0

�
R

#t
n_

qu
es

tio
n

s
Si

m
pl

y
ad

di
ng

 t
he

 s
co

re
s

pe
r

an
sw

er
 p

ro
vi

de
s

a
m

ea
su

re
 o

f
tim

e
ne

ed
ed

 w
ith

 a
 m

in
im

al
 s

co
re

 o
f

0
an

d
a

m
ax

im
um

 s
co

re

of
 5

. D
iv

id
in

g
th

e
nu

m
be

r
of

 q
ue

st
io

ns
 p

ro
vi

de
s

a
no

rm
al

iz
ed

va

lu
e

ra
ng

e
of

 R
 =

 [0
,1

].
qu

es
tio

n_
in

f_
qu

a_
LS

EP
_s

co
re

i

Ea
ch

 q
ue

st
io

n
us

es
 a

 s
ev

en
-p

oi
nt

 L
ik

er
t-

ty
pe

 s
ca

le
 (L

ik
er

t,

19
32

).
It

re
fle

ct
s

th
e

su
bj

ec
tiv

e
pe

rc
ep

tio
n

of
 t

he
 s

ub
je

ct
s

ab
ou

t
th

e
qu

al
ity

 o
f

th
e

in
fo

rm
at

io
n

pr
ov

id
ed

 in
 a

 le
ar

ni
ng

sp

ac
e.

 F
iv

e
di

m
en

si
on

s
w

er
e

po
ss

ib
le

 (“
us

ef
ul

”
vs

. “
us

el
es

s”
,

“a
bs

or
bi

ng
”

vs
. “

bo
rin

g”
, “

ea
sy

”
vs

. “
di

ff
ic

ul
t”

, “
cl

ea
r”

 v
s.

“c

on
fu

si
ng

”,
 “

co
m

pl
et

e
vs

. i
nc

om
pl

et
e”

).

in
f_

qu
a

_L
SE

P

Perceived informa-
tion

quality of learning
space

qu
es
tio
ns

LS
EP

qu
a

sc
or
e

LS
EP

qu
a

qu
es
tio
n

qu
es
tio
ns

LS
EP

qu
a

i
i

_
_

in
f_

#

_
_

in
f_

_
_

_
in

f_
#

1� �

�
� 7,1

�
R

#i
nf

_q
ua

_L
SE

P_
qu

es
tio

ns

D
iv

id
in

g
th

e
to

ta
l s

co
re

 b
y

th
e

nu
m

be
r

of
 q

ue
st

io
ns

 p
ro

vi
de

s
a

no
rm

al
iz

ed
 v

al
ue

 r
an

ge
 o

f
R

=
 [1

,7
].

qu
es

tio
n_

in
f_

qu
a_

EP
_s

co
re

i
Ea

ch
 q

ue
st

io
n

us
es

 a
 s

ev
en

-p
oi

nt
 L

ik
er

t-
ty

pe
 s

ca
le

 (L
ik

er
t,

19

32
).

It
re

fle
ct

s
th

e
su

bj
ec

tiv
e

pe
rc

ep
tio

n
of

 t
he

 s
ub

je
ct

s
ab

ou
t

th
e

qu
al

ity
 o

f
th

e
in

fo
rm

at
io

n
pr

ov
id

ed
 in

 a
n

ex
pe

rie
nc

e
pa

ck
ag

e.
 F

iv
e

di
m

en
si

on
s

w
er

e
po

ss
ib

le
 (“

us
ef

ul
”

vs
.

“u
se

le
ss

”,
 “

ab
so

rb
in

g”
 v

s.
 “

bo
rin

g”
, “

ea
sy

”
vs

. “
di

ff
ic

ul
t”

,
“c

le
ar

”
vs

. “
co

nf
us

in
g”

, “
co

m
pl

et
e

vs
. i

nc
om

pl
et

e”
).

in
f_

qu
a

_E
P

Information quality
of

experience package

qu
es
tio
ns

EP
qu
a

sc
or
e

EP
qu
a

qu
es
tio
n

qu
es
tio
ns

EP
qu
a

i
i

_
_

in
f_

#

_
_

in
f_

_
_

_
in

f_
#

1� �

�
� 7,1

�
R

#i
nf

_q
ua

_E
P_

qu
es

tio
ns

D

iv
id

in
g

th
e

to
ta

l s
co

re
 b

y
th

e
nu

m
be

r
of

 q
ue

st
io

ns
 p

ro
vi

de
s

a
no

rm
al

iz
ed

 v
al

ue
 r

an
ge

 o
f

R
=

 [1
,7

].

Empirical Evaluation – A Controlled Experiment

 181

7.1.3.2 Experimental Design

For evaluating the effect of learning spaces, a counterbalanced, within-
subject, two-factorial design was selected. An experiment is balanced
when all alternatives of the independent variable (or treatment groups)
have the same number of experimental units. More details about this
design can be found in (Winer, Brown, & Michels, 1991). One independ-
ent variable (i.e., factor) is the type of information provided (i.e., EP or
LSEP) and the second one is the sequence of the treatment (i.e., LSEP �
EP or EP � LSEP). The reason for selecting a within-subject design was
primarily the low number of available subjects (i.e., 19) and the risk of
losing power if a parallel design had been used. Higher power can be
achieved because such a “crossover” design removes the intersubject
variability from the comparison between treatments, and can provide
unbiased estimates for the difference between treatments. In addition,
the within-subject design allows reducing the error variance related to
the differences amongst the subjects (e.g., related to their experience
level). Half of the subjects (group 1) were assigned to use (LSEP) during
the first period and the other half of the subjects (group 2) used (EP) at
the same time. During the second sequence, group 1 used (EP) and
group 2 used (LSEP).

To reduce period and carry-over effects (see Section 7.4.6), two different
sets of experience packages were used. Otherwise, this would have in-
validated the results of the second period. In order to verify the equiva-
lence of the two sets, subjective information on the complexity of the
experience packages was gathered after the experiment (i.e., by the de-
briefing questionnaire). The design is depicted in Figure 38.

In order to prevent these undesired sources of variation from being
brought into the experiment, randomization was done regarding the
selection and sequence of the experience packages used and the sub-
jects’ level of experience. The assignment was to be done completely at
random: Eight experience packages with two different levels of complex-
ity were prepared for the two runs. The labels of the two experience
packages with low complexity were put into one bag, the packages with
high complexity were put into another bag. The sets of two experience
packages were created by asking a subject to draw one label from each
bag (i.e., only four experience packages were used for the experiment).
The low number of subjects is the reason why even with by randomiza-
tion, almost all subjects with high or low experience would be assigned
to the same group. This would lead to undesired effects. Therefore, the
results of the briefing questionnaire were used to assign the subjects to
four groups of different experience levels (i.e., high, medium, low, or no
experience). The subjects of each group were assigned randomly to
group 1 and group 2. After the randomization, the questionnaires and
material were selected and prepared in the right order, i.e., the right ex-

Design:
counter-
balanced
within-subject
two-factorial
experiment

Randomizat-
ion was done
regarding
experience
packages and
the subjects’
experience
level

Empirical Evaluation – A Controlled Experiment

 182

perience packages and related assignments in the right sequence. Each
subject remained in the same group for both periods.

7.1.3.3 Experimental Parameters and Materials

The experiment was conducted in one room with the same technical
equipment for each subject. For the experiment, the task of refactoring
was chosen. Refactoring is the process of changing a software system in
such a way that it does not alter the external behavior of the code, yet
improves its internal structure (Fowler, 1999). All participants had at least
basic skills in Java programming. Hence, they knew the Java constructs
and were able to understand Java code. The system used for this ex-
periment was the complete running Java system developed by the stu-
dents during their practicum. The system consists of six packages and
more than 80 classes. The system has been implemented in Eclipse. All
experience packages, questionnaires, and assignments were related to
the topic of refactoring. The material language was English, which was
no problem for the subjects.

7.1.3.4 Experimental Task and Procedure

The week before the experiment took place, the students attended a
preparation day (see Figure 38). The goal was to inform the subjects
about the experimental setting, the procedure, and the development ac-
tivity (i.e., refactoring). No tool-related training was necessary, since the
students had to use a normal web browser in order to access the experi-
ence packages and learning spaces in the Wiki. The experimental proce-
dure and tasks are shown in Figure 38.

Both groups had to pass a pre-test and a post-test before respectively
after, each experimental unit. A pre-test captures the knowledge of all
the subjects before an experimental period and a post-test measures the
knowledge after an experimental period.

The experiment was then conducted on two consecutive days with two
experimental units per day. The subjects were only told that they are
working on refactoring tasks, but they were not informed about the
details of the experiment, e.g., hypotheses to be tested or the difference
between the groups. During the second day, at the end of each experi-
mental unit, a debriefing questionnaire had to be completed. The sub-
jects returned the tests and the questionnaires back to the evaluators be-
fore they left the room.

Application
domain: refac-
toring

Preparation
day

Pre- & Post-
test

Experiment
during two
consecutive
days

Empirical Evaluation – A Controlled Experiment

 183

Figure 38 Experimental procedure

7.2 Data Analysis Procedure

The purpose of the statistical data analysis is to obtain precise, valid, and
objective results from collected data. Not only the independent variables
can have an effect on the dependent variables, but also the disturbing
factors, which were also captured in the experiment. In the following,
the data analysis procedure will be described for the independent and
dependent variables (see Figure 39).

Empirical Evaluation – A Controlled Experiment

 184

After conducting the experiment, the data was transferred from the
paper-based questionnaires to SPSS (version 15) – a statistical analysis
tool. First, a principal component analysis (PCA) was performed for the
disturbing factors related to experience in order to construct highly reli-
able scales. Then, an item analysis was used to select question items for
inclusion and to identify poorly written test items. The items were se-
lected based on their discrimination index (D), discrimination coefficient
I, and item difficulty (p). For these variables, reliability was determined in
order to make a decision, for example, about whether the disturbing
factors were suitable for reducing the measurement error in the analysis
of covariance. Afterwards, an independent sample t-test was done to
identify significant differences between the experiment group and the
control group regarding their experience levels. An outlier and anomaly
analysis was used before the first statistical tests were performed.

The statistical analysis requires selecting appropriate hypothesis tests.
The selection depends, for example, on the number of variables to be
analyzed, the purpose of the analysis, and the distribution type and scale
of the variables. First, the data will be checked for normality. If the data
is non-normal, then non-parametric tests have to be used, otherwise pa-
rametric tests are used. In order to find out whether the data is normally
distributed, a Shapiro Wilk’s W test was performed, which works fine for
smaller samples.

The dependent variables in a counterbalanced, within-subject experi-
ment may be confounded with sequence, carry-over, or period effects.
Therefore, appropriate tests were done to find significant confounding
effects.

When the data is normally distributed and no carry-over effects were
detected, a dependent sample t-test was used. The usage of ANOVA will
return the same decision for two groups as the t-test. If a non-
parametric test had to be used, a Wilcoxon matched pairs test was used.
In order to test whether the test results were robust with respect to dis-
turbing factors, an analysis of covariance (ANCOVA) was conducted. The
underlying assumptions for using ANCOVA (i.e., linear regression and
homogeneity of the regression coefficients) were checked.

Principal com-
ponent analy-
sis

Item analysis

Reliability
analysis

Normality
tests

Check for
confounding
effects

ANOVA

ANCOVA

Empirical Evaluation – A Controlled Experiment

 185

Figure 39 Data analysis procedure

Empirical Evaluation – A Controlled Experiment

 186

After conducting the hypothesis tests, the effect sizes were calculated
and a power analysis was done. Statistical power analysis is used to test
null hypotheses and to understand the strength of the results of an ex-
periment (Cohen, 1988). Usually, research should perform a power
analysis before running the experiment to ensure that the experimental
design will find a statistically significant effect if it exists. The power of a
statistical test is dependent on three different variables: significance level
�, effect size d (based on t-test) or f (based on F-test), and number of
subjects n. In this case an a priori power analysis was difficult because no
effect size was known, since no similar studies are available from which
an effect size could be taken. Therefore, an a posteriori power analysis
for all hypotheses using the obtained effect size was done using the tool
G*Power (ver. 3.0.5) (Faul, 2006). The tool calculates the power based
on a given �, n, d (or f), and the applied hypothesis test.

For evaluating the hypotheses, the significance level � was set to 0.05
(error type I) and the power was assumed to be higher than 0.80. A final
decision about the rejection of the null hypotheses, respectively the ac-
ceptance of the alternative hypotheses, was made.

7.3 Data Preparation

Before the results can be presented and hypothesis tests can be per-
formed, this section describes how scales were derived from the data
sets and how the reliability of some disturbing factors as well as the pre-
and post test questionnaires was improved based on using principal
component analysis (i.e., factor analysis) or item analysis. The reliability
of the disturbing factor has an impact on the reduction of the measure-
ment error in later analysis steps.

7.3.1 Principal Component Analysis of the Briefing Questionnaire

The principal component analysis is a variable reduction procedure. It
serves to aggregate sets of items to a few factors. In this case, PCA has
been applied to all items of the briefing questionnaire, which intend was
to capture the experience level of the subjects. PCA has been used for
identifying items of the briefing questionnaire, which measure the same
construct of experience and which are not correlated (or very low corre-
lation) to the other experience factors. The idea is a minimal set of items
that account for the most of the variance of a factor. The PCA produces
five scales, which describe five different dimensions, i.e., experience lev-
els, as described in Section 7.1.2.3. The detailed procedure and results of
the PCA can be found in Appendix C.1.

A posteriori
power analysis
Effect size
calculations

Significance
level � < 0.05;
power > 0.80

Empirical Evaluation – A Controlled Experiment

 187

The following table shows the Cronbach’s alpha values, which are the
reliability measure for the derived scales based on standardized values.
Fisseni states that a Cronbach’s alpha<0.80 should be considered as
small, 0.80-0.90 as medium, and >0.90 as a high reliability (Fisseni,
1997). However, Cronbach’s alpha depends on the number of items that
belong to a scale: A higher number of items that positively correlate
amongst each other produce higher reliability levels. The inter-item cor-
relation values can be found in Appendix C.1.

Table 44 Reliability analysis of scales for experience levels

Disturbing
Factor

Factor Name Cronbach’s
Alpha Based on
Standardized
Items

N of Items

exp_dev Experience Development .720 5

exp_jp
Experience Java
Programming

.845 4

exp_ref Experience Refactoring .888 4

exp_qa
Experience Software
Quality Assurance

.896 4

exp_main
Experience Software
Maintenance

.951 6

The results in the table show that the PCA produces almost medium or
highly reliable scales for further statistical evaluation. Only the disturbing
factor exp_dev has a lower Cronbach alpha, which is still acceptable.

7.3.2 Item Analysis of the Post-Test Questionnaire

An item analysis based on the post-test data from the second day was
performed to select the best items for inclusion and to identify poorly
written test items. The items were selected based on their discrimination
index (D), discrimination coefficient I, and item difficulty (p). The dis-
crimination index (D) is a measure of a question’s ability to differentiate
between high and low achievers (i.e., the subjects were assigned to
three groups according to their post-test scores of the second day: 27%
lower; 46% middle; 27% upper). The discrimination index is the number
of people in the upper group who answered the item correctly minus the
number of people in the lower group who answered the item correctly,
divided by the number of people in the largest group. The discrimination
index is based on biserial correlation, which measures whether the scale
measured by the test score (i.e., knowledge acquisition) is also measured
by the single item. Item difficulty was measured by the following for-
mula, where m is the number of possible answers to a specific question:

Cronbach
alpha levels

Medium or
highly reliable
scales have
been produced

Item selection
based on:
discrimination
index
discrimination
coefficient
item difficulty

Empirical Evaluation – A Controlled Experiment

 188

100*
_#

)
1

#(#

totalanswered
m
answersfalseanswersright

p �
�

�

The difficulty was corrected first by the fact that people could have
answered correctly by chance and second, by the number of people who
really answered the item (Bühner, 2006). The item difficulty has a range
of [-100,100].

In summary, 28 items were deleted from the test due to negative dis-
crimination indices, very high or low difficulty indices (i.e., resulting in a
dispersion that was too low), and low or even negative discrimination
coefficients. More details about the intermediate results of the item
analysis can be found in Appendix C.2. By doing this, the reliability of
the test with 65 items increased from a Cronbach’s alpha of 0.665 to
0.812. This reliability can be stated as high because the test captures
quite heterogeneous topics and is related to very different cognitive
processes.

The score of the pre- and post-tests were calculated by summing up the
scores of the single items for each cognitive level. The item scores were
defined before the experiment by testing the test with other students
not involved in the experiment. In order to get the total test score, the
cognitive level scores were summed up. Missing values were replaced by
zero. The knowledge acquisition difference was calculated by subtracting
the pre-test score from the post-test score. The score for the cognitive
level apply was not assessed by the test but was calculated by using the
score that students got for the solution of the assignments.

7.4 Experimental Results

This section presents the results of the experiment. First, a group com-
parison between the two groups was done to check whether there were
significant differences between the two groups regarding their experi-
ence. After an outlier and anomalies analysis, first results are presented
by using descriptive statistics. Afterwards, several sections are related to
the investigation of confounding effects, such as period-, sequence, or
carry-over effects, because these are mostly neglected in software engi-
neering evaluations. The results of hypothesis tests are provided next.
The last sections provide sample size calculations for future experiments,
and describe the threats to validity.

7.4.1 Group Comparison on Experience Level

To further control differences between subjects, random assignment of
the subjects to the two groups was done on the basis of four levels of

Item difficulty

Reliability
increased from
0.66 up to 0.81

Calculation of
pre- & post-
test scores

Empirical Evaluation – A Controlled Experiment

 189

experience in order to reduce possible confounding effects. The follow-
ing table shows the descriptives of the disturbing factors related to the
different experience dimensions measured and whether they are nor-
mally distributed.

Table 45 Descriptive statistics of experience level variables

 N Minimum Maximum Mean
Std. De-
viation

Normal Dis-
tribution

Software Development
Experience (exp_dev) 19 .00 1.00 .47 .31 Yes

Java Experience (exp_jp) 19 2.00 6.25 4.20 1.23 Yes

Refactoring experience (exp_ref) 19 1.00 4.75 2.08 1.22 No

SQA experience (exp_qa) 19 1.00 6.00 2.84 1.48 Yes

Software maintenance
experience (exp_main)

19 1.00 5.83 2.61 1.55 No

A test for normality was performed by using the Shapiro-Wilk test
(Shapiro & Wilk, 1965), histograms, boxplots, and (normal and de-
trended) Q-Q plots. The detailed discussion and the outcome can be
found in Appendix C.4.1. The factors exp_ref and exp_main are not
normally distributed. Hence, parametric tests should not be applied and
their results should be checked by performing non-parametric tests, if
applied.

An independent sample t-test was performed to check for significant
differences between the two groups. The results in Table 46 show that
no significant group difference could be found for almost all experience
dimensions by comparing the means of the experimental and control
groups. However, a significant difference (�=.047) for the disturbing
factor exp_qa (experience software quality assurance) was found.

Table 46 Independent samples t-test for experience level equality

 t df
Sig. (2-
tailed)

Mean Differ-
ence

Std.
Error
Differ-
ence

Software development experience (exp_dev) .667 17 .514 .098 .147

Java Experience (exp_jp) .282 17 .781 .164 .581

Refactoring experience(exp_ref) -.197 17 .846 -.114 .577

SQA experience (exp_qa) 2.147 17 .047 1.336 .622

Software maintenance experience (exp_main) .392 17 .700 .287 .733

As stated before, the factors exp_ref and exp_main are not normally
distributed. Therefore, a Mann- Whitney U test for independent samples
was conducted, which is equivalent to the Wilcoxon rank sum test and
the Kruskal-Wallis test for two groups. The results for both variables

Normality test

Independent
sample t-test:
significant
group differ-
ence for
exp_qa

exp_ref and
exp_main are
not normally
distributed

Empirical Evaluation – A Controlled Experiment

 190

exp_ref and exp_main confirm the results of the parametric t-test.

Table 47 Non-parametric Mann-Withney U test for experience level equality

Refactoring
experience

Software main-
tenance experi-
ence

Mann-Whitney U 44.500 37.000

Wilcoxon W 89.500 82.000

Z -.042 -.659

Sig. (2-tailed) .967 .510

The group difference will play a role if the data from the second period
cannot be used due to carry-over effects (see Section C.5.3). In that case,
the intervariability between the subjects cannot be neglected, because
repeated measure analysis is applied. In that case only the data from the
first day can be used and the statistical testing has to be done as for a
parallel design. Hence, special attention has to be paid to this significant
difference between the control and experimental groups.

7.4.2 Outlier Analysis

Occasionally, one encounters data with one or more observations that
deviate markedly from other observations in the sample. Such observa-
tions are called outliers. If an outlier is detected, it calls for detective
work on the part of the researcher because there may be extreme values
of the random variability or the result of deviations from prescribed ex-
perimental procedures, recording errors, etc. In the former instance, they
would be processed in the same manner as the other observations. If
some explanation can be found, one may replace the observation with
new data, correct the observations if records permit, or reject the obser-
vation.

First indications of outliers were provided by higher values for the kurto-
sis of the variables. Outliers can be identified either mathematically or
graphically. A simple mathematical approach is to convert the raw data
into standardized values by a z-transformation. As a rule of thumb, val-
ues higher than +/-2.5 can be suspected of being outliers (i.e., these
corresponds to values outside the 99% confidence interval). In this out-
lier analysis, data points with a z-value lower than +/-2.5 were also se-
lected as outliers: By comparing these outliers with the data set mean
and by looking at the box-and-whisker plot for the data sets, one can
identify outliers more easily. Eight outliers have been detected (see Ap-
pendix C.3).

Significant
group differ-
ence may be
the cause for
different
carry-over
effects

Outliers were
detected
mathemati-
cally and
graphically

Empirical Evaluation – A Controlled Experiment

 191

7.4.3 Anomaly Analysis

This section identifies and discusses anomalies in the data set such as
missing values and undefined values for the dependent variables as well
as for the disturbing factors.

Regarding missing values, the number of missing values was reduced to
four missing values by several measures: first reminding the subjects to
check whether they had covered all the assignments and questions;
second, by checking whether the time values had filled out by the sub-
jects when they delivered their experiment material back to the evalua-
tors, and third, by directly asking the subjects when values were missing
(i.e., the material was checked immediately after delivery). Two of the
missing values were due to a division by zero for the calculation of appli-
cation accuracy (i.e., SPSS categorizes a division by zero as a missing
value). In these cases, the values were replaced by the value zero. The
two other missing values were found in the briefing questionnaire of one
subject (question B3.1 and B3.2). The values were set to “0” (i.e.,
“0”=unexperienced, “1”=experienced) by an interpretation of the re-
sults of related questions because the subject was expected to have pro-
grammed a lower number of applications compared to subjects who had
the value “1”.

Undefined values were detected by using frequency tables created by
SPSS. All the undefined values were related to errors from transferring
the data from the paper-based questionnaires to the SPSS data sheets.

7.4.4 Descriptive Statistics for the Dependent Variables

The following tables show the descriptives of the dependent variables for
each day and each group (i.e., experimental group/day 1; control
group/day 1; experimental group/day 2; control group/day 2). Since ex-
treme outliers were removed from the data set, the mean can be used to
compare the performance of the two groups. For those variables that are
not normally distributed, the median is used.

Table 48 Descriptive statistics of dependent variables (experimental group/day 1)

Dependent Variables
N Min. Max. Mean Median

Std.
Dev. Skewness Kurtosis

Normal
Distribution

ucorr 10 27.00 44.00 36.20 36.00 5.73 -.028 -.915 yes

know_diff 10 10 25 18.20 18.50 5.16 -.095 -1.015 yes

know_diff_remember 10 -1 11 6.90 8.50 3.98 -.870 -.090 yes

know_diff_understand 10 1 10 5.00 6.50 2.45 .454 1.226 yes

know_diff_apply 10 8 24 15.80 15.50 5.51 .303 -.933 yes

know_diff_analyze 10 -3 8 4.90 7.00 4.01 -1.044 -.124 no

Missing values

Undefined
values

Empirical Evaluation – A Controlled Experiment

 192

Dependent Variables

N Min. Max. Mean Median
Std.
Dev. Skewness Kurtosis

Normal
Distribution

aeff 9 .115 .781 .446 .451 .221 -.126 .717 yes

acomp 10 .333 1.000 .658 .645 .230 .303 -.933 yes

aaccu 10 .300 1.000 .681 .670 .204 -.242 .167 yes

Table 49 Descriptive statistics of dependent variables (control group/day 1)

Dependent Variables
N Min. Max. Mean Median

Std.
Dev. Skewness Kurtosis

Normal
Distribution

ucorr 9 18.00 38.00 29.33 32.00 7.01 -.391 -1.347 yes

know_diff 9 1 11 7.44 8.00 3.61 -.751 -.461 yes

know_diff_remember 9 0 3 2.00 2.00 1.12 -.690 -.800 yes

know_diff_understand 9 -1 4 1.56 1.00 1.81 .210 -1.322 yes

know_diff_apply 9 2 12.25 6.78 6.50 3.29 .082 -.664 yes

know_diff_analyze 9 0 8 3.22 3.00 2.59 .688 -.148 yes

know_diff_create 9 0 2 .67 1.00 .70 .606 -.286 no

aeff 9 .091 .542 .274 .243 .150 .487 -.524 yes

acomp 9 .167 .708 .421 .417 .174 .033 -.688 yes

aaccu 9 .200 .775 .514 .500 .167 -.355 .614 yes

Table 50 Descriptive statistics of dependent variables (experimental group/day 2)

Dependent Variables
N Min. Max. Mean Median

Std.
Dev. Skewness Kurtosis

Normal
Distribution

ucorr 8 28.00 46.00 40.00 41.00 5.88 -1,214 1,848 yes

know_diff 9 8 26 17.67 20.00 7.40 -.092 -2.080 yes

know_diff_remember 8 1 8 5.13 5.50 2.17 -.774 -.923 yes

know_diff_understand 9 2 12 7.33 7.00 3.60 .043 -1.404 yes

know_diff_apply 9 5 17 9.917 8.00 4.64 .555 -1.194 yes

know_diff_analyze 9 0 8 4.44 6.00 2.55 -.467 -.688 yes

know_diff_create 9 0 2 1.22 1.00 .83 -.501 -1.275 no

aeff 9 .143 .703 .348 .333 .179 .891 .550 yes

acomp 9 .208 .708 .413 .333 .193 .555 -1.194 yes

aaccu 9 .446 1.000 .775 .807 .190 -.493 -.637 yes

Empirical Evaluation – A Controlled Experiment

 193

Table 51 Descriptive statistics of dependent variables (control group/day 2)

Dependent Variables
N Min. Max. Mean Median

Std.
Dev. Skewness Kurtosis

Normal
Distribution

ucorr 10 24.00 42.00 33.80 33.00 6.60 -.035 -1.649 yes

know_diff 10 -6 10 4.50 6.00 4.83 -1.135 1.240 yes

know_diff_remember 8 1 3 1.63 1.50 .74 .824 -.152 yes

know_diff_understand 10 -4 7 1.70 2.00 3.02 -.186 .808 yes

know_diff_apply 10 2 16 7.700 7.62 4.26 .617 .200 yes

know_diff_analyze 10 -2 4 1.00 0.00 1.944 .45 -.516 yes

know_diff_create 9 -1 2 .44 0.00 .882 .21 .144 yes

aeff 10 .077 .394 .242 .252 .105 -.398 -.345 yes

acomp 9 .083 .510 .282 .270 .137 .082 -.664 yes

aaccu 10 .288 1.000 .626 .603 .220 .284 -.595 yes

Table 52 Descriptive statistics of dependent variables (inf_qua)

Dependent Variables
N Min. Max. Mean Median

Std.
Dev. Skewness Kurtosis

Normal
Distribution

inf_qua (LSEP) 19 3.80 6.60 5.2000 5.20 .16258 .117 -.189 yes

inf_qua (EP) 19 2.60 6.20 4.4211 4.40 .24177 .079 -.428 Yes

As can be seen for the first day (i.e., tables marked with day 1), the sub-
jects of the experimental group got higher mean values for all depend-
ent variables that are normally distributed. The biggest differences were
obtained for the knowledge acquisition difference variables, except for
know_diff_create (mdcontrol = 1.00; mdexperimental = 1.00). Regarding effi-
ciency (aeff), completeness (acomp), and accuracy (aaccu), the mean dif-
ferences between the experimental and control groups were smaller, but
the performance of the experimental group was still better than that of
the control group.

For the second day (i.e., tables marked with day 2), the difference for
understanding correctness (ucorr) were similar to the first day.

Regarding perceived information quality, it can be seen that the subject
rated the quality higher for the learning spaces compared to the experi-
ence packages (MLSEP = 5.20; MEP = 4.42). The following table shows the
relative differences between the two days.

First day:
Experimental
group per-
forms better
than control
group

Second day:
Experimental
group per-
forms better
than control
group

Empirical Evaluation – A Controlled Experiment

 194

Table 53 Relative improvement of the two two days (experimental vs. control group)

Dependent Variables Day 1 Day 2 Average

ucorr 23.41 % 18.34 % 20.88 %

know_diff 144.62 % 292.67 % 218.65 %

know_diff_remember 245.00 % 214.72 % 229.86 %

know_diff_understand 220.51 % 331.18 % 275.84 %

know_diff_apply 133.04 % 28.79 % 80.91 %

know_diff_analyze 52.17 % 344.00 % 198.09 %

know_diff_create 64.18 % 177.27 % 120.73 %

aeff 62.61 % 43.38 % 53.00 %

acomp 56.26 % 46.52 % 51.39 %

aaccu 32.57 % 23.83 % 28.20 %

inf_qa - - 17.62 %

The results illustrate that all improvements are positive, which means
that the experimental group performed better than the control group.
On the one hand, for understanding correctness as well as for all the ap-
plication variables (i.e., efficiency, completeness, and accuracy), quite
similar improvements were achieved for both days. On the other hand,
very different improvement rates were obtained for the knowledge ac-
quisition difference variables.

Even if the subjects did not rate the complexity of the second day’s ex-
perience packages higher than that of the first day, they performed
slightly worse regarding the application variables. A much higher im-
provement was achieved for the overall knowledge acquisition difference
for the second day, which was due mainly to the higher score for the
levels understand, analyze, and create. Higher scores for the level under-
stand mean that the subjects were able to build relationships between
basic refactoring concepts and to construct cognitive if-then rules (i.e.,
conceptual knowledge) especially during the second day. In order to
achieve higher scores for the levels analyze and create, the subjects
needed more contextual knowledge in refactoring itself, which means
that they needed to apply lower levels of knowledge (i.e., factual and
conceptual knowledge) in practice, respectively during the experiment’s
assignments. Hence, effects confounding the treatment effect (e.g., pe-
riod effect, carry-over effect, etc.) should be expected (see Section 7.4.6
for their investigation). The perceived information quality rose by 17.6%.

Discussion of
improvement
rates

Empirical Evaluation – A Controlled Experiment

 195

Statistical tests of the dependent variables have to confirm whether the
mean differences are statistically significant or not. A test for normality
was performed by using the Shapiro-Wilk test (Shapiro & Wilk, 1965)
together with the graphical analysis of the histograms, boxplots, and
(normal and detrended) Q-Q plots. The detailed results can be found in
Appendix C.4.1.3. Kurtosis is a measure of whether the data are peaked
or flat relative to a normal distribution. Skewness is a measure of sym-
metry, i.e., the lack of symmetry. Especially the variable
know_diff_create is not normally distributed for three data sets out of
four. Furthermore, the variable know_diff_analyze (experimental group,
day 1) is not normally distributed. It can be observed that the data sets
of these variables have high standard deviations compared to their
means. In addition, the high values for skewness and kurtosis give hints
about high peaks, respectively asymmetry, in the distribution. Hence, pa-
rametric tests should not be applied and their results should be checked
by performing non-parametric tests, if applied.

7.4.5 Descriptive Statistics for the Disturbing Factors

The following table shows the descriptives of the disturbing factors
which were measured by means of the briefing and debriefing question-
naires.

Table 54 Descriptive statistics of disturbing factors

Disturbing Factors
N Min. Max. Mean

Std.
Dev. Skewness Kurtosis

Normal Distri-
bution

exp_dev 19 .00 1.00 .47 .31 .079 -.780 yes

exp_jp 19 2.00 6.25 4.20 1.23 -.102 -1.150 yes

exp_ref 19 1.00 4.75 2.08 1.22 1.113 .022 no

exp_qa 19 1.00 6.00 2.84 1.48 .643 -.394 yes

exp_main 19 1.00 5.83 2.61 1.56 .750 -.594 no

tn 19 .00 .60 .19 .23 .631 -1.200 no

pre-test 19 9.00 32.00 19.84 7.19 .258 -1.025 yes

inf_qua (LSEP) 19 3.80 6.60 5.20 .16 .117 -.189 yes

inf_qua (EP) 19 2.60 6.20 4.42 .24 .079 -.428 Yes

The details of the normality test can be found in Appendix C.4.1. The
subjects possessed an average experience level in software development
(M = .47, SD = .31; 0=no experience, 1=expert) and java programming
(M = 4.20, SD = 1.23), low experience in refactoring (M = 2.08, SD =
1.22), quality assurance (M = 2.84, SD = 1.48), and software mainte-
nance (M = 2.61, SD = 1.56) where “0” corresponds to no experience
and “6” refers to expert level. As can be seen from the table, most of

Statistical tests
are necessary
to check
whether the
differences are
statistically
significant

Subjects’
experience

Empirical Evaluation – A Controlled Experiment

 196

the subjects had enough time to work through the information, to solve
the assignments, and become familiar with the Wiki and the learning
spaces (0=enough time; 1=lack of time). An interesting observation is
that the subjects rated the information quality of the experience pack-
ages (M = 4.42, SD = 1.06) lower than that of the learning spaces (M =
5.20, SD = .71). The pre-test factor was normally distributed as two
thirds of the other factors. However, exp_ref, exp_main, and tn were
significantly different from a normal distribution. Using the disturbing
factors as a covariate in ANOVA will show whether the covariate corre-
lates with the treatment effect and hence can reduce the measurement
error.

7.4.6 Confounding Effects Impacting the Treatment Effect

The design of this experiment is a within-subject counterbalanced de-
sign. In clinical research, this design is mostly called two-period crossover
design or simply AB|BA design. Besides the reduced sample size to
achieve a specified power, more statistical power because of paired
comparison, and the elimination of between-subject variability compared
to a one-period parallel design, several risks of effects confounding the
treatment effect need to be considered.

Most research work in software engineering that applies a crossover
design for experiments, does not consider any investigation of the con-
founding effects. Randomization and counterbalancing have been stated
as ways to prevent such effects. However, the literature survey on effect
terminology and statistical methods for investigating and/or correcting
them (see Appendix C.5) confirmed that these effects must be consid-
ered. A lot of research has been done on investigating these effects in
areas other than software engineering. Many approaches have been de-
veloped and all of them have been criticized to some extent. It would be
outside the scope of this work to analyze and compare the available sta-
tistical procedures in detail for their usage in software engineering.
However, it seems that software engineering research still applies statis-
tical approaches (e.g., testing for carry-over effects) that have been con-
sidered wrong by renowned statisticians for more than twenty years. The
detailed and very complex analysis of the confounding effects can be
found in Appendix C.5 and its subsequent chapters. The following table
provides the summary of the confounding effects that were detected by
using appropriate techniques (see Appendix C.5).

In software
engineering
the investiga-
tion of con-
founding
effects is
mostly ne-
glected

Randomiza-
tion and coun-
terbalacing are
not measures
for preventing
confounding
effects

Empirical Evaluation – A Controlled Experiment

 197

Table 55 Overview of confounding effects

Period Effect

detected

Sequence
Effect de-

tected
Position Effect

detected
Carry-Over

Effect detected
ucorr no (yes with low

power) no
no (yes with low

power) no
know_diff no no no no
know_diff_remember

no no no no
know_diff_understand no no no no
know_diff_apply yes no yes no
know_diff_analyze no no no no
know_diff_create no no no no
aeff no no no no
acomp yes no yes no
aaccu no no no no

Period effects (i.e., hypothesis testing with ind. T-test/Mann Whitney U
test and mean cross-offer difference) and position effects (i.e., hypothe-
sis testing with repeated measures ANOVA) were found for the same
variables. By comparing Table 103, Table 105, and Table 107 with Table
110 in Appendix C.5, it can be seen that the results are exactly the same.
This means that period effects are the same as position effects (i.e., in-
teraction of treatment*sequence effects) and that we can use the pro-
cedure of Hills and Armitage (Hills & Armitage, 1979) to correct for pe-
riod effect respectively for position effects, in the subsequent sections.

7.5 Hypothesis Testing

The analysis methods used in the subsequent sections are based on de-
pendent samples because of the repeated within-subjects design. For
those cases where period effects were detected, specific methods were
used for correction. In the previous sections of the descriptive statistics,
we investigated whether the data from two groups and the two days are
distributed normally. These tests for normality are relevant for those tests
where only the data from the first day can be used due to the confound-
ing effects. Senn states that in analyzing the data from crossover trials,
we have to expect that the crossover differences are distributed at ran-
dom across the true treatment effect. For the t-statistic to be an efficient
way of examining uncertainty about the treatment effect we should also
believe that the data are distributed normally, although this assumption
is less important since the t-test is quite robust against normality viola-
tions. Nevertheless, the test for normality has also been performed for
dependent variables based on the differences between the two periods.
For the variables ucorr (strong deviation from a normal distribution),
know_diff_understand (medium deviation), and know_diff_create (diffi-
cult to confirm the deviation due to a small number of different values),

Empirical Evaluation – A Controlled Experiment

 198

parametric tests should only be performed in combination with non-
parametric tests.

In each of the subsequent sections, simple hypothesis tests are used as
well as methods that consider covariates (i.e., disturbing factors) for re-
ducing the measurement error.

Several assumptions have to be fulfilled when an analysis of covariance
(ANCOVA) is executed, which are unfortunately not checked in most
empirical research: An analysis of variance (ANOVA) requires that the
measurements are independent and that random sampling has been
done. In addition, the homogeneity of variance and normality must be
fulfilled. The complex statistical procedures and the results are elabo-
rated in Appendix C.6.

When the previously named assumptions are not fulfilled, progressive
decisions are obtained in favor of accepting the alternative hypothesis
and other risk exist (Buser, 1995). For example, the more the assumption
of "equality of regressions" is violated, the more conservative ANCOVA
becomes (increased likelihood of Type II errors: thinking there is no rela-
tionship when, in fact, there is a relationship).

For the further application of ANCOVA, it is important to know that first,
disturbing factors with low reliability reduce the power of ANCOVA
(Bortz & Döring, 2001) and can lead to contortions of the corrected
treatment effect .

As a rule of thumb, covariates should have a reliability coefficient of
about .80 or higher. Otherwise, “one will end up potentially adjusting
sampling error with measurement error, and creating a mess” (Loftin &
Madison, 1991). Second, the more covariates are integrated into the
ANCOVA model, the greater the likelihood that an additional covariate
will have little residual correlation with the dependent variable after
other covariates are controlled. The marginal gain in explanatory power
is offset by the loss of statistical power (a degree of freedom is lost for
each added covariate). Third, the disturbing factors have an interval
scale, and are assumed to be measured without error. Imperfect meas-
urement reduces the statistical power of significance tests for ANCOVA,
and for experimental data, there is a conservative bias (increased likeli-
hood of Type II errors: thinking there is no relationship when, in fact,
there is a relationship). The following table summarizes which disturbing
variables will be used for ANCOVA, including their reliability:

Assumptions
to be met
before
AN(C)OVA can
be used

A violation of
the assump-
tions leads to
progressive
decisions in
favor of the
alternative
hypothesis

Covariates
with low
reliability
reduce power
of ANCOVA

Empirical Evaluation – A Controlled Experiment

 199

Table 56 Disturbing variables suitable for ANCOVA

Disturbing
variable

Dep. variable

ex
p

_d
ev

ex
p

_j
p

ex
p

_r
ef

ex
p

_s
q

a

ex
p

_m
ai

n

tn

p
re

-t
es

t

in
f_

q
u

a_
LS

EP

in
f_

q
u

a_
EP

ucorr yes yes yes yes yes
ut
know_diff yes (yes)
know_diff_remember (yes)
know_diff_understand
know_diff_apply yes
know_diff_analyze (yes) yes
know_diff_create
aeff yes
acomp yes
aaccu yes
reliability .720 .845 .888 .896 .951 .602 .787 .660 .753

Cells with a yes in parentheses mark a disturbing factor with low reliabil-
ity. It has been decided not to apply ANCOVA for these variables.

First interpretations were made on the basis of the descriptive statistics
(Section 7.4.3 and Section 7.4.5). The next sections will describe the re-
sults of statistical hypothesis tests.

7.5.1 Hypothesis H1.1 (Understandability)

7.5.1.1 Hypothesis H1.1 (Understanding Correctness)

H1.1
)()(EPLSEP ucorrucorr �� �

group
controlexperimental group

U
nd

er
st

an
di

ng
 C

or
re

ct
ne

ss

50,00

40,00

30,00

20,00

10,00

0,00

Figure 40 Box-and-whisker plot for understanding correctness (ucorr)

Empirical Evaluation – A Controlled Experiment

 200

Table 57 One-tailed dependent sample t-test for understanding correctness (ucorr)

Pair Differences
95% Confidence Interval
of the Difference

Mean
Std.

Deviation

Std.
Error
Mean lower upper df t

Crit.
T0..95

p-
value

ucorr 5.444 6.419 1.513 2.252 8.636 17 3.599 1.740 .002

The paired-samples t-test revealed significant differences in understand-
ing correctness between the experimental and the control group, t(17) =
3.60, p = .002. The mean differences for ucorr were not normally dis-
tributed. A Wilcoxon matched paired test provided the same result as
the t-test (p = .002).

The ANOVA for repeated measures without using covariates provides the
same result as the one-tailed dependent sample t-test (F(1,17) = 12.95, p
= .002), which is normal because only two groups were compared. Ac-
cording to Table 56 the disturbing factors exp_jp, exp_ref, exp_sqa,
exp_main, and pre-test fulfill the assumptions for using them to correct
the measurement error of ucorr.

Table 58 ANCOVA results for understanding correctness (ucorr)

Dependent
Variable Covariate F

Hypothesis
df

Error
df p-value

Partial Eta
Squared

Observed
Power

none 12.95 1 17 .002 .432 .923

exp_jp 6.23 1 16 .024 .280 .649

exp_ref 8.301 1 16 .011 .342 .772

exp_sqa 10.36 1 16 .005 .393 .856

exp_main 8.64 1 16 .010 .351 .788

ucorr

pre-test 2.677 1 16 .121 .143 .337

No significant interaction effect between ucorr and the disturbing factor
was found for exp_jp (p = .127), exp_ref (p = .239), exp_sqa (p = .104),
exp_main (p = .217), and pre-test (p = .598). Furthermore, it can be seen
that for none of the covariates, the partial eta square (i.e., the propor-
tion of the effect + error variance that is attributable to the effect:��p

2 =
SSeffect / (SSeffect + SSerror)) increased. Partial eta square is a measure of as-
sociation of the sample. Hence, the 18 subjects in the experimental
group (M = 37.89, SD = 5.95) had a significantly better understanding
correctness compared to the 18 subjects of the control group (M =
32.44, SD = 6.33), with F(1,17)=12.95, p = .002.

Empirical Evaluation – A Controlled Experiment

 201

7.5.2 Hypothesis H1.2 (Knowledge Acquisition)

7.5.2.1 Hypothesis H1.2.1 (Knowledge Acquisition Difference)

H1.2.1)_()_(EPLSEP diffknowdiffknow �� �

group
controlexperimental group

K
no

w
le

dg
e

A
cq

ui
si

tio
n

D
iff

er
en

ce

30

20

10

0

-10

Figure 41 Box-and-whisker plot for knowledge acquisition difference (know_diff)

Table 59 One-tailed dependent sample t-test for knowledge acquisition difference (know_diff)

Pair Differences
95% Confidence In-
terval of the Differ-
ence

Mean
Std.

Deviation

Std.
Error
Mean lower upper df t

Crit.
T0..95

p-
value

know_diff 12,053 7,329 1,681 8,520 15,585 18 7.168 1.734 .000

The paired-samples t-test revealed significant differences in knowledge
acquisition difference between the experimental and control group, t(18)
= 7.17, p = .000.

According to Table 56 the disturbing factors exp_main, and
inf_qua_LSEP (remark: low reliability) fulfill the assumptions for using
them to correct the measurement error of know_diff. The following ta-
ble shows the results of ANCOVA only for the disturbing factor
exp_main.

Empirical Evaluation – A Controlled Experiment

 202

Table 60 ANCOVA results for knowledge acquisition difference (know_diff)

Dependent
Variable Covariate F

Hypothesis
df

Error
df p-value

Partial Eta
Squared

Observed
Power

none 51.38 1 18 .000 .741 1.000 know_diff

exp_main 6.65 1 17 .020 .281 .681

No significant interaction effect between knowledge acquisition differ-
ence and the disturbing factor was found for exp_main (p = .233). Fur-
thermore, it can be seen that due to the covariate, the partial eta square
increased after introducing it into the model.

Hence, the 19 subjects in the experimental group (M = 17.95, SD =
6.14) had a significantly better knowledge acquisition difference com-
pared to the 19 subjects of the control group (M = 5.89, SD = 4.45),
with F(1,18) = 51.38, p = .000.

7.5.2.2 Hypothesis H1.2.2 (Knowledge Acquisition Difference on Cog. Levels)

Hypothesis H1.2.1 has been refined further with regard to the different
cognitive processes:

H1.2.2.X)__()__(EPLSEP xdiffknowxdiffknow �� �

In the following, the results of the hypothesis test for the cognitive di-
mension remember will be presented.

group
controlexperimental group

K
no

w
le

dg
e

A
cq

ui
si

tio
n

D
if

fe
re

nc
e

(r
em

em
be

r)

12

10

8

5

2

0

Figure 42 Box-and-whisker plot for knowledge acquisition difference remember

(know_diff_remember)

Empirical Evaluation – A Controlled Experiment

 203

Table 61 One-tailed dependent sample t-test for knowledge acquisition difference remember
(know_diff_remember)

Pair Differences
95% Confi-
dence Interval
of the Differ-
ence

Mean
Std.

Deviation

Std.
Error
Mean lower upper df t

Crit.
T0..95

p-
value

know_diff_remember 3.813 3.710 .927 1.836 5.789 15 4.111 1.753 .001

The paired-samples t-test revealed a significant difference in the knowl-
edge acquisition difference remember between the experimental and the
control group, t(15) = 4.11, p = .001.

According to Table 56, the disturbing factor inf_qua_LSEP fulfills the as-
sumptions for using it to correct the measurement error of
know_diff_remember. However, due to the low reliability of .660, AN-
COVA was not applied.

Hence, the 16 subjects in the experimental group (M = 5.63, SD = 3.20)
had a significantly better knowledge acquisition difference remember
compared to the 16 subjects of the control group (M = 1.81, SD = .98),
with t(15) = 4.11, p = .001.

In the following, the results of the hypothesis test for the cognitive di-
mension understand will be presented.

group
controlexperimental group

K
no

w
le

d
ge

 A
cq

ui
si

tio
n

D
if

fe
re

nc
e

(u
nd

er
st

an
d)

15

10

5

0

-5

Figure 43 Box-and-whisker plot for knowledge acquisition difference understand

(know_diff_understand)

Empirical Evaluation – A Controlled Experiment

 204

Table 62 One-tailed dependent sample t-test for knowledge acquisition difference understand
(know_diff_understand)

Pair Differences
95% Confi-
dence Interval
of the Differ-
ence

Mean
Std.

Deviation

Std.
Error
Mean lower upper df t

Crit.
T0..95

p-
value

know_diff_understand 4.474 4.195 .962 2.452 6.496 18 4.649 1.734 .000

The paired-samples t-test revealed a significant difference in the knowl-
edge acquisition difference understand between the experimental and
the control group, t(18) = 4.65, p = .000. The mean differences for
know_diff_understand were not normally distributed. A Wilcoxon
matched paired test provided p = .001, which is still very significant.
Hence, a significant difference between the means of LSEP and EP has
been found – the null hypothesis can be rejected.

According to Table 56 the disturbing factor inf_qua_LSEP fulfills the as-
sumptions for using it to correct the measurement error of
know_diff_remember. However, due to the low reliability of .660, AN-
COVA was not applied.

Hence, the 19 subjects in the experimental group (M = 6.11, SD = 3.20)
had a significantly better knowledge acquisition difference understand
compared to the 19 subjects of the control group (M = 1.63, SD = 2.45),
t(18) = 4.65, p = .000. In the following, the results of the hypothesis test
for the cognitive dimension apply will be presented.

group
controlexperimental group

K
no

w
le

dg
e

A
cq

ui
si

tio
n

(a
pp

ly
)

25,00

20,00

15,00

10,00

5,00

0,00

Figure 44 Box-and-whisker plot for knowledge acquisition difference apply (know_diff_apply)

Empirical Evaluation – A Controlled Experiment

 205

Table 63 One-tailed dependent sample t-test for knowledge acquisition difference apply
(know_diff_apply)

Pair Differences
95% Confidence
Interval of the
Difference

Mean
Std.

Deviation

Std.
Error
Mean lower upper df t

Crit.
T0..95

p-
value

know_diff_apply 3.958 6.931 1.634 .512 7.405 17 2.423 1.740 .027

The paired-samples t-test revealed a significant difference in the knowl-
edge acquisition difference apply between the experimental and the
control group, t(17) = 2.42, p = .027.

A period effect was detected for this variable in Section C.5.4. Table 64
shows the result.

Table 64 Two-tailed independent sample t-test for knowledge acquisition difference apply with
period effect correction (know_diff_apply)

Levene's Test for
Equality of Vari-
ances t-test for Equality of Means

95% Confidence
Interval of the
Difference

 F p-value t df p-value

Mean
Differ-
ence

Std. Error
Difference Upper Lower

know_
diff_ap
ply

1.597 .224 3.132 16 .006 8.306 2.652 2.68 13.93

It can be seen that the p-value decreases to p = .006, which is more sig-
nificant than the t-test without correction for period effects.

According to Table 56, the disturbing factor exp_jp fulfills the assump-
tions for using it to correct the measurement error of know_diff_apply.
The following table shows the results of ANCOVA.

Table 65 ANCOVA results for knowledge acquisition difference apply with period effect correction
(know_diff_apply)

Dependent
Variable

Covari-
ate F

Hypothesis
df

Error
df p-value

Partial Eta
Squared

Observed
Power

none 5.87 1 17 .027 .257 .627 know_diff_apply

exp_jp .341 1 16 .567 .021 .085

No significant interaction effect between know_diff_apply and the dis-
turbing factor exp_jp was found for exp_jp (p = .201). Furthermore, it
can be seen that for the covariate, the partial eta square was reduced
almost to zero, which means that the influence of this covariate can be
ignored.

Empirical Evaluation – A Controlled Experiment

 206

Hence, the 18 subjects in the experimental group (M = 12.40, SD =
5.33) had a significantly better knowledge acquisition difference apply
compared to the 18 subjects of the control group (M = 8.44, SD = 4.03),
with t(16) = 3.13, p = .006.

In the following, the results of the hypothesis test for the cognitive di-
mension analyze will be presented.

group
controlexperimental group

K
no

w
le

dg
e

A
cq

ui
si

tio
n

D
iff

er
en

ce
 (a

na
ly

ze
) 8

5

2

0

-2

Figure 45 Box-and-whisker plot for knowledge acquisition difference analyze (know_diff_analyze)

Table 66 One-tailed dependent sample t-test for knowledge acquisition difference analyze
(know_diff_analyze)

Pair Differences
95% Confidence
Interval of the
Difference

Mean
Std.

Deviation

Std.
Error
Mean lower upper df t

Crit.
T0..95

p-
value

know_diff_analyze 2.632 3.451 .792 .968 4.295 18 3.324 1.734 .004

The paired-samples t-test revealed a significant difference in the knowl-
edge acquisition difference analyze between the experimental and the
control group, t(18) = 3.32, p = .004.

According to Table 56, the disturbing factor tn fulfills the assumptions
for using it to correct the measurement error of know_diff_analyze.
However, tn had a low reliability of .602 and was not used to correct the
measurement error of know_diff_analyze.

Hence, the 19 subjects in the experimental group (M = 4.68, SD = 3.32)
had a significantly better knowledge acquisition difference analyze com-

Empirical Evaluation – A Controlled Experiment

 207

pared to the 19 subjects of the control group (M = 2.05, SD = 2.49),
with t(18) = 3.32, p = .004.

In the following, the results of the hypothesis test for the cognitive di-
mension create will be presented.

group
controlexperimental group

K
no

w
le

dg
e

A
cq

ui
si

tio
n

D
iff

er
en

ce
 (c

re
at

e)
4

3

2

1

0

-1

Figure 46 Box-and-whisker plot for knowledge acquisition difference create (know_diff_create)

Table 67 One-tailed dependent sample t-test for knowledge acquisition difference create
(know_diff_create)

Pair Differences
95% Confidence
Interval of the
Difference

Mean
Std.

Deviation

Std.
Error
Mean lower upper df t

Crit.
T0..95

p-
value

know_diff_create .667 1.188 .280 .076 1.258 17 2.380 1.740 .029

The paired-samples t-test revealed a significant difference in the knowl-
edge acquisition difference create between the experimental and the
control group, t(17) = 2.38, p = .029.

The mean differences for know_diff_create were not normally distrib-
uted. A Wilcoxon matched paired test provided p = .026, which is still
very significant. Hence, a significant difference between the means of
LSEP and EP has been found – the null hypothesis can be rejected.

According to Table 56 none of the disturbing factors fulfills the assump-
tions for using them to correct the measurement error of
know_diff_create. Therefore, no ANCOVA was performed.

Empirical Evaluation – A Controlled Experiment

 208

Hence, the 18 subjects in the experimental group (M = 1.22, SD = 1.00)
had a significantly better knowledge acquisition difference create com-
pared to the 18 subjects of the control group (M = 0.56, SD = .78), with
t(18) = 2.38, p = .029.

7.5.3 Hypothesis H1.3 (Application)

The effect of a learning space on an application was investigated by
measuring application efficiency, application completeness, and applica-
tion accuracy.

7.5.3.1 Hypothesis H1.3.1 (Application Efficiency)

H1.3.1)()(EPLSEP aeffaeff �� �

group
controlexperimental group

A
pp

lic
at

io
n

Ef
fic

ie
nc

y

0,800

0,600

0,400

0,200

0,000

Figure 47 Box-and-whisker plot for application efficiency (aeff)

Table 68 One-tailed dependent sample t-test for application efficiency (aeff)

Pair Differences
95% Confidence Interval
of the Difference

Mean
Std.

Deviation

Std.
Error
Mean lower upper df t

Crit.
T0..95

p-
value

aeff .139 .186 .0438 .0465 .232 17 3.171 1.740 .006

The paired-samples t-test revealed a significant difference in application
efficiency between the experimental and the control group, t(17) = 3.17,
p = .006. The mean differences for aeff were not normally distributed. A
Wilcoxon matched paired test provided p = .008, which is still very sig-
nificant.

Empirical Evaluation – A Controlled Experiment

 209

According to Table 56, the disturbing factor exp_sqa fulfills the assump-
tions for using it to correct the measurement error of aeff.

Table 69 ANCOVA results for application efficiency (aeff)

Dependent
Variable Covariate F

Hypothesis
df

Error
df p-value

Partial Eta
Squared

Observed
Power

none 10.06 1 17 .006 .372 .848 aeff

exp_sqa .031 1 16 .861 .002 .053

No significant interaction effect between aeff and the disturbing factor
was found for exp_sqa (p = .153). Furthermore, it can be seen that for
this covariate, the partial eta square decreased. Therefore, this covariate
should be ignored.

Hence, the 18 subjects in the experimental group (M = .39, SD = .20)
had a significantly better application efficiency compared to the 18 sub-
jects of the control group (M = .26, SD = .13), with F(1,17) = 10.06, p =
.006.

The calculation of efficiency was based on the application time, i.e., the
time the subjects needed to solve the assignments. Since the total time
(i.e., reading time plus application time) was fixed to 60 minutes, the
subjects of the experimental group had less time to solve the assign-
ments because they needed more reading time to get through the in-
formation provided by a learning space. This fact makes it harder for the
experimental group to achieve higher values for application efficiency.

Empirical Evaluation – A Controlled Experiment

 210

7.5.3.2 Hypothesis H1.3.2 (Application Completeness)

H1.3.2)()(EPLSEP acompacomp �� �

group
controlexperimental group

A
pp

lic
at

io
n

C
om

pl
et

en
es

s

1,000

0,800

0,600

0,400

0,200

0,000

Figure 48 Box-and-whisker plot for application completeness (acomp)

Table 70 One-tailed dependent sample t-test for application completeness (acomp)

Pair Differences
95% Confidence Inter-
val of the Difference

Mean
Std.

Deviation

Std.
Error
Mean lower upper df t

Crit.
T0..95

p-
value

acomp .165 .289 .068 .021 .309 17 2.423 1.740 .027

The paired-samples t-test revealed a significant difference in application
completeness between the experimental and the control group, t(17) =
2.42, p = .027. A t-test was used to adjust for the period effects:

Table 71 Two-tailed independent sample t-test for application completeness with period effect
correction (acomp)

Levene's Test for
Equality of Vari-
ances t-test for Equality of Means

95% Confidence
Interval of the
Difference

 F p-value t df p-value

Mean
Differ-
ence

Std. Error
Difference Upper Lower

acomp 1.597 .224 3.132 16 .006 .346 .110 .11 .58

It can be seen that the p-value decreases to 0.06, which is more signifi-
cant than the t-test without correction for period effects.

Empirical Evaluation – A Controlled Experiment

 211

According to Table 56 the disturbing factor exp_jp fulfills the assump-
tions for using it to correct the measurement error of know_diff_apply.
The following table shows the results of ANCOVA.

Table 72 ANCOVA results for application completeness with period effect correction (acomp)

Dependent
Variable Covariate F

Hypothesis
df

Error
df p-value

Partial Eta
Squared

Observed
Power

none 5.87 1 17 .027 .257 .627 acomp

exp_jp .341 1 16 .567 .021 .085

No significant interaction effect between acomp and the disturbing fac-
tor exp_jp was found for exp_jp (p = .201). Furthermore, it can be seen
that for the covariate, the partial eta square was reduced almost to zero,
which means that the influence of this covariate can be ignored.

Hence, the 18 subjects in the experimental group (M = .52, SD = .22)
had a significantly better application completeness compared to the 18
subjects of the control group (M = .35, SD = .17), with t(16) = 3.13, p =
.006 (i.e., the result of the corrected period effect was used).

7.5.3.3 Hypothesis H1.3.3 (Application Accuracy)

H1.3.3)()(EPLSEP aaccuaaccu �� �

group
controlexperimental group

A
pp

lic
at

io
n

A
cc

ur
ac

y

1,000

0,800

0,600

0,400

0,200

0,000

Figure 49 Box-and-whisker plot for application accuracy (aaccu)

Empirical Evaluation – A Controlled Experiment

 212

Table 73 One-tailed dependent sample t-test for application accuracy (aaccu)

Pair Differences
95% Confidence Interval
of the Difference

Mean
Std.

Deviation

Std.
Error
Mean lower upper df t

Crit.
T0..95

p-
value

aaccu .153 .316 .0724 .000732 .304907 18 2.111 1.734 .049

The paired-samples t-test revealed a significant difference in application
accuracy between the experimental and the control group, t(18) = 2.11,
p = .049.

According to Table 56 the disturbing factor exp_dev fulfills the assump-
tions for use it to correct the measurement error of know_diff_apply.
The following table shows the results of ANCOVA.

Table 74 ANCOVA results for application accuracy (aaccu)

Dependent
Variable Covariate F

Hypothesis
df

Error
df p-value

Partial Eta
Squared

Observed
Power

none 4.46 1 18 .049 .198 .515 aaccu

exp_dev .072 1 17 .792 .004 .057

No significant interaction effect between aaccu and the disturbing factor
exp_jp was found for exp_dev (p = .392). Furthermore, it can be seen
that for the covariate, the partial eta square was reduced almost to zero,
which means that the influence of this covariate can be ignored.

Hence, the 19 subjects in the experimental group (M = .72, SD = .18)
had a significantly better application accuracy compared to the 19 sub-
jects of the control group (M = .57, SD = .20), with t(18) = 2.11, p =
.049.

Empirical Evaluation – A Controlled Experiment

 213

7.5.4 Hypothesis H1.4 (Perceived Information Quality)

H1.4)(inf_)(inf_ EPLSEP quaqua �� �

In
fo

rm
at

io
n

Q
ua

lit
y

Le
ar

ni
ng

 S
pa

ce

7,00

6,00

5,00

4,00

3,00

In
fo

rm
at

io
n

Q
ua

lit
y

Ex
pe

ri
en

ce
 P

ac
ka

ge

7,00

6,00

5,00

4,00

3,00

2,00

14

Figure 50 Box-and-whisker plot for information quality (LSEP and EP)

Table 75 One-tailed dependent sample t-test for perceived information quality (inf_qua)

Pair Differences
95% Confidence
Interval of the
Difference

Mean
Std.

Deviation

Std.
Error
Mean lower upper df t

Crit.
T0..95

p-
value

inf_qua .77895 1.22546 .28114 .18829 1.36960 18 2.771 1.734 .013

The paired-samples t-test revealed a significant difference in the per-
ceived information quality between the learning space and the experi-
ence package, t(18) = 2.77, p = .013.

Hence, the 18 subjects perceived the perceived information quality (M =
5.20, SD = .71) of a learning space significantly higher than the per-
ceived information quality of an experience package (M = 4.42, SD =
1.05).

7.5.5 Effect Size Calculations and Power Analysis

The term "effect size" refers to the magnitude of the effect under the
alternative hypothesis and describes the strength of a relationship be-
tween two variables. Effect sizes can be interpreted in terms of the per-
cent of non-overlap of the experimental group's scores with those of the
control group. An effect size of 0.0 indicates that the distribution of

Effect size is
the strength
of the rela-
tionship be-
tween two
variables

Empirical Evaluation – A Controlled Experiment

 214

scores for the experimental group overlaps completely with the distribu-
tion of scores for the control group, i.e., there is 0% non-overlap. An ef-
fect size of 0.8 indicates a non-overlap of 47.4% in the two distribu-
tions. An effect size of 1.7 indicates a non-overlap of 75.4% in the two
distributions and that the mean of the experimental group is at the 95.5
percentile of the control group.

The nature of the effect size will vary from one statistical procedure to
the next (e.g., it could be the difference in defects found, or a standard-
ized mean difference, or a correlation coefficient). However, its function
in power analysis is the same in all procedures. There is a wide array of
formulas used to measure effect size. In fact, effect sizes can be calcu-
lated in two ways:

1. as the standardized difference between two means, or

2. as the correlation between the independent variable classification
and the individual scores on the dependent variable, which is called
the "effect size correlation" (Rosnow & Rosenthal, 1996)

In the context of a t-test, the effect size Cohen’s d was used. Cohen's f
was used in the context of ANOVA, respectively ANCOVA. Power is the
ability to detect an effect if there is one (i.e., the probability that the test
will reject a false null hypothesis). Expressed as a quantity, power ranges
from 0 to 1, where .95 would mean a 5% chance of failing to detect an
effect that is there. In this experiment an a posteriori power analysis was
conducted, which was determined by using the significance level, sample
size, and calculated effect size (i.e., by assuming the effect size in the
sample size is equal to the effect size of the whole population). Table 76
shows the effect sizes and the results of the power analysis. Cohen de-
fined effect sizes as "small, d = .2," "medium, d = .5," and "large, d =
.8" (Cohen, 1988). For those variables where power <.80, the required
sample size has been calculated. The results will be discussed in the next
section.

Calculating
effect sizes

Effect sizes:
Cohen’s d and
Cohen’s f
A posteriori
power analysis

Empirical Evaluation – A Controlled Experiment

 215

Table 76 Overview of effect size results and power analysis

N

effect
size d

*

partial eta
squared

�p
2

effect
size f** p-value

power
(1-�)

Required
sample
size ***

ucorr (paired t-test) 18 .85 - - .002 .964 -
ANCOVA (F-test) 18 - .432 .87 .002 .923 -

know_diff (paired t-test) 19 1.64 - - .000 1.00 -
ANCOVA (F-test) 19 - .741 1.69 .000 1.00 -

know_diff_remember (paired t-test) 16 1.02 - - .001 .988 -
know_diff_understand (paired t-test) 19 1.06 - - .001 .997 -
know_diff_apply (paired t-test) 18 .57 - - .027 .751 21

ind. t-test (correcting for period ef-
fect)

9+9 1.47 - - .006 .911 -

know_diff_analyze (paired t-test) 19 .76 - - .004 .940 -
know_diff_create (paired t-test) 18 .56 - - .029 .737 22
aeff (paired t-test) 18 .75 - - .006 .918 -

ANCOVA (F-test) 18 - .372 .77 .006 .848 -
acomp (paired t-test) 18 .57 - - .027 .751 21

ind. t-test (correcting for period ef-
fect)

9+9 1.47 - - .006 .911 -

aaccu (paired t-test) 19 .48 - - .049 .650 29
inf_qua (paired t-test) 19 .63 - - .013 .845 -

* Cohen d (input: mean, standard deviation, and correlation between groups)
** Cohen f (input: partial eta squared)

*** required sample size to achieve a power > .80

7.6 Discussion of the Analysis Results

The experiment revealed that the learning spaces lead to better under-
standing and application of an experience package as well as to higher
overall knowledge acquisition, p < 0.05 for all dependent variables (see
Table 76 for the statistical details). Since the goal of this experiment was
to provide accurate effect sizes and power values for future studies in
the field, a lot of effort has been put into improving the reliability of the
dependent variables and disturbing factors (e.g., only disturbing factors
with a reliability > .80 were used for analysis). In addition, the usage of a
crossover design may lead to confounding effects, which bias the statis-
tical tests. Therefore, these effects have been investigated in detail; cor-
rections have been made where necessary. A regression analysis showed
that there are significant regression coefficients between the covariates
and the dependent variables (see Appendix C.6). However, the applica-
tion of ANCOVA did not find any significant interactions between the
disturbing factors and the dependent variables. Nevertheless, in some
cases, the measurement error could be reduced (see previous Table 76).

The subjects using learning spaces had a significantly higher understand-
ing correctness than the group provided with the information of experi-
ence packages (p = .002, power = .923). Hypothesis H0.1 can be rejected.
A high effect size for understanding correctness (d = .85) was found. A

Learning
spaces im-
prove experi-
ence reuse,
knowledge
acquisition,
and perceived
information
quality

Empirical Evaluation – A Controlled Experiment

 216

slightly higher effect size f was obtained by applying ANOVA (f = .87),
which refers to a high effect (Cohen, 1988).

A significant effect has been found for all knowledge acquisition vari-
ables. The highest effect was found for the overall knowledge acquisi-
tion difference (f = 1.69, power = 1.00). Higher effects were detected
for the lower cognitive levels remember (d = 1.02, power = .998) and
understand (d = 1.06, power = .997). Medium effect sizes were ob-
tained for the levels apply (d = .57, power = .751), analyze (d = .76,
power = .940), and create (d = .56, power = .737). The power of the
hypothesis test for H0.2.2.apply is only .737, which means that there is still a
26.3% chance that the effect is not detected, i.e., that H1.2.2.apply cannot
be accepted because a minimum of .80 was required for power in Sec-
tion 7.2. H1.2.2.apply could probably have been accepted with a slightly lar-
ger sample size (we would have needed 21 subjects for both groups).
Due to the fact that a significant period effect was detected for the level
of apply (p = .006), a correction for period effect was done, which re-
sulted in a lower significance (p = .006, power = .911). Furthermore,
H1.2.2.create cannot be accepted because of the low power (power = .739).
H1.2.2.create could probably have been accepted with a slightly larger sam-
ple size (we would have needed 22 subjects for both groups). To sum
up, all null hypotheses related to knowledge acquisition difference can
be rejected but the alternative hypothesis H1.2.2.create related to the level
create cannot be accepted.

Regarding the application variables, medium effects have been detected.
However, after correcting a period effect the effect, size for application
completeness increased up to d = 1.47. By applying an ANCOVA, the
measurement error was slightly reduced by the disturbing factor experi-
ence in software quality assurance (exp_sqa), even though the interac-
tion between exp_sqa and application efficiency was not significant (p =
.153). The power was reduced from .918 to .848 due to a reduction in
the degree of freedom by one when a covariate is added to the model.
The alternative hypothesis for application accuracy could not be ac-
cepted because the power was .650. A sample size of 29 could probably
lead to a power higher than .800. Hence, all null hypotheses can be re-
jected; however, the effect measured for application accuracy cannot be
detected with an acceptable probability, which means that H1.3.3 cannot
be accepted.

No significant correlation could be found between the understanding
variable, the application variables, and the overall knowledge acquisition
difference variables. Nevertheless, a medium positive correlation coeffi-
cient was found between understanding correctness and knowledge ac-
quisition difference (r = .315, p = .203 based on a two tailed Pearson
correlation test). Similar correlation coefficients were found between un-
derstanding correctness and application efficiency (r = .399, p =.219)

Medium to
large effects
for knowledge
acquisition

Medium ef-
fects for appli-
cation

Empirical Evaluation – A Controlled Experiment

 217

and understanding correctness and application accuracy (r = .344, p =
.162) but they were not significant.

No significant correlations were found between the lower level of cogni-
tion (i.e., remember and understand) and the application variables. An
interesting fact was that for higher cognitive levels, the correlation coef-
ficients were slightly higher and one significant correlation was detected
between knowledge acquisition difference apply and application effi-
ciency (r = .642, p = .005).

Finally, the perceived information quality of the provided learning spaces
was significantly higher than that of the experience packages (p = .013,
power = .845). Hence, the null hypothesis H0.4 can be rejected and the
alternative hypothesis H1.4 can be accepted.

In the past, no similar evaluations have been done. Hence, a comparison
with statistical results from previous work is not possible. Nonetheless,
this experiment provides valuable results for future studies. Effect sizes
can be used to calculated sample sizes of future evaluations and provide
a basis for comparisons. Section 9.2 will suggest a number of directions
that can be taken by future research.

7.7 Threats to Validity

In the following, different types of threats to validity will be discussed.
Results have adequate validity if they are valid to the population to
which we would like to generalize (Wohlin et al., 1999). Cook and
Campbell distinguish between conclusion validity, construct validity, in-
ternal validity, and external validity (Cook & Campbell, 1979).

7.7.1 Conclusion Validity

Conclusion validity is also called statistical conclusion validity and is the
degree to which statistically significant conclusions can be drawn from
the data output of the experiment. The literature study about confound-
ing effects and the results of their investigation led to several corrections
of these effects, which made the conclusions more reliable. The selection
of tests was made by checking their required assumptions in detail (e.g.,
normality test or checking the assumptions for applying ANCOVA).
Moreover, conclusions in this experiment were made based on the re-
sults of significance testing with a significance level of .05 and a mini-
mum required power of .80, which is challenging for an explorative
study like this one. Nevertheless, all hypotheses have been rejected with
p-values < .05. The validity of an experiment depends on the reliability of
the disturbing and dependent variables and of course on the related
measures. Several measures were taken to enhance the reliability of the
variables (e.g., principal component analysis of the experience level vari-

Medium ef-
fects for per-
ceived infor-
mation quality

The experi-
ment provides
valuable re-
sults for future
studies

Empirical Evaluation – A Controlled Experiment

 218

ables, item analysis of the knowledge acquisition questionnaire, etc.). In
addition, a pilot test was performed with two students to discover bad
questions, respectively poor wording of questions. The experimental set-
ting was kept constant, e.g., no noise, no interruptions caused by tech-
nical problems, no different environment for the two days, etc. Regard-
ing random heterogeneity of the subjects, the subjects were assigned
randomly to the groups based on four levels of experience (i.e., their ex-
perience level was determined by evaluating the briefing questionnaire).

7.7.2 Construct Validity

Construct validity is the degree to which the independent and depend-
ent variables accurately measure the concept they intend to measure
(i.e., the treatment reflects the cause effect and the experiment outcome
reflects the effect construct) (Cook & Campbell, 1979).

Measuring knowledge acquisition is difficult. Nevertheless, the test items
of the pre-test, post-test, and assignments were related to different cog-
nitive learning goals, and factual and conceptual as well as procedural
knowledge was assessed. The different questions and assignments refer
to cognitive activities according to the well-recognized learning objec-
tives taxonomy of Anderson and Krathwohl (L. W. Anderson & Krath-
wohl, 2001). The item analysis ensured that only items with a strong
contribution to the overall knowledge acquisition measuring constructs
were used for analysis. The constructs for experience levels had been
checked with a principal component analysis. Several items had been de-
leted due to multiple ambiguous factor loadings on several experience
variables.

The difficulty with the measurement of completeness, efficiency, and ac-
curacy was to define which code smells are real defects, and which are
not. A refactoring expert checked all the assignments and questionnaires
to evaluate the proposed sample solutions that were used to get the
number of correct defects found, respectively to decide which proposed
refactorings were correct. In addition, a one-day workshop was done af-
ter the experiment to discuss the experiment and the proposed refactor-
ing together with the subjects and the refactoring expert. By doing this,
it could be confirmed that the learning space led to a very similar under-
standing of refactoring and hence identification and removal of code
smells as the expert’s.

Regarding use, acceptance, and software ergonomics (see Chapter 8),
well-defined measure instruments were used. In general, none of the
disturbing factors or dependent variables was assessed by one single
measure – several measures were used to adequately measure the con-
structs.

Empirical Evaluation – A Controlled Experiment

 219

7.7.3 Internal Validity

Internal validity is related to the fact that if there exists a relationship be-
tween the factors and the dependent variables, we must be sure that it
is a causal relationship, and not a result of a factor that has not been
considered.

Since the experiment took place on two subsequent days, some of the
improvements related to a treatment may be attributed to other happen-
ings that took place between the two periods. However, the subjects
were told not to discuss the experiment or do things related to refactor-
ing (e.g., read about refactoring before the second day). Maturation is a
threat related to processes taking place within the subjects (e.g., becom-
ing tired or learning new things). Nevertheless, a detailed analysis of con-
founding effects and the short duration of the experimental tasks should
either detect such effects or simply reduce them sufficiently. Another
relevant threat is testing, i.e., the subject may respond differently when a
test is repeated. Since the knowledge acquisition test was used before
and after an experiment period, this threat must be considered. Never-
theless, the subjects were not provided with any feedback after an ex-
perimental period. Since only a conventional Web browser was used,
there was no risk that the subjects underwent a maturing effect regard-
ing the tools used during the experiment. In addition, the material used
during the experimental periods was completely different, i.e., different
code smells, Java code, related experience packages, and learning spaces
were used during the two days. The instrumentation threat is not rele-
vant here because the material had been tested in a small pilot study and
no problems had been detected. Hence, the type and form of the used
material should not have an impact on the treatment effect. In addition,
no complaints about the material were made after the experiment. No
significant difference was found regarding the complexity of the infor-
mation provided during the two days (this variable was assessed with the
debriefing questionnaire; p =.759). The distribution of scores for the
questions, respectively assignments and sample solutions, was checked
by a refactoring expert. An attempt was made to minimize any selection
effect by randomly assigning the subjects. ANCOVA was applied to re-
duce the between group variance. Furthermore, the effect of letting vol-
unteers take part in an experiment may influence the results. Volunteers
are generally more motivated and suited for a new task than the whole
population. However, in this experiment, the subjects had to participate
in the experiment because refactoring was a mandatory part of their
practicum.

7.7.4 External Validity

External validity is the degree to which the outcomes of the experiment
can be generalized to the whole population.

Empirical Evaluation – A Controlled Experiment

 220

One problem is that students are unlikely to be representative of soft-
ware professionals. The students who participated were undergraduate
and bachelor students with an average study time in computer science
of 3.5 years and an average software development experience of 4.2
years. All had attended software engineering courses with practical
courses lasting three terms, and some of them had attended specific SE
courses (e.g., quality assurance, process modeling, or project manage-
ment). Nevertheless, the results can be useful for industrial contexts be-
cause software development is often done by people who have just fin-
ished their studies and therefore are comparable to the students in this
experiment. In addition, refactoring is not a well known and widely ap-
plied technique in industry. The experience descriptions were based on
literature intended for practical use in real projects. This means that simi-
lar results could be expected in an industrial setting and the results of
this experiment can be used as a baseline for further studies in the field.
The Java software system used in this experiment was developed by 19
students during 15 full-time weeks, and consists of 96 classes. This cor-
responds to a possible small application in industry, which again means
that similar effects can be expected when the experiment is replicated in
an industrial context.

Use and Acceptance Evaluation

 221

8 Use and Acceptance Evaluation

“You cannot have a science without
measurement” (R. W. Hamming)

The learning space approach has been evaluated twice regarding its use
and acceptance: first, at the end of the experiment presented before and
second, in more detail, during a case study with a primarily focus on
evaluating use, acceptance, and software ergonomics. The statistical
tests refer to hypothesis H1.5, which test whether the use, acceptance
and software ergonomics of the learning space user interface were sig-
nificantly positive in an experiment (Section 8.1.1) and a case study (Sec-
tion 8.1.2):

� All investigated use and acceptance factors were significantly posi-
tive with a p-value lower than 0.05.

� The results of the case study with experience management and
technology-enhanced learning experts where even better than the
results of the experiment.

8.1.1 Use and Acceptance Evaluation (in the Context of the Experiment)

In order to assess the use and acceptance of the learning space ap-
proach, the subjects were asked to fill out a questionnaire, which was
part of the debriefing questionnaire after the two experimental periods
(see Appendix B for the details about the questionnaire). The questions
were based on the model of Unified Theory of Acceptance and Use of
Technology (UTAUT) (Venkatesh, Morris, Davis, & Davis, 2003), which is
a measurement instrument based on the former measurement instru-
ment of the Technology Acceptance Model (TAM) (Davis, 1986, 1989).
UTAUT contains constructs for measuring performance expectancy, ef-
fort expectancy, attitude towards using technology, intention, anxiety,
self-efficacy, facilitating conditions, and social influence. For this experi-
ment only performance expectancy, effort expectancy, and attitude to-
wards using technology were gathered because the others could not be
answered by the subjects in the context of the experiment. Performance
expectancy is defined as the degree to which an individual believes that
using the system will help him or her to attain gains in job performance.
Effort expectancy is defined as the degree of ease associated with the
use of the system. Attitude towards using technology is defined as an
individual’s overall affective reaction to using a system (Venkatesh et al.,
2003).

Use and Acceptance Evaluation

 222

Each construct contains several question items with a 7-point Likert
scale. The factors have been calculated by summing up the values of the
question items divided by the total number of questions (i.e., “1“ corre-
sponds to “strongly disagree”, …, “7” corresponds to “strongly agree”;
range of a factor =[1,7]).

For all three factors, the median is higher than the value of four, which is
the neutral value of the scale. In addition, the standard deviations were
quite low, which corresponds to small variance between the subjects.
Performance expectancy was rated the lowest of all. The related ques-
tion items tap into an individual’s liking, enjoyment, joy, and pleasure as-
sociated with technology use. The data was gathered after two days of
experimentation. One reason for this could be that enjoyment, etc. were
influenced by the duration and the difficult tasks of the experiment itself.
Nevertheless, a higher performance and effort expectancy was received.
A Shapiro Wilk test confirms that the distributions are not significantly
different from a normal distribution. The following table shows the re-
sults of a one-sample t-test testing whether the results are significantly
different from the neutral value of 4.

Table 77 Descriptive statistics of UTAUT factors for learning spaces (experiment)

UTAUT factors
N Min. Max. Mean Median

Std.
Dev. Skewness Kurtosis

Performance Expectancy 19 3.25 7.00 5.34 5.25 .87 -.284 .603

Effort Expectancy 19 4.00 6.67 5.72 5.66 .80 -.393 -.615

Attitude towards using
technology

19 3.50 6.75 4.92 4.75 .85 .341 .188

Performance expectancy
6,004,002,000,00

Fr
eq

ue
nc

y

6

5

4

3

2

1

0

Mean =5,3421�
Std. Dev. =0,87087�

N =19

Effort expectancy
6,004,002,000,00

Fr
eq

ue
nc

y

5

4

3

2

1

0

Mean =5,7193�
Std. Dev. =0,80326�

N =19

Use and Acceptance Evaluation

 223

Attitude towards using technology
6,004,002,000,00

Fr
eq

ue
nc

y

6

5

4

3

2

1

0

Mean =4,9211�
Std. Dev. =0,85005�

N =19

Figure 51 Histograms of UTAUT factors for learning spaces (experiment)

Highly significant results were obtained (p = .000) for all three factors. In
addition to the quantitative data, the subjects provided qualitative feed-
back that was used for improvements to the system in the future. Most
of this feedback was related to user interface issues.

Table 78 One-sample t-test for UTAUT factors for learning spaces

Test value = 4
95% Confidence
Interval of the
Difference

Mean
Difference lower upper df t

Crit.
T0..95

p-
value

Performance expectancy 1.34 .92 1.76 18 6.718 1.734 .000
Effort expectancy 1.72 1.33 2.11 18 9.330 1.734 .000
Attitude towards using technology .92 .51 1.33 18 4.723 1.734 .000

8.1.2 Use and Acceptance Evaluation (Case Study)

Half a year later, another more detailed use and acceptance evaluation
was done with 10 researchers of Fraunhofer IESE. Since the experiment,
smaller improvements had been made to the user interface of learning
spaces. However, the access to a learning space, the information pro-
vided by the learning spaces, and the experience packages were exactly
the same as during the experiment. All the researchers had a stronger
background in experience management and educational systems than
the subjects who took part in the experiment. During 30 minutes, the
subjects received an introduction to the learning space approach in gen-
eral and the system in particular.

Two additional factors were measured: Facilitating conditions are de-
fined as the degree to which an individual believes that an organizational
and technical infrastructure exists to support use of the system. Self-
efficacy is related to the judgment of one’s ability to use a technology
(e.g., a computer) to accomplish a particular job or task (Venkatesh et
al., 2003). The descriptive results are presented next.

Use and Acceptance Evaluation

 224

Table 79 Descriptive statistics of UTAUT factors for learning spaces (case study)

UTAUT Factors
N Min. Max. Mean Median

Std.
Dev. Skewness Kurtosis

Performance Expectancy 9 4.00 6.75 5.49 5.67 .88 -.404 -.601

Effort Expectancy 9 5.00 7.00 6.28 6.50 .60 -1.117 1.537

Attitude towards using
technology

9
3.50

6.50 5.39 5.50 1.09 -.752 -.716

Facilitating conditions 9 4.75 6.25 5.64 5.50 .53 -.449 -.875

Self-efficacy 8 4.00 7.00 5.81 6.12 1.17 -1.067 -.408

Looking at the results, it seems that use and acceptance were rated even
higher than in the experiment. The median exceeds the value of 5.50 for
all factors. A one-sample t-test compares the means with the neutral
value of 4 and provided p-values lower than 0.005 for all factors. How-
ever, the qualitative feedback showed that there is still potential to im-
prove the attitude towards using the technology and self-efficacy. A help
system and better presentation of the learning space content (e.g., bar-
rier-free presentation of information) could further improve the use and
acceptance of the learning space approach.

Performance Expectancy
7,006,005,004,003,002,001,00

Fr
eq

ue
nc

y

4

3

2

1

0

Mean =5,4911�
Std. Dev. =0,88145�

N =9

Effort Expectancy
7,006,005,004,003,002,001,00

Fr
eq

ue
nc

y

4

3

2

1

0

Mean =6,2778�
Std. Dev. =0,60524�

N =9

Attitude toward using technology
7,006,005,004,003,002,001,00

Fr
eq

ue
nc

y

4

3

2

1

0

Mean =5,3889�
Std. Dev. =1,09052�

N =9

Facilitating conditions
7,006,005,004,003,002,001,00

Fr
eq

ue
nc

y

4

3

2

1

0

Mean =5,6389�
Std. Dev. =0,53196�

N =9

Use and Acceptance Evaluation

 225

Self-efficacy
7,006,005,004,003,002,001,00

Fr
eq

ue
nc

y

4

3

2

1

0

Mean =5,8125�
Std. Dev. =1,1707�

N =8

Figure 52 Histograms of UTAUT factors for learning spaces (case study)

In addition to UTAUT, a German questionnaire for measuring software
ergonomics was used. The questionnaire used was conformant to
ISONORM 9241/110 and can be used for evaluating software that has
already been used for a longer time or for prototypes (International Or-
ganization of Standardization, 2008) (ergo-online, 2008). “Auf-
gabenangemessenheit” measures whether the system helps the user to
solve his problems without burdening him. “Selbstbeschreibungsfähig-
keit” refers to the system’s ability to describe its functionalities and its
understandability. “Steuerbarkeit” is defined as the possibility the user
has to influence the way of working with the system. “Erwartungskon-
formität” refers to how good a system fulfills the expectations and hab-
its of the user. “Individualisierbarkeit” is defined as the system’s ability to
be adapted to the user’s personal needs. “Lernförderlichkeit” refers to
how easy it is to become familiar with the system and how the system
supports the user in learning new functionalities. The construct of
“Fehlertoleranz” was not suitable for this context, and was therefore not
considered. The same scales were used as during the experiment.

Table 80 Descriptive statistics of ISONORM factors for learning spaces (case study)

ISONORM Factors
N Min. Max. Mean Median

Std.
Dev. Skewness Kurtosis

Aufgabenangemessenheit 10 5.00 6.50 6.00 6.12 .47 -1.119 .978

Selbstbeschreibungsfähigkeit 10 5.00 6.33 5.87 6.00 .52 -.877 -.544

Steuerbarkeit 10 4.80 7.00 5.97 6.20 .76 -.416 -1.273

Erwartungskonformität 10 5.80 7.00 6.32 6.20 .38 .600 -.468

Individualisierbarkeit 9 1.50 6.25 4.44 4.50 1.50 -.807 .444

Lernförderlichkeit 10 4.60 6.80 5.66 5.70 .75 -.120 -.970

The median of almost all factors exceeds the value of 6.00, which is very
high. Only for “Individualisierbarkeit”, the value was much lower (MD =
4.50). The qualitative feedback of the open face-to-face interviews con-

Use and Acceptance Evaluation

 226

ducted with the subjects after filling out the questionnaires showed that
the reason for this low score were wrong expectations of the system.
They were told they would be introduced to a system capable of provid-
ing information in a user-sensitive way. However, during this case study,
the adaptivity (i.e., user model) was not activated because the focus of
the case study was on the learning approach and content presentation
rather than on the aspects of adaptivity and personal individualization. A
one-sample t-test compared the means with the neutral value of 4 and
provided p-values equal to 0.00 for all factors but “Individualisierbarkeit”
(p = .401).

Aufgabenangemessenheit
7,006,005,004,003,002,001,00

Fr
eq

ue
nc

y

4

3

2

1

0

Mean =6,00�
Std. Dev. =0,4714�

N =10

Selbstbeschreibungsfähigkeit
7,006,005,004,003,002,001,00

Fr
eq

ue
nc

y

4

3

2

1

0

Mean =5,866�
Std. Dev. =0,52428�

N =10

Steuerbarkeit
7,006,005,004,003,002,001,00

Fr
eq

ue
nc

y

4

3

2

1

0

Mean =5,975�
Std. Dev. =0,75838�

N =10

Erwartungskonformität
7,006,005,004,003,002,001,00

Fr
eq

ue
nc

y

4

3

2

1

0

Mean =6,32�
Std. Dev. =0,37947�

N =10

Individualisierbarkeit
7,006,005,004,003,002,001,00

Fr
eq

ue
nc

y

4

3

2

1

0

Mean =4,4444�
Std. Dev. =1,50405�

N =9

Lernförderlichkeit
7,006,005,004,003,002,001,00

Fr
eq

ue
nc

y

4

3

2

1

0

Mean =5,66�
Std. Dev. =0,75454�

N =10

Figure 53 Histograms of ISONORM factors (case study)

Summary and Outlook

 227

9 Summary and Outlook

“The only source of knowledge is experience”
Albert Einstein

This chapter summarizes the main contributions and results of this thesis
(Section 9.1). In addition, it lists the limitations of this thesis and provides
a research agenda for future work (Section 9.2), and finally states some
concluding remarks (Section 9.3).

9.1 Results and Contributions

The main achievement of this work lies in the design, implementation,
and validation of the learning space approach in order to address three
central problems in practice (see Section 1 and Section 2):

� Bad understanding of reusable artifacts in general and experience
packages in particular

� No explicit support for internalization of knowledge and no compli-
ance with human information processing

� No explicit connection between KM/EM and technology-enhanced
learning approaches

Learning spaces intend to improve the understanding and application of
experience packages by restructuring information contained in the ex-
perience package description in a way that learning processes are stimu-
lated and knowledge acquisition is fostered. In addition, they improve
the perceived information quality. The learning space approach offers
contributions to the current state of the art in software engineering as
well as knowledge management, technology-enhanced learning at the
workplace, and adaptive hypermedia approaches in particular.

From the perspective of the reuse model, three extensions were neces-
sary to enable context-aware adaptation and generation of learning
spaces (see also next figure):

� Object Interface (Dependencies) was extended by Related Domain
Concepts CCi

� Object Context (Solution Domain) was extended by Related Context
Concepts DCi

� Activity – Mechanisms was extended to characterize the generation
and adaptation activity (i.e., General Adaptation, Adaptation Type

Problems
addressed

Solution:
learning
spaces

Extensions to
the reuse
model

Summary and Outlook

 228

Adaptation Level, Adaptation Navigation Techniques, Adaptation
Presentation Techniques)

object context

object interface

reuse candidates

object

activity context

activity interface

activity

reuse process

required objects

name
function
use
type
granularity
representation

input/output
dependencies

application domain
solution domain
object quality

name
function
type
mechanism

input/output
dependencies

experience transfer
reuse quality

general adaptation
adaptation type
adaptation level
adaptation navigation techniques
adaptation presentation techniques

DCi

CCi

Figure 54 Reuse model of Basili and Rombach (V. R. Basili & Rombach, 1991)

From the perspective of the experience factory, the learning space ap-
proach extends the “project support” activity (see Figure 55). It reuses
information from the software organization platform database (SOP DB)
such as situational content describing situations in projects, learning
content, and experience packages. This information is then merged into
a learning space; variabilities of the learning space are resolved based on
context and domain characteristics; the generic artifacts of a learning
space are adapted, and, finally, presented to the user in the project.

Figure 55 Extension of the experience factory

Three exten-
sions to the
experience
factory infra-
structure

Summary and Outlook

 229

Second, the experience base is not only part of the experience factory,
but it is now a storage medium between the project organization and
the experience factory: Different types of content are created, stored,
and reused from both sides - users have become both content producers
and consumers, which supports a more open knowledge sharing com-
munity between the project organization and the experience factory.
Third, the role model of the EF has been extended by the adaptive in-
structional design modeler, who is responsible for assigning learning
goals and learning methods to the identified learning scenarios and the
target group. He designs the structure of the learning space, identifies
possible variants and specifies them explicitly in the variability model, re-
spectively the decision model.

The main contributions are classified into theoretical, practical, and em-
pirical work.

The contributions to theory refer to the identification of problems by first
performing an extensive literature survey in the domain of software re-
use in general and KM/EM in particular. The outcomes were used to
perform two case studies and one market survey in order to confirm the
identified problems and derive a first set of requirements for the learning
space approach.

An overview of the state of the art in the domain of professional acting
and experiential learning was done to get a basic understanding of the
ongoing learning processes that should be stimulated by the learning
space approach in order to support experiential learning.

The classification of KM/EM approaches helped to identify possible in-
formation types that can be used to describe situations in software engi-
neering. The outcome was used to define the context model, which
serves to describe situations in software engineering by means of differ-
ent context concepts and relationships. In addition to the context model,
a domain model was developed to model the body of knowledge in
software engineering by means of different domain concepts and rela-
tionships. This domain model is used to annotate experience packages
and instructional content.

The developed learning space model defines learning spaces on different
levels of abstraction (i.e., structure, content, and presentation) through
an instructional design model and a learning resource model. It separates
structure, content, and presentation of a learning space and supports
the adaptation of its generic artifacts based on the variability model.

The learning space approach is able to automatically generate context-
aware learning spaces. This requires that the learning space can be
adapted to the actual context at development time (before learning) and
at runtime (during learning). A variability model allows defining variabili-

I. Theoretical
work

Context model
and domain
model

Learning space
model

Variability
model

Summary and Outlook

 230

ties on different level of abstraction and supports the static and dynamic
resolution of the variation points. Variation points realize variabilities and
are part of a generic artifact. They describe the location in a generic arti-
fact where the adaptation will occur.

All the models, including their concepts and relationships have been
defined in predicate logic. These models were used by several techniques
for the systematic and automatic, on-demand generation of learning
spaces. They are related to the activities of resolving, static and dynamic
adaptation, and presentation of generic artifacts.

A lifecycle model illustrates the different states of a learning space and
explains when a learning space is generated, adapted, and presented. It
helps to understand the differences between static adaptation by means
of static context indicators and dynamic adaptation by means of dynamic
context indicators.

A role model was defined to describe the different types of activities and
responsibilities in the context of the extended experience factory. The
model explains the difference to existing role models in the domain of
experience management and helps to implement the learning space ap-
proach in software engineering.

A critical part of the learning space approach is the selection of the right
learning strategies and learning methods for supporting a specific learn-
ing scenario. In this work, appropriate strategies and methods have been
selected to stimulate experiential learning and to foster knowledge ac-
quisition during experience package reuse.

The contributions to practice are related to the implementation of the
different models, methods, techniques, and tools.

The context model was developed by using the Wiki syntax for software
engineering situations. The domain model was described by a domain
ontology in the OWL language. Several DTD schemas for decision model,
resolve model, and instructional design templates have been developed.

The learning space approach has been implemented as a plugin in the
software organization platform, including tools for describing and anno-
tating learning content (i.e., a vocabulary manager and an authoring tool
for learning elements). This supports the conceptual as well as technical
integration of knowledge/experience management and technology-
enhanced learning. In addition, a lightweight experience management
system for documenting and retrieving experience packages was devel-
oped.

The empirical evaluations provide statistical significant results that quan-
tify the impact of learning spaces upon the understanding and applica-

Related tech-
niques

Lifecycle
model

Role model

Selecting
learning
strategies and
methods

II. Practical
work

Implementa-
tion of the
models

Implementa-
tion of the
learning space
approach

III. Empirical
work

Summary and Outlook

 231

tion or experience packages, upon knowledge acquisition, and upon
perceived information quality. A power analysis and effect sizes provide
a strong baseline for future evaluations and meta-analysis studies.

Due to the fact that experiments related to the didactical augmentation
of software engineering experience packages have not been conducted
before, this experiment serves as an exploratory evaluation, which can be
used as a baseline for future evaluations and developments in this area.
Therefore, strong emphasis has been put upon the construction of reli-
able measurement instruments (by applying a principle component
analysis and item analysis), the selection of suitable disturbing factors for
controlling the experiment, and the data analysis. Particular importance
is put on the analysis of confounding effects. A literature survey was
done to clarify the terminology and identify the different statistical ap-
proaches for their identification and correction. The reason for this sur-
vey was that these effects are either mostly neglected in empirical soft-
ware engineering or examined incorrectly.

The statistical data analysis revealed that all eleven null hypotheses re-
lated to understanding, application, knowledge acquisition variables, and
perceived usefulness could be rejected, which means that learning
spaces have a high potential of improving experience package reuse. The
subjects using learning spaces had a significantly higher understanding
correctness than the group provided with the information from experi-
ence packages (p = .002, power = .923). Regarding knowledge acquisi-
tion, higher effects have been detected for the lower cognitive levels re-
member (d =1.02, power = .998) and understand (d = 1.06, power =
.997). Medium effect sizes were obtained for the levels apply (d = .57,
power = .751), analyze (d = .76, power = .940), and create (d = .56,
power = .737). Finally, regarding application efficiency (f = .77, power =
.848), application completeness (d = 1.47, power = .911), and applica-
tion accuracy (d = .48, power = .650), medium, respectively high effects
(Cohen, 1988) have been detected. Finally, the perceived information
quality of the provided learning spaces was significantly higher than that
of the experience packages (d = .63, power = .845).

Regarding the research hypotheses stated in Section 1.4 the expected
improvement goals could not be met for understanding correctness
(20%), which refines the variable understanding. Furthermore, the im-
provement goal could also not be fulfilled for perceived usefulness
(17%). Both were expected to be at least 25%. The reason for this could
be that the templates used for describing the experience packages were
already of good quality – they correspond to state-of-the-practice ex-
perience packages. This was necessary in order to create a fair compari-
son situation between conventional experience packages and experience
packages enriched by a learning space. Nevertheless, the improvement
goal for knowledge acquisition have been fulfilled to a large extent and
were much higher than expected (i.e., the cognitive level of apply with

Experiment
design and
analysis

Summary of
the results:
statistical
hypotheses

Summary of
the results:
research hy-
potheses

Summary and Outlook

 232

80%, up to 275% for the cognitive level of understanding). Application
efficiency (53%) and application completeness (51%), which refine the
application variable, also exceeded the expected improvement rate of
25%.

The experiment and an additional case study showed that good or very
good results were achieved with the learning space approach regarding
technology use and acceptance, and software ergonomics.

9.2 Limitations and Future Research

Despite the good results of the learning space evaluation, limitations of
the approach still exist, which provides room for future research. Since
the development of the learning space approach also requires the con-
sideration of different disciplines, the derived research fields are also in-
terdisciplinary: software engineering and software product lines in par-
ticular, artificial intelligence in education, learning theories and methods,
and empirical research.

The standard reuse process consists of identifying reuse candidates from
the reuse repository, evaluating the reuse candidates and selecting a
candidate, modifying the candidate before reuse of necessary, and inte-
grating or applying the experience (V. R. Basili & Rombach, 1991). By
adding an adaptation and generation activity to this reuse process, the
software engineer is supported in bridging the gap between reuse can-
didate and required object. However, the learning space is not generated
and adapted based on a precise distance measure between the reuse
candidate and the required objects - it is done based on available context
information (i.e., concepts and semantic relationships) of the experience
package and the current situation.

In the future, research work should focus on exactly determining the dis-
tance between the context of the experience package and the actual
working situation in order to enhance the generation of learning spaces.
This requires the specification of distance measures for the different con-
text characteristics.

The role model introduced in this work added the role of the adaptive
instructional design modeler to the standard role model for the experi-
ence factory. Beside the well-known challenges for setting up an experi-
ence factory in an organization, finding a person who is capable of per-
forming the related activities of the adaptive instructional design mod-
eler will be difficult: Besides pedagogical knowledge about learning
theories and methods, the instructional designer needs competencies in
the domain of interest and in technically specifying instructional designs
for different learning methods, and must be able to reflect about all the
different variants of a learning space while keeping in mind the impact-

Use, accep-
tance, and
software
enconomics

Limitation:
Generation of
learning
spaces is not
based on
distance
measures
between the
selected reuse
candidate and
the require-
ments

Limitation:
adaptive in-
structional
design model-
ler

Summary and Outlook

 233

ing contextual indicators. It is obvious that finding one person that cov-
ers all these competencies will be difficult in a software organization,
since domain experts are mostly not instructional design experts and in-
structional designers are seldom found in industry, or their knowledge is
too tacit to instantiate it in the context of technology-enhanced learning.

One possibility is to make instructional design more applicable. Initial in-
structional design patterns have to be developed so that a software en-
gineering domain expert can apply them. These patterns are very useful
for describing instructional design strategies in a comprehensive manner.
Goodyear presents design patterns and pattern languages for networked
learning (Goodyear, 2005). His patterns use a template similar to the one
used by Alexander in the architectural domain (C. Alexander, 1979) and
also in the software development domain (Gamma, 1995).

Educational approaches such as the learning space approach only work
when a critical mass of situational and learning content is available for
building the learning spaces. Many intelligent technology-enhanced
learning approaches have struggled in the past because of a lack of con-
tent chunks in their repositories.

In order to cope with this problem, content from open repositories of
content such as Wikipedia or other learning object repositories should be
integrated into the learning spaces. Even content from Web2.0 plat-
forms should be considered for future applications. Technologies such as
mashups, which integrate information from different Web2.0 technolo-
gies, will impact research on and development of approaches such as the
learning space approach in the future.

Information agents are a special kind of intelligent software agents
(Wooldridge & Jennings, 1995). They could provide a solution by means
of retrieving, analyzing, manipulating, and fusing heterogeneous infor-
mation, as well as visualizing and guiding the user through the available
individual space. Agent technology made its way to education about 10
years ago in the domain of Artificial Intelligence in Education.

The development of several models requires tool support. Regarding the
domain ontology, Protégé was used, which is a comprehensive tool for
modeling ontologies. However, regarding the decision model, resolution
constraints, etc. a conventional XML editor was used, which makes it
almost impossible to develop complex decision models and to keep the
resolution constraints consistent. Here, recently developed tools from the
domain of product line engineering could be adapted for the purpose of
learning space adaptation since the available tools from the adaptive hy-
permedia domain are to proprietary to be used in practice. They need to
support the modeling of variabilities across different abstraction layers
and they must provide different, user-friendly views on decision models
so that inconsistencies in the model can be detected easily.

Limitation:
Getting the
critical mass of
content

Limitation:
Tool support

Summary and Outlook

 234

The threats to validity indicate that the experiment should be replicated
in a domain other than refactoring to confirm the results. Additional
investigations in industry would strengthen the findings even if the ex-
periment’s subjects were comparable to software developers in practice.
Other research opportunities would be to evaluate the approach with
decision makers (e.g., project managers); to predict the effect of learning
spaces upon knowledge acquisition in order to build predictive models
for learning spaces; and to compare different adaptation techniques.

In addition, the statistical analysis has shown that confounding effects in
crossover studies (i.e., within-subject/repeated measure designs) are still
being neglected. It seems that no perfect approaches exist to detect or
correct them. Because repeated measure designs are very common in
software engineering, research should be done to analyze statistical ap-
proaches from other fields (e.g., clinical research) and to investigate
them in the domain of software engineering.

The existing world of education is currently experiencing rapid changes
with to all the new technologies and methods coming up on the market.
This change is also taking place in technological and in instructional
methods used in traditional as well as in technology-enhanced learning.
Current learning theories and methods should adapt to the current de-
velopments in the information society. George Siemens, for example de-
veloped the learning theory of “connectivism” (Siemens, 2004). He
states that “the people earn their knowledge from forming connections
to specialized information sets, and the connections that enable us to
learn more are more important than our current state of knowing”. This
matches with the recent developments in the Web2.0 and Web3.0 ar-
eas. In software engineering, these changes in knowledge creation and
sharing will also significantly impact the way students should be edu-
cated and how software engineers develop software in practice. In 2008,
the community of software engineering education invented the term
“Net Generation of Software Engineers” – people who have never lived
without the Internet and who develop software in an open and distrib-
uted environment.

The following research questions can be derived:

� What are the most common learning scenarios in software engineer-
ing at the workplace and which instructional design pattern set can
implement these scenarios so that short-term problem solving as well
as long-term competence development can be supported?

� How can the exact distance be determined between the context
characteristics of the selected candidate and the actual context of the
required object?

� Can the problem of critical mass of content be addressed by integrat-
ing open content repositories for software engineering, and how can

Limitation:
Empirical
research

Limitation:
Learning theo-
ries and meth-
ods

Research
agenda

Summary and Outlook

 235

intelligent agents support the retrieval of potential learning content
for learning spaces in software engineering?

� How can available techniques and tools from the domain of product
line engineering be adapted and used for describing the variabilities
in a learning space?

� What types of confounding effects impact repeated measure designs
in software engineering, and how can we correct them or even pre-
vent them?

� Which replications of the experiment are necessary for building pre-
dictive models of knowledge acquisition for learning spaces in soft-
ware engineering?

� What are the most important static and dynamic indicators for con-
text-aware adaptation, and what are the most effective adaptation
techniques for learning spaces in software engineering?

� What are the characteristics of the upcoming net generation of soft-
ware engineers, and how should information-based services be
adapted so that they address their information needs and educational
goals?

9.3 Concluding Remarks

The learning space approach has shown that experience management is
not only a matter of building up an experience factory in an organiza-
tion, convincing management at its usefulness, developing new sche-
mata for describing experience, or improving such things as search algo-
rithms. As long as reuse-based approaches do not structure information
compliant to human information processing, their success will be short-
lived due to the fact that the processes of constructing new knowledge
and using it in new situations are not explicitly supported. Nevertheless,
the challenge is not to try to perfectly adapt the learning space to a spe-
cific user’s characteristics and his situations in order to support learning
processes – it is a matter of reducing the learning options and producing
the right set of possible learning paths, so that the learner can choose on
his own how to reach the intended goal.

Abbreviations

 237

Abbreviations

AHS Adaptive Hypermedia System

EAHS Educational Adaptive Hypermedia System

EM Experience Management

EMS Experience Management System

EP Experience Package

IMS LD IMS Learning Design

KM Knowledge Management

KMS Knowledge Management System

LOM Learning Object Metadata

SCORM Sharable Content Object Reference Model

SOP Software Organization Platform

TEL Technology-Enhanced Learning

References

 239

References

Abeyasekera, S., & Curnow, R. N. (1984). The Desirability of Adjusting for Residual Effects in a
Crossover Design. Biometrics, 40, 1071-1078.

Adams, M. J. (1989). Thinking Skills Curricula: Their Promise and Progress. Educational Psychologist,
24, 25-77.

Akhras, F. N., & A., S. J. (2000). System Intelligence in Constructivist Learning (in SE). International
Journal of Artificial Intelligence in Education, 11, 344-376.

Akhras, F. N., & Self, J. A. (2000). System Intelligence in Constructivist Learning. International Jour-
nal of Artificial Intelligence in Education, 11, 344-376.

Alavi, M., & Leidner, D. E. (1999). Knowledge Management Systems: Issues, Challenges, and Bene-
fits. Communications of the AIS, 1(7).

Alexander, C. (1979). The timeless way of building. New York: Oxford University Press.
Alexander, P. A., Schallert, D. L., & Hare, V. C. (1991). Coming to Terms: How Researchers in Learn-

ing and Literacy Talk about Knowledge. Review of Educational Research, 61(3), 315-343.
Althoff, K.-D. (2001). Case-based Reasoning. In S.-K. Chang (Ed.), Handbook of Software Engineer-

ing & Knowledge Engineering (Vol. 1, pp. 549-587). Singapore: World Scientific.
Althoff, K.-D., Birk, A., Hartkopf, S., Müller, W., Nick, M., Surmann, D., et al. (1999). Systematic

Population, Utilization, and Maintenance of a Repository for Comprehensive Reuse. Paper
presented at the 11th International Conference on Software Engineering and Knowledge
Engineering, Learning Software Organizations, Methodology and Applications, Kaiserslau-
tern, Germany.

Althoff, K.-D., & Pfahl, D. (2003). Making Software Engineering Competence Development Sus-
tained through Systematic Experience Management. In A. Aybüke, R. Jeffrey, C. Wohlin &
M. Handzic (Eds.), Managing Software Engineering Knowledge. Heidelberg / New York:
Springer.

Anderson, J. R. (1993). Rules of the mind. Hillsdale, N.J.: L. Erlbaum Associates.
Anderson, J. R., & Graf, R. (2001). Kognitive Psychologie (3. Aufl. ed.). Heidelberg u.a.: Spektrum

Akad. Verl.
Anderson, L. W., & Krathwohl, D. R. (2001). A Taxonomy for Learning, Teaching, and Assessing: a

Revision of Bloom's Taxonomy of Educational Objectives (Complete ed.). New York: Long-
man.

Arango, G., Baxter, I., Freeman, P., & Pidgean, C. (1985). Maintenance and Porting of Software by
Design Recovery. Paper presented at the Conference on Software Maintenance, Los Alami-
tos, California.

Araujo, R., Santoro, F. M., Brézillon, P., Borges, M. R., & Rosa, M. G. P. (2004). Context Models for
Managing Collaborative Software Development Knowledge. Paper presented at the First In-
ternational Workshop on Modeling and Retrieval of Context (KI 2004), MRC2004, Ulm,
Germany.

Argyris, C., & Schön, D. A. (1978). Organizational Learning: A Theory of Action Perspective: Addi-
son-Wesley.

Armitage, P., & Berry, G. (1994). Statistical Methods in Medical Research (3rd ed.): Blackwell Sci-
ence Ltd.

Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., et al. (2002). Compo-
nent-based Product Line Engineering with UML. New York: Addison-Wesley.

Aviation Industry CBT Committee. (1998). AICC AGR010 - Web-based Computer Managed Instruc-
tion (CMI)Ver. 1.0, , from http://www.aicc.org/pages/down-docs-index.htm

References

 240

Backhaus, K., Erichson, B., Plinke, W., & Weiber, R. (2005). Multivariate Analysemethoden - Eine
anwendungsorientierte Einführung (11th ed.). Berlin: Springer.

Bannan-Ritland, B., Dabbagh, N., Murphy, K., & Wiley, D. A. (2002). Learning Object Systems as
Constructivist Learning Environments: Related Assumptions, Theories, and Applications. The
Instructional Use of Learning Objects (AECT), 61-98.

Barker, N., News, R. J., Huitson, A., & Poloniecki, J. (1995). The two-period crossover trial. BIAS, 9,
67-116.

Baron, J. (2000). Thinking and Deciding. Cambridge, UK: Cambridge University Press.
Basili, V. R., Caldiera, G., & Cantone, G. (1992). A reference architecture for the component fac-

tory. ACM Transactions on Software Engineering and Methodology, 1(1), 53-80.
Basili, V. R., Caldiera, G., McGarry, F., Pajerski, R., Page, G., & Waligora, S. (1992). The Software

Engineering Laboratory - an Operational Software Experience Factory. Paper presented at
the International Conference on Software Engineering (ICSE).

Basili, V. R., Caldiera, G., & Rombach, H. D. (2002). Experience Factory. In J. J. Marciniak (Ed.),
Encyclopedia of Software Engineering (2nd ed., Vol. 1, pp. 511-518). New York: John Wiley
& Sons, Inc.

Basili, V. R., Caldiera, G., Rombach, H. D., & Van Solingen, R. (2002). The Goal Question Metric
Approach. In J. J. Marciniak (Ed.), Encyclopedia of Software Engineering (2nd ed., Vol. 1, pp.
578-583). New York: John Wiley & Sons, Inc.

Basili, V. R., Daskalantonakis, M. K., & Yacobellis, R. H. (1994). Technology transfer at Motorola.
IEEE Software, 11(2), 70-76.

Basili, V. R., & Rombach, H. D. (1991). Support for Comprehensive Reuse. Journal of Software
Engineering, 6(5), 303 - 316.

Basili, V. R., & Weiss, D. (1984). A Methodology for Collecting Valid Software Engineering Data.
IEEE Transactions on Software Engineering(November), 728-738.

Baumgartner, P. (2000). Handeln und Wissen bei Schütz. In G. H. Neuweg (Ed.), Wissen. Können.
Reflexion (pp. 9-26). Innsbruck, Wien: Studienverlag.

Bayer, J., Flege, O., & Gacek, C. (2000). Creating Product Line Architectures. Paper presented at the
Int. Workshop on Software Architectures for Product Families (IW-SAPF-3).

Becker, M. (2004). Anpassungsunterstützung in Softwareproduktfamilien. Dissertation, University
of Kaiserslautern, Kaiserslautern.

Biggerstaff, T. J. (1989). Design Recovery for Maintenance and Recovery. IEEE Computer, 22(7), 36-
49.

Biggerstaff, T. J. (1991). Panel: Software Reuse: Is it Delivering? Paper presented at the ICSE.
Birk, A. (2001). A knowledge management infrastructure for systematic improvement in software

engineering: Fraunhofer-IRB-Verl.
Birk, A., & Kröschel, F. (1999). A Knowledge Management Lifecycle for Experience Packages on

Software Engineering Technologies. Paper presented at the Workshop on Learning Software
Organizations.

Birk, A., & Tautz, C. (1998). Knowledge Management of Software Engineering Lessons Learned.
Paper presented at the 10th International Conference on Software Engineering and Knowl-
edge Engineering (SEKE'98).

Bloom, B. S. e., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). Taxonomy of
Educational Objectives; the Classification of Educational Goals (1st ed.). New York: Long-
mans Green.

Bonar, J. G. (1988). The Bite-Sized Architecture. Pittsburgh, Pennsylvania: Learning Research and
Development Center, University of Pittsburgh.

Bortz, J. (2005). Statistik. Für Human- und Sozialwissenschaftler (6th ed.). Heidelberg, New York:
Springer.

Bortz, J., & Döring, N. (2001). Forschungsmethoden und Evaluation. Für Human- und Sozialwissen-
schaftler (4th ed.). Heidelberg, New York: Springer.

References

 241

Bransford, J. D., Brown, A. L., & Cocking, R. R. (1999). How People Learn: brain, mind, experience,
and school. Washington DC: National Academy Press.

Bransford, J. D., Sherwood, R. D., Hasselbring, T. S., Kinzer, C. K., & Williams, S. M. (1990). An-
chored Instruction: Why We Need it and How Technology Can Help. Cognition, Education,
Multimedia: Exploring Ideas in High Technology 115-141.

Brézillon, P. (1999). Context in Problem Solving: A Survey. The Knowledge Engineering Review,
14(1), 1-34.

Brickley, D., & Guha, R. V. (2004). RDF Vocabulary Description Language 1.0: RDF Schema, from
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

Brown, J. S., Collins, A., & Duguid, P. (1989). Situated Cognition and the Culture of Learning (No.
481). Champaign, Ill.: University of Illinois at Urbana-Champaign.

Brown, M. (2004). Learning Spaces. In D. Oblinger, and Oblinger, J. (Ed.), Educating the Net Gen-
eration: Educause eBook.

Brusilovsky, P. (1996). Methods and techniques of adaptive hypermedia. User Modeling and User-
Adapted Interaction, 6(2-3), 87-129.

Brusilovsky, P. (1998). Adaptive educational systems on the world-wideweb: A review of
available technologies. Paper presented at the Workshop "WWW-Based Tutoring" at 4th Interna-

tional Conference on Intelligent Tutoring Systems, San Antonio, TX.
Brusilovsky, P. (2001). Adaptive Hypermedia. User Modeling and User-Adapted Interaction, 11, 87-

110.
Brusilovsky, P., & Nijhawan, H. (2002). A Framework for Adaptive E-Learning Based on Distributed

Reusable Learning Activities. Paper presented at the World Conference on E-Learning, E-
Learn2002.

Brusilovsky, P., Pesin, L., & Zyryanov, M. (1993). Towards an adaptive hypermedia component for
an intelligent learning environment. In L. J. Bass, J. Gornostaev & C. Unger (Eds.), Lecture
Notes in Computer Science, Human-Computer Interaction (Vol. 753, pp. 348-358). Berlin:
Springer-Verlag.

Brusilovsky, P., Schwarz, E., & Eklund, J. (1998). Web-based Education for All: A Tool for Develop-
ing Adaptive Courseware. Computer Networks and ISDN Systems (proc. of seventh Interna-
tional World Wide Web Conference), 30(1-7), 291-300.

Brusilovsky, P., & Vassileva, J. (2003). Course sequencing techniques for large-scale web-based
education. Int. J. Continuing Engineering Education and Lifelong Learning, 13, 75-94.

Bühner, M. (2006). Einführung in die Test- und Fragebogenkonstruktion (2nd ed.). München, Ger-
many: Pearson Studium.

Buser, K. P. (1995). Dangers in Using ANCOVA to Evaluate Special Education Program Effects.
Paper presented at the Annual Meeting of the American Educational Research Association.

Card, D., & Comer, E. (1994). Why Do So Many Reuse Programs Fail? IEEE Software(September
1994), 114-115.

Center for Software Engineering. (1997). COCOMO II Model Definition Manual. Los Angeles, CA:
Computer Science Department, University of Southern California.

Chang, S. G., Ahn, J. H. (2005). Product and process knowledge in the performance-oriented
knowledge management approach. Journal of Knowledge Management, Nr. 4, 114-132.

Chen, W., & Mizoguchi, R. (2004). Learner Model Ontology and Learner Model Agent. In P. Kom-
mers (Ed.), Cognitive Support for Learning - Imagining the Unknown (pp. 189-200): IOS
Press.

Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1991). Categorization and Representation Physics Prob-
lems by Experts and N0vices. Cognitive Science, 5, 121-152.

Cisco Systems, I. (1999, June 25). Cisco Systems Reusable Information Object Strategy Retrieved
October 1, 2007, from
http://www.cisco.com/warp/public/779/ibs/solutions/learning/whitepapers/el_cisco_rio.pdf

References

 242

Clements, P., & Northrop, L. (2001). Software Product Lines: Practices and Patterns, Addison
Wesley (3Rev Ed edition ed.).

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed ed.). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive Apprenticeship: teaching the crafts of
reading, writing and mathematics. In L. B. Resnick (Ed.), Knowing, Learning and Instruction:
Essays in honor of Robert Glaser (pp. 453-494): Hillsdale, NJ: Lawrence Erlbaum Associates.

Conklin, J. (1987). Hypertext: An Introduction and Survey. IEEE Computer(20), 9.
Conlan, Lewis, D., Higel, S., O'Sullivan, D., & Wade, V. (2003). Applying Adaptive Hypermedia

Techniques to Semantic Web Service Composition. Paper presented at the International
Workshop on Adaptive Hypermedia and Adaptive Web-based Systems (AH 2003).

Conlan, O., Dagger, D., & Wade, V. (2002). Towards a Standards-based Approach to e-Learning
Personalization using Reusable Learning Objects. Paper presented at the E-Learn 2002,
World Conference on E-Learning in Corporate, Government, Healthcare and Higher Educa-
tion.

Conradi, R. (1999). From Software Experience Databases to Learning Organizations. Paper pre-
sented at the SEKE 1999.

Consortium, R. P. (2005). RISE Homepage, from http://www.rise-it.info
Cook, T. D., & Campbell, D. T. (1979). Quasi-Experimentation: Design and Analysis Issues for Field

Settings: Houghton Mifflin Company.
Coplien, J. O. (1998). Multi-Paradigm Design for C++: Addision Wesley.
Crowder, M. J., & Hand, D. J. (1990). Analysis of Repeated Measures. New York: Chapman & Hall.
Curtis, B. (1989). Cognitive Issues in Reusing Software Artifacts. In T. J. Biggerstaff & A. J. Perlis

(Eds.), Software Reusability. Vol.II: Applications and Experience (pp. 269-287): Read-
ing/Mass.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A Field Study of the Software Design Process for Large
Systems. Communications of the ACM, 31(11), 1268-1287.

Czarnecki, K., & Eisenecker, U. (2000). Generative Programming - Methods, Tools, and Applica-
tions. Boston, MA: Addison Wesley.

D’Alessandro, M., Iachini, P. L., & Martelli, A. (1993). The Generic Reusable Component: An Ap-
proach to Reuse Hierarchical 00 Designs. Paper presented at the Second International Work-
shop on Software Reusability, Lucca, Italy.

Dagger, D., Wade, V., & Conlan, O. (2003). Towards “anytime, anywhere” Learning: The Role and
Realization of Dynamic Terminal Personalization in Adaptive eLearning. Paper presented at
the Ed-Media 2003, Honolulu, Hawaii, USA.

Dalbey, J. (2003). Pseudocode Standard Retrieved June 1, 2008, from
http://users.csc.calpoly.edu/~jdalbey/SWE/pdl_std.html

Daly, A., Brooks, A., Miller, J., Roper, M., & Wood, M. (1995). The Effect of Inheritance on the
Maintanability of Object-oriented Software: an Empirical Study. Paper presented at the Int.
Conf. on Software Maintenance.

Damiani, E., Fugini, G., & Bellettini, C. (1999). A hierarchy-aware approach to faceted classification
of objected-oriented components. ACM Trans. Softw. Eng. Methodol., 8(3), 215-262.

Davenport, T. H., De Long, D. W., & Beers, M. C. (1998). Successful Knowledge Management
Projects. Sloan Management Review, Winter 1998, 39(2), 43-57.

Davis, F. D. (1986). A Technology Acceptance Model for Empirically Testing New End-User Informa-
tion Systems: Theory and Results (PhD Thesis). Massachusetts Institute of Technology.

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Informa-
tion Technology. MIS Quarterly, 13(3), 319-339.

De Bra, P., Aerts, A., Smits , D., & Stash, N. (2002). AHA! Version 2.0: More Adaptation Flexibility
for Authors. Paper presented at the AACE ELearn2002 Conference.

References

 243

De Bra, P., Houben, G. J., & Wu, H. (1999). AHAM: A Dexter-Based Reference Model for Adaptive
Hypermedia. Paper presented at the ACM Conference on Hypertext and Hypermedia.

De Bra, P., Stash, N., & De Lange, B. (2003, May). AHA! Adding Adaptive Behavior to Websites.
Paper presented at the NLUUG Conference, Ede, The Netherlands.

De Jong, T., & Ferguson-Hessler, M. G. M. (1996). Types and Qualities of Knowledge. Educational
Psychologist, 31(2), 105-113.

Decker, B., Ras, E., Rech, J., Jaubert, P., & Rieth, M. (2007). Wiki-Based Stakeholder Participation in
Requirements Engineering. IEEE Software, 24(2), 28-35.

Decker, B., Rech, J., Ras, E., Klein, B., & Hoecht, C. (2006). Using Wikis to Manage Use Cases: Ex-
perience and Outlook. Paper presented at the International Workshop on Learning Software
Organizations and Requirements Engineering (LSO+RE 2006), Hannover, Germany.

Dehnbostel, P. (2001). Perspektiven für das Lernen in der Arbeit. In A. B. W. e.V. (Ed.), Kompetenz-
entwicklung 2001. Tätigsein - Lernen - Innovation (pp. 53-93). Münster.

Denaux, R., Dimitrova, D., & Aroyo, L. (2004). Interactive Ontology-Based User Modeling for Per-
sonalized Learning Content Management. Paper presented at the SWEL'04 Workshop
(AH2004).

Devanbu, P., Brachmann, R. J., Selfridge, P. G., & Ballard, B. W. (1991). LaSSIE: A Knowledge-Based
Software Information System. Communications of the ACM, 34, 35-49.

Dewe, B., Wiesner, G., Wittpoth, J. (2001). Professionswissen und erwachsenenpädagogisches
Handeln Retrieved October 1, 2007, from http://www.die-bonn.de/esprid/dokumente/doc-
2002/dewe02_01.pdf

Dewey, J. (1933). How we think, a restatement of the relation of reflective thinking to the educa-
tive process. Boston: New York [etc.] D.C. Heath and company.

Dewey, J. (1938). Experience and Education. New York: Collier Books.
Dey, A. (2000). Providing Architectural Support for Building Context-Aware Applications. PhD The-

sis, College of Computing,Georgia Tech.
Dey, A. K. (2001). Understanding and Using Context. Personal and Ubiquitous Computing, 5(1), 4-

7.
Dhungana, D. (2006). Integrated Variability Modeling of Features and Architecture in Software

Product Line Engineering. Paper presented at the 21st International Conference on Auto-
mated Software Engineering (ASE 2006).

Dhungana, D., Kepler, J., Rabiser, R., & Grunbacher, P. (2007). Decision-Oriented Modeling of
Product Line Architectures. Paper presented at the Sixth Working IEEE/IFIP Conference on
Software Architecture (WICSA'07).

Díaz-Uriarte, R. (2002). Incorrect Analysis of Crossover Trials in Animal Behaviour Research. Animal
Behavior, 63(4), 815-822.

Doan, B. L., Bourda, Y., & Dumitrascu, V. (2006, July 5-7). A Semi-Automatic Tool using Ontology
to Extract Learning Objects. Paper presented at the Sixth International Conference on Ad-
vanced Learning Technologies, Kerkrade, The Netherlands.

Dochy, F., & Alexander, P. A. (1995). Mapping prior knowledge: A framework for discussion among
researchers. European Journal of Psychology of Education, 10(3), 225-242.

Dodgson, M. (1993). Organizational Learning: A Review of Some Literatures. Organization Studies,
14(3), 375-394.

Dolog, P., Gavriloaie, R., Nejdl, W., & Brase, J. (2003). Integrating Adaptive Hypermedia Techniques
and Open RDF-Based Environments. Paper presented at the Twelfth International World
Wide Web Conference (WWW2003).

Dolog, P., Henze, N., Nejdl, W., & Sintek, M. (2003). Towards the Adaptive Semantic Web. Paper
presented at the Principles and Practice of Semantic Web Reasoning (PPSWR103), .

Dusink, L., & Van Katwijk, J. (1995). Reuse Dimensions. Paper presented at the Symposium on
Software Reusability, Seattle, Washington, USA.

References

 244

Efimova, L., & Swaak, J. (2002). KM and (e)-learning: towards an integral approach? Paper pre-
sented at the EKMF.

Efimova, L., & Swaak, J. (2003). Converging Knowledge Management, Training and e-learning:
Scenarios to make it work. Journal of Universal Computer Science, 9(6), 571-578.

Encyclopedia Britannica Online. Retrieved November 29, 2008, from http://www.britannica.com/
Endres, A., & Rombach, H. D. (2003). A Handbook of Software and Systems Engineering : Empirical

Observations, Laws, and Theories. Harlow, England: Addison Wesley.
Enns, C. Z. (1993). Integrating Separate and Connected Knowing: The Experiential Learning Model.

Teaching of Psychology, 20(1), 7-13.
ergo-online. (2008). Beurteilung der Software-Ergonomie nach ISONORM Retrieved 2008-02-10,

from http://www.ergo-online.de
Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The Role of Deliberate Practice in the

Acquisition of Expert Performance. Psychological review. 100, no. 3, 363-406.
Falbo, R., Borges, L., Valente F. (2004, September 8-9). Using Knowledge Management to Improve

Software Process Performance in a CMM Level 3 Organization. Paper presented at the
Fourth International Conference on Quality Software, Braunschweig.

Farmer, M., & Taylor, B. (2002). A Creative Learning Environment (CLE) for Anywhere Anytime
Learning. Paper presented at the MLearn 2002, Birmingham, UK.

Faul, F. (2006). G*Power. University Kiel, Germany.
Felder, M., & Silverman, L. K. (1988). Learning and Teaching Styles in Engineering Education. Engr.

Education, 78(7), 674-681.
Felder, R. M., & Henriques, E. R. (1995). Learning and Teaching Styles In Foreign and Second Lan-

guage Education. Foreign Language Annals, 28, 21-31.
Feldmann, R. L. (1999). On Developing a Repository Structure Tailored for Reuse with Improvement.

Paper presented at the Learning Software Organizations (LSO 1999).
Feldmann, R. L., Frey, M., Habetz, M., & Mendonca, M. (2000, July 6-8). Applying Roles in Reuse

Repositories. Paper presented at the International Conference on Software Engineering and
Knowledge Engineering (SEKE'2000), Chicago, USA.

Feldmann, R. L., Frey, M., & Mendonca, M. (2000, July 6-8). Applying roles in reuse repositories.
Paper presented at the International Conference on Software Engineering and Knowledge
Engineering (SEKE'2000), Chicago, USA.

Fiol, C. M., & Lyles, M. A. (1985). Organizational Learning. Academy of Management Review,
10(4), 803-813.

Fischer, G. (1987). Cognitive View of Reuse and Design. IEEE Software(July 1987), 60-72.
Fischer, G., Henninger, S., & Redmiles, D. (1991). Cognitive Tools for Locating and Comprehending

Software Objects for Reuse. Paper presented at the 13th International Conference on Soft-
ware engineering, Austin, Texas, USA.

Fisseni, H. (1997). Lehrbuch der psychologischen Diagnostik (2. Aufl. ed.). Göttingen: Hogrefe.
Flavell, J. H. (1992). Metakognition and cognitive monitoring: A new Area of cognitive develop-

mental inquiry. American Psychologist, 34, 906-911.
Fowler, M. (1999). Refactoring: Improving the Design of Existing Code (1st ed.): Addison-Wesley.
Frakes, W. B., & Fox, C. J. (1995). Sixteen Questions About Software Reuse. Communications of the

ACM, 38(6), 75-87.
Frakes, W. B., & Kang, K. (2005). Software Reuse Research: Status and Future. IEEE Transactions on

Software Engineering, 31(7), 529-536.
Frakes, W. B., & Pole, T. P. (1994). An Empirical Study of Representation Methods for Reusable

Software Components. IEEE Transactions on Software Engineering, 20(8), 617-630.
Frankola, K. (2001). Why Online Learners Dropout. Workforce, 10, 53-63.
Frasincar, F., & Houben, G. J. (2002). Hypermedia Presentation Adaptation on the Semantic Web.

Paper presented at the Proceedings of the 2nd International Conference on Adaptive
Hjpermedia and Aduptive Web-Based Systems (AH 2002).

References

 245

Fraunhofer IFF, F. I. (2006). Wissensmanagement in produzierenden KMU Retrieved October 1,
2007, from http://www.wissensmanagement.fraunhofer.de/kurzversion_prowis_studie.pdf

Freeman, P. R. (1989). The Performance of the Two-Stage Analysis of Two-Treatment, Two-Period
Crossover Trials. Statistics in Medicine, 8(12), 1421-1432.

Friesen, N. (2004). Three Objections to Learning Objects and E-learning Standards. In R. McGreal
(Ed.), Online Education Using Learning Objects (pp. 59-70). London: Routledge.

Fröming, J., Korf, R., Fürstenau, D. (2005). Arbeitsbericht Knowledge Modelling and Description
Language Retrieved October 1, 2007, from http://wi.uni-
potsdam.de/hp.nsf/0/83C8D2924031BAE2C12570A10054EE58/$FILE/WI-2005-23.pdf

Gagné, R. M. (2005). Principles of instructional design (5th ed.). Belmont, CA: Thom-
son/Wadsworth.

Gamma, E. (1995). Design patterns : elements of reusable object-oriented software. Reading,
Mass.: Addison-Wesley.

Gardner, H. (1983). Frames of Mind: the theory of multiple intelligences: Basic Books.
Gardner, H. E. (1999). Multiple Approaches to Understanding. In C. M. Reigeluth (Ed.), Instructionl-

Design Theories and Models: A New Paradigm of Instructional Theory (Vol. II). Mahwah, NJ,
USA: Lawarence Erlbaum Associates, Inc.

Gilbert, J. E., & Han, C. Y. (1999). Arthur: Adapting Instruction to Accommodate Learning Style.
Paper presented at the World Conference of the WWW and Internet.

Goeken, M. (2005, September). Wissensarten und Techniken im Anforderungsmanagement. Re-
trieved October 1, 2007, from http://www.frankfurt-
school.de/dms/publications_it_governance/Goeken_Informatik05/Goeken_Informatik05.pdf

Goodyear, P. (2005). Educational Design and Networked Learning: Patterns, Pattern Languages and
Design Practice. Australasian Journal of Educational Technology, 21(1), 82-101.

Greaves, M. (2007). Semantic Web 2.0. IEEE Intelligent Systems, 22(2), 94-96.
Greenwald, A. (1976). Within-Subjects Designs: To Use of not to Use? Psychological Bulletin, 83(2),

314-320.
Grieve, A. P. (1985). A Bayesian Analysis of the Two-Period Crossover Design for Clinical Trials.

Biometrics, 41, 979-990.
Grizzle, J. E. (1965). The Two-Period Change-over Design and its Use in Clinical Trials. Biometrics,

21, 314-320.
Gronau, N. (2006). Softwaregestütztes Staffing zur kompetenzorientierten Zusammenstellung von

Projektteams Retrieved October 1, 2007, from http://www.competence-
si-
te.de/wissensmanagement.nsf/2DA1012F7887B360C125720C00305C4A/$File/softwareges
t%C3%BCtztes%20staffing.pdf

Group, P. C. (2004). Wissen - ein Potenzial für Unternehmen? Retrieved October 1, 2007, from
http://www.competence-
site.de/wissensmanagement.nsf/103F3939DAB8E4BEC1256EF90030D7D6/$File/knowledge
%20mgmt%20final%20report.pdf

Guide to the Software Engineering Body of Knowledge, SWEBOK. (2004). IEEE CS Press.
Guretzky, B. (2002). Wissensmanagement und Software Engineering - Expert Assistance Retrieved

October 1, 2007, from http://www.community-of-
knowledge.de/cp_artikel.htm?artikel_id=51

Haas, P. (2006). Wissensarten Retrieved October 1, 2007, from http://e-health-
com.de/service/glossar/w/index_09107.html

Halasz, F., & Schwartz, M. (1994). The Dexter Hypertext Reference Model. Communications of the
ACM, 37, 30-39.

Haley, T. J. (1996). Software process improvement at Raytheon. IEEE Software, 13(6), 33-41.
Hamilton, A. G. (1978). Logic for Mathematicians. Cambridge, UK: Cambridge University Press.
Hardman, L., Bulterman, C., & van Rossum, G. (1994). The Amsterdam Hypermedia Model. Com-

munications of the ACM, 37(2), 50-62.

References

 246

Henze, N. (2005). Personal Readers: Personalized Learning Object Readers for the Semantic Web.
Paper presented at the 12th International Conference on Artificial Intelligence in Education
(AIED2005).

Henze, N., & Nejdl, W. (2000). Extendible Adaptive Hypermedia Courseware: Integrating Different
Courses and Web Material. Paper presented at the Conference on Adaptive Hypermedia
and Adaptive Web-Based Systems (AH 2000).

Henze, N., & Nejdl, W. (2001). Adaptation in Open Corpus Hypermedia. International Journal of
Artificial Intelligence in Education. Special Issue on Adaptive and Intelligent Web-Based Sys-
tems, 12.

Henze, N., & Nejdl, W. (2004). A Logical Characterization of Adaptive Educational Hypermedia.
New Review of Hypermedia and Multimedia, 10(1), 77-113.

Hills, M., & Armitage, P. (1979). The Two-Period Cross-Over Clinical Trial. British Journal of Clinical
Pharmacology, 8, 7-20.

Hockemeyer, C., Held, T., & Albert, D. (1998). RATH A Relational Adaptive Tutoring Hypertext
WWW-Environment Based on Knowledge Space Theory. Paper presented at the 4th Interna-
tional conference on Computer Aided Learning and Instruction in Science and Engineering.

Houdek, F., & Kempter, H. (1997). Quality Patterns - An Approach to Packaging Software Engineer-
ing Experience. Paper presented at the Proceedings of the 1997 Symposium on Software
Reusability, Boston, Massachusetts, USA.

Houdek, F., Schneider, K., & Wieser, E. (1998). Establishing experience factories at Daimler-Benz an
experience report. Paper presented at the Software Engineering, 1998. Proceedings of the
1998 (20th) International Conference on.

Houle, C. (1980). Continuing Learning in the Professions. San Francisco: Jossey-Bass.
Humphrey, W. S. (1991). Software and the factory paradigm. Software Engineering Journal, 6(5),

370-376.
IEEE Learning Technology Standard Comittee. (2002). 1484.12.1, IEEE Standard for Learning Object

Metadata Retrieved 6 March, 2008, from http://ltsc.ieee.org/wg12/
Ilin, D. (2008). Generierung von adaptiven Lernräumen für erfahrungsbasiertes Lernen. Diploma

Thesis, Fachbereich Informatik und Mikrosystemtechnik, Fachhochschule Kaiserslautern, Kai-
serslautern.

IMS Global Learning Consortium, I. (2001, June). Learning Resource Meta-data Specification Re-
trieved October, 2007, from http://www.imsglobal.org/metadata/index.html

International Organization of Standardization. (2008). DIN EN ISO 9241-110 Grundsätze der Dia-
loggestaltung Retrieved 2008-02-10, from http://www.iso.org

Jedlitschka, A., Althoff, K.-D., Decker, B., Hartkopf, S., & Nick, M. (2001). Corporate Information
Network (COIN): The Fraunhofer IESE Experience Factory. Paper presented at the Interna-
tional Conference on Case-Based Reasoning (ICCBR), Vancouver, Canada.

Jedlitschka, A., Althoff, K.-D., Decker, B., Hartkopf, S., Nick, M., & Rech, J. (2002). The Fraunhofer
IESE Experience Management System. Künstliche Intelligenz, 16(1), 70-73.

Johannson, C., Hall, P., & Coquard, M. (1999). "Talk to Paul and Peter - They are Experienced" -
The Experience Engine in a Nutshell. Paper presented at the Learning Software Organisation
(1999).

Joint Task Force on Computing Curricula. (2004). Software Engineering 2004: Curriculum Guide-
lines for Undergraduate Degree Programs in Software Engineering.

Jonassen, D. (1999). Designing Constructivist Learning Environments. In C. M. Reigeluth (Ed.),
Instructional Design Theories and Models: A New Paradigm of Instructional Theory (Vol. II,
pp. 215-240). Mahwah, NJ, USA: Lawrence Erlbaum Associates, Inc.

Jones, B., & Kenward, M. G. (2003). Design and Analysis of Cross-Over Trials (2nd ed.). Boca Raton,
FL: Chapman and Hall/CRC Press.

Jones, B., & Lewis, A. (1995). The Case for Cross-over Trials in Phase III. Statistics in Medicine, 14,
1025-1038.

References

 247

Joos, R. (1994). Software Reuse at Motorola. IEEE Software(September 1994), 42-47.
Jungmann, M., & Paradies, T. (1997). Adaptive Hypertext in Complex Knowledge Domains. Paper

presented at the Flexible Hypertext Workshop (Hypertext´97).
Juristo, N., & Moreno, A. M. (2001). Basics of Software Engineering Experimentation (1st ed.).

Berlin: Springer.
Kamel, A., M., C., & Sorenson, P. (2001, 30 July - 2 August 2001). Building an Experience-Base for

Product-line Software Development Process. Paper presented at the Fourth International
Conference on Case-Based Reasoning, Vancouver, British Columbia, Canada.

Kang, K., Cohen, S., Hess, J., Novak, W., & Peterson, A. (1990). Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Pittsburgh: Software Engineering Institute.

Karampiperis, P., & Sampson, D. (2005). Adaptive Learning Resources Sequencing in Educational
Hypermedia Systems. Journal of Educational Technology & Society, Nr. 8, 128-147.

Kärger, P. (2006). Ontologie-basierter Mediator zum Zugriff auf heterogene und verteilte Lernin-
halte. diploma thesis, Universität des Saarlandes.

Karlsson, E. A. (1995). Software Reuse: A Holistic Approach: Wiley and Sons.
Kasunic, M. (1992). A Reuse-based Software Development Methodology. Process Guide 1.0: Soft-

ware Productivity Consortium Services Corporation.
Kim, Y.-G., Kim, J.-W., Shin, S.-O., & Baik, D.-K. (2006). Managing Variability for Software Product-

Line. Paper presented at the Fourth International Conference on Software Engineering Re-
search, Management and Applications (SERA 2006).

Kirk, R. E. (1995). Experimental Design: Procedures for the Behavioral Science (3rd ed.). Pacific
Grove: Brooks/Cole Publishing Company.

Kitchenham, B. A., Fry, J., & Linkman, S. (2003). The Case Against Cross-over Designs in Software
Engineering. Paper presented at the 11th annual international workshop on Software Tech-
nology and Engineering Practice (STEP2004).

Knolmayer, G. F. (2003). Decision support models for composing and navigating through e-learning
objects. Paper presented at the 36th IEEE Annual Hawaii International Conference on Sys-
tem Sciences.

Koch, N. P. (2000). Software Engineering for Adaptive Hypermedia Systems. Reference Model,
Modeling Techniques and Development Process. PhD Thesis, Ludwig-Maximilians-
Universität, Munich, Germany.

Kolb, D. A. (1984). Experiential learning: experience as the source of learning and development.
Englewood Cliffs, N.J.: Prentice-Hall.

Kolb, D. A., & Fry, R. (1975). Toward an applied theory of experiential learning. In C. Cooper (Ed.),
Theories of Group Process. London: John Wiley.

Koper, R. (2003). Combining reusable learning resources and services to pedagogical purposeful
units of learning. In Reusing Online Resources: A Sustainable Approach to eLearning (pp.
46-59): Kogan Page.

Laitenberger, O. (2000). Cost-effective Detection of Software Defects Through Perspective-based
Inspections. PhD Thesis, University of Kaiserslautern, Kaiserslautern.

Langenbacher, G. (2002). Verlebensweltlichung der Systeme durch Wissensmanagement. doctoral
thesis, Fernuniversität Hagen.

Lawton, G. (2001). Knowledge Management: Ready for Prime Time? Computer, 34(2), 12-14.
Lee, N.-Y., & Litecky, C. R. (1997). An Empirical Study of Software Reuse with Special Attention to

Ada. IEEE Transactions on Software Engineering, 23(9), 537-549.
Lenat, D. (1998). The dimensions of context-space [Electronic Version] from

http://www.cyc.com/context-space.doc.
Lenk, K., Wengelowski, P. (2002). Wissensmanagement für das Verwaltungshandeln Retrieved

October 1, 2007, from http://www.uni-oldenburg.de/fk2/InstRW/vw/download/wm.pdf
Leuf, B., & Cunningham, W. (2001). The Wiki Way. Collaboration and Sharing on the Internet:

Addison-Wesley.

References

 248

Lewin, K. (1951). Field Theory in Social Science. New York: Harpers & Brothers.
Lieberman, H., & Selker, T. (2000). Out of context: Computer systems that adapt to, and learn

from, context. IBM Systems Journal, 39(34), 617-632.
Likert, R. (1932). A Technique for the Measurement of Attitude. Archive of Psychology, 22(140).
Lindvall, M., Frey, M., Costa, P., & Tesoriero, R. (2001, 12-13 Sept. 2001). Lessons learned about

structuring and describing experience for three experience bases. Paper presented at the
Third International Workshop on Advances in Learning Software Organizations (LSO 2001),
Kaiserslautern, Germany.

Loftin, L. B., & Madison, S. Q. (1991). The Extreme Dangers of Covariance Corrections. In B.
Thompson (Ed.), Advances in Education Research: Substantive Findings, Methodological De-
velopments (Vol. 1, pp. 133-147). Greenwich, CT: JAI Press.

Macdonald, F., & Miller, J. (1998). A Comparision of Tool-based and Paper-based Software Inspec-
tions: Department of Computer Science, University ogf Strathclyde, UK.

Maiden, N. A., & Sutcliffe, A. (1993, March 24-26). People-oriented Software Reuse: the Very
Thought. Paper presented at the Second International Workshop on Software Reuse, Italy

Manola, F., & Miller, E. (2004). RDF Primer, from http://www.w3.org/TR/2004/REC-rdf-primer-
20040210/

Martin, H. (1995). CeA - Computergestützte erfahrungs-geleitete Arbeit. Berlin/Heidelberg/New
York: Springer.

Mason, R. M. (1993). Strategic Information Systems: Use of Information Technology in a Learning
Organization. Paper presented at the 26th Hawaii International Conference on System Sci-
ences.

Mayer, R. E. (1999). Designing Instruction for Constructivist Learning. In C. M. Reigeluth (Ed.),
Instructionl-Design Theories and Models: A New Paradigm of Instructional Theory (Vol. II).
Mahwah, NJ, USA: Lawarence Erlbaum Associates, Inc.

McIllroy, M. D. (1968). Mass-produced Software Components. Paper presented at the NATO Con-
ference on Software Engineering, Garmisch, Germany.

Meder, N. (2001). Didaktische Ontologien Retrieved October 1, 2007, from http://cweb.uni-
bielefeld.de/agbi/cgi-bin-noauth/cache/VAL_BLOB/167/167/63/did.pdf

Melis, E., Andrès, E., Büdenbender, J., Frishauf, A., Goguadse, G., Libbrecht, P., et al. (2001). Ac-
tiveMath: A Web-based Learning Environment. International Journal of Artificial Intelligence
in Education, 12(4), 385-407.

Memmel, M., Ras, E., Jantke, J. K., & Yacci, M. (2006). Approaches to Learning Object Oriented
Instructional Design. In A. Koohang & K. Harman (Eds.), Principles and Practices of the Effec-
tive Use of Learning Objects (pp. 281-326). Santa Rosa, California: Informing Science Press.

Memmel, M., Ras, E., Weibelzahl, S., & Burgos, D. l. (2006). Joint International Workshop on Pro-
fessional Learning, Competence Development and Knowledge Management - LOKMOL and
L3NCD. Paper presented at the EC-TEL2006, Crete, Greece.

Memmel, M., Ras, E., Wolpers, M., & Van Assche, F. (2007). Proceedings of the 3rd Workshop on
Learner-Oriented Knowledge Management & KM-Oriented E-Learning (LOKMOL 2007),
Crete, Greece.

Merriënboer, J. J. G. v. (1997). Training complex cognitive skills : a Four-Component Instructional
Design model for technical training. Englewood Cliffs, N.J.: Educational Technology Publica-
tions.

Merrill, M. D. (2000). First principles of instruction. Paper presented at the International conference
of the Association for Educational Communications and Technology (AECT), Denver.

Mili, H., Mili, A., Yacoub, S., & Addy, E. (1995). Reuse-Based Software Engineering - Techniques,
Organization and Measurement: John Wiley and Sons.

Mills, M., & Armitage, P. (1979). The two-period cross-over clinical trial. British Journal of Clinical
Pharmacology, 8, 7-20.

References

 249

Milosavljevic, M. (1997). Augmenting the User's Knowledge via Comparison. Paper presented at
the 6th International Conference on User Modelling, Wien.

Mitchell, K. (2002). Supporting the Development of Mobile Context-Aware Computing. Ph. D.
Thesis, University of Lancaster.

Mittelmann, A. (2005, January 9). Wissensmanagement. Grundlagen Retrieved October 1, 2007,
from http://www.artm-friends.at/am/km/km-d/km-basics-d.html

Mödritscher, F. (2005). Praxisorientierte Aspekte des Wissensmanagements. Journal of Applied
Knowledge Management, Nr. 1, 17-40.

Muthig, D. (2002). A Lightweight Approach Facilitating an Evolutionary Transition Towards Soft-
ware Product Lines. PhD Thesis, University of Kaiserslautern, Kaiserslautern.

Natali, A., Falbo, R. (2002). Knowledge Management in Software Engineering Environments Re-
trieved October 1, 2007, from http://www.inf.ufes.br/~falbo/download/pub/Sbes2002.pdf

Naur, P., & Randell, B. (1968). Software Engineering: Report of a conference. Paper presented at
the NATO Conference on Software Engineering, Garmisch, Germany.

Neuweg, G. H. (2000). Können und Wissen. In G. H. Neuweg (Ed.), Wissen. Können. Reflexion (pp.
65-82). Innsbruck, Wien: Studienverlag.

Nevis, E. C., DiBella, A. J., & Gould, J. M. (1995). Understanding Organisations as Learning Systems.
Sloan Management Review, 36(2), 73-85.

Nickerson, R. S., Perkins, D. N., & Smith, E. E. (1985). The Teaching of Thinking: L. Erlbaum Associ-
ates.

Nonaka, I., & Takeuchi, H. (1995). The Knowledge-Creating Company. New York: Oxford University
Press.

Norman, D. A. (1988). The Psychology of Everday Things. New York: Basic Books.
North, K. (2002). Wissensorientierte Unternehmensführung : Wertschöpfung durch Wissen (3.,

aktualisierte und erw. Aufl. ed.). Wiesbaden: Gabler.
O'Reilly, T. (2005). Web 2.0: Compact Definition? Retrieved May 29, 2008, from

http://radar.oreilly.com/archives/2005/10/web-20-compact-definition.html
Oppermann, R. (1994). Adaptive User Support Pod: Ergonomic Design of Manually and Automati-

cally Adaptable Software: Lawrence Erlbaum Associates.
Oppermann, R., Rashev, R., & Kinshuk, K. (1997). Adaptability and Adaptivity in Learning Systems.

In A. Behrooz (Ed.), Knowledge Transfer (Vol. 2, pp. 173-179): London: Pace.
Orr, J. E. (1996). Talking about Machines - an Ethnography of a Modern Job: IRL Cornell Press.
Pascoe, J. (2001). Context-Aware Software. PhD Thesis, University of Kent Canterbury, U.K.
Pech, D. (2007). Variability Management Support for Large-Scale Software Product Lines. Diploma

Thesis, University of Kaiserslautern, Kaiserslautern.
Pérez, T., Lopistéguy, P., Gutiérrez, J., & Usandizaga, I. (1995). HyperTutor: From Hypermedia to

Intelligent Adaptive Hypermedia. Paper presented at the World Conference on Educational
Multimedia and Hypermedia.

Piaget, J. (1971). Psychology and Epistemology. Middlesex, England: Penguin Books.
Piaget, J. (1976). Die Äquilibration der kognitiven Strukturen. Stuttgart: Klett.
Polanyi, M. (1966). The Tacit Dimension: Routledge and Kegan Paul.
Poloniecki, J., & Daniel, D. (1981). Further Analysis of the Hills and Armitage Enursesis data. The

Statistician, 20, 276-285.
Probst, G., Raub, S., & Romhardt, K. (1998). Wissen managen: wie Unternehmen ihre wertvollste

Ressource optimal nutzen. Frankfurt am Main: Gabler Verlag.
Rambow, R., & Bromme, R. (2000). Der „reflective practitioner“ und die Kommunikation mit Laien.

In G. H. Neuweg (Ed.), Wissen. Können. Reflexion (pp. 245-263). Innsbruck, Wien: Studien-
verlag.

Ras, E. (2009a). Dissertation Eric Ras - Annex 1: Explorative Studies (No. IESE-Report 001.09/E).
Kaiserslautern: Fraunhofer IESE.

References

 250

Ras, E. (2009b). Dissertation Eric Ras - Annex 2: Materials of the Empirical Studies (No. IESE-Report
002.09/E). Kaiserslautern: Fraunhofer IESE.

Ras, E., Carbon, R., Decker, B., & Rech, J. (2007). Experience Management Wikis for Reflective
Practice in Software Capstone Projects. IEEE Transactions on Education, 50(4), 312-320.

Ras, E., Memmel, M., Lindstaedt, S., Ley, T., & Albert, D. (2008). Special Track on Intelligent Assis-
tance for Self-Directed and Organizational Learning (IWL-LOKMOL '08), Graz, Austria.

Ras, E., Memmel, M., & Weibelzahl, S. (2005). Integration of E-Learning and Knowledge Manage-
ment - Barriers, Solutions and Future Issues. Paper presented at the Professional Knowledge
Management (WM2005), Kaiserslautern, Germany.

Ras, E., Rech, J., & Decker, B. (2006, Sept. 6-8). Workplace Learning in Software Engineering Reuse.
Paper presented at the I-KNOW ‘06, Special track on “Integrating Working and Learning”,
Graz, Austria.

Rausch, A., Broy, M., Bergner, K., Höhn, R., & Höppner, S. (2007). Das V-Modell XT. Grundlagen,
Methodik und Anwendungen. Heidelberg: Springer.

Rech, J., & Ras, E. (2007). Systematische Aggregation von Erfahrungen im Erfahrungsmanagement.
Künstliche Intelligenz, 21(4), 16-22.

Rech, J., Ras, E., & Decker, B. (2006a). Intelligente Assistenz in der Sotwareentwicklung 2006:
Zusammenfassung der Ergebnisse. Kaiserslautern: Fraunhofer IESE.

Rech, J., Ras, E., & Decker, B. (2006b). RISE: Schlussbericht des Fraunhofer IESE zum Projekt RISE
(Technical Report No. IESE-144.06/D). Kaiserslautern: Fraunhofer IESE.

Rech, J., Ras, E., & Decker, B. (2007a). Intelligent Assistance in German Software Development: A
Survey. IEEE Software, 24(4), 72-79.

Rech, J., Ras, E., & Decker, B. (2007b). Riki: A System for Knowledge Transfer and Reuse in Soft-
ware Engineering Projects. In M. Lytras & A. Naeve (Eds.), Open Source for Knowledge and
Learning Management: Strategies beyond Tools: Idea Group, Inc.

Reed, J. F. (2004). Analysis of Two-treatment, Two-period Crossover Trials in Emergency Medicine.
Annals of emergency medicine, 43(1), 54-58.

Reeves, B. (1990). Finding and Choosing the Right Object in a Large Hardware Store - an Empirical
Study of Cooperative Problem Solving Among Humans. Boulder, CO: Department of Com-
puter Science, University of Colorado.

Reigeluth, C. M. (1999). The Elaboration Theory: Guidance for Scope and Sequence Decisions. In C.
M. Reigeluth (Ed.), Instructional-Design Theories and Models: A New Paradigm of Instruc-
tional Theory (Vol. II). Mahwah, NJ, USA: Lawrence Erlbaum Associates Inc.

Reigeluth, C. M., & Moore, J. (1999). Cognitive Education and the Cognitive Domain. In C. M.
Reigeluth (Ed.), Instructional-Design Theories and Models: A New Paradigm of Instructional
Theory (Vol. II). Mahwah, NJ, USA: Lawrence Erlbaum Associates Inc.

Renkl, A. (1996). Träges Wissen. Wenn gelerntes nicht genutzt wird. Psychologische Rundschau,
47, 78-92.

Rombach, H. D. (1991). Software Reuse: A Key to the Maintenance Problem. Information and
Software Technology, 33(1), 86-92.

Rombach, H. D. (2000). Fraunhofer: the German Model for Applied Research and Technology
Transfer. Paper presented at the International Conference on Software Engineering (ICSE
2000).

Rombach, H. D., Birk, A., Broeckers, A. C., Lott, M., & Verlage, M. (1994). Qualitaetsorientierte,
prozess-sensitive Softwareentwicklungsumgebungen im MVP-Project (in German). Kaiser-
slautern, Germany: Computer Science Department, University of Kaiserslautern.

Rosa, M. G. P., Borges, M. R. S., & Santoro, F. M. (2003, Sept. 28 - Oct. 2). A Conceptual Frame-
work for Analyzing the Use of Context in Groupware. Paper presented at the 9th Interna-
tional Workshop on Groupware: Design, Implementation, and Use, Autrans, France.

Rose, H. (1991). Bedeutung des Erfahrungswissens für die Bedienung von CNC-Maschinen. Zeit-
schrift für wirtschaftliche Fertigung und Automatisierung, 1, 1986, 45-48.

References

 251

Rosnow, R. L., & Rosenthal, R. (1996). Computing Contrasts, Effect Sizes, and Counternulls on
other People's Published Data: General Procedures for Research Consumers. Psychological
Methods, 1, 331-340.

Rothenberger, M. A., Dooley, K. J., Kulkarni, U. R., & Nada, N. (2003). Strategies for Software
Reuse: a Principal Component Analysis of Reuse Practices. IEEE Transactions on Software
Engineering, 29(9), 825-837.

Ruhe, G., & Bomarius, F. (1999). Learning software organizations (LSO): methodology and applica-
tions. Paper presented at the 11th International Conference on Software Engineering and
Knowledge Engineering, SEKE'99, Kaiserslautern, Germany.

Rus, I., & Lindvall, M. (2002). Knowledge Management - Knowledge Management in Software
Engineering - Guest Editors' Introduction. IEEE Software, 19(3), 26-38.

Rus, I., Lindvall, M., Sinha, S. (2001, November 29). Knowledge Management in Software Engineer-
ing Retrieved October 1, 2007, from
https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/6339b090-0201-0010-
3099-d539710c0468

Ryle, G. (1984). The Concept of Mind: University of Chicago Press.
Schank, R. C., Berman, T. R., & Macpherson, K. A. (1999). Learning By Doing. In C. M. Reigeluth

(Ed.), Instructional-Design Theories and Models: a New Paradigm of Instructional Theory
(Vol. II). Mahwah, NJ, USA: Lawarence Erlbaum Associates, Inc.

Schilit, W. N. (1995). A System for Context-Aware Mobile Computing. c, Columbia University, New
York.

Schmidt, A. (2002). Ubiquitous Computing - Computing in Context. PhD Thesis, Lancaster Univer-
sity.

Schmidt, A. (2005). Bridging the Gap Between Knowledge Management and E-Learning with Con-
text-aware Corporate Learning Solutions. Paper presented at the First Workshop on Learner-
Oriented Knowledge Management & KM-oriented E-Learning (LOKMOL 2005) at Profes-
sional Knowledge Management Conference (WM2005), Kaiserslautern, Germany.

Schneider, K. (2000). LIDs: A Light-Weight Approach to Experience Elicitation and Reuse. Paper
presented at the Second International Conference on Product Focused Software Process Im-
provement, Oulu, Finland.

Schneider, K., Hunnius, J.-P., & Basili, V. (2002). Experience in Implementing a Learning Software
Organization. IEEE Software(May-June 2002), 46-49.

Schön, D. A. (1990). Educating the Reflective Practitioner: Toward a New Design for Teaching and
Learning in the Professions (1st ed.). San Francisco: Jossey-Bass.

Schön, D. A. (1995). The reflective practitioner: how professionals think in action. London: Arena.
Schraefel, M. C., Carr, L., & De Roure, D. (2004). You’ve Got Hypertext. Digital Information, 5(1),

253.
Schütz, A. (1981). Theorie der Lebensformen. Frankfurt am Main: Suhrkamp.
SCORM. (2006). SCORM 2004, 2nd Edition Overview page Retrieved 2006/04/10, from

http://www.adlnet.org/scorm/index.cfm
Selby, R. (1988). Empirically Analyzing Software Reuse in a Production Environment. In W. Tracz

(Ed.), Software Reuse: Emerging Technology (pp. 176-189): IEEE Computer Society Press.
Self, J. (1992). Computational Mathetics: the missing link in Intelligent Tutoring Systems re-search?

Directions in Intelligent Tutoring Systems (No. 91).
Semantic MediaWiki. Retrieved November 29, 2008, from http://www.mediawiki.org/
Senge, P. M. (1990). The Fifth Discipline: the Art and Practice of the Learning Organization (1st

ed.). New York: Doubleday/Currency.
Senn, S. (1993). Cross-over studies in clinical research. West Sussex, England: John Wiley & Sons

Ltd.
Senn, S., & Hildebrand, H. (1991). Cross-over trials, degree of freedom, the carry over effect and its

dual. Statistics in Medicine, 10(1361-74).

References

 252

Shapiro, S. S., & Wilk, M. B. (1965). An Analysis of Variance Test for Normality (complete samples).
Biometrika, 52(3 and 4), 591-611.

Sharples, M. (2000). The Design of Personal Mobile Technologies for Lifelong Learning. Computers
and

Educational Psychologist, 34, 177-193.
Siemens, G. (2004). Connectivism: A Learning Theory for the Digital Age Retrieved 6 June 2008,

from http://www.elearnspace.org/Articles/connectivism.htm
Simon, H. A. (1981). The Sciences of the Artificial. Cambridge, MA: MIT Press.
Simons, C. L., Parmee, I. C., & Coward, P. D. (2003). 35 years on: to what extent has software

engineering design achieved its goals? IEE Proceedings Software, 150(6), 337-350.
Smith, M. K., Welty, C., & McGuinness, D. L. (2004). OWL Web Ontology Language Guide, from

http://www.w3.org/TR/2004/REC-owl-guide-20040210/
Snedecor, G. W., & G., C. W. (1989). Statistical Methods (Eighth Edition ed.): Iowa State University

Press.
Specht, M. (1998). Adaptive Methoden in computerbasierten Lehr/Lernsystemen. PhD Thesis, Uni-

versität Trier, Trier.
Specht, M., & Oppermann, R. (1998). ACE - Adaptive Courseware Environment. The New Review

of Hypermedia and Multimedia, 4, 141-161.
Special Issue on Software Product Lines. (2002). IEEE Software, 19(4).
Steiger, C. (2000). Wissensmanagement in Beratungsprojekten auf Basis innovativer Informations-

und Kommunikationstechnologien: Das System K3. doctoral thesis, Universität Paderborn.
Stenmark, D. (2001). The Relationship between Information and Knowledge. Paper presented at

the IRIS-24, Ulvik, Norway.
Sveiby, K. E. (1997). The New Organizational Wealth: Managing and Measuring Knowledge-Based

Assets: Berrett-Koehler Publishers.
Tautz, C. (2001). Customizing Software Engineering Experience Management Systems to Organiza-

tional Needs. PhD Thesis in Experimental Software Engineering, University of Kaiserslautern,
Kaiserslautern.

Tennyson, R. D., & Rasch, M. (1988). Linking Cognitive learning theory to instructional prescrip-
tions. Instructional Science, 17, 369-385.

TikiWiki. Retrieved November 29, 2008, from http://de.tikiwiki.org/
Tochtermann, K., & Dittrich, G. (1996). The Dortmund family of Hypermedia Models. Journal of

Universal Computer Science, 2(1).
Trapp, M. (2002). A Flexible Approach for Coupling Experience Base Requirements and Applicable

Schema Building Blocks. Diploma Thesis, University of Kaiserslautern, Kaiserslautern, Ger-
many.

Trapp, M. (2005). Modeling Adaptation Behavior of Adaptive Embedded Systems. PhD Thesis,
University of Kaiserslauten, Kaiserslautern.

Tsandilas, T., & Schraefel, M. C. (2004). Usable adaptive hypermedia systems. New Review of Hy-
permedia and Multimedia, 10(1), 5-29.

Van Gurp, J., Bosch, J., & Svahnberg, M. (2000). Managing Variabilities in Software Product Lines.
Paper presented at the Landelijk Architectuur Congress 2000.

Van Gurp, J., Bosch, J., & Svahnberg, M. (2001). On the Notion of Variability in Software Product
Lines. Paper presented at the Working IEEE / IFIP Conference on Software Architecture
(WICSA 2001).

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information
Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478.

Verlage, M. (1996). About Views for Modeling Software Processes in a Role-Specific Manner. Paper
presented at the Joint Proc. of the SIGSOFT ´96 Workshops.

References

 253

Wasson, B. (1996). Instructional Planning and Contemporary Theories of Learning: is this a Self-
contradiction? Paper presented at the European Conference on Artificial Intelligence in Edu-
cation, Lisbon, Portugal.

Weber, G., Kuhl, H.-C., & Weibelzahl, S. (2001). Developing Adaptive Internet Based Courses with
the Authoring System Netcoach. Paper presented at the Proceedings of the Third Workshop
on Adaptive Hypermedia (AH2001)

Weber, G., & Specht, M. (1997). User Modeling and Adaptive Navigation Support in WWW-based
Tutoring Systems. Paper presented at the Sixth International Conference on User Modeling
(UM97).

Weber, R., Aha, D. W., & Becerra-Fernandez, I. (2001). Intelligent lessons learned systems. Expert
systems with applications. 20, no. 1, 94-100.

Weber, S., Thomas, L., Armbrust, O., Ras, E., Rech, J., Uenalan, Ö., et al. (2008). A Software Or-
ganization Platform (SOP). Paper presented at the 10th Workshop on Learning Software Or-
ganizations (LSO 2008).

Weller, M., Pegler, C., & Mason, R. (2003). Working with learning objects - some pedagogical
suggestions, from http://iet.open.ac.uk/pp/m.j.weller/pub/

Winer, B. J., Brown, D. R., & Michels, K. M. (1991). Statistical Principles in Experimental Design (3rd
ed.): McGraw Hill.

Wohlin, C., Runeson, P., M., H., Ohlsson, M. C., Regnell, B., & Wesslen, A. (1999). Experimentation
in Software Engineering: An Introduction: Springer.

Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: theory and practice. Knowledge Engi-
neering Review, 10(2), 115-152.

Wu, H., & De Bra, P. (2001, October 23-26). Sufficient Conditions for Well-behaved Adaptive Hy-
permedia Systems. Paper presented at the First Asia-Pacific Conference on Web Intelligence,
Maebashi City, Japan.

Wu, H., Houben, G.-J., & De Bra, P. (1998). AHAM: A Reference Model to Support Adaptive Hy-
permedia Authoring. Paper presented at the Conference on Information Science (InfWet
1998).

Yacci, M. (1999). The Knowledge Warehouse: Reusing Knowledge Components. Performance
Improvement Quarterly, 12(3), 132-140.

Ziadi, T., Jézéquel, J., & Fondement, F. (2003). Product Line Derivation with UML. Paper presented
at the Software Variability Management Workshop.

Related Publications

 255

Related Publications

1. Diploma thesis and technical reports

Ras, E. (2009). Dissertation Eric Ras - Annex 1: Explorative Studies (No.
IESE-Report 001.09/E). Kaiserslautern: Fraunhofer IESE.

Ras, E. (2009). Dissertation Eric Ras - Annex 2: Experimental Materials of
a Controlled Experiment about the Effect of Learning Spaces on Soft-
ware Engineering Experience Reuse (No. IESE-Report 002.09/E). Kaisers-
lautern: Fraunhofer IESE.

Rech, J., Decker, B., & Ras, E. (2006). Intelligente Assistenz in der Soft-
wareentwicklung 2006: Zusammenfassung der Ergebnisse (No. IESE Re-
port: IESE-046.06/D). Kaiserslautern: Fraunhofer IESE.

Ras, E. (2000). Reuse of Know-How for Software Engineering Training
and Education. Published Diploma Thesis, University of Kaiserslautern.

2. Conference and workshop publications

Ras, E. (2008). Improving Reuse of Experience Packages Through Learn-
ing Spaces: A Controlled Experiment. Paper presented at the 2nd Inter-
national Symposium on Empirical Software Engineering and Measure-
ment (ESEM 2008), Kaiserslautern, Germany.

Ras, E., & Ilin, D. (2008). Using Decision Models for the Adaptive Genera-
tion of Learning Spaces. Paper presented at the 5th International Con-
ference on Adaptive Hypermedia and Adaptive Web-Based Systems
2008 (AH 2008), Hanover, Germany.

Ras, E., Rech, J., & Weber, S. (2008). Collaborative Authoring of Learning
Elements for Adaptive Learning Spaces. Paper presented at the Work-
shop on Authoring of Adaptive and Adaptable Hypermedia (AAAH2008)
at AH2008, Hanover, Germany.

Ras, E., & Rech, J. (2008). Improving Knowledge Acquisition in Capstone
Projects Using Learning Spaces for Experiential Learning. Paper presented
at the 21st Conference on Software Engineering Education and Training
(CSEE&T 2008), Charleston, SC, USA.

Weber, S., Thomas, L., & Ras, E. (2008). Investigating the Suitability of
Mashups for Informal Learning and Personal Knowledge Management.

Related Publications

 256

Paper presented at the Workshop on Mash-Up Personal Learning Envi-
ronments (MUPPLE08), Maastricht, The Netherlands.

Weber, S., Thomas, L., Armbrust, O., Ras, E., Rech, J., Uenalan, Ö., et al.
(2008). A Software Organization Platform (SOP). Paper presented at the
10th Workshop on Learning Software Organizations (LSO 2008), Rome
Italy.

Ras, E. (2007). Resolving Variations in Learning Spaces for Experiential
Learning. Paper presented at the Second European Conference on Tech-
nology Enhanced Learning (ECTEL 2007). from
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-
280/, Maastricht, The Netherlands.

Ras, E., Rech, J., & Decker, B. (2006). Workplace Learning in Software
Engineering Reuse. Paper presented at the I-KNOW ‘06, Special track on
“Integrating Working and Learning”, Graz, Austria.

Ras, E., Memmel, M., & Weibelzahl, S. (2005). Integration of E-Learning
and Knowledge Management - Barriers, Solutions and Future Issues. Pa-
per presented at the Professional Knowledge Management (WM2005),
Kaiserslautern, Germany.

Ras, E. (2005). Just-in-Time Learning With Situational Content Objects.
Paper presented at the E-Learn 2005, World Conference on E-Learning
in Corporate, Government, Healthcare & Higher Education, Vancouver,
Canada.

Decker, B., Ras, E., Rech, J., Klein, B., & Hoecht, C. (2005). Self-
organized Reuse of Software Engineering Knowledge Supported by Se-
mantic Wikis. Paper presented at the Workshop on Semantic Web-
enabled Software (Collocated with the International Semantic Web Con-
ference), Galway, Ireland.

Decker, B., Ras, E., Rech, J., Klein, B., Reuschling, C., Höcht, C., et al.
(2005). A Framework for Agile Reuse in Software Engineering using Wiki
Technology. Paper presented at the Conference Professional Knowledge
Management - Experiences and Visions., Kaiserslautern, Germany.

Avram, G., Ras, E., & Weibelzahl, S. (2004). Using Weblogs for Eliciting
new Experiences and Creating Learning Elements for Experienced-based
Information Systems. Paper presented at the 4th International Confer-
ence on Knowledge Management, Graz, Austria.

Ras, E., & Weibelzahl, S. (2004). Embedding Experiences in Micro-
didactical Arrangements. Paper presented at the 6th International Work-

Related Publications

 257

shop on Advances in Learning Software Organisations (LSO 2004), Banff,
Canada.

Rech, J., & Ras, E. (2004). Experience-Based Refactoring for Goal-
Oriented Software Quality Improvement. Paper presented at the First In-
ternational Workshop on Software Quality (SOQUA 2004), Erfurt, Ger-
many.

Rech, J., Ras, E., & Jedlitschka, A. (2004). Improving Software Quality
through Refactoring by means of Didactical Augmented Experience. Pa-
per presented at the Conference Testing of Component-Based Systems
and Software Quality, vol. P-58. Lecture Notes in Informatics (LNI),
Beydeda, S., Gruhn, V., Mayer J.D., Reussner, R., Schweiggert, F., Eds.:
GI, pp. 141-149.

3. Book chapters

Memmel, M., Ras, E., Jantke, J. K., & Yacci, M. (2006). Approaches to
Learning Object Oriented Instructional Design. In A. Koohang & K. Har-
man (Eds.), Principles and Practices of the Effective Use of Learning Ob-
jects (pp. 281-326). Santa Rosa, California: Informing Science Press.

Rech, J., Ras, E., & Decker, B. (2007). Riki: A System for Knowledge
Transfer and Reuse in Software Engineering Projects. In M. Lytras & A.
Naeve (Eds.), Open Source for Knowledge and Learning Management:
Strategies beyond Tools: Idea Group, Inc.

4. Journal publications

Ras, E., & Rech, J. (2009). Using Wikis to Support the Net Generation in
Improving Knowledge Acquisition in Capstone Projects. Journal of Sys-
tems and Software, 82, 553-562.

Ras, E., Carbon, R., Decker, B., & Rech, J. (2007). Experience manage-
ment wikis for reflective practice in software capstone projects. IEEE
Transactions on Education, 50(4), 312-320.

Decker, B., Ras, E., Rech, J., Jaubert, P., & Rieth, M. (2007). Wiki-Based
Stakeholder Participation in Requirements Engineering. IEEE Software,
24(2), 28-35.

Rech, J., & Ras, E. (2007). Systematische Aggregation von Erfahrungen
im Erfahrungsmanagement. Künstliche Intelligenz, 21(4), 16-22.

Rech, J., Ras, E., & Decker, B. (2007). Intelligent Assistance in German
Software Development: A Survey. IEEE Software, 24(4), 72-79.

Related Publications

 258

Ras, E., Rech, J., & Decker, B. (2007). Lernräume für erfahrungsbasiertes
Lernen mit Wiki-Systemen im Software Engineering. Zeitschrift für E-
Learning - Lernkultur und Bildungstechnologie 2(1, E-Learning und Wis-
sensmanagement), 22-35.

Ras, E., Avram, G., Weibelzahl, S., & Waterson, P. (2005). Using Weblogs
for Knowledge Sharing and Learning in Information Spaces. Journal of
Universal Computer Science, 11(3), 394-409.

Ras, E. (2003). Life Long Learning. Modulare Wissensbasen für elektroni-
sche Lernumgebungen. KI - Künstliche Intelligenz, 3, 59.

5. Edited books and Proceedings

Rech, J., Decker, B., & Ras, E. (2008). Emerging Technologies for Seman-
tic Work Environments: Techniques, Methods, and Applications. Her-
shey, New York, USA: Information Science Reference, IGI Global.

Ras, E., Memmel, M., Lindstaedt, S., Ley, T., & Albert, D. (2008). Pro-
ceedings of the Special Track on Intelligent Assistance for Self-Directed
and Organizational Learning (IWL-LOKMOL '08), Graz, Austria.

Memmel, M., Ras, E., Wolpers, M., & Van Assche, F. (2007). Proceedings
of the 3rd Workshop on Learner-Oriented Knowledge Management &
KM-Oriented E-Learning (LOKMOL 2007), Crete, Greece.

Memmel, M., Ras, E., Weibelzahl, S., & Burgos, D. l. (2006). Proceeding
of the Joint International Workshop on Professional Learning, Compe-
tence Development and Knowledge Management (LOKMOL and
L3NCD), Crete, Greece.

Ras, E., Memmel, M., & Weibelzahl, S. (2005). Proceedings of the First
Workshop on Learner-Oriented Knowledge Management & KM-oriented
E-Learning (LOKMOL 2005), Kaiserslautern, Germany.

Material of the Experiment

 259

Appendix A. Material of the Experiment

This section contains all the questionnaires used during the experiment:

� Briefing questionnaire for assessing the disturbing factors related to
experience and learning style (Appendix A.1)

� Pre- and post-test questionnaires for assessing the knowledge acqui-
sition difference (Appendix A.2)

� Template of an experience package and two examples of experience
packages that were used in the experiment (Appendix A.3)

� Assignments for assessing reading time, application time, efficiency,
completeness, and accuracy (Appendix A.4)

� Debriefing questionnaire for assessing the other disturbing factors
(Appendix A.5)

A.1. Briefing Questionnaire

Please answer the following questions. This will take you about 5 minutes. During the
analysis of the data, the data will be anonymized – your name and Matr.-Nr. (enrollment
no.) will be removed.
Subject-ID <the ID will be inserted by the evaluators>

Name:

Matr-Nr:

Questions on University Education

<B1> Education

<B1.1> Name of study (e.g., “Angewandte Informatik”)

<B1.2> Major Subject (i.e., “Hauptfach/Vertiefung”):

<B1.3> Minor Subject (i.e., “Nebenfach/Wahlfach”):
(if more than one, please mention all)

<B1.4> Which lectures regarding “Software Engineering” (e.g., “SE 1-
3”, “GSE”, …) have you completed?

<B1.5> Number of terms (Fachsemester) completed (including the
current one):

<B1.6> In how many practical courses (i.e., SE-oriented “Praktika”) have
you participated?

Material of the Experiment

 260

Questions on Practical Software Engineering Experience

<B2> Practical Software Engineering Experience Yes No

<B2.1> Have you ever a written software system with more than 5 classes or 1000 lines of
code?

<B2.2> Have you ever written software outside of university programs (e.g., private, commer-
cial, OSS)?

<B2.3> Have you developed software in a large team (>4 persons) with distributed roles?

<B2.4> Have you developed software in a project with long duration (>6 months)?

Questions on Experience with Programming & Java

<B3> Questions on Experience with Programming & Java

<B3.1> How many years of computer programming experience do you have, if any?

<B3.2> How many different applications have you programmed?

<B3.3> How many different applications have you programmed in Java?

<B3.4> How many years were you involved in maintaining & improving a software system?

<B4> What is your experience with … High

Experience

No
Experience

<B4.1> Java APIs (java.util, java.io, java.net, etc.) � � � � � � �

<B4.2> Java GUIs (AWT, Swing, SWT, etc.) � � � � � � �

<B4.3> Creating Java programs from scratch � � � � � � �

<B4.4> Debugging large Java programs � � � � � � �

<B4.5> The eclipse IDE (as a user, not plugin-developer) � � � � � � �

<B4.6> Other IDE such as Netbeans, Visual Studio, jBuilder, etc. (as a user,
not plugin-developer)

� � � � � � �

Questions on Experience with Refactoring & Code Smells

<B5> General Questions

<B5.0> Have you heard of refactoring before?

<B5.1> How many years of experience do you have with refactoring?

<B5.2> How many different applications have you refactored? (all programming languages)

<B5.3> How many different applications have you refactored in Java?

<B6> What is your practical experience with … High

Experience

No
Experience

<B6.1> Identifying code smells, anti-patterns, pitfalls, design flaws, etc. � � � � � � �

<B6.2> Applying Refactorings manually � � � � � � �

<B6.3> Applying Refactorings such as “Extract Method” built into an IDE
(except the “rename” refactoring)

� � � � � � �

<B6.4> Working with design patterns, design heuristics, design principles,
etc.

� � � � � � �

Material of the Experiment

 261

Questions on Experience with Software Quality Assurance & Maintenance

<B7> What is your practical experience with … High
Experience

 No
 Experi-
ence

<B7.1> Quality models (such as ISO 9126, FURPS, Dromey, Boehm, …) � � � � � � �

<B7.2> Testing a software system? � � � � � � �

<B7.3> Inspecting a software system regarding quality issues? � � � � � � �

<B7.4> Software measurement (Metrics)? � � � � � � �

<B7.5> Code checking tools such as PMD, checkstyle, etc.? � � � � � � �

<B8> What is your practical experience with … High

Experience

No Experi-
ence

<B8.1> Maintaining a software system? (e.g., managing defects, applying
changes, etc.)

� � � � � � �

<B8.2> Porting a software system to another platform? (e.g., Java 1.2 to 5.0,
Java to C#, etc.)

� � � � � � �

<B8.3> Improving a software system regarding efficiency (time behavior,
resource behavior)?

� � � � � � �

<B8.4> Improving a software system regarding reliability? (i.e., “Zuverlässig-
keit”)

� � � � � � �

<B8.5> Improving a software system regarding usability? � � � � � � �

<B8.6> Improving a software system regarding functionality (suitability,
interoperability, security)

� � � � � � �

Questions on Learning Style

<B9> What is your most preferred learning style? (select one option)

<B9.1> Reading textbooks (with exercises) �

<B9.2> Classroom lectures (with exercises) �

<B9.3> Group work (interaction with peers and teacher / including exercises) �

<B9.4> Web-based training modules (with computer interaction / including examples and exercises) �

<B9.5> Trial and error approach (e.g., program, debug, repeat) �

Thanks for filling out the questionnaire!

Material of the Experiment

 262

A.2. Pre- & Post-Questionnaires

This questionnaire serves to assess your competencies in the domain of refactoring and
code smells. Please fill out the questionnaire as accurately as you can.
When you don’t know the answer, please put your checkmark in the field “?”
(Germ. Damit ist gemeint, dass Ihr nicht raten solltet – das würde die Ergebnisse
verfälschen)
Before the data is processed, the data will be anonymized.
The results of the questionnaire have no impact on your grade (Germ. Note) of this prac-
ticum!

Subject-ID <this will be filled out by the evaluators>

Name:

Matr-Nr:

General Understanding of Refactoring

<P1> What is refactoring about? Yes No ?

<P1.1> Refactoring transforms software in a way that it remains functionally
identical

x

<P1.2> Refactoring is the art of safely removing the bad design decisions of
existing code

x

<P1.3> Refactoring is rewriting code from scratch x

<P1.4> Refactoring is dependent on eXtreme Programming (XP) methods x

<P1.5> Refactoring is about a safe design-to-source transformation x

<P1.6> Refactoring is about a safe source-to-source transformation x

<P2> What should be affected by refactoring? Yes No ?

<P2.1> The software’s complexity x

<P2.2> The software’s flexibility x

<P2.3> The software’s understandability x

<P2.4> The software’s functionality x

<P2.5> The behavior of the methods, classes, and components x

<P2.6> The observable behavior of the software from the perspective of the user x

<P2.7> The program’s syntax x

<P2.8> The software’s performance x

<P2.9> The program’s semantics (meaning of methods, classes, etc.) x

<P2.10> The program’s size x

Material of the Experiment

 263

<P3> When and how should a refactoring be considered? Yes No ?

<P3.1> When a design choice is not explicitly addressed in one place in a system x

<P3.2> When a code smell has been detected x

<P3.3> When a system failure has been detected (e.g., by testing) x

<P3.4> When the system design has a weakness x

<P3.5> Refactoring is done on a periodical basis x

<P3.6> Before implementing a new feature and if the design does not fit this change x

<P3.7> Refactorings are always performed in small steps with compilation and test in-
between

x

<P3.8> Refactorings are implemented completely. Afterwards, compilations and test
are done because only completed refactorings result in a running system

 x

<P3.9> Refactoring can be applied when the unit and acceptance tests haved failed;
refactoring can help to solve the detected failures.

 x

<P3.10> Refactoring should only be applied when the required automated unit or
acceptance tests have been conducted successfully.

x

<P4> What are code smells? Yes No ?

<P4.1> Code Smells are weaknesses in the requirements x

<P4.2> Code Smells are failures observed by the user x

<P4.3> Code Smells are defects observed by the tester x

<P4.4> Code Smells are defects observed by the developer x

<P4.5> Code Smells are weaknesses in the design x

<P4.6> All Code Smells can be easily determined by using appropriate measures x

<P4.7> Determining what is and is not a Code Smell is often a subjective judgment x

1

Material of the Experiment

 264

Assigment of Refactoring Methods to Code Smells

<P5> What refactorings are used to remove the following code smells?

<place checkmarks in the columns for each code smell>
<for those refactorings where you don’t know which code smells they are suitable for,
choose “?” >

 ?

C
om

m
en

t

Lo
ng

 M
et

ho
d

Ty
pe

 E
m

be
dd

ed
 in

N

am
e

U
nc

om
m

un
ic

at
iv

e
N

am
e

Lo
ng

 P
ar

am
et

er
 L

is
t

La
zy

 C
la

ss

D
at

a
C

la
ss

<P5.1> AddParameter x

<P5.2> DecomposeConditional x

<P5.3> EncapsulateCollection x

<P5.4> EncapsulateField x

<P5.5> ExtractMethod x x

<P5.6> HideMethod

<P5.7> IntroduceAssertion x

<P5.8> IntroduceParameterObject x x

<P5.9> MoveMethod x

<P5.10> PreserveWholeObject x x

<P5.11> RemoveParameter

<P5.12> RemoveSettingMethod

<P5.13> RenameMethod x x x

<P5.14> ReplaceMethodwithMethodObject x

<P5.15> ReplaceParameterwithMethod x

<P5.16> ReplaceTempwithQuery x

Material of the Experiment

 265

Questions related to the code smell Long Method

<C2> Questions related to the code smell Long Method

<C2.1> Explain in your own words what a Long Method code smell is?
What are the problems it brings to the code?

?

 <Your answer:>

<C2.2> Mark the blocks in the following method that you would extract in order to make the method
shorter (with your text marker)

 //example from Wakes p. 23
import java.util.*;
import java.io.*;

public class Report {
 public static void report(Writer out, List machines, Robot ro-
bot)
 throws IOException {
 out.write("FACTORY REPORT\n");
 out.write("This list includes information on
"+machines.size()+ " machines")
 Iterator line = machines.iterator);
 while (line.hasNext() {
 Machine machine = (Machine) line.next();
 out.write("Machine " + machine.name());
 if (machine.status() != null)
 out.write(" status=" + machine.status());
 out.write("\n");
 }
 out.write("\n");

 out.write("Robot ");
 if (robot.location() != null)
 out.write("location=" + ro-
bot.location().name()):
 if(robot.status() != null)
 out.write("status=" + robot.status());

 out.write("\n");
 out.write("=========\n")
 }
}

C2.3> Rewrite the report(…) method, as you have done the extract method for each block.
(don’t describe the new methods – only the new report() with the call of the extracted
methods

?

 <Your answer:>
public static void report (
Printstream out, L i s t machines. Robot robot) {
 reportHeader(out);
 reportMachines(out, machines);
 reportRobot(out, robot);
 reportFooter(out);
}

Material of the Experiment

 266

<C2.4> What refactorings are suitable for the code smell Long Method in general? Name them
all.

?

 <Your answer:>

ExtractMethod
IntroduceParameterObject
PreserveWholeObject
ReplaceTempWithQuery
ReplaceMethodWithMethodObject

<C2.5> In what order should the previously listed refactorings be applied? <put “no sequence”
if the sequence is not important>

?

 <Your answer:>

1. ExtractMethod

2. IntroduceParameterObject,

3. PreserveWholeObject,

4. ReplaceTempWithQuery

5. ReplaceMethodWithMethodObject

Material of the Experiment

 267

<C2.6> What refactoring would you apply for this Long Method code smell example first? Please
mark the code smell and explain why you apply this refactoring.

?

 class Customer ...
 public String statement() (
 double totalAmount = 0;
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements();
 String result = "Rental Record for " + getName() + "\n";
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();

 //add frequent renter points
 frequentRenterPoints ++;

 //add bonus for a two day new release rental
 if ((each.getMovie().getPriceCode() ==
Movie.NEW_RELEASE)
 && each.getDaysRented() > 1) {

 frequentRenterPoints ++;
 }
 //show figures far this rental
 result += "\t" + each.getMovie().getTitle()+
"\t" +
 String.valueOf(each.getCharge()) + "\n";
 totalAmount += each.getCharge();
 }

 //add footer lines
 result += "Amount owed is " +
Strinq,valueOf(totalAmount) + "\n";
 result += "You earned " +
String.valueOf(frequentRenterPoint) + "frequent renter points";
 return result;
}

 <Your answer:>

Use Extract Method

Material of the Experiment

 268

Questions related to the code smell Type Embedded in Name

<C3> Questions related to the code smell Type Embedded in Name

<C3.1> Explain in your own words what a Type Embedded in Name code smell is?
What are the problems it brings to the code?

?

 <Your answer:>

The following problems are related to the code smell Type Embedded in Name.
� Method names are compound words, consisting of a word plus the

type of the argument(s).For example, a method addCourse(Course c).

� Names are in Hungarian notation, where the type of an object is en-
coded into the name; e.g., icount as an integer member variable.

� Variable names reflect their type rather than their purpose or role.

<C3.2> Which of the following examples included is a Type Embedded in Name code
smell?
<please mark the smell with your pen>

Yes No ?

 public Class getColumnClass(final int columnIndex) {
 return String.class;
}

x

 public class Texts {
 private static final String BUNDLE_NAME =
"de.frewert.dndinfo.gui.dndinfo"; //$NON-NLS-1$

 private static final ResourceBundle RESOURCE_BUNDLE =
 ResourceBundle.getBundle(BUNDLE_NAME);

 private Texts()

 public static String getString(String key) {
 try {
 return RESOURCE_BUNDLE.getString(key);
 } catch (MissingResourceException e) {
 return '!' + key + '!';
 }
 }

}

x

 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 Graphics2D g2 = (Graphics2D) g;
 g2.setFont(bgFont);
 g2.setColor(fontColor);

 int dividerPos = getDividerLocation();
 drawCentered(g2, info[0], 0, dividerPos);

drawCentered(g2, info[1], divider-
Pos + getDividerSize(),
getHeight());

 }

 x

Material of the Experiment

 269

 private Observer dndObserver = new Observer() {
 public void update(Observable o, Object arg) {
 if (arg instanceof DataFlavor[]) {

 gui.displayFlavors((DataFlavor[]) arg);

 } else if (arg instanceof String) {

 gui.appendData((String) arg);

 } else if (arg instanceof int[]) {

 int [] action = (int[]) arg;
 gui.setSourceActions(action[0]);
 gui.setUserAction(action[1]);
 }
 }

}

x

 private ActionListener quitListener = new ActionLis-
tener() {
 public void actionPerformed(ActionEvent e) {
 Main.this.quit();
}

 x

<C3.3> Give another simple example of a code smell Type Embedded in Name ?

 <Your answer:>

<C3.4> Please name the refactoring applied to the following Type Embedded in Name
code smell:

?

 <your answer:> RenameMethod

 public void storeTask (Task t) {
 t.setTaskId(numberTasks+1);
 currentTaskList.addTask(t);
 numberTasks++;

}

is transformed to:

public void store (Task t) {
 t.setTaskId(numberTasks+1);
 currentTaskList.addTask(t);
 numberTasks++;

}

<C3.5> List the refactorings that are suitable for the code smell Type Embedded in
Name in general

?

 <Your answer:>

RenameMethod

Material of the Experiment

 270

<C3.6> In what order should the previously listed refactorings be applied? <put “no
sequence” if the sequence is not important>

?

 <Your answer:>

RenameMethod

<C3.7> What refactoring would you apply for this Type Embedded in Name code smell
example? Please mark each code smell with your text marker and explain why

you apply this refactoring.

?

 public void addDropTargetListener(DropTargetListener
dtl) {
 /*
 * Using the GlassPane as only DropTarget would be more
 * elegant, but Drag&Drop doesn't work with a
 * GlassPane in Java <= 1.4.0. (See Java bug #4435403)
 */

// Use the following block if JRE 1.3 compatibility
// isn't neccessary any longer.

// Component c = SwingUtilities.getRoot(this);
// if ((c != null) && (c instanceof JFrame)) {
// JFrame f = (JFrame) c;
// Component glassPane = f.getGlassPane();
// glassPane.setVisible(true);
// DropTarget dropTarget = new DropTarget(glassPane,
dtl);
// }

 new DropTarget(flavorArea, dtl);
 new DropTarget(dataArea, dtl);

}

 <Your answer:>
addDropTargetListener(DropTargetListener is a type embedded
in name code smell. The variable type is embedded in the
method name. When the type changes, the method also needs
to be renamed.

Material of the Experiment

 271

Questions related to the code smell Comments

<C4> Questions related to the code smell Comments

<C4.1> Explain in your own words what a Comments code smell is?
What are the problems if brings to the code?

?

 <Your answer:>

Comments should be used to give overviews of code and provide additional
information that is not readily available in the code itself. Comments should contain
only information that is relevant to reading and understanding the program and
should be added when the author realizes that something isn't as clear as it could be
and adds a comment. In addition, the frequency of comments sometimes reflects
poor quality of code. A lot of comments can be reflected just as well in the code
itself.

<C4.2> Which of the following examples includes at least one Comments code smell?
<please mark the smell(s) with your text marker>

Yes No ?

 private JScrollPane getFlavorScrollPane(final Map map,
 String header1,
 String header2) {
 JTable table = new JTable(new FlavorTableModel(map,
 header1,
 header2));
 final int viewportHeight = 12 * table.getRowHeight();
 table.setPreferredScrollableViewportSize(new Dimension(450,
viewportHeight));

 // table.getColumn(header1).setPreferredWidth(header1.);

 JScrollPane scrollPane = new JScrollPane(table);
 scroll-
Pane.setVerticalScrollBarPolicy(JScrollPane.VERTICAL_SCROLLB
AR_ALWAYS);

 return scrollPane;
}

x

 public class AboutDialog extends JDialog {
 private static final long serialVersionUID =
3257853194578048567L;

 /**
 * Create a new AboutDialog.
 * @param parent the parent frame.
 * @param title the title of the dialog
 * @param version the version of the application
 */
 public AboutDialog(Frame parent, String title, String ver-
sion) {
 super(parent,
 Texts.getString("AboutDialog.title.prefix") + title);
//$NON-NLS-1$
 createGui(title, version);
 pack();
 setResizable(false);

 }

x

 /**
 * Liest die Refaktorierungen eines Diagnose-Plug-Ins aus
der Extension-
 * Beschreibung aus.

 x

Material of the Experiment

 272

 *
 * @param extensionID
 * ID der Extension, die den Extension-Point <co-
de>Diagnosis</code>
 * implementiert
 * @return Refaktorierungen als Komma-separierte Liste in
einem String
 */
 public String getRefactorings(String extensionID) {
 return getAttributeValue(extensionID,
EP_DIAGNOSIS,
 "refactorings", ELE-
MENT_FRONTEND);
 }

 private ActionListener buttonListener = new ActionListener()
{
 public void actionPerformed(ActionEvent e) {
 // Don't dispose, dialog is reused in Main class
 FlavorDialog.this.hide();
 }

 };

x

 // Constructor where the Id is set
 public TaskList(int taskListId){
 this.taskListId =taskListId;
 state=false;
 tasks=new HashSet<Task>();
 }

x

<C4.3> Give another simple example of a code smell Comment ?

 <Your answer:>

<C4.4> Please name the refactoring applied to the following Comments code smell: ?

 <your answer:>
IntroduceAssertion

 /**
 * @param clipLimit has to be larger than zero
 * @param delta has to have a positive value
 */
public boolean match(int[] expected, int[] actual, int
clipLimit, int delta)
 {
 // Clip " too- large" values
 for (int i = 0; i < actual.length; i++)
 if (actual [i] > clipLimit)
 actual [i] = clipLimit;
 // Check for length differences
 if (actual.length != expected.length)
 return false;
 // Check that each entry within expected +/-
delta
 for (int i = 0; i < actual.length; i++)
 if (Math.abs(expected[i] - actual[i] >
delta)
 return false;

Material of the Experiment

 273

 return true;

 }

is transformed to:

public boolean match(int[] expected, int[] actual, int
clipLimit, int delta)
 {
 assert expected != null;
 assert actual != null;
 assert clipLimit >= 0;
 assert delta >= 0;

 // Clip " too- large" values
 for (int i = 0; i < actual.length; i++)
 if (actual [i] > clipLimit)
 actual [i] = clipLimit;
 // Check for length differences
 if (actual.length != expected.length)
 return false;
 // Check that each entry within expected +/-
delta
 for (int i = 0; i < actual.length; i++)
 if (Math.abs(expected[i] - actual[i] >
delta)
 return false;

 return true;
 }

<C4.5> List the refactorings that are suitable for the code smell Comments in general ?

 <Your answer:>

ExtractMethod
IntroduceAssertion
RenameMethod

<C4.6> In what order should the previously listed refactorings be applied? <put “no
sequence” if the sequence is not important>

?

 <Your answer:>

doesn’t matter, depends on the type of the comments code smell.

<C4.7> What refactoring(s) would you apply for this(these) Comments code smell
example(s)? Mark each code smell with your text marker and explain why you apply
this refactoring.

?

 /** Simulation of a Tic-Tac-Toe game (does not do strategy).
*/
public class TicTacToe {
 protected static final int X = 1, O = -1; // players
 protected static final int EMPTY = 0; // empty
cell
 protected int board[][] = new int[3][3]; // game board
 protected int player; // current
player
 /** Constructor */
 public TicTacToe() { clearBoard(); }
 /** Clears the board */
 public void clearBoard() {

Material of the Experiment

 274

 for (int i = 0; i < 3; i++)
 for (int j = 0; j < 3; j++)
 board[i][j] = EMPTY; // every cell should be empty
 player = X; // the first player is
'X'
 }
 /** Puts an X or O mark at position i,j */
 public void putMark(int i, int j) throws IllegalArgumentEx-
ception {
 if ((i < 0) { (i > 2) { (j < 0) { (j > 2))
 throw new IllegalArgumentException("Invalid board posi-
tion");
 if (board[i][j] != EMPTY)
 throw new IllegalArgumentException("Board position occu-
pied");
 board[i][j] = player; // place the mark for the cur-
rent player
 player = - player; // switch players (uses fact
that O = - X)
 }
 /** Checks whether the board configuration is a win for the
given player */
 public boolean isWin(int mark) {
 return ((board[0][0] + board[0][1] + board[0][2] == mark*3)
// row 0
 { (board[1][0] + board[1][1] + board[1][2] ==
mark*3) // row 1
 { (board[2][0] + board[2][1] + board[2][2] ==
mark*3) // row 2
 { (board[0][0] + board[1][0] + board[2][0] ==
mark*3) // column 0
 { (board[0][1] + board[1][1] + board[2][1] ==
mark*3) // column 1
 { (board[0][2] + board[1][2] + board[2][2] ==
mark*3) // column 2
 { (board[0][0] + board[1][1] + board[2][2] ==
mark*3) // diagonal
 { (board[2][0] + board[1][1] + board[0][2] ==
mark*3)); // diagonal
 }
 /** Returns the winning player or 0 to indicate a tie */
 public int winner() {
 if (isWin(X))
 return(X);
 else if (isWin(O))
 return(O);
 else
 return(0);
 }

 <Your answer:>

It is clear that the constructor is the constructor!

The name of the method clearBoard tells the reader what the method does. The
comment is redundant. The same is true for the methods putMark and isWin.

Material of the Experiment

 275

Questions related to the code smell Uncommunicative Name

<C4> Questions related to the code smell Uncommunicative Name

<C4.1> Explain in your own words what a Uncommunicative Name code smell is?
What are the problems it brings to the code?

?

 <Your answer:>

A name doesn't communicate its intent of a method, variable, classes, etc. well
enough
- One- or two-character names
- Names with vowels omitted
- Numbered variables (e.g., panel, pane2, and so on)
- Odd abbreviations
- Misleading names

<C4.2> Which of the following examples includes at least one Uncommunicative Name
code smell? <please mark the smell(s) with your text marker>

Yes No ?

 public Class getColumnClass(final int columnIndex) {
 return String.class;

 }

 x

 public void addDropTargetListener(DropTargetListener dtl)
{
 new DropTarget(flavorArea, dtl);
 new DropTarget(dataArea, dtl);

 }

x

 public String getColumnName(final int column) {
 String name = (column >= columnHeader.length)
 ? ""
 : columnHeader[column];
 return (name == null) ? "" : name;
 }

 x

 public void insertUpdate(DocumentEvent e) {
 /* using invokeLater seems neccessary */
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 scrollbar.setValue(scrollbar.getMaximum());
 }
 });

}

x

 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 Graphics2D g2 = (Graphics2D) g;
 g2.setFont(bgFont);
 g2.setColor(fontColor);

 int dividerPos = getDividerLocation();
 drawCentered(g2, info[0], 0, dividerPos);
 drawCentered(g2, info[1],
 dividerPos + getDividerSize(), getHeight());
}

x

 public Object getValueAt(final int arg0, final int arg1)
{
 return data[arg0][arg1];
 }

x

Material of the Experiment

 276

<C4.3> Give another simple example of a Uncommunicative Name code smell ?

 <Your answer:>

<C4.4> Please name the refactoring applied to the following Uncommunicative Name
code smell:

?

 <your answer:> RenameMethod (or RenameVariable)

 //data contains the colortable

public Object getValueAt(final int arg0, final int arg1)
{
 return data[arg0][arg1];

}

is transformed to:

public Object getValueAt(final int x, final int y) {
 return data[x][y];
}

<C4.5> List the refactorings that are suitable for the code smell Uncommunicative Name
in general

?

 <Your answer:>

RenameMethod (or RenameVariable)

<C4.6> In what order should the previously listed refactorings be applied? <put “no
sequence” if the sequence is not important>

?

 <Your answer:>

RenameMethod (or RenameVariable)

<C4.7> What refactoring would you apply for this(these) Uncommunicative Name code
smell example(s)? Mark the code smell with your text marker and explain why
you apply this refactoring.

?

 private Observer dndObserver = new Observer() {
 public void update(Observable o, Object arg) {
 if (arg instanceof DataFlavor[]) {

 gui.displayFlavors((DataFlavor[]) arg);

 } else if (arg instanceof String) {

 gui.appendData((String) arg);

 } else if (arg instanceof int[]) {

 int [] action = (int[]) arg;
 gui.setSourceActions(action[0]);
 gui.setUserAction(action[1]);
 }
 }

 };

Material of the Experiment

 277

 <Your answer:>

o is a one-character variable

arg is a variable name with no meaning

A.3. Experience Packages for Experimentation

A.3.1 Experience Package Template

Titel of EP Type Experience

Action (A)

 Abstract:

 Problem:

 Solution:

Benefit (B)

 Effect:

Context (C)

 Product:

 Process:

 Project:

 Knowledge:

 Organization:

 People:

 Group:

Description (D)

 Explanation:

 Example:

Evidence (E) Analysis
Technique:

 Hypothesis:

Administrative

 Author: Date:

 Version: Relation EPs:

 Status:

Remark

Material of the Experiment

 278

A.3.2 Experience Package: Code Smell Long Method

Titel of EP Code Smell Long Method Type Experience

Action (A)

 Abstract: Large methods consist of a large number of lines. You
should be suspicious when a method has more than 5
to 10 lines. The refactorings ExtractMethod,
ReplaceTempwithQuery,
ReplaceMethodwithMethodObject,
DecomposeConditional can be used to reduce this
kind of code smell. They will improve the class
structure and abstraction levels.

 Problem: A method starts down a path and, rather than break
the flow or identify the helper classes, the author adds
more and more. Code is often easier to write than it is
to read, so there's a temptation to write blocks that
are too big, which means that they get difficult to
maintain, understand, etc.

 Solution: The refactoring ExtractMethod could be used to break
up the method into smaller parts. Look for comments
or white space delineating interesting blocks. You
want to extract methods that are semantically
meaningful, not just introduce a function call every
seven lines.

In addition, the following three methods can be used,
too:
- ReplaceTempwithQuery: Temporary variables are
used to hold the result of an expression. This
expression should be replaced with a method.
Extract the expression into a method.
- ReplaceMethodwithMethodObject: The difficulty in
decomposing a method lies in local variables. If they
are rampant (Germ. üppig), decomposition can be
difficult. Applying it turns all the local variables into
fields on the method object and ExtractMethod can be
applied on this new object afterwards.
- DecomposeConditional: Methods named after the
intention of that block of code replace the parts of the
conditional part and each of the alternatives. This way
you highlight the condition and make it clear what you
are branching on.

Benefit (B)

 Effect: lmproves communication. May expose duplication.
Often helps to get new classes and abstractions

Material of the Experiment

 279

Context (C)

 Product: Java Code

 Process: ExtractMethod, ReplaceTempwithQuery,
ReplaceMethodwithMethodObject,
DecomposeConditional

 Project: OO projects

 Knowledge: Code Smell Long Method

 Organization: Fraunhofer IESE

 Individual: Eric Ras

 Group: SOP-Dev

Evidence (E) Analysis
Technique:

- Hypothesis -

Administrative

 Author: Martin Fowler Date: 1999

 Version: Relation EPs:

 Status:

remark Exercise W. Exercise 4 23ff

A.3.3 Experience Package: Code Smell Type Embedded in Name

Titel of EP Code Smell Type Embedded in Name Type Experience

Action (A)

 Abstract: When types are embedded in names, it's not only
redundant, but it forces you to change the name if the
type changes. This often results. Therefore, the
refactoring RenameMethod is applied to avoid this
kind of code smell, which is called Type Embedded in
Name.
Avoid placing types in method names!

 Problem: The embedded name can create unnecessary troubles
because later changes of the parameter (i.e., type) will
lead to a renaming of the method and the related
calls.

 Solution: The refactoring RenameMethod (the same is done for
fields or constants) should be applied, which leads to a
new name that communicates the intent of the
method without being so much tied to a type.

Benefit (B)

 Effect: Improves communication. May make it easier to spot
duplication.

Material of the Experiment

 280

Context (C)

 Product: Java code

 Process: RenameMethod

 Project: OO projects

 Knowledge: Code Smell Type Embedded in Name

 Organization: Fraunhofer IESE

 Individual: Eric Ras

 Group: Sop-Dev

Evidence (E) Analysis
Technique:

 Hypothesis

Administrative

 Author: Wakes Date:

 Version: 1.0 Relation EPs:

 Status: stable

remark exercise no one in W.

A.4. Assignments

In the following, one example of an assignment for the experimental
group (Day 1) is given to show how an assignment is structured and to
illustrate how the data was gathered during the experiment. Five differ-
ent developer teams were involved during the experiment. The code
used for the assignments was code produced by the corresponding
teams themselves, i.e., the assignments contain their own code. There-
fore, 20 different assignments were produced for the two periods of the
experiment. Due to space limitations in this work, the complete set of
assignments can be found in a technical report (Ras, 2009b) (ca. 160
pages).

The first page of the assignment provides instructions for solving the as-
signment and asks the subject to enter the time when he starts to solve
the assignment (see Appendix A.4.1). After that, two exercises with Java
code were given to the subjects (see Appendix A.4.2 and Appendix
A.4.3). It was up to the students to decide whether they completely read
the provided information first (i.e., information of an experience package
or a learning space) or directly started to solve the exercises. The sheet
for describing the solutions used by the subjects is provided in Appendix
A.4.4 (example) and Appendix A.4.5 (empty sheet).

Material of the Experiment

 281

A.4.1 Assignment Information and Related Exercises (Mo-Mo-G1):

(Group:_________________)
Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Goal of the experiment:
The goal of the experiment is to apply the knowledge from an experience package to
your own context (in this case, the DCGA project). Information about the experience
package will be provided in a Wiki. Further, additional information in a so-called
learning space will help you to understand and apply the experience package. In or-
der to apply the experience packages, an exercise should be solved.

Selected Experience Packages
This sheet explains in which order you should work through the experience packages.
Two experience packages have been assigned to you. Please access them in the fol-
lowing sequence as assigned in the parentheses. When you have read the informa-
tion in the Wiki and when you think you are ready to solve the exercise, please put
the actual time behind the corresponding experience package when you start to ac-
cess the experience package in the Wiki.

- Experience Package Code Smell Comments (___)
 starting time [___ : ___];
- Experience Package Code Smell Long Method (___)
 starting time [___ : ___]
- Experience Package Code Smell Type Embedded in Name (___)
 starting time [___ : ___]
- Experience Package Code Smell Uncommunicative Name (___)
 starting time [___ : ___]
- Experience Package Code Smell Long Parameter List (___)
 starting time [___ : ___] ending time [___ : ___];
- Experience Package Code Smell Lazy Class (___)
 starting time [___ : ___] ending time [___ : ___];
- Experience Package Code Smell Data Class (___)
 starting time [___ : ___] ending time [___ : ___];

Please access the Wiki by using your web browser:
 http://watt.informatik.uni-kl.de/gseprojekt1/index.php/Spezial:Experiences
(use gseprojekt “1” !)
Login: experiment
Passwd: geiermeier

The exercises are provided in the following.

Material of the Experiment

 282

A.4.2 Exercise to Experience Package for Amica Interaction Group: Long
Method Code Smell

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Long
Method

2. For each identified code smell, state the refactoring you would apply to the code
and give a sequential number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first col-
umn in order to relate your answer to the identified code smell. Then explain your
decision (i.e., your stepwise solution in your own words or why you wouldn’t re-
move the code smell).

Amica_Interaction:match.java
package org.belami.dcga.amica_interaction.mapping;

import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import org.belami.dcga.amica_interaction.Situation;
import org.belami.dcga.common_datastructures.Information;
import org.belami.dcga.common_datastructures.Task;
import org.belami.dcga.common_datastructures.TaskEvent;
import org.w3c.dom.DOMException;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

/* Data structure containing the information of one "match"
element from the XML mapping file.
 */
public class Match {
 /**
* Fact ID that has to be matched with the Situation object
 */
 private String factName = null;
 /**
 * Comparator method for the fact ID from the mapping-file*/

<The complete Java code can be found in (Ras, 2009b)>

Material of the Experiment

 283

A.4.3 Exercise to Experience Package for Amica Interaction Group: Type Em-

bedded in Name Code Smell

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Type em-
bedded in name

2. For each identified code smell, state the refactoring you would apply into the code
and give a sequential number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first col-
umn in order to relate your answer to the identified code smell. Then explain your
decision (i.e., your stepwise solution in your own words or why you wouldn’t re-
move the code smell).

Amica_Interaction:match.java
package org.belami.dcga.amica_interaction.mapping;

import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import org.belami.dcga.amica_interaction.Situation;
import org.belami.dcga.common_datastructures.Information;
import org.belami.dcga.common_datastructures.Task;

/* Data structure containing the information of one "match"
element from the XML mapping file.
 *
 */
public class Match {
 /**
* Fact ID that has to be matched with the Situation object
 */
private String factName = null;
 /**
 * Comparator method for the fact ID from the mapping-file
*/

<The complete Java code can be found in (Ras, 2009b)>

Material of the Experiment

 284

A.4.4 Answer Sheet for Exercises (example)

This is an example at how to mark a code smell and how to describe it in the Answer
Sheet for Exercises.
Code example:
void printOwing() {
 printBanner();

 //print details
 System.out.println ("name: " + _name);
 System.out.println ("amount " + amount);
}
Your explanation can be provided in different ways:

Number Explanation of your descision

1

I would use the Extract Method refactoring. This is a solution:
void printOwing() {
 printBanner();
 printDetails(getOutstanding());
}

void printDetails (double outstanding) {
 System.out.println ("name: " + _name);
 System.out.println ("amount " + outstanding);
}

or describe it in this way

1

I would use the Extract Method refactoring.
The first step is to extract both system.out.println statements into a separate
method (e.g., method printDetails(double outstanding) with the double vari-
able oustanding). This method call to this new method will replace the
println statements in the printOwning method.
That’s it.

It is not necessary to state the compile and test steps !

Material of the Experiment

 285

A.4.5 Answer Sheet for Assignments

The answer can also be stated in German if this is more appropriate for you.

Number Explanation of your decision

Material of the Experiment

 286

A.5. Debriefing Questionnaire

Questions on Complexity of the Tasks

<D1> Agree Disagree

<D1.1> The complexity of the experience packages used in both runs (Mon-
day and Tuesday) were comparable � � � � � � �

<D1.2> The complexity of the code in the exercises used in both runs (Mon-
day and Tuesday) were comparable � � � � � � �

<D1.3> I knew most of the code in the exercises during both runs � � � � � � �

Questions on Time Needed

<D2> I had enough time to Yes No

<D2.1> read the information provided by the learning spaces in run 1 (Monday)

<D2.2> read the information provided by the learning spaces in run 2 (Tuesday)

<D2.3> solve the exercises in run 1 (Monday)

<D2.4> solve the exercises in run 2 (Tuesday)

<D2.5> familiarize myself with the Wiki and the learning space

Questions on Learning Spaces

These questions are related to the run where you had access to the Learning Space.
<D3> How did you use the Learning Space (LS)? <choose one option>
<D3.1> I first read the LS completely and started to solve the exercises without accessing the LS

again �

<D3.2> I first read the LS completely and started to solve the exercises by accessing the LS again �
<D3.3> I first read the LS partially and started to solve the exercises without accessing the LS again �
<D3.4> I first read the LS partially and started to solve the exercises by accessing the LS again �
<D3.5> I didn’t read the LS and started with the exercise without accessing the LS at all �
<D3.6> I didn’t read the LS and started with the exercise by accessing the LS later �

<D4> What kind of information did you find useful in the Learning

Space with regard to solving the exercise?
Agree Disagree

<D4.1> Descriptions of items � labeled as Description � � � � � � �
<D4.2> Definitions of items � labeled as Definition � � � � � � �
<D4.3> Example descriptions of items � labeled as Example � � � � � � �
<D4.4> Counterexample descriptions of items � labeled as Counterexample � � � � � � �
<D4.5> Process descriptions of items � labeled as Process � � � � � � �

Material of the Experiment

 287

Questions on Stand-Alone Experience Package vs. Learning Spaces

Below you will find a number of opposing adjectives on both sides of each line. You can
react to the statements by checking the appropriate point on the line, as in this example:

Useful Useless

� � � � � � �

when you think that it was very useful.
<D5> useful useless

� � � � � � �

boring absorbing

� � � � � � �

easy difficult

� � � � � � �

clear confusing

� � � � � � �

complete incomplete

I consider the explanations / information provided in a Learning
Space in addition to an experience package descrption in gen-
eral

� � � � � � �

<D6> useful useless

� � � � � � �

boring absorbing

� � � � � � �

easy difficult

� � � � � � �

clear confusing

� � � � � � �

complete incomplete

I consider the explanations / information provided in a stand-
alone experience package description (without Learning Space)
in general

� � � � � � �

<D7> I would like to make the following comment(s) / improvement suggestion(s) (can be in Ger-
man)

<D8> I had a problem with … <please explain (can be in German)>:

Material of the Experiment

 288

Questions on Evaluating of the Use and Acceptance of Learning Spaces

<D9> Performance expectancy Agree Disagree

<D9.1> I would find the system useful in my job. � � � � � � �
<D9.2> Using the Learning Space enables me to accomplish tasks more

quickly. � � � � � � �

<D9.3> Using the Learning Space increases my productivity. � � � � � � �
<D9.4> If I use the Learning Space, I will increase my chances of getting a

pay raise. � � � � � � �

<D10> Effort expectancy Agree Disagree

<D10.1> My interaction with the Learning Space would be clear and under-
standable. � � � � � � �

<D10.2> It would be easy for me to become skillful at using the Learning
Space. � � � � � � �

<D10.3> I would find the Learning Space easy to use. � � � � � � �

<D11> Attitude toward using technology Agree Disagree

<D11.1> Using the Learning Space is a good idea. � � � � � � �
<D11.2> The Learning Space makes work more interesting. � � � � � � �
<D11.3> Working with the Learning Space is fun. � � � � � � �
<D11.4> I like working with the Learning Space. � � � � � � �

Thanks for filling out the questionnaire!

Material of the Case Study

 289

Appendix B. Material of the Case Study

Evaluierung des Learning Space Tools

Name: _______________________

(Der Name wird nur für Nachfragen bei Unklarheiten der Antworten be-
nötigt. Der Fragebogen wird natürlich anonym ausgewertet.)

Zugangsdaten zum Server:

http://ls.sop-world.org/

Login: lernen

Passwort: lsdevserver

Dann bitte als Benutzer „test“ mit dem Passwort „erfahrung“ rechts
oben im Wiki Fenster einloggen

I. ISONORM Fragebogen zur Software Ergonomie

Füllen Sie bitte den nachfolgenden Fragebogen aus. Die Fragen, die Ihrer
Meinung nach nicht für dieses System zutreffen, lassen Sie bitte unbe-
antwortet.

Der Fragebogen entspricht dem ISONORM 9142/10 Fragebogen.

Die folgenden Fragen beziehen sich ausschließlich auf die Arbeitsaufga-
be der Wiederverwendung von Erfahrung und der Verwendung von
Lernräumen und nicht auf die anderen Wiki-Funktionalitäten.

Material of the Case Study

 290

Aufgabenangemessenheit

<E1> Unterstützt die Software die Erledigung Ihrer Arbeitsaufgaben (Wiederverwendung von
Erfahrung), ohne Sie als Benutzer unnötig zu belasten?

 Die Software... --- -- - -/+ + ++ +++

<E1.1> ist kompliziert zu bedienen. � � � � � � � ist unkompliziert zu bedienen.

<E1.2> bietet nicht alle Funktionen,
um die anfallenden Aufgaben
effizient zu bewältigen.

� � � � � � �
bietet alle Funktionen,
die anfallenden Aufgaben
effizient zu bewältigen.

<E1.4> erfordert überflüssige Ein-
gaben. � � � � � � � erfordert keine überflüssigen

Eingaben.

<E1.5> ist schlecht auf die Anforde-
rungen der Arbeit zugeschnit-
ten.

� � � � � � �
ist gut auf die Anforderungen
der Arbeit zugeschnitten.

Selbstbeschreibungsfähigkeit

<E2> Gibt Ihnen die Software genügend Erläuterungen und ist sie in ausreichendem Maße
verständlich?

 Die Software... --- -- - -/+ + ++ +++

<E2.1> bietet einen schlechten Über-
blick über ihr Funktionsange-
bot.

� � � � � � �
bietet einen guten Überblick
über ihr Funktionsangebot.

<E2.2> verwendet schlecht verständli-
che Begriffe, Bezeichnungen,
Abkürzungen oder Symbole in
Masken und Menüs.

� � � � � � �

verwendet gut verständliche
Begriffe, Bezeichnungen,
Abkürzungen oder Symbole
in Masken und Menüs.

<E2.3> liefert in unzureichendem
Maße Informationen darüber,
welche Eingaben zulässig oder
nötig sind.

� � � � � � �

liefert in zureichendem Maße
Informationen darüber,
welche Eingaben zulässig
oder nötig sind.

Material of the Case Study

 291

Steuerbarkeit

<E3> Können Sie als Benutzer die Art und Weise, wie Sie mit der Software arbeiten, beeinflus-
sen?

 Die Software... --- -- - -/+ + ++ +++

<E3.1> bietet keine Möglichkeit, die
Arbeit an jedem Punkt zu unter-
brechen und dort später ohne
Verluste wieder weiterzumachen.

� � � � � � �

bietet die Möglichkeit, die
Arbeit an jedem Punkt zu
unterbrechen und dort
später ohne Verluste wie-
der weiterzumachen.

<E3.2> erzwingt eine unnötig starre
Einhaltung von Bearbeitungs-
schritten.

� � � � � � �
erzwingt keine unnötig
starre Einhaltung von
Bearbeitungsschritten.

<E3.3> ermöglicht keinen leichten
Wechsel zwischen einzelnen
Menüs oder Masken.

� � � � � � �
ermöglicht einen leichten
Wechsel zwischen einzel-
nen Menüs oder Masken.

<E3.4> ist so gestaltet, dass der Benutzer
nicht beeinflussen kann, wie und
welche Informationen am Bild-
schirm dargeboten werden. � � � � � � �

ist so gestaltet, dass der
Benutzer beeinflussen
kann, wie und welche
Informationen am Bild-
schirm dargeboten wer-
den.

<E3.5> erzwingt unnötige Unterbre-
chungen der Arbeit. � � � � � � �

erzwingt keine unnötigen
Unterbrechungen der
Arbeit.

Erwartungskonformität

<E4> Kommt die Software durch eine einheitliche und verständliche Gestaltung Ihren Erwar-
tungen und Gewohnheiten entgegen?

 Die Software... --- -- - -/+ + ++ +++

<E4.1> erschwert die Orientierung,
durch eine uneinheitliche
Gestaltung.

� � � � � � �
erleichtert die Orientierung,
durch eine einheitliche Ges-
taltung.

<E4.2> lässt einen im Unklaren dar-
über, ob eine Eingabe erfolg-
reich war oder nicht.

� � � � � � �
lässt einen nicht im Unklaren
darüber, ob eine Eingabe
erfolgreich war oder nicht.

<E4.3> informiert in unzureichendem
Maße über das, was sie gera-
de macht.

� � � � � � �
informiert in ausreichendem
Maße über das, was sie
gerade macht.

<E4.4> reagiert mit schwer vorher-
sehbaren Bearbeitungszeiten. � � � � � � � reagiert mit gut vorhersehba-

ren Bearbeitungszeiten.

<E4.5> lässt sich nicht durchgehend
nach einem einheitlichen
Prinzip bedienen.

� � � � � � �
lässt sich durchgehend nach
einem einheitlichen Prinzip
bedienen.

Material of the Case Study

 292

Individualisierbarkeit

<E6> Können Sie als Benutzer die Software ohne großen Aufwand an Ihre individuellen Bedürf-
nisse und Anforderungen anpassen?

 Die Software... --- -- - -/+ + ++ +++

<E6.2> lässt sich von dem Benutzer
schlecht an seine persönliche,
individuelle Art der Arbeitserledi-
gung anpassen.

� � � � � � �

lässt sich von dem Benut-
zer gut an seine persönli-
che, individuelle Art der
Arbeitserledigung anpas-
sen.

<E6.3> eignet sich für Anfänger und
Experten nicht gleichermaßen,
weil der Benutzer sie nur schwer
an seinen Kenntnisstand anpas-
sen kann.

� � � � � � �

eignet sich für Anfänger
und Experten gleicherma-
ßen, weil der Benutzer sie
leicht an seinen Kenntnis-
stand anpassen kann.

<E6.4> lässt sich - im Rahmen ihres
Leistungsumfangs - von dem
Benutzer schlecht für unter-
schiedliche Aufgaben passend
einrichten.

� � � � � � �

lässt sich - im Rahmen
ihres Leistungsumfangs -
von dem Benutzer gut für
unterschiedliche Aufgaben
passend einrichten.

<E6.5> ist so gestaltet, dass der Benutzer
die Bildschirmdarstellung
schlecht an seine individuellen
Bedürfnisse anpassen kann.

� � � � � � �

ist so gestaltet, dass der
Benutzer die Bildschirm-
darstellung gut an seine
individuellen Bedürfnisse
anpassen kann.

Lernförderlichkeit

<E7> Ist die Software so gestaltet, dass Sie sich ohne großen Aufwand in sie einarbeiten konn-
ten und bietet sie auch dann Unterstützung, wenn Sie neue Funktionen lernen möchten?

 Die Software... --- -- - -/+ + ++ +++

<E7.1> erfordert viel Zeit zum
Erlernen. � � � � � � � erfordert wenig Zeit zum Erler-

nen.

<E7.2> ermutigt nicht dazu, auch
neue Funktionen auszupro-
bieren.

� � � � � � �
ermutigt dazu, auch neue Funk-
tionen auszuprobieren.

<E7.3> erfordert, dass man sich
viele Details merken muss. � � � � � � � erfordert nicht, dass man sich

viele Details merken muss.

<E7.4> ist so gestaltet, dass sich
einmal Gelerntes schlecht
einprägt.

� � � � � � �
ist so gestaltet, dass sich einmal
Gelerntes gut einprägt.

<E7.5> ist schlecht ohne fremde
Hilfe oder Handbuch er-
lernbar.

� � � � � � �
ist gut ohne fremde Hilfe oder
Handbuch erlernbar.

Material of the Case Study

 293

II. UTAUT Fragebogen zur Nutzung und Akzeptanz (in Englisch)

The following questions are based on the UTAUT (Unified Theory of Acceptance and Use
of Technology).

<U1> Performance expectancy Agree Disagree

<U1.1> I would find the system useful in my job. � � � � � � �
<U1.2> Using the system enables me to accomplish tasks more quickly. � � � � � � �
<U1.3> Using the system increases my productivity. � � � � � � �
<U1.4> If I use the system, I will increase my chances of getting a pay
raise. � � � � � � �

<U2> Effort expectancy Agree Disagree

<U2.1> My interaction with the system would be clear and understand-
able. � � � � � � �

<U2.2> It would be easy for me to become skillful at using the system. � � � � � � �
<U2.3> I would find the system easy to use. � � � � � � �
<U2.4> Learning to operate the system is easy for me. � � � � � � �

<U3> Attitude toward using technology Agree Disagree

<U3.1> Using the system is a good idea. � � � � � � �
<U3.2> The system makes work more interesting. � � � � � � �
<U3.3> Working with the system is fun. � � � � � � �
<U3.4> I like working with the system. � � � � � � �

<U4> Facilitating conditions Agree Disagree

<U4.1> I have the resources necessary to use the system. � � � � � � �
<U4.2> I have the knowledge necessary to use the system. � � � � � � �
<U4.3> The system is not compatible with other systems I use. � � � � � � �
<U4.4> A specific person (or group) is available for assistance with system
difficulties. � � � � � � �

<U5> Self-efficacy Agree Disagree

<U5.1> I could complete a job or task using the system… � � � � � � �
<U5.2> If there was no one around to tell me what to do as I go. � � � � � � �
<U5.3> If I could call someone for help if I got stuck. � � � � � � �
<U5.4> If I had a lot of time to complete the job for which the software
was provided. � � � � � � �

<U5.5> If I had just the built-in help facility for assistance. � � � � � � �

Material of the Case Study

 294

III. Weitere Anmerkungen, Kritik, Verbesserungsvorschläge …

… zur Farbgebung, Strukturierung der Informationen, Navigation

… zur Anreicherung von Erfahrungen mit Lernelementen
(Integration von Wissensmanagement und E-Learning)

… zu Lernelementen

…

Additional Statistics

 295

Appendix C. Additional Statistics

C.1. Principal Component Analysis of the Briefing Questionnaire

A principal component analysis (PCA) was performed for the briefing
questionnaire for the purpose of data reduction and scale building.

In the following, only results from the PCA will be provided, since the
process of the PCA is incremental and is based on many small analysis
steps. Detailed explanations about the PCA can be found in (Bühner,
2006). The PCA was performed with varimax rotation. Components (i.e.,
experience factors) were only extracted when their eigenvalue passed
1.0, which means that the factor explains a higher variance than each
single item that is part of the factor. The minimal Kaiser-Meyer-Olkin co-
efficient (KMO is a quality measure to measure whether the whole set of
items is suitable for a PCA) of 0.6 has to be reached and a minimal
Measure of Sample Adequacy (MSA is a quality measure to determine
whether a single item is suitable for a PCA) is higher than 0.6 and is part
of the anti-image correlation matrix. The Bartlett’s test (Snedecor & G.,
1989) was conducted to check whether the items have equal variances.
The test is significant when the correlations of the correlation matrix
produced by the PCA differ from null. That is, when the test is not sig-
nificant, the selected items do not correlate and can therefore not be
used for a PCA. For each factor, a scree plot is created which shows the
eigenvalues of the extracted factors. The scree test was used as a final
check, to see whether only one component with an eigenvalue higher
than 1.0 can be extracted based on the selected item set. Finally, the
component matrix presents the loading of each item on the extracted
factor. A loading is the correlation between the item and the factor.

The PCA was only conducted for the experience variables java program-
ming (exp_jp), refactoring (exp_ref), quality assurance (exp_qs), and
software maintenance (exp_main).

C.1.1 Experience in Java Programming (exp_jp)

The resulting disturbing factor exp_jp is composed of the items B4.1,
B4.3, B4.4, and B4.5. The resulting statistics are displayed in the follow-
ing figures and tables.

Table 81 KMO and Bartlett’s test for exp_jp

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .790

Bartlett's Test of Sphericity Approx. Chi-Square 31.218

 df 6

 Sig. .000

Additional Statistics

 296

Table 82 Anti-image matrix for exp_jp

Ja
va

 A
PI

s
(ja

va
.u

til
,

ja
va

.io
, j

a-
va

.n
et

, e
tc

.)

C
re

at
in

g
Ja

va

pr
og

ra
m

s
fr

om
 s

cr
at

ch

D
eb

ug
gi

ng

la
rg

e
Ja

va

pr
og

ra
m

s

Th
e

ec
lip

se

ID
E

(a
s

a
us

er
,

no
t

a
pl

ug
in

de

ve
lo

pe
r)

Java APIs (java.util, java.io, java.net, etc.) .730(a) -.341 -.527 -.338
Creating Java programs from scratch -.341 .860(a) -.049 -.048
Debugging large Java programs -.527 -.049 .777(a) -.264
The eclipse IDE (as user, not a plugin-
developer)

-.338 -.048 -.264 .850(a)

a Measures of Sampling Adequacy(MSA)

Component Number
4321

E
ig

en
va

lu
e

3,0

2,5

2,0

1,5

1,0

0,5

0,0

Scree Plot

Figure 56 Scree plot for exp_jp

Table 83 Component matrix for exp_java

 Component
 1

Java APIs (java.util, java.io, java.net, etc.) .913
Creating Java programs from scratch .721
Debugging large Java programs .873
The eclipse IDE (as a user, not a plugin developer) .828

It can be seen that the KMO is 0.79 and that the Bartlett test is signifi-
cant (p=0.000). In addition, the MSA coefficients are higher than 0.6.
Hence, a PCA could be conducted. The sreeplot shows that only one
component with an eigenvalue higher than 1.0 could be extracted. The
component matrix shows that each item has a high correlation with the
extracted factor exp_jp.

Additional Statistics

 297

C.1.2 Experience in Refactoring (exp_ref)

The resulting disturbing factor exp_ref is composed of the items B5.1,
B5.2, B6.2, and B6.3. The resulting statistics are displayed in the follow-
ing figures and tables.

Table 84 KMO and Bartlett’s test for exp_ref

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .687
Bartlett's Test of Sphericity Approx. Chi-Square 52.072

 df 6

 Sig. .000

Table 85 Anti-image matrix for exp_ref

H
ow

 m
an

y
ye

ar
s

of
 e

x-
pe

rie
nc

e
do

 y
ou

 h
av

e
w

ith
 r

ef
ac

to
rin

g?

H
ow

 m
an

y
di

ff
er

en
t

ap
pl

ic
at

io
ns

 h
av

e
yo

u
re

fa
ct

or
ed

?
(a

ll
pr

o-
gr

am
m

in
g

la
ng

ua
ge

s)

A
pp

ly
in

g
Re

fa
ct

or
in

gs

m
an

ua
lly

A
pp

ly
in

g
Re

fa
ct

or
in

gs

su
ch

 a
s

"E
xt

ra
ct

M

et
ho

d"
 b

ui
lt

in
to

 a
n

ID
E

(e
xc

ep
t

th
e

"r
e-

na
m

e"
 r

ef
ac

to
rin

g)

How many years of experience do you have
with refactoring? .637(a) .400 .081 -.704

How many different applications have you
refactored? (all programming languages)

.400 .681(a) -.075 -.723

Applying Refactorings manually .081 -.075 .889(a) -.400

Applying Refactorings such as "Extract
Method" built into an IDE (except the "re-
name" refactoring)

-.704 -.723 -.400 .619(a)

(a) Measures of Sampling Adequacy(MSA)

Component Number
4321

E
ig

en
va

lu
e

4

3

2

1

0

Scree Plot

Figure 57 Scree plot for exp_ref

Additional Statistics

 298

Table 86 Component matrix for exp_ref

Component
 1

How many years of experience do you have with refactoring? .800
How many different applications have you refactored? (all program-
ming languages)

.877

Applying Refactorings manually .861
Applying Refactorings such as "Extract Method" built into an IDE
(except the "rename" refactoring)

.970

It can be seen that the KMO is 0.687 and that the Bartlett test is signifi-
cant (p=0.000). In addition, the MSA coefficients are higher than 0.6 for
all items. Hence, a PCA could be conducted. The sreeplot shows that
only one component with an eigenvalue higher than 1.0 could be ex-
tracted. The component matrix shows that all items have a very high cor-
relation with the extracted factor exp_ref.

C.1.3 Experience in Software Quality Assurance (exp_qs)

The resulting disturbing factor exp_qs is composed of the items B7.1,
B7.2, B7.3, and B7.4. The resulting statistics are displayed in the follow-
ing figures and tables.

Table 87 KMO and Bartlett’s test for exp_qs

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .782

Bartlett's Test of Sphericity Approx. Chi-Square 42.929
 df 6
 Sig. .000

Table 88 Anti-image matrix for exp_qs

Q
ua

lit
y

m
od

-
el

s
(s

uc
h

as

IS
O

91

26
.,F

U
RP

,
D

ro
m

ey
,

Bo
eh

m
, …

)

Te
st

in
g

a
so

ft
w

ar
e

sy
s-

te
m

?

In
sp

ec
tin

g
a

so
ft

w
ar

e
sy

s-
te

m
 r

eg
ar

d-
in

g
qu

al
ity

is

su
es

?

So
ft

w
ar

e
m

ea
su

re
m

en
t

(M
et

ric
s)

?

Quality models (such as ISO 9126, FURPS,
Dromey, Boehm, …) .770(a) -.080 -.064 -.640

Testing a software system? -.080 .819(a) -.519 -.124

Inspecting a software system regarding quality
issues? -.064 -.519 .797(a) -.329

Software measurement (Metrics)?
-.640 -.124 -.329 .751(a)

(a) Measures of Sampling Adequacy(MSA)

Additional Statistics

 299

Component Number
4321

Ei
ge

nv
al

ue

4

3

2

1

0

Scree Plot

Figure 58 Scree plot for exp_qs

Table 89 Component matrix for exp_qs

Component
 1

Quality models (such as ISO 9126, FURPS, Dromey, Boehm, …) .865
Testing a software system? .844
Inspecting a software system regarding quality issues? .887
Software measurement (Metrics)? .911

It can be seen that the KMO is 0.782 and that the Bartlett test is signifi-
cant (p=0.000). In addition, the MSA coefficients are higher than 0.6 for
all items. Hence, a PCA could be conducted. The sreeplot shows that
only one component with an eigenvalue higher than 1.0 could be ex-
tracted. The component matrix shows that all items have a very high cor-
relation with the extracted factor exp_qs.

C.1.4 Experience in Software Maintenance (exp_main)

The resulting disturbing factor exp_dev is composed of the items B8.1,
B8.2, B8.3, B8.4, B8.5, and B8.6 The resulting statistics are displayed in
the following figures and tables.

Table 90 KMO and Bartlett’s test for exp_main

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .884

Bartlett's Test of Sphericity Approx. Chi-Square 108.214
 df 15
 Sig. .000

Additional Statistics

 300

Table 91 Anti-image matrix for exp_main

M

ai
nt

ai
ni

ng
 a

 s
of

tw
ar

e
sy

st
em

?
(e

.g
.,

m
an

ag
in

g
de

fe
ct

s,
 a

pp
ly

in
g

ch
an

ge
s,

 e
tc

.)

Po
rt

in
g

a
so

ft
w

ar
e

sy
st

em
 t

o
an

ot
he

r
pl

at
fo

rm
?

(e
.g

.,
Ja

va
 1

.2
 t

o
5.

0,
 J

av
a

to
 C

#,
 e

tc
.)

Im
pr

ov
in

g
a

so
ft

w
ar

e
sy

st
em

 r
eg

ar
d-

in
g

ef
fic

ie
nc

y
(t

im
e

be
ha

vi
or

, r
e-

so
ur

ce
 b

eh
av

io
r)

?

Im
pr

ov
in

g
a

so
ft

w
ar

e
sy

st
em

 r
eg

ar
d-

in
g

re
lia

bi
lit

y?
 (i

.e
.,

"Z
uv

er
lä

ss
ig

-
ke

it"
)

Im
pr

ov
in

g
a

so
ft

w
ar

e
sy

st
em

 r
eg

ar
d-

in
g

us
ab

ili
ty

?

Im
pr

ov
in

g
a

so
ft

w
ar

e
sy

st
em

 r
eg

ar
d-

in
g

fu
nc

tio
na

lit
y

(s
ui

ta
bi

lit
y,

 in
te

ro
p-

er
ab

ili
ty

, s
ec

ur
ity

)?

Maintaining a software system? (e.g.,
managing defects, applying changes, etc.) .934(a) -.222 .128 -.229 -.257 -.143

Porting a software system to another
platform? (e.g., Java 1.2 to 5.0, Java to
C#, etc.)

-.222 .885(a) -.552 -.207 -.128 .096

Improving a software system regarding
efficiency (time behavior, resource behav-
ior)?

.128 -.552 .832(a) -.512 .165 -.132

Improving a software system regarding
reliability? (i.e., "Zuverlässigkeit") -.229 -.207 -.512 .888(a) -.268 -.030

Improving a software system regarding
usability? -.257 -.128 .165 -.268

.878(a
)

-.480

Improving a software system regarding
functionality (suitability, interoperability,
security)?

-.143 .096 -.132 -.030 -.480 .900(a)

(a) Measures of Sampling Adequacy(MSA)

Faktor
654321

Ei
ge

nw
er

t

5

4

3

2

1

0

Screeplot

Figure 59 Scree plot for for exp_main

Additional Statistics

 301

Table 92 Component matrix for exp_main

Component
 1

Maintaining a software system? (e.g., managing defects, applying
changes, etc.) .887

Porting a software system to another platform? (e.g., Java 1.2 to
5.0, Java to C#, etc.) .928

Improving a software system regarding efficiency (time behavior,
resource behavior)? .912

Improving a software system regarding reliability? (i.e., "Zuverläs-
sigkeit") .951

Improving a software system regarding usability? .894

Improving a software system regarding functionality (suitability,
interoperability, security)? .832

It can be seen that the KMO is 0.884 and that the Bartlett test is signifi-
cant (p=.00). In addition, the MSA coefficients are higher than 0.6 for all
items. Hence, a PCA could be conducted. The sreeplot shows that only
one component with an eigenvalue higher than 1.0 could be extracted.
The component matrix shows that all items have a very high correlation
with the extracted factor exp_main.

C.2. Item Analysis of the Post-Questionnaire

The post-test scores of the second day for all 19 subjects were used for
item analysis. As briefly explained in Section 7.3.2, three parameters
were calculated for each item of the questionnaire: difficulty index (p),
discrimination index (D), and discrimination coefficient (r). These criteria
play a role for item selection:

� Negative discrimination indices mean that low scorers perform better
than high scorers. These items are probably flawed and should there-
fore be removed.

� Item difficulty is used to discriminate between students who know
the topics and those who do not. Items with an average difficulty
around 0 are best for discrimination. However, extreme items with
item difficulties close to -1 or 1 should not be deleted by default,
since such items are necessary for building comprehensive tests.

� Discrimination coefficient or the point biserial correlation is a correla-
tion between the student’s performance on the item (right or wrong)
and the total test score. The advantage of this coefficient compared
to the discrimination index is that every student who took part in the
experiment is used to compute the discrimination coefficient,
whereas only 54% (27% upper and 27% lower group) are used to
calculate the discrimination indices. Items with a negative discrimina-
tion index often have a correlation close to zero or even negative.
Those items should be deleted.

Additional Statistics

 302

Another more implicit criterion was to keep items from each cognitive
process category (i.e., remember, understand, analyze, create) that were
of interest.

Item analysis is an iterative process where items are deleted one by one.
After each deletion, a new reliability analysis is performed. The item
analysis values give only a first hint about a necessary deletion. The fol-
lowing table shows the three values for each selected item.

Table 93 Item difficulty, discrimination index, and discrimination coefficient for selected items

Selected item
name

Item diffi-
culty (p)

Discrimination
index (D)

Discrimination
coefficient (r)

Standard
deviation

day2_Post1.1 94.7 0.2 0.202 0.23

day2_Post1.2 20.0 0.6 0.256 0.51

day2_Post1.3 100.0 0.0 0.00

day2_Post1.6 89.5 0.2 0.202 0.23

day2_Post2.2 57.9 0.4 0.179 0.42

day2_Post2.3 100.0 0.0 0.00

day2_Post2.5 -47.4 0.2 0.131 0.45

day2_Post2.6 68.4 0.4 0.558 0.37

day2_Post2.7 68.4 0.4 0.311 0.37

day2_Post2.8 -17.6 0.2 0.118 0.50

day2_Post3.1 -14.3 0.4 -0.020 0.48

day2_Post3.10 29.4 0.2 0.191 0.51

day2_Post3.2 100.0 0.0 0.320 0.00

day2_Post3.4 -29.4 0.4 0.211 0.48

day2_Post3.6 -17.6 0.8 0.463 0.50

day2_Post3.7 100.0 0.2 0.298 0.32

day2_Post3.8 25.0 0.4 0.344 0.51

day2_Post4.1 88.9 0.2 0.155 0.32

day2_Post4.2 -78.9 0.4 0.548 0.32

day2_Post4.4 77.8 0.0 0.036 0.37

day2_Post4.6 88.9 0.0 -0.007 0.32

day2_Post5.10 -100.0 0.0 0.202 0.23

day2_Post5.13 47.4 0.2 0.104 0.68

day2_Post5.14 60.0 0.6 0.282 0.70

day2_Post5.15 -33.3 0.4 0.211 0.78

day2_Post5.16 53.8 0.2 0.203 0.69

day2_Post5.6 71.4 0.2 0.202 0.23

day2_Post5.7 100.0 0.2 0.513 0.23

day2_Post5.8 -66.7 0.2 0.081 0.77

day2_Post5.9 -100.0 0.0 0.298 0.32

PostC2.2 -15.8 0.4 0.213 1.13

PostC2.3 -15.8 0.4 0.213 1.13

Additional Statistics

 303

Selected item
name

Item diffi-
culty (p)

Discrimination
index (D)

Discrimination
coefficient (r)

Standard
deviation

PostC2.4 -100.0 0.0 0.038 1.36

PostC2.5 -85.7 0.0 0.206 0.73

PostC2.6.1 33.3 0.0 -0.012 0.50

PostC2.6.2 22.2 0.2 0.102 0.51

PostC3.1 68.4 0.0 0.070 0.37

PostC3.2.1 33.3 0.4 -0.035 0.51

PostC3.2.2 88.2 0.4 0.381 0.37

PostC3.2.3 12.5 0.2 0.017 0.51

PostC3.2.4 75.0 0.2 0.062 0.45

PostC3.3 44.4 0.4 0.259 0.48

PostC3.5 88.2 0.4 0.329 0.37

PostC3.6 86.7 0.4 0.291 0.45

PostC3.7.1 57.1 0.4 0.346 0.51

PostC3.7.2 42.9 0.2 0.216 0.51

PostC4.1 78.9 0.2 0.257 0.32

PostC4.2.2 17.6 0.4 0.318 0.51

PostC4.2.3 22.2 0.2 0.026 0.51

PostC4.2.5 36.8 0.6 0.580 0.48

PostC4.3 33.3 0.4 0.435 0.50

PostC4.4 100.0 0.0 0.00

PostC4.6 -17.6 0.4 0.302 0.50

PostC4.7.1 -100.0 0.0 0.327 1.02

PostC4.7.2 -100.0 0.0 0.351 0.99

PostC5.2.3 57.1 0.6 0.140 0.51

PostC5.2.4 68.4 0.4 0.434 0.37

PostC5.2.5 15.8 0.2 0.001 0.51

PostC5.2.6 89.5 0.0 0.035 0.23

PostC5.3 33.3 0.2 0.078 0.50

PostC5.4 100.0 0.2 0.401 0.32

PostC5.5 78.9 0.2 0.175 0.32

PostC5.6 50.0 0.6 0.395 0.50

PostC5.7.1 29.4 0.2 0.392 0.83

PostC5.7.2 25.0 0.4 0.369 0.92

The next figure shows a scatter plot for item difficulty and discrimination
coefficient. The plot helps to easily identify items with a negative dis-
crimination coefficient and extreme item difficulties, i.e., close to -1 or 1.

Additional Statistics

 304

Item difficulty (all items)
100,050,00,0-50,0-100,0

D
is

cr
im

in
at

io
n

co
ef

fic
ie

nt
 (a

ll
ite

m
s)

0,600

0,400

0,200

0,000

-0,200

-0,400

PostC5.7.2

PostC5.7.1 PostC5.6

PostC5.5

PostC5.4

PostC5.3

PostC5.2.6
PostC5.2.5

PostC5.2.4

PostC5.2.3

PostC5.2.2

PostC5.2.1

PostC5.1

PostC4.7.2

PostC4.7.1 PostC4.6

PostC4.5

PostC4.3

PostC4.2.5

PostC4.2.4

PostC4.2.3

PostC4.2.2

PostC4.2.1

PostC4.1

PostC3.7.2

PostC3.7.1

PostC3.6

PostC3.5

PostC3.4

PostC3.3

PostC3.2.5

Pos tC3.2.4

PostC3.2.3

PostC3.2.2

PostC3.2.1

PostC2.6.2

PostC2.6.1

Pos tC2.5

PostC2.4

PostC2.3PostC2.2

Pos tC2.1

day2_Post5.16
day2_Post5.15

day2_Post5.14

day2_Post5.13

day2_Post5.12

day2_Post5.11

day2_Post5.10

day2_Post5.9

day2_Post5.8

day2_Post5.7

day2_Post5.5

day2_Post5.4

day2_Post5.3

day2_Post5.2

day2_Post5.1

day2_Post4.7

day2_Post4.6
day2_Post4.5

day2_Post4.4day2_Post4.3

day2_Post4.2

day2_Post4.1
day2_Post3.10

day2_Post3.9

day2_Post3.8
day2_Post3.7

day2_Post3.6

day2_Post3.4

day2_Post3.3

day2_Post3.2

day2_Post3.1

day2_Post2.10

day2_Post2.9

day2_Post2.8

day2_Post2.7

day2_Post2.6

day2_Post2.5

day2_Post2.4

day2_Post2.2

day2_Post2.1

day2_Post1.6

day2_Post1.5

day2_Post1.4

day2_Pos t1.2

day2_Post1.1

Figure 60 Scatter plot for discrimination index and item difficulty

The next table shows the item analysis values for the deleted items, i.e.,
those items that were not used for the calculation of the knowledge ac-
quisition variable.

Table 94 Item difficulty, discrimination index, and discrimination coefficient for deleted items

Deleted item
name

Item diffi-
culty (p)

Discrimination
index (D)

Discrimination
coefficient (r)

Standard
deviation

day2_Post1.4 89.5 0.0 -0.186 0.23

day2_Post1.5 88.9 0.0 -0.068 0.32

day2_Post2.1 76.5 0.0 -0.125 0.42

day2_Post2.10 47.4 -0.4 -0.340 0.45

day2_Post2.4 89.5 0.0 -0.020 0.23

day2_Post2.9 -15.8 -0.2 -0.091 0.51

day2_Post3.3 64.7 -0.4 -0.093 0.45

day2_Post3.5 14.3 0.0 -0.004 0.51

day2_Post3.9 25.0 -0.2 -0.072 0.51

day2_Post4.3 50.0 -0.2 0.014 0.50

day2_Post4.5 -17.6 0.2 0.014 0.50

day2_Post4.7 89.5 0.0 -0.186 0.23

day2_Post5.1 -100.0 0.0 0.202 0.23

day2_Post5.11 -53.8 0.0 -0.301 0.61

day2_Post5.12 50.0 0.2 -0.088 0.32

day2_Post5.2 -100.0 0.0 -0.376 0.50

Additional Statistics

 305

Deleted item
name

Item diffi-
culty (p)

Discrimination
index (D)

Discrimination
coefficient (r)

Standard
deviation

day2_Post5.4 -100.0 0.0 -0.007 0.56

day2_Post5.5 -15.8 0.4 0.026 0.51

PostC2.1 77.8 -0.2 -0.167 0.37

PostC3.2.5 -14.3 -0.2 -0.111 0.48

PostC3.4 89.5 0.0 -0.186 0.23

PostC4.2.1 12.5 0.0 -0.082 0.51

PostC4.2.4 37.5 -0.2 -0.295 0.51

PostC4.5 15.8 0.4 0.031 1.03

PostC5.1 57.9 0.0 -0.125 0.42

PostC5.2.1 26.3 -0.2 -0.277 0.50

PostC5.2.2 15.8 -0.2 -0.049 0.51

It seems that most of the deleted items possess extreme item difficulties
(those close to -100 are very difficult and those close to +100 are very
easy), negative or zero discrimination indices, and negative or very low
discrimination coefficients. The next figure shows the scatterplot of the
remaining items.

Item difficulty (remaining items)
100,050,00,0-50,0-100,0

D
is

cr
im

in
at

io
n

co
ef

fic
ie

nt
 (r

em
ai

ni
ng

 it
em

s)

0,600

0,500

0,400

0,300

0,200

0,100

0,000

-0,100

PostC5.7.2
PostC5.7.1 PostC5.6

PostC5.5

PostC5.4

PostC5.3
Pos tC5.2.6

PostC5.2.5

PostC5.2.4

PostC5.2.3

PostC4.7.2

PostC4.7.1 PostC4.6

PostC4.3

PostC4.2.5

PostC4.2.3

PostC4.2.2

PostC4.1
PostC3.7.2

PostC3.7.1

PostC3.6

PostC3.5

PostC3.3

PostC3.2.4

PostC3.2.3

PostC3.2.2

PostC3.2.1

PostC3.1

PostC2.6.2

PostC2.6.1

PostC2.5

PostC2.4

PostC2.3PostC2.2 day2_Post5.16

day2_Post5.15

day2_Post5.14

day2_Pos t5.13

day2_Post5.10

day2_Post5.9

day2_Post5.8

day2_Post5.7

day2_Post5.6

day2_Post4.6day2_Post4.4

day2_Post4.2

day2_Post4.1

day2_Post3.10

day2_Post3.8
day2_Post3.7

day2_Post3.6

day2_Post3.4

day2_Post3.1

day2_Post2.8

day2_Post2.7

day2_Post2.6

day2_Post2.5 day2_Post2.2
day2_Post1.6

day2_Post1.2

day2_Post1.1

Figure 61 Scatter plot for discrimination coefficient and item difficulty of remaining items

The plot shows that almost two thirds of the items tend to be easier,
which means that the students were able to answer most of the ques-
tions correctly after two days of experimentation. Nevertheless, some
items were solved only by a few students or were answered wrongly

Additional Statistics

 306

many times (which leads to negative item difficulties). There are still a
few items with a negative discrimination coefficient. By checking these
items based on the scores of the first day, it seems that these items are
still suitable for the questionnaire and necessary to balance the ques-
tionnaire in terms of cognitive process dimensions.

C.3. Outlier Analysis

The following outliers were detected:

Disturbing factor experience refactoring (exp_ref): One outlier (z-value of
2.18) was detected (value=4.75; mean=2.07), which corresponds to a
very low level of experience in refactoring. However, this value was kept
because the subject also had lower ratings for the other experience
levels.

U
nd

er
st

an
di

ng
 c

or
re

ct
ne

ss
 o

f D
ay

 2

50,00

40,00

30,00

20,00
9

group: experiment

ucorr (experimental group,
day2): One outlier was identified
(z-value=-2.01, mean=37.88,
value=21), which was very low
understanding correctness com-
pared to the other subjects in
the group. The reason was not a
lack of time for answering the
questions, because the subject
did not choose this in the de-
briefing questionnaire. There-
fore, the deviation could not be
explained. It was decided to
omit the data from further
analysis. The following figure
shows the boxplot

Figure 62 Box-and-whisker plot for ucorr (experimental group, day 2)

Additional Statistics

 307

K
no

w
le

dg
e

A
cq

u
is

iti
o

n
D

iff
er

en
ce

 o
f D

ay
 2

 (r
em

em
be

r)

8

6

4

2

0 8

group: experiment

know_diff_remember (experi-
mental group, day2): One outlier
was identified (z-value=1.71,
mean=4.56, value=0), which
was a rather low score differ-
ence compared to the other
subjects in the group. It was
decided to omit the data from
further analysis. The following
figure shows the boxplot

Figure 63 Box-and-whisker plot for know_diff_remember (experimental group, day 2)

K
no

w
le

dg
e

A
cq

u
is

iti
on

 D
iff

er
en

ce
 o

f D
ay

 2
 (r

em
em

be
r)

5

4

3

2

1

0

-1

19

12

group: control

know_diff_remember (control
group, day2): Two outliers were
identified (1: z-value=-1.72,
mean=1.70, value=-1; 2: z-
value=2.10, mean=1.70,
value=5), which was a low, re-
spectively high, score difference
compared to the other subjects
in the group. It was decided to
omit the data from further
analysis. The following figure
shows the boxplot

Figure 64 Box-and-whisker plot for know_diff_remember (control group, day 2)

Additional Statistics

 308

K
no

w
le

dg
e

A
cq

ui
si

tio
n

of
 D

ay
 2

 (
ap

p
ly

) 15,00

12,50

10,00

7,50

5,00

2,50

10
group: control

know_diff_apply (control group,
day2): One outlier was identified
(z-value=, mean=1.70,
value=16), which was a very
high score difference compared
to the other subjects in the
group. It was decided to omit
the data from further analysis.
The following figure shows the
boxplot

Figure 65 Box-and-whisker plot for know_diff_remember (control group, day 2)

4

3

2

1

0

9

group: experimental group

know_diff_create (experimental
group, day1): One outlier was
identified (z-value=2.42,
mean=1.10, value=4), which is
an extreme outlier. The values
were checked again and were
correct. The subject performed
very well in this category of
questions. The values were
changed or omitted for further
analysis because this subject also
got the highest score during the
second period in the control
group.

Figure 66 Box-and-whisker plot for know_diff_create (control group, day 1)

Additional Statistics

 309

K
n

ow
le

d
ge

 A
cq

ui
si

tio
n

D
iff

er
en

ce
 o

f
D

ay
 2

 (c
re

at
e) 2

1

0

-1

-2
16

group: control

know_diff_create (control
group, day2): One outlier was
identified (z-value=-193,
mean=0.20, value=-2), which
was a very low score difference
compared to the other subjects
in the group. It was decided to
omit the data from further
analysis. The following figure
shows the boxplot

Figure 67 Box-and-whisker plot for know_diff_create (control group, day 2)

A
pp

lic
at

io
n

Ef
fic

ie
nc

y
of

 D
ay

 1

2,000

1,500

1,000

0,500

0,000

3

group: experimental group

aeff (experimental group, day1):
One outlier was identified (z-
value=2.42, mean=0.55,
value=1.52), which was very
high efficiency compared to the
other subjects in the group. The
reason for this high value was
the very high efficiency of the
second assignment where the
subject performed all refactor-
ings correctly within a very short
period of time (i.e., 5 minutes)
compared to the other subjects.
It was decided to omit the data
from further analysis. The fol-
lowing figure shows the boxplot

Figure 68 Box-and-whisker plot for aeff (experimental group, day 1)

Additional Statistics

 310

A
p

pl
ic

at
io

n
 C

om
pl

et
en

es
s

of
 D

ay
 2 0,600

0,400

0,200

0,000

10

group: control acomp (control group, day2):
One outlier was identified (z-
value=1.94, mean=0.32,
value=0.67), which was a very
high score difference compared
to the other subjects in the
group. It was decided to omit
the data from further analysis.
The following figure shows the
boxplot

Figure 69 Box-and-whisker plot for acomp (control group, day 2)

In
fo

rm
at

io
n

Q
ua

lit
y

Ex
pe

rie
nc

e
Pa

ck
ag

e

7,00

6,00

5,00

4,00

3,00

2,00

4

inf_qua (both groups, experi-
ence package, debriefing ques-
tionnaire): One outlier was iden-
tified (z-value=-1.728,
mean=4.42, value=2.60) which
was a very low score difference
compared to the other subjects
in the group. However, since the
z-value is still acceptable and the
outlier was not an extreme one,
it was decided not to omit the
value. The following figure
shows the boxplot

Figure 70 Box-and-whisker plot for (both groups, experience package, debriefing questionnaire)

No outliers were identified for the other data sets. All further analysis
steps were done without the previously identified outliers.

Additional Statistics

 311

C.4. Test for Normality

The simplest method for assessing normality is to look at the frequency
distribution histogram, boxplot, or stem-and-leaf plot. The most impor-
tant things to look at are the symmetry and peakiness of the curves. In
addition, curves that indicate two or more peaks would show a bimodal
distribution and are not suitable for parametric statistics. Frequency dis-
tribution histograms must only be used as an indication of the distribu-
tion, and subsequently, better methods must be used. Values of skew-
ness and kurtosis are good indicators, but can be overly optimistic re-
garding the data's match with normality. Graphical methods are intuitive
and easy to interpret, while numerical methods provide more objective
ways of examining normality. Therefore, numerical methods for normal-
ity (and homogeneity of variance) should always be carried out as a best
practice in statistics. In this work, the SPSS Shapiro-Wilk test (Shapiro &
Wilk, 1965) was used, which is more reliable when n<50 is applied to all
measures. The outcome of the Kolmogorov-Smirnov test, which is the
principal goodness-of-fit test for normal and uniform data sets should be
used with care, since this test is not very suitable for small samples, in
the case of this experiment.

Both of the above tests use the same hypotheses:

H0: There is no difference between the distribution of the data set
and a normal one.
H1: There is a difference between the distribution of the data set
and a normal one.

In addition, theory driven plots (i.e., Q-Q plots) were used for testing
normality in those cases where H0 could not be rejected at a significance
level lower than 0.05. The quantile-quantile plot (Q-Q plot) compares
ordered values of a variable with quantiles of a specific theoretical distri-
bution (i.e., the normal distribution). If two distributions match, the
points on the plot will form a linear pattern passing through the origin
with a unit slope. Detrended normal Q-Q plots depict the actual devia-
tions of data points from the straight horizontal line at zero. No specific
pattern in a detrended plot indicates normality of the variable.

Deviations from the normality distribution function can be easily de-
tected since detrended normal Q-Q and Q-Q plots depict the actual de-
viations of data points from the straight horizontal line at zero.

C.4.1 Disturbing Factors

The following table shows the outcome of the Shapiro Wilk test and the
Kolmogorov-Smirnov test.

Additional Statistics

 312

Table 95 Test for normality for experience level variables

Kolmogorov-Smirnov(a) Shapiro-Wilk
 Disturb-
ing Fac-
tors Statistic df Sig. Statistic df Sig.

Software Development Experience exp_dev .172 19 .172 .932 19 .191
Java Experience exp_jp .164 19 .195 .948 19 .360
Refactoring experience exp_ref .210 19 .027 .819 19 .002
SQA experience exp_sqa .170. 19 0.150 .933 19 .195
Software maintenance experience exp_main .150 19 .200 .891 19 .034
Time need tn .326 19 .000 .768 19 .000
Information quality of learning
space

inf_qua
(LSEP)

.132 19 .200(*) .982 19 .963

Information quality of experience
package

inf_qua
(EP)

.134 19 .200(*) .955 19 .480

Pre-test score pre-test ,118 19 ,200(*) ,946 19 ,339

* This is a lower bound of the true significance.

It can be seen that the disturbing factors exp_ref and exp_main have a
higher significance level of 0.05, which means that it can be assumed
that these factors are not normally distributed.

The following figures show the histogram, boxplot, and Q-Q-plot for the
disturbing factors.

C.4.1.1 Experience in Refactoring (exp_ref).

Observed Value
543210

Ex
pe

ct
ed

 N
o

rm
al

2,0

1,5

1,0

0,5

0,0

-0,5

-1,0

Normal Q-Q Plot of Refactoring experience

Figure 71 Q-Q-Plot for refactoring experience (exp_ref)

Additional Statistics

 313

Observed Value
54321

D
ev

 f
ro

m
 N

or
m

al

0,6

0,4

0,2

0,0

-0,2

-0,4

Detrended Normal Q-Q Plot of Refactoring experience

Figure 72 Detrended Q-Q-Plot for refactoring experience (exp_ref)

The Q-Q plot shows for every data set a high deviation from normality.
In addition, the detrended normal Q-Q plot also shows higher deviations
from normal and a pattern could be detected in the lower range of the
observed value. Therefore, exp_ref cannot be considered as a normally
distributed variable. The reason for this is depicted in the histogram and
the boxplot shows on the one side a high skewness of 1.11 (a situation's
asymmetry in relation to a normal distribution) and that most of the sub-
jects had almost no experience in refactoring.

Refactoring experience

5

4

3

2

1

11

Refactoring experience
5,004,003,002,001,00

Fr
eq

ue
nc

y

6

4

2

0

Histogram

Mean =2,08�
Std. Dev. =1,222�

N =19

Figure 73 Histogram and boxplot for refactoring experience (exp_ref)

Additional Statistics

 314

C.4.1.2 Experience in Maintenance (exp_main).

Observed Value
6543210

E
xp

ec
te

d
N

or
m

al

2

1

0

-1

Normal Q-Q Plot of Software maintenance experience

Figure 74 Q-Q plot for refactoring experience (exp_main)

The Q-Q plot shows for all data sets a deviation from normality. In addi-
tion, the detrended normal Q-Q plot also shows deviations from a nor-
mal distribution and two data clusters/patterns could be detected in the
lower and higher range of the observed values. Therefore, exp_ref can-
not be considered as a normally distributed variable. The reason for this
is depicted in the histogram and the boxplot shows on the one side a
high skewness of 0.75 and that most of the subjects had almost no ex-
perience in software maintenance. Hence, for the disturbing factors
exp_ref and exp_main, parametric methods cannot be used or should be
used only carefully and only when a non-parametric method is used in
addition for checking the outcome of the parametric one.

Observed Value
654321

D
ev

 fr
om

 N
or

m
al

0,6

0,4

0,2

0,0

-0,2

-0,4

Detrended Normal Q-Q Plot of Software maintenance experience

Figure 75 Detrended Q-Q plot for refactoring experience (exp_main)

Additional Statistics

 315

Software maintenance experience

6

5

4

3

2

1

Software maintenance experience
6,005,004,003,002,001,00

Fr
eq

ue
nc

y

8

6

4

2

0

Histogram

Mean =2,61�
Std. Dev. =1,558�

N =19

Figure 76 Histogram and boxplot for refactoring experience (exp_main)

C.4.1.3 Time Need (tn)

Observed Value
0,60,50,40,30,20,10,0

Ex
pe

ct
ed

 N
or

m
al

1,5

1,0

0,5

0,0

-0,5

-1,0

Normal Q-Q Plot of Time Need

Figure 77 Q-Q plot for time need (tn)

Additional Statistics

 316

Observed Value
0,60,50,40,30,20,10,0

D
ev

 fr
om

 N
or

m
al

0,4

0,2

0,0

-0,2

Detrended Normal Q-Q Plot of Time Need

Figure 78 Detrended Q-Q plot for time need (tn)

Only four different values were available for the control group during the
first day, which makes it impossible to detect a pattern/data cluster in
the detrended Q-Q plot. The Q-Q plot shows a strong deviation from
normality for two values. In fact, know_diff_create cannot be considered
as a normally distributed variable. The reason for this is depicted in the
histogram and boxplot. The histogram shows on the one side a medium
skewness of 0.63 (a situation's asymmetry in relation to a normal distri-
bution) and that most of the subjects had no lack of time for reading the
information, solving the assignments, and getting familiar with the Wiki
and the learning space.

Time Need

0,60

0,50

0,40

0,30

0,20

0,10

0,00

Time Need
0,800,600,400,200,00-0,20

Fr
eq

ue
nc

y

10

8

6

4

2

0

Histogram

Mean =0,19�
Std. Dev. =0,226�

N =19

Figure 79 Histogram and boxplot time need (tn)

Additional Statistics

 317

C.4.2 Dependent Variables (for both groups and both periods)

The following table shows the outcome of the Shapiro-Wilk test and the
Kolmogorov-Smirnov test for the experimental and control groups for
both days separately. The outliers were removed from the data sets be-
fore the normality test was performed.

Table 96 Test for normality for dependent variables (experimental group)

Kolmogorov-Smirnov(a) Shapiro-Wilk
Dependent
Variables Statistic df Sig. Statistic df Sig.

Understanding correctness of Day 1 ucorr .113 10 .200(*) .962 10 .803
Understanding correctness of Day 2 ucorr .180 8 .200(*) .896 8 .267
Knowledge Acquisition Difference of
Day 1

know_diff
.143 10 .200(*) .937 10 .519

Knowledge Acquisition Difference of
Day 2

know_diff
.223 9 .200(*) .861 9 .097

Knowledge Acquisition Difference of
Day 1 (remember)

know_diff_r
emember

.209 10 .200(*) .899 10 .213

Kolmogorov-Smirnov(a) Shapiro-Wilk
Dependent
Variables Statistic df Sig. Statistic df Sig.

Knowledge Acquisition Difference of
Day 2 (remember)

know_diff_r
emember

.177 8 .200(*) .951 8 .720

Knowledge Acquisition Difference of
Day 1 (understand)

know_diff_
understand

.242 10 .102 .928 10 .429

Knowledge Acquisition Difference of
Day 2 (understand)

know_diff_
understand

.186 9 .200(*) .933 9 .514

Knowledge Acquisition of Day 1
(apply)

know_diff_
apply

.155 10 .200(*) .943 10 .587

Knowledge Acquisition of Day 2
(apply)

know_diff_
apply

.216 9 .200(*) .886 9 .183

Knowledge Acquisition Difference of
Day 1 (analyze)

know_diff_
analyze

.280 10 .025 .805 10 .017

Knowledge Acquisition Difference of
Day 2 (analyze)

know_diff_
analyze

.284 9 .035 .908 9 .303

Knowledge Acquisition Difference of
Day 1 (create)

know_diff_
create

.333 10 .002 .778 10 .008

Knowledge Acquisition Difference of
Day 2 (create)

know_diff_
create

.269 9 .059 .808 9 .025

Application Efficiency of Day 1
(based on score of marks and refac-
toring)

aeff
.177 9 .200(*) .960 9 .803

Application Efficiency of Day 2
(based on score of marks and refac-
toring)

aeff
.134 9 .200(*) .936 9 .537

Application Completeness of Day 1
(based on score of marks and refac-
toring)

acomp
.155 10 .200(*) .943 10 .587

Application Completeness of Day 2
(based on score of marks and refac-
toring)

acomp
.216 9 .200(*) .886 9 .183

Application Accuracy of Day 1 aaccu .137 10 .200(*) .976 10 .943

Additional Statistics

 318

Kolmogorov-Smirnov(a) Shapiro-Wilk
Dependent
Variables Statistic df Sig. Statistic df Sig.

Application Accuracy of Day 2 aaccu .145 9 .200(*) .945 9 .638
Information quality of learning space inf_qua

(LSEP)
,132 19 ,200(*) ,982 19 ,963

Information quality of experience
package

inf_qua (EP)
,134 19 ,200(*) ,955 19 ,480

* This is a lower bound of the true significance. a Lilliefors Significance Correction

Table 97 Test for normality for dependent variables (control group)

Kolmogorov-Smirnov(a) Shapiro-Wilk
Dependent
Variables Statistic df Sig.

Sta-
tistic df Sig.

Understanding correctness of Day 1 ucorr .204 9 .200(*) .932 9 .497
Understanding correctness of Day 2 ucorr .185 10 .200(*) .913 10 .299
Knowledge Acquisition Difference of
Day 1

know_diff
.171 9 .200(*) .896 9 .228

Knowledge Acquisition Difference of
Day 2

know_diff
.222 10 .178 .905 10 .249

Knowledge Acquisition Difference of
Day 1 (remember)

know_diff_re
member

.259 9 .083 .844 9 .065

Knowledge Acquisition Difference of
Day 2 (remember)

know_diff_re
member

.300 8 .033 .798 8 .027

Knowledge Acquisition Difference of
Day 1 (understand)

know_diff_u
nderstand

.176 9 .200(*) .927 9 .452

Knowledge Acquisition Difference of
Day 2 (understand)

know_diff_u
nderstand

.160 10 .200(*) .973 10 .914

Knowledge Acquisition of Day 1
(apply)

know_diff_a
pply

.171 9 .200(*) .952 9 .714

Kolmogorov-Smirnov(a) Shapiro-Wilk
 Dependent
Variables Statistic df Sig.

Sta-
tistic df Sig.

Knowledge Acquisition of Day 2
(apply)

know_diff_a
pply

.170 9 .200(*) .962 9 .822

Knowledge Acquisition Difference of
Day 1 (analyze)

know_diff_a
nalyze

.160 9 .200(*) .945 9 .639

Knowledge Acquisition Difference of
Day 2 (analyze)

know_diff_a
nalyze

.297 10 .013 .868 10 .095

Knowledge Acquisition Difference of
Day 1 (create)

know_diff_cr
eate

.272 9 .054 .805 9 .024

Knowledge Acquisition Difference of
Day 2 (create)

know_diff_cr
eate

.248 9 .116 .913 9 .338

Application Efficiency of Day 1
(based on score of marks and refac-
toring)

aeff
.143 9 .200(*) .946 9 .646

Application Efficiency of Day 2
(based on score of marks and refac-
toring)

aeff
.186 10 .200(*) .929 10 .434

Application Completeness of Day 1
(based on score of marks and refac-
toring)

acomp
.171 9 .200(*) .952 9 .714

Application Completeness of Day 2
(based on score of marks and refac-
toring)

acomp
.170 9 .200(*) .962 9 .822

Additional Statistics

 319

Application Accuracy of Day 1 aaccu .137 9 .200(*) .983 9 .980
Application Accuracy of Day 2 aaccu .162 10 .200(*) .969 10 .879

* This is a lower bound of the true significance. a Lilliefors Significance Correction

It can be seen that for several dependent variables (in bold-italic type),
the p-value of the Shapiro-Wilk test is not higher than 0.05, which
means that it can be assumed that these factors are not normally distrib-
uted. The following figures show the histograms, boxplots, and (de-
trended) Q-Q plots for these dependent variables for further analysis of
the deviations from a normal distribution.

Table 98 Test for normality for dependent variables informatin quality

Kolmogorov-Smirnov(a) Shapiro-Wilk
 Dependent
Variables Statistic df Sig. Statistic df Sig.

Information quality of learning
space

inf_qua (LSEP)
.132 19 .200(*) .982 19 .963

Information quality of experi-
ence package

inf_qua (EP)
.134 19 .200(*) .955 19 .480

* This is a lower bound of the true significance. a Lilliefors Significance Correction

C.4.2.1 Knowledge Acquisition Difference Remember Control Day 2
(know_diff_remember)

Only three different values where available for the control group during
the first day, which makes it impossible to detect for example a pat-
tern/data cluster in the detrended Q-Q-Plot. The Q-Q plot shows a strong
deviation from normality for two values. In fact, know_diff_remember
cannot be considered as a normal distributed variable for the data set
control group/Day 2. The reason for this is depicted in the histogram and
boxplot, which show on the one side a skewness of 0.824 and that most
of the subjects perform bad for the cognitive process level remember.

Observed Value
3,02,52,01,51,0

Ex
pe

ct
ed

 N
or

m
al

1,5

1,0

0,5

0,0

-0,5

-1,0

Normal Q-Q Plot of Knowledge Acquisition Difference of Day 2 (remember)

group= control

Figure 80 Q-Q plot for knowledge acquisition difference remember day 2 control group

(know_diff_remember)

Additional Statistics

 320

Observed Value
3,02,52,01,51,0

D
ev

 f
ro

m
 N

or
m

al

0,75

0,50

0,25

0,00

-0,25

Detrended Normal Q-Q Plot of Knowledge Acquisition Difference of Day 2
(remember)

group= control

Figure 81 Detrended Q-Q plot for knowledge acquisition difference remember day 2 control

(know_diff_ remember)

Knowledge Acquisition Difference of Day 2 (remember)

3

2,5

2

1,5

1

group: control

Knowledge Acquisition Difference of Day 2 (remember)
3,532,521,510,5

Fr
eq

ue
nc

y

4

3

2

1

0

Histogram

group= control

Mean =1,62�
Std. Dev. =0,744

N =8

Figure 82 Histogram and boxplot for knowledge acquisition difference remember day 2 control

(know_diff_ remember)

C.4.2.2 Knowledge Acquisition Difference Create Experimental Day 1
(know_diff_create)

The Q-Q plot shows for the data set a deviation from normality, at least
for the value 4. As for the know_diff_analyze variable no cluster/pattern
can be detected in the detrended normal Q-Q plot. Nevertheless, the Q-
Q plot confirms that the deviations are to large to consider this data set
as normally distributed. The reason for this is depicted in the histogram
and the boxplot, which shows on the one side a very high skewness of

Additional Statistics

 321

1.709 and that most of the subjects almost performed badly on average
for this cognitive process level.

Observed Value
43210

Ex
pe

ct
ed

 N
or

m
al

1,5

1,0

0,5

0,0

-0,5

-1,0

Normal Q-Q Plot of Knowledge Acquisition Difference of Day 1 (create)

group= experimental group

Figure 83 Q-Q plot for knowledge acquisition difference create day 1 experimental group

(know_diff_create)

Observed Value
43210

D
ev

 f
ro

m
 N

or
m

al

1,2

1,0

0,8

0,6

0,4

0,2

0,0

-0,2

Detrended Normal Q-Q Plot of Knowledge Acquisition Difference of Day 1
(create)

group= experimental group

Figure 84 Detrended Q-Q plot for knowledge acquisition difference create day 1 experimental

(know_diff_create)

Additional Statistics

 322

Knowledge Acquisition Difference of Day 1 (create)

4

3

2

1

0

9

group: experimental group

Knowledge Acquisition Difference of Day 1 (create)
543210-1

Fr
eq

ue
nc

y

5

4

3

2

1

0

Knowledge Acquisition Difference of Day 1 (create)

group: experimental group

Mean =1,1�
Std. Dev. =1,197�

N =10

Figure 85 Histogram and boxplot for knowledge acquisition difference create day 1 experimental

group (know_diff_create)

C.4.2.3 Knowledge Acquisition Difference Create Experimental Day 2

Only three different values were available for the experiment group dur-
ing the second day, which makes it impossible to detect a pattern/data
cluster in the detrended Q-Q-Plot. The Q-Q plot shows a strong deviation
from normality for two values. In fact, know_diff_create cannot be con-
sidered as a normally distributed variable for the data set experimental
group/Day 2. The reason for this is depicted in the histogram and box-
plot, which show on the one side a skewness of 0.717 and a large devia-
tion from the calculated normal curve.

Observed Value
2,01,51,00,50,0

Ex
pe

ct
ed

 N
or

m
al

0,5

0,0

-0,5

-1,0

Normal Q-Q Plot of Knowledge Acquisition Difference of Day 2 (create)

group= experiment

Figure 86 Q-Q plot for knowledge acquisition difference create day 2 experimental group

(know_diff_create)

Additional Statistics

 323

Observed Value
2,01,51,00,50,0

D
ev

 fr
om

 N
or

m
al

0,2

0,0

-0,2

-0,4

Detrended Normal Q-Q Plot of Knowledge Acquisition Difference of Day 2
(create)

group= experiment

Figure 87 Detrended Q-Q plot for knowledge acquisition difference create day 2 experimental

(know_diff_create)

Knowledge Acquisition Difference of Day 2 (create)

2,0

1,5

1,0

0,5

0,0

group: experiment

Knowledge Acquisition Difference of Day 2 (create)
2,521,510,50-0,5

Fr
eq

ue
nc

y

5

4

3

2

1

0

Knowledge Acquisition Difference of Day 2 (create)

group: experiment

Mean =1,22�
Std. Dev. =0,833�

N =9

Figure 88 Histogram and boxplot for knowledge acquisition difference create day 2 experimental

group (know_diff_create)

C.4.2.4 Knowledge Acquisition Difference Analyze (know_diff_analyze)

The Q-Q plot shows for the data set a high deviation from normality. In
addition, the detrended normal Q-Q plot also shows higher deviations
from normal and a linear pattern could be detected. Therefore,
know_diff_analyze cannot be considered as a normally distributed vari-
able. This is confirmed by the histogram and boxplot, which show on the
one side a high skewness of -1.044 (i.e., a situation's asymmetry in rela-

Additional Statistics

 324

tion to a normal distribution) and a large deviation from the calculated
normal curve.

Observed Value
7,55,02,50,0-2,5

Ex
pe

ct
ed

 N
or

m
al

1,0

0,5

0,0

-0,5

-1,0

-1,5

Normal Q-Q Plot of Knowledge Acquisition Difference of Day 1 (analyze)

group= experimental group

Figure 89 Q-Q plot for knowledge acquisition difference analyze day 1 experimental group

(know_diff_create)

Observed Value
7,55,02,50,0-2,5

D
ev

 f
ro

m
 N

or
m

al

0,25

0,00

-0,25

-0,50

-0,75

Detrended Normal Q-Q Plot of Knowledge Acquisition Difference of Day 1
(analyze)

group= experimental group

Figure 90 Detrended Q-Q plot for knowledge acquisition difference analyze day 1 experimental

(know_diff_create)

Additional Statistics

 325

Knowledge Acquisition Difference of Day 1 (analyze)

7,5

5,0

2,5

0,0

-2,5

group: experimental group

Knowledge Acquisition Difference of Day 1 (analyze)
7,552,50-2,5

Fr
eq

ue
nc

y

6

5

4

3

2

1

0

Knowledge Acquisition Difference of Day 1 (analyze)

group: experimental group

Mean =4,9�
Std. Dev. =4,012�

N =10

Figure 91 Histogram and boxplot for knowledge acquisition difference analyze day 1 experimental

group (know_diff_create)

Hence, for the dependent variables analyzed in Section C.4.1.3, no pa-
rametric methods can be used or should be used only carefully and only
when a non-parametric method is used in addition for checking the out-
come of the parametric test.

C.4.3 Dependent Variables (based on period differences)

The following table shows the outcome of the Shapiro-Wilk test and the
Kolmogorov-Smirnov test for period differences. A normal distribution is
a prerequisite for applying dependent sample hypothesis tests. The out-
liers were removed from the data sets before the normality test was per-
formed.

Table 99 Test for normality for dependent variables (based on period differences)

Kolmogorov-Smirnov(a) Shapiro-Wilk
 Dependent
Variables Statistic df Sig. Statistic df Sig.

Understanding correctness ucorr

.188 18 .093 .879 18 .025

Knowledge Acquisition Differ-
ence

know_diff

.136 19 .200(*) .953 19 .446

Additional Statistics

 326

Kolmogorov-Smirnov(a) Shapiro-Wilk
 Dependent
Variables Statistic df Sig. Statistic df Sig.

Knowledge Acquisition Differ-
ence (remember)

know_diff_re
member .125 16 .200(*) .969 16 .823

Knowledge Acquisition Differ-
ence (understand)

know_diff_u
nderstand .196 19 .053 .897 19 .043

Knowledge Acquisition (apply) know_diff_a
pply .109 18 .200(*) .966 18 .718

Knowledge Acquisition Differ-
ence (analyze)

know_diff_a
nalyze .099 19 .200(*) .950 19 .396

Knowledge Acquisition Differ-
ence (create)

know_diff_cr
eate .223 18 .018 .867 18 .016

Application Efficiency (based on
score of marks and refactoring)

aeff

.137 18 .200(*) .986 18 .991

Application Completeness based
on score of marks and refactor-
ing)

acomp

.109 18 .200(*) .966 18 .718

Application Accuracy aaccu

.126 19 .200(*) .977 19 .909

* This is a lower bound of the true significance. a Lilliefors Significance Correction

It can be seen that for the dependent variables ucorr,
know_diff_understand, and know_diff_create, the p-value of the
Shapiro-Wilk test is not higher than 0.05, which means that it can be as-
sumed that these factors are not normally distributed. The following fig-
ures show the histograms, boxplots, and (detrended) Q-Q plots for these
dependent variables to further analysis of further the deviations from a
normal distribution.

The chart will show some outliers based on their values for the period
differences. Outliers were already considered based on the data of the
two groups and the two periods. Therefore, no additional outlier analysis
was performed for the period differences.

C.4.3.1 Understanding Correctness (ucorr)

The Q-Q plot shows a deviation from normality for several values and the
outlier value in particular. A pattern/data cluster in the detrended Q-Q
plot could be detected as well, which confirms the deviation from a

Additional Statistics

 327

normally distribution. In fact, ucorr cannot be considered as a normal
distributed variable. The reason for this is depicted in the histogram and
boxplot, which show on the one side a skewness of 1.508 and the out-
lier value. Hence, a parametric dependent sample test should be per-
formed with care and only in combination with a non-parametric test.

Observed Value
2520151050-5

E
xp

ec
te

d
N

o
rm

al
2

1

0

-1

-2

Normal Q-Q Plot of ucorr (based on period differences)

Figure 92 Q-Q plot for ucorr (based on period differences)

Observed Value
2520151050-5

D
ev

 fr
om

 N
or

m
al

1,5

1,0

0,5

0,0

-0,5

Detrended Normal Q-Q Plot of ucorr (based on period differences)

Figure 93 Detrended Q-Q lot for ucorr (based on period differences)

Additional Statistics

 328

ucorr (based on period differences)

25,00

20,00

15,00

10,00

5,00

0,00

-5,00

13

ucorr (based on period differences)
25,0020,0015,0010,005,000,00-5,00

Fr
eq

ue
nc

y

8

6

4

2

0

Histogram

Mean =5,44�
Std. Dev. =6,419�

N =18

Figure 94 Histogram and boxplot for ucorr (based on period differences)

C.4.3.2 Knowledge Acquisition Difference Understand (know_diff_understand)

Observed Value
129630

E
xp

ec
te

d
N

o
rm

al

2

1

0

-1

-2

Normal Q-Q Plot of level_understand (based on period differences)

Figure 95 Q-Q plot for know_diff_understand (based on period differences)

Additional Statistics

 329

Observed Value
129630

D
ev

 f
ro

m
 N

or
m

al

0,6

0,4

0,2

0,0

-0,2

-0,4

Detrended Normal Q-Q Plot of level_understand based on period differences

Figure 96 Detrended Q-Q plot for know_diff_understand (based on period differences)

The Q-Q plot shows a deviation from normality for several values. A
pattern/data cluster in the detrended Q-Q plot could be detected as well,
even if it is not so strong as for the variable ucorr (i.e., the p-value for
this values was also higher). In fact, know_diff_understand cannot be
considered as a normally distributed variable. The reason for this is
depicted in the histogram and boxplot, which show on the one side a
medium skewness of 0.524 and a high kurtosis of -1.513. Hence, a
parametric dependent sample test should be performed with care and
only in combination with a non-parametric test.

level_understand (based on period differences)

12,00

9,00

6,00

3,00

0,00

level_understand (based on period differences)
12,009,006,003,000,00

Fr
eq

ue
nc

y

3

2

1

0

Histogram

Mean =4,47�
Std. Dev. =4,195�

N =19

Figure 97 Histogram and boxplot for know_diff_understand (based on period differences)

Additional Statistics

 330

C.4.3.3 Knowledge Acquisition Difference Create (know_diff_create)

Only a few different values were available for know_diff_create, which
makes it difficult to interpret the plots. The Q-Q plot show a strong de-
viation from normality for one value. A pattern/data cluster in the de-
trended Q-Q plot could not really be detected. In fact, know_diff_create
should not be considered as a normally distributed variable. The reason
for this is depicted in the histogram and boxplot, which show a high kur-
tosis of 2.556 and one outlier value. Hence, a parametric dependent
sample test should be performed with care and only in combination with
a non-parametric test.

Observed Value
43210-1-2

Ex
pe

ct
ed

 N
o

rm
al

2

1

0

-1

-2

Normal Q-Q Plot of level_create (based on period differences)

Figure 98 Q-Q plot for know_diff_create (based on period differences)

Observed Value
43210-1

D
ev

 f
ro

m
 N

or
m

al

1,2

1,0

0,8

0,6

0,4

0,2

0,0

-0,2

Detrended Normal Q-Q Plot of level_create (based on period differences)

Figure 99 Detrended Q-Q plot for know_diff_create (based on period differences)

Additional Statistics

 331

level_create (based on period differences)

4,00

3,00

2,00

1,00

0,00

-1,00

9

level_create (based on period differences)
4,002,000,00-2,00

Fr
eq

ue
nc

y

6

4

2

0

Histogram

Mean =0,67�
Std. Dev. =1,188�

N =18

Figure 100 Histogram and boxplot for know_diff_create (based on period differences)

C.4.4 Dependent Variables (based on sequence totals)

The following table shows the outcome of the Shapiro-Wilk test and the
Kolmogorov-Smirnov test for sequence totals, which is used to test for
carry-over effects. A normal distribution is a prerequisite for applying in-
dependent sample hypothesis tests. The outliers were removed from the
data sets before the normality test was performed.

Table 100 Test for normality for dependent variables (based sequence totals)

Kolmogorov-Smirnov(a) Shapiro-Wilk
 Dependent
Variables Statistic df Sig. Statistic df Sig.

Understanding correctness ucorr

.134 18 .200(*) .942 18 .319

Knowledge Acquisition Differ-
ence

know_diff

.087 19 .200(*) .973 19 .827

Knowledge Acquisition Differ-
ence (remember)

know_diff_re
member .135 16 .200(*) .976 16 .920

Knowledge Acquisition Differ-
ence (understand)

know_diff_u
nderstand .155 19 .200(*) .940 19 .263

Additional Statistics

 332

Kolmogorov-Smirnov(a) Shapiro-Wilk
 Dependent
Variables Statistic df Sig. Statistic df Sig.

Knowledge Acquisition (apply) know_diff_a
pply .113 18 .200(*) .964 18 .679

Knowledge Acquisition Differ-
ence (analyze)

know_diff_a
nalyze .139 19 .200(*) .958 19 .532

Knowledge Acquisition Differ-
ence (create)

know_diff_cr
eate .147 18 .200(*) .942 18 .319

Application Efficiency (based on
score of marks and refactoring)

aeff

.119 18 .200(*) .960 18 .604

Application Completeness based
on score of marks and refactor-
ing)

acomp

.113 18 .200(*) .964 18 .679

Application Accuracy aaccu

.113 19 .200(*) .950 19 .401

* This is a lower bound of the true significance. a Lilliefors Significance Correction

It can be seen that for all dependent variables, the totals for both se-
quences do not significantly deviate from a normal distribution. Hence, a
parametric test for carry-over testing can be applied.

C.5. Analyzing Confounding Effects

C.5.1 Terminology

Frequently, different terms for the same effect are used – this makes a
comparison of statistical approaches extremely difficult. Therefore, this
section will first clarify the chaos in terminology starting with a first clas-
sification taken from clinical research. The subsequent sections will pro-
vide approaches to the investigation and/or correction of the effects con-
founding the treatment effect, if such effects exist.

Senn states that when analyzing the data from crossover trials, we ex-
pect that the crossover differences are distributed at random around the
true treatment effect. However, Senn names several factors that might
cause the crossover differences not to be distributed at random across
the true treatment effect in crossover studies in clinical research (Senn,
1993). The following list describes the factors according to Senn and will
provide a basis for classifying effects confounding the treatment effect:

Senn’s classifi-
cation of
confounding
effects

Additional Statistics

 333

Period effect: A trend that might affect the experiment as a whole. A pe-
riod effect is also called a trend effect, since it is an effect related to the
mean cross-offer difference between the two sequences (e.g., noisy en-
vironment during the whole experiment, which impacts both sequences;
different experience levels and background between groups/sequences;
drug tolerance or resistance). A period effect is a change that would
have occurred even in the absence of treatment.

Period by treatment interaction: This effect is related to the fact that the
treatment effect varies according to the period in which is was given.
(e.g., the patients might be affected by hay fever on the first visit but not
on the second one. This might lead to a period effect, but if one of the
treatments were effective for asthma in general, except when compli-
cated by or provoked by hay fever, this would also lead to a treatment
by period interaction).

Carry-over effect: Carry-over effects, or residual effects, are effects of a
treatment that persist after the end of the treatment period; i.e., the re-
sponse to a current treatment is affected by what treatment was applied
in a previous period. A carry-over effect will bias the estimation of the
treatment effect (e.g., learning effect after the first treatment).

Patient by treatment interaction: This effect occurs when there is no
general treatment effect, but the effect varies from subject to subject.
This effect cannot be investigated in a two-period crossover experiment;
treatments need to be applied to the subjects a number of times.

Patient by period interaction: This effect would arise if subjects were
confronted with period effects that were not the same for all subjects
(e.g., some subjects have been in a noisy environment or some subjects
are suffering from hay fever and the others are not).

The following table shows Senn’s classification in the first row. The other
rows relate the terminology of other authors to the classification of
Senn. In addition, the term sequence effect has been added, since it is
found very often in the literature (mostly in books on basic statistics and
other domains such as human sciences). Reed, for example, defines a
sequence effect as an effect due to the different orders in which treat-
ments are given (Reed, 2004). The same is also stated by Bortz and
Döring, who add the term “Positionseffekt”, respectively “Kontextef-
fekt”, which is an interaction effect between treatment and sequence
(i.e., the treatment effect depends on the position in a sequence) (Bortz
& Döring, 2001). These different orders of treatments are not explicitly
mentioned by Senn, but need to be included.

Additional Statistics

 334

Table 101 Overview of confounding effects

Pe
ri

o
d

 E
ff

ec
t

Pe
ri

o
d

 b
y

Tr
ea

t-
m

en
t

In
te

ra
ct

io
n

C
ar

ry
-O

ve
r

Ef
fe

ct

(r
es

id
u

al
 e

ff
ec

t)

Se
q

u
en

ce
 E

ff
ec

t

Pa
ti

en
t

b
y

Tr
ea

t-
m

en
t

In
te

ra
ct

io
n

Pa
ti

en
t

b
y

Pe
ri

o
d

In

te
ra

ct
io

n

(Senn, 1993) x x x x x
(Reed, 2004) x period

effect
x x

(Jones & Ken-
ward, 2003)

x direct effect
by period

interaction

x

(Armitage &
Berry, 1994)

 x x

(Grieve, 1985) x carry-over
effect used
as synonym

x

(Kirk, 1995) x x carry-over
effect due to

different
treatment

orders

(Winer et al.,
1991)

 x or order effects

(Bortz & Döring,
2001)

 Kontext- or.
Positionseffekt

(Bortz, 2005) Sequentieller Über-
tragungseffekt

(Díaz-Uriarte,
2002)

x x Sequence
effect or group

main effect

(Kitchenham,
Fry, & Linkman,

2003)

x “mostly”
carry- over
effect

Same as period by
treatment interac-

tion

(Juristo & Mo-
reno, 2001)

 related to
learning effect

The inconsistent usage of the terms is due to the fact that the effects are
not separable from each other, either because they are a subtype of
another effect type, because they can only occur when another effect
exists, because the experiment design does not allow a distinction of the
effects, or because they are just understood wrongly. Reed, for example,
does not distinguish between period effects and period by treatment in-
teraction – according to the classification by Senn, Reed is talking about
period by treatment interaction (Reed, 2004). Kitchenham et al. state
that period by treatment interaction happens when the effect of the
treatment differs according to the order in which the treatment occurs
and is usually restricted to carry-over effects from the preceding drug
(Kitchenham et al., 2003). Furthermore, Kitchenham et al. state that

Reasons why
confounding
effects are not
easily separa-
ble

Additional Statistics

 335

when subjects improve their performance during the course of a se-
quence of tasks, this results in a period effect – this is simply an example
of a wrong statement. The description by Kitchenham et al. corresponds
to the description of “Positionseffekt” by Bortz and Döring, who state
that this effect is an interaction effect between treatment and sequence.
Jones and Kenward report that different amounts of carry-over effects
from the treatments can be the cause of period by treatment interaction
effects. Kirk state that the portion of carry-over effects that is attribut-
able to the order of treatments is referred to as sequence effects (Kirk,
1995). Reed says that unlike sequence effects, carry-over effects affect
the treatment response only in the second time period (Reed, 2004). Ju-
risto and Moreno state that learning effects are often detected by con-
sidering the order in which the experiments have been performed as a
factor and designing a factorial together with the principal factor under
examination (Juristo & Moreno, 2001).

Other authors use different terms than the ones proposed by Senn: e.g.,
Reed captures the period by treatment interaction effect under the term
period effect (Reed, 2004). Díaz-Uriarte calls the sequence effect group
main effect (Díaz-Uriarte, 2002).

The question is which kind of effects may influence the estimation of the
treatment effects in this experiment? Seen states that the first effect (i.e.,
period effect) can be easily dealt with by adjusting the treatment effect
by applying specific methods (see below). Jones and Kenward state that
the chance of treatment interacting with period (i.e., period by
treatment interaction) will be small in well-planned experiments. Since
we kept the working environment of the experiment constant over the
two subsequent days, there is no need to expect such an effect in this
experiment. The patient by treatment interaction and patient by period
interaction do not cause much of a problem because “they only impact
the general variability of the results and only may cause difficulties with
interpretation” (Senn, 1993). Furthermore, the simple within-subject
design does not allow the investigation of the patient by treatment
interaction effect. More complex designs would be required.

The following table shows the most relevant work by researchers who
proposed approaches to detecting and/or correcting the confounding
effects. The first row lists the effects that should be considered for
discussion or statistical investigation from the perspective of this
experiment because they might exist due to the experiment’s design.

Approaches
for detecting
and/or cor-
rectng con-
founding
effects

Additional Statistics

 336

Table 102 Confounding effects in a counterbalanced, within-subject design

Pe
ri

o
d

 E
ff

ec
t

(�
)

 Se
q

u
en

ce
 E

ff
ec

t

Pe
ri

o
d

 b
y

Tr
ea

t-
m

en
t

In
te

ra
ct

io
n

C
ar

ry
-o

ve
r

Ef
fe

ct

(�
)

Relevancy for this
experiment

yes Yes, but expected
to be small due to
randomization

Yes, but ex-
pected to be

small

yes

(Senn, 1993) - two-sample t-test:
Testing for the inequal-
ity of period effects by
a two-sample t-test
with period differences
between the two
sequences

Adjusting for a period
effect:
Apply the Hill Armitage
approach (comparing
period differences
between the two
sequence groups)

- - test of equality of carry-over by
using a two sample t-test based
on differences between subject
totals ; however, the test has low
power

(Reed, 2004) - - 2-stage procedure with testing
three hypotheses: CROSS (equal-
ity of treatment and carry-over
effect), SEQ (was the rejection of
CROSS due to treatment differ-
ence or to carry-over effects?),
PAR (t-test applied to first period
only when significant carry-over
effects have been found)

(Jones & Kenward,
2003)

- test of inequality of
period effects, assum-
ing that there are no
carry-over effects
� two sample t-test
based on crossover
differences
- Analysis of variance
(split-plot ANOVA)

- - - test of
equality of
carry-over by
using a two-
sample t-test
based on
differences
between
subject totals;
however, the
test has low
power
- Analysis of
variance
(split-plot
ANOVA)

(Grieve, 1985) - - Baysesian analysis based on the
Bayes factor against unequal

carry-over effects

Additional Statistics

 337

Pe
ri

o
d

 E
ff

ec
t

(�
)

 Se
q

u
en

ce
 E

ff
ec

t

Pe
ri

o
d

 b
y

Tr
ea

t-
m

en
t

In
te

ra
ct

io
n

C
ar

ry
-o

ve
r

Ef
fe

ct

(�
)

(Kirk, 1995) - Apply randomzation
to pervent the
sequence effect �
no statistical proce-
dure provided

- -

(Winer et al., 1991) - - Apply randomiza-
tion to prevent
sequence
effects from being
completely con-
founded with one or
just a selected few
of the treatments �
no statistical proce-
dure provided
- In order to control
sequence effects:
use the latin-square
design principle by
introducing a factor
with alternatives
that correspond to
the sequences

- -

(Bortz & Döring,
2001)
&
(Bortz, 2005)

-- In order to control
sequence effects:
use the latin-square
design principle by
introducing a factor
with alternatives for
each sequence

- -

(Díaz-Uriarte, 2002) - Test for inequality of
period effect: two-
sample t-test by using
the crossover differ-
ences (differences
between period 1 and
period 2 for subjects in
AB, and differences
between period 2 and
period 1 for subjects in
BA) - Adjusting for the
period effect: Hill-
Armitage approach

The next sections will investigate whether carry-over, sequence (and
position), or period effects exist, and how this will impact the further
analysis of this experiment. However, it must be mentioned that the 2x2
design does not allow to completely distinguish between the effects

A 2x2 experi-
ment does not
allow the
separation of
all confound-
ing effects

Additional Statistics

 338

when they have been detected. For example, the test for carry-over ef-
fects requires assuming that there are no sequence effects because in
the design matrix, the columns for sequence effects and differential
carry-over effects are identical (Díaz-Uriarte, 2002) (a more detailed ex-
planation of this fact is given in Section C.5.3).

First, sequence effects will be investigated in Section C.5.2. If no se-
quence effects are detected, carry-over effects can be investigated in
Section C.5.3. The last Section C.5.4 investigates whether there are any
period effects.

C.5.2 Investigation of Sequence Effects and Treatment*Sequence Interaction
Effects

A sequence effect is an effect due to the different orders in which
treatments are given. Randomizing the order of treatments independ-
ently for each subject is an effective way of reducing sequence effects.
Another alternative way of controlling sequence effects is to include the
effects as one of the treatments in the design (Kirk, 1995). Therefore, an
additional factor called sequence was added to the design of the ex-
periment. Designs of this kind in software engineering have been ap-
plied, for example, in (Daly, Brooks, Miller, Roper, & Wood, 1995) and
(Macdonald & Miller, 1998).

An analysis of variance (ANOVA) for repeated measures was performed
separately for each of the dependent variables with � = 0.05 (i.e., a gen-
eral linear model for repeated measures Type III was used because the
cells contain a different number of cases – it was unbalanced regarding
cell frequencies) without the outliers. The ANOVA was done with one
within-subjects factor treatment (LSEP | EP) and one between-subjects
factor sequence (LSEP�EP | EP�LSEP). Sequence*treatment consists of
an interaction effect between the factors’ treatment and the sequence,
i.e., a position effect, which means that the treatment effect depends on
the position in a particular sequence. No covariates, i.e., disturbing fac-
tors, were considered in this analysis step in order to keep the interpreta-
tion of the results simple.

The following tables show the F-Value, p-value, partial eta squared, and
power of the repeated measures ANOVA. The partial eta squared statis-
tic (i.e., the effect size of the related effect) reports the "practical" sig-
nificance of each term, based upon the ratio of the variation (sum of
squares) accounted for by the factor to the sum of the variation ac-
counted for by the factor and the variation left to error, i.e., the eta-
squared statistic describes the proportion of total variability attributable
to a factor. If a partial eta squared term is near 0, this shows that it ac-
counts for a negligible amount of variation compared to the error term.
Levene’s test of equality of error variances was not significant for all vari-

Sequence
effects were
investigated in
this experi-
ment by using
the sequence
factor

Using ANOVA
for testing of
sequence
effects and
treat-
ment*sequenc
e interaction
effects

Additional Statistics

 339

ables, which means that the variances are not significantly different and
hence, that the ANOVA can be applied.

In the following, only the tables for those variables are shown where a
position effect or a sequence effect was detected. Profile plots illustrate
the interaction between sequence and treatment (i.e., position effect).
Mauchly’s test (i.e., testing the null hypothesis of sphericity) was not
relevant because the degree of freedom was zero. Hence, the assump-
tion of sphericity was not relevant and ANOVA could be performed
without performing this test. Intercept is not of interest for us, but it has
been kept in the between-subjects analysis table for reasons of com-
pleteness. The intercept row checks the hypothesis that the grand mean
(i.e., the mean of all cell values) is zero.

Table 103 Test of within-subjects effects for understanding completeness (ucorr)

Source

Type III
Sum of
Squares df

Mean
Square F p-value

Partial Eta
Squared Power

Treatment 301.606 1 301.606 19.621 .000 .551 .986

Sequence
* Treat-

ment
104.272 1 104.272 6.783 .019 .298 .687

Error 245.950 16 15.372

Table 104 Test of between-subjects effects for understanding completeness (ucorr)

Source

Type III
Sum of
Squares df

Mean
Square F p-value

Partial Eta
Squared Power

Intercept 44023.472 1 44023.472 755.160 .000 .979 1.000

Sequence 1.250 1 1.250 .021 .885 .001 .052

Error 932.750 16 58.297

Additional Statistics

 340

Figure 101 Profile plot for understanding correctness (ucorr)

For understanding correctness, a position effect (i.e., treat-
ment*sequence interaction) effect was detected (p-value=.019). The
profile shows a crossing of both lines, which is an indication of an inter-
action effect. However, the power is only .687, which means that we
cannot confirm the existence of any significant interaction between
treatment and sequence. A sequence effect could not be detected at all.

Table 105 Test of within-subjects effects for knowledge acquisition difference apply
(know_diff_apply)

Source

Type III
Sum of
Squares df

Mean
Square F p-value

Partial Eta
Squared Power

Treatment 141.016 1 141.016 8.914 .009 .358 .800

Sequence
* Treat-

ment
155.210 1 155.210 9.811 .006 .380 .836

Error 253.118 16 15.820

Table 106 Test of between-subjects effects for knowledge acquisition difference apply
(know_diff_apply)

Source

Type III
Sum of
Squares df

Mean
Square F p-value

Partial Eta
Squared Power

Intercept 3911.460 1 3911.460 182.013 .000 .919 1.000

Sequence 6.043 1 6.043 .281 .603 .017 .079

Error 343.840 16 21.490

Position effect
= treatment *
sequence
interaction
effect

Additional Statistics

 341

Figure 102 Profile plot for knowledge acquisition difference apply (know_diff_apply)

For know_diff_apply, a significant interaction effect (p-value=.006) was
detected with a power of .836. In this case, we have to confirm the exis-
tence of a position effect between treatment and sequence.

Table 107 Repeated measures ANOVA for sequence effect test for application completeness (acomp)

Source

Type III
Sum of
Squares df

Mean
Square F p-value

Partial Eta
Squared Power

Treatment .245 1 .245 8.914 .009 .358 .800

Sequence
* Treat-

ment
.269 1 .269 9.811 .006 .380 .836

Error .439 16 .027

Table 108 Test of between-subjects effects for test for application completeness (acomp)

Source

Type III
Sum of
Squares df

Mean
Square F p-value

Partial Eta
Squared Power

Intercept 6.791 1 6.791 182.013 .000 .919 1.000

Sequence .010 1 .010 .281 .603 .017 .079

Error .597 16 .037

Additional Statistics

 342

Figure 103 Profile plot for test for application completeness (acomp)

A significant position effect was only detected for the variables knowl-
edge difference acquisition apply (know_diff_apply) and application
completeness (acomp). The reason why the p-values, power, and effect
size are the same is that both variables are based on the same data (i.e.,
know_diff_apply is calculated based on the refactoring scores; acomp
also uses this score). They are not due to any difference in the experience
level of the two groups (this would have resulted in a period effect), but
could be related to the different experience packages provided during
the two periods or to a fatigue effect during the second day. Section
C.5.2 shows how position effects can be corrected.

It is important that no sequence effects exist, because carry-over effects
cannot be distinguished from sequence effects in these kinds of experi-
ments.

C.5.3 Investigating Carry-Over Effects and Period by Treatment Effects

Greenwald states that a common risk of applying a within-subjects de-
sign is the existence of carry-over effects between the periods
(Greenwald, 1976). Carry-over effects can be effects due to a treatment
that persist after the end of the treatment period and influence the sub-
sequent treatment. In this experiment, the subjects could earn practical
experiences in the domain of refactoring, which they did not possess be-
fore the experiment. This could lead to higher performance during the
second period than during the first period. Many researchers from the
domain of human or animal research, such as Díaz-Uriarte (Díaz-Uriarte,

One signifi-
cant position
effect was
detected

No sequence
effects were
detected

Carry-over
effect

Additional Statistics

 343

2002) or (Abeyasekera & Curnow, 1984), have shown that counterbal-
ancing and randomization cannot take care of carry-over effects.

Hence, carry-over effects may still exist and may bias the conclusions
made based on the statistical analysis. Several approaches exist to test
for carry-over effects. However, the applied carry-over tests have often
been criticized. Several experiments in software engineering have inves-
tigated carry-over effects by using the approach by (Grizzle, 1965) and
(Mills & Armitage, 1979), which compares the variability between se-
quences with the variability of subjects within sequences. (e.g., applied
by (Laitenberger, 2000)). This two-stage analysis procedure is now
known to be extremely biased and is not recommended because the test
has low power. Freeman showed that Grizzle’s two-stage procedure of
testing for carry-over difference in the first stage and then for a direct
treatment difference in the second stage not only inflates the probability
of making a type I error, but also produces a biased estimate of the di-
rect treatment difference (Freeman, 1989). Therefore, the conclusions
are questionable: “The lack of effects reported in some studies could be
the consequence of inflated variances, and the significant effects re-
ported in others could be the result of either period or carry-over effects
(Díaz-Uriarte, 2002)”. In medicine, one way of diminishing the impact of
carry-over effects is the incorporation of lengthy washout periods in the
experimental design. A washout period is defined as the time between
the treatments. Instead of immediately stopping and then starting the
new treatment, there will be a period of time where the treatment from
the first period, i.e., the drug, is washed out of the patient's system.
However, these washout periods are not applicable to experiments in
software engineering, since carry-over effects are often related to prac-
ticing and even long “washout periods” cannot assure that the practic-
ing effects disappear. In addition, the risk of obtaining period effects in-
creases when the time between the treatments increases.

Another more general type of carry-over effect is the period by treat-
ment interaction effect, which is due to secular change, i.e., some factor
other than the treatment might slowly be affecting the condition of the
subjects and the benefit of one treatment compared to another might
be dependent on the current state of the subject. One problem with
AB|BA crossover designs is that it is not possible to separately distinguish
between carry-over effects and period by treatment interaction effects
(Senn, 1993). In addition, the test for carry-over effects requires assum-
ing that there are no sequence effects. The reason for this is that one
cannot estimate both carry-over effect and sequence effect, because the
2x2 design yields only four cells means, and therefore only a maximum
of four parameters can be estimated: overall grand mean, the treatment
effect, the period effect, and the fourth parameter, which is either the
sequence effect of the carry-over effect, but not both.

Approaches
for carry-over
effect testing
are highly
criticized

Period by
treatment
interaction
effect

Additional Statistics

 344

In fact, it is not the presence of carry-over effects per se that leads to
aliasing with direct treatment effects in the (LS|EP) crossover, but rather
the existence of differential carry-over effects, i.e., the carry-over effect
due to treatment LS differs from the carry-over effect due to treatment
EP. If the carry-over effects for EP and LS are equivalent in the LS|EP
within-subjects design, then this common carry-over effect is not aliased
with the treatment difference. A test for carry-over effects can be done
by using the difference between the subjects’ totals in the two periods
between the two sequences. When using the totals, the differences can-
not differ by a treatment effect, because each subject had both treat-
ments, nor can they differ by any period effect, because each subject
was treated in both periods. If, however, a treatment effect persists,
then in the second period, the subject in the LSEP|EP sequence will have
a carry-over effect from LSEP, whereas the subject in the EP|LSEP se-
quence will have a carry-over effect from EP. The totals of the variables
do not deviate significantly from a normal distribution (see Appendix
C.4.4) – this is a prerequisite for conducting this test. The results of the
independent sample t-test are provided in the following table.

Table 109 Independent sample t-test for carry-over effect and period by treatment interaction testing

Levene’s test
for equality of
variances

Test for carry-over effect (�) and period by treatment
interaction effect

F p-
value

t df p-
valu
e

Mean
Difference

Std. Error
Difference

Power

ucorr .046 .833 -.420 16 .680 -2.60 6.19 0.068
know_diff .837 .373 .610 17 .550 2.23 3.66 0.089
know_diff_remembe
r

.006 .942 -2.368 14 .033 -3.25 1.37 0.599

know_diff_understan
d

.341 .567 .660 17 .518 1.19 1.80 0.096

know_diff_apply 4.076 .061 .340 16 .739 1.25 3.68 0.061
know_diff_analyze .009 .924 1.353 17 .194 2.88 2.13 0.247
know_diff_create .102 .754 1.180 16 .255 .89 .75 0.199
aeff .957 .342 -.591 16 .563 -.11 .18 0.086
acomp 4.076 .061 .340 16 .739 .05 .15 0.062
aaccu .008 .932 -.161 17 .874 -.02 .11 0.056

The significance of Levene's test is above 0.05 for all variables, which
suggests that the equal variances assumption is not violated and that the
t-test can be performed. It can be seen that the null hypothesis (� 1 =
�2) can be rejected for know_diff_remember, i.e., a significant carry-over
effect exists. The calculation of power confirms one of Freeman’s criti-
cisms regarding this procedure, namely, that the test has low power and
that this test should therefore not be used. This test delivers the same re-
sults as the procedure of Hills and Armitage (Hills & Armitage, 1979),
who provided a correction to the two-stage “all-or-nothing” procedure
of Grizzle (Grizzle, 1965). The procedure was called all-or-nothing be-

Not the exis-
tence of carry-
over effects is
critical per se,
but the differ-
ential carry-
over effects

Additional Statistics

 345

cause a significant test for a differential carry-over difference to the so-
called PAR test (Freeman, 1989) uses only the data from the first period.
Nevertheless, the Grizzle procedure is still frequently used in software
engineering.

Jones and Kenward present an approach to increase the power of these
tests by using baseline measurements taken during the run-in and wash-
out periods (Jones & Kenward, 2003). Different types of baseline meas-
urements exist (i.e., before first treatment, before second treatment, and
after completion of last treatment). However, in this experiment, no
baseline measurements were performed.

Poloniecki and Daniel, and Barker et al. state that it is not necessary that
there be no carry-over effects, rather that the carry-over effect be small
in comparison to the treatment effect (Barker, News, Huitson, & Polo-
niecki, 1995; Poloniecki & Daniel, 1981). In addition, Jones and Lewis say
that a relatively small difference in the size of carry-over effects will not
seriously reduce the power of the test for a treatment difference or lead
to more than a small amount of bias in the estimate of the treatment
difference (Jones & Lewis, 1995). The carry-over effects in this experi-
ment were small compared to the treatment effect differences (the cal-
culation of the effects and confidence intervals are not provided here)
and therefore, the carry-over effects were ignored for further analysis.

C.5.4 Investigating Period Effects

Many researchers have stated that randomization and counterbalancing
ensure that no period effects can occur (Crowder & Hand, 1990). For ex-
ample, in an AB|BA crossover study, as in this experiment, Senn says that
the period effect can be ignored when the subjects are allocated com-
pletely at random to the two sequences (Senn, 1993). Nevertheless,
Senn motivates that when a researcher has decided to apply randomiza-
tion and counterbalancing, he is aware of the existence of period effects
and that hence, these effects should be dealt with in further analysis
when they are known.

The standard statistical test in a within-subjects design is a dependent
sample t-test. However, when a period effect exists, the usage of the
matched-paired t-test is not adequate. There are two reasons for this
(Senn, 1993): First, if there is a period effect and there are unequal
numbers of subjects in each sequence, the test and the estimate of di-
rect treatment effects will be biased. Second, even if there are equal
numbers of subjects in each sequence, we will lose power: “A period ef-
fect is a systematic trend, however, by putting together subjects from
both sequences, we are ascribing this systematic variation to the random
component (the error term) and the standard errors of the estimates will
be inflated” (Senn, 1993). Therefore, one should explicitly check for pe-
riod effects, despite randomization and counterbalancing.

The carry-over
effect should
be small com-
pared to the
treatment
effect

When period
effects exist, a
matched-pair
t-test cannot
be used

Additional Statistics

 346

There are several approaches to investigating treatment effects while
adjusting them because of period effects. One simple method described
in (Jones & Kenward, 2003; Senn, 1993) applies a two-sample t-test for
the period differences. Another method called the Hill-Armitage ap-
proach (Hills & Armitage, 1979) delivers the same results as the simple
method, but is more generizable to more complex designs (Senn &
Hildebrand, 1991). Jones and Kenward also include period testing in
their analysis of the variance approach (Jones & Kenward, 2003), which
can also be used for carry-over testing. But before adjusting for period
effects is done in a later section, an independent sample t-test according
to Senn (Senn, 1993) was performed to test for period effects. This test
tests the null hypothesis of period effect equality of the two sequences
(�1 = �2).

First, a plot can give a first hint about a period effect. The first graph
shows the average values for both treatments for the dependent variable
know_diff for both periods. The second graph helps to compare the val-
ues of the two sequences.

Knowledge Acquisition Difference (know_diff)

18,20
17,67

7,44

4,50

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

20,00

Period 1 Period 2

LSEP

EP

Figure 104 Plot for period effect with respect to treatment

The first graph shows that the treatment LSEP provides higher values for
know_diff than the treatment EP for both periods. Furthermore, a small
decrease during the second period for both treatments, which could be
related to a period effect, can be observed. It is interesting to investigate
whether the period effect is significantly different between the
sequences or if it just affects both treatments equally. It can be seen that
the average of the crossover differences differs. A two-tailed
independent t-test at � = 0.05 was applied to test whether the period
effect was significant for all dependent variables. Such a test for period
effects is based on crossover differences, which are subject differences
between treatment LSEP and treatment EP. If a constant trend is present,
then it must affect each of the period differences identically. A period

A two sample
t-test on pe-
riod difference
can be used to
detect period
effects

Additional Statistics

 347

effect regarding information quality could not be investigated, since
information quality was gathered only at the end of the second period.

Knowledge Acquisition Difference (know_diff)

18,20

4,50

7,44

17,67

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

20,00

Period 1 Period 2

Sequence 1

Sequence 2

Figure 105 Plot for period effect with respect to sequence

Table 110 Two-tailed independent sample t-test for testing of period effects

Levene’s test
for equality of
variances

Test for period effect (�)

F p-
value

t df p-value Mean
Difference

Std. Error
Difference

ucorr 4.506 .052 -2.604 16 .019 -6.85 2.63
know_diff .146 .707 1.035 17 .315 3.48 3.36
know_diff_remember 1.635 .222 .730 14 .478 1.37 1.88
know_diff_understand .001 .971 -1.311 17 .207 -2.48 1.89
know_diff_apply 1.597 .224 3.132 16 .006 8.31 2.65
know_diff_analyze 1.710 .208 1.789 17 .091 2.68 1.50
know_diff_create 2.215 .156 .387 16 .704 .22 .57
aeff .294 .595 1.54 16 .140 .13 .08
acomp 1.597 .224 3.132 16 .006 .35 .11
aaccu 2.054 .170 -1.465 17 .161 -.21 .14

The significance of Levene's test is above 0.05 for all variables, which
suggests that the equal variances assumption is not violated and that the
t-test can be performed. Table 110 shows that for most of the variables,
the p-values were higher than 2.5%, which means that the null hy-
potheses of equal period effects (�1 = �2) for both sequences could not
be rejected. This means that we could expect similar period effects for
both periods. A power analysis was conducted to confirm the accep-
tance of the alternative hypothesis (�1 � �2). The power for ucorr was
0.652 (df=16; Tcrit=2.119). The power for know_diff_apply was 0.836
(df=16; Tcrit=2.119). The power for acomp was 0.837, (df=16;
Tcrit=2.119). This means that we can accept the alternative hypotheses
of different period effects for the variables know_diff_apply and acomp.
The alternative hypothesis for ucorr cannot be accepted because the

Period effects
were detected

Additional Statistics

 348

power is lower than 0.80. Therefore, the decision was made to correct
for period effects in later analysis steps for the two variables knowledge
acquisition difference apply (know_diff_apply) and application com-
pleteness (acomp).

It was detected that the period differences for ucorr,
know_diff_understand, and know_diff_create were not normally distrib-
uted (see Appendix C.4.3). Therefore, a Mann-Whitney-U test was done,
which confirms the results of the t-test:

Table 111 Mann-Whitney U test for testing for period effects

Test for pe-
riod effect
(ucorr)

Test for pe-
riod effect
(level_underst
and)

Test for pe-
riod effect
(level_create)

Mann-Whitney U 15.500 29.000 39.000

Wilcoxon W 70.500 84.000 84.000

Z -2.186 -1.317 -.139

Asymp. Sig. (2-tailed) .029 .188 .889

N (LSEP – EP) 10 10 9

N (EP – LSEP) 8 9 9

C.6. Testing the Assumptions for ANCOVA

The homogeneity of variance was tested using Box’s M test – the homo-
geneity of variance could be confirmed for all variables but two (p = .042
and p = .049; however, slight deviations can be accepted). A repeated
measure ANOVA adds another assumption – sphericity (i.e., homogene-
ity of treatment difference variances). In this experiment, the assumption
of sphericity is not relevant because the treatment has only two levels.
The analysis of covariance (ANCOVA) adds two further assumptions: lin-
ear regression and homogeneity of the regression coefficients, which are
more difficult to check. The assumption of linear regression states that
the deviations from the regression equation across different treatment
levels have a normal distribution with means of zero and that homosce-
dasticity (i.e., homogeneity of error variances) is fulfilled. The risk of not
checking these assumptions (i.e., the linearity of the regression function
is not given) is that the regression coefficient bi does not strive towards

the real parameters �I when the sample size increases (Backhaus, Erich-
son, Plinke, & Weiber, 2005). Hence, the ANCOVA model assumes that
the slopes of the regression lines are the same for each group. That is,
the slopes should be parallel. The slope of the regression line is the
amount of change in a dependent variable for a given change in a co-
variate variable. The following table provides the standardized parame-
ters (which makes it easier to compare the parameters amongst the dif-
ferent variables) of the linear equation for each combination of depend-

Additional Statistics

 349

ent variable and disturbing factor. Y corresponds to the dependent vari-
able, X is the disturbing factor, b0 corresponds to the constant (i.e., in-
tercept when b1 is zero), and b1 to the regression coeffcient (i.e., slope):
Y= b0 + b1 * X.

A
dd

iti
on

al
 S

ta
tis

tic
s

35

0

Ta
bl

e
11

2
C

oe
ff

ic
ie

nt
s

of
 t

he
 e

st
im

at
ed

 r
eg

re
ss

io
n

m
od

el
s

exp_dev

exp_jp

exp_ref

exp_sqa

exp_main

tn

pre-test

inf_qa
_LSEP

inf_qa_EP

u
co

rr
 L

SE
P

b 0

b 1

Be
ta

35
.0

9
5.

58

.2
8

27
.9

0
2.

31

.4
4

34
.5

6
1.

57

.3
3

35
.8

.7

1
0.

18

33
.7

3
1.

55

.4
1

38
.8

9
-5

.0
0

-.
19

25
.2

7
.5

9*
*

.6
1

34
.5

6
.6

4
.0

8

42
.3

1
-1

.2
0

-.
18

u
co

rr
 E

P
b 0

b 1

Be

ta

27
.7

7
9.

35

.4
4

13
.4

4.

41
**

.7

9

25
.9

5
3.

08
**

.6

1

25
.3

1
2.

43
*

.5
7

24
.9

6
2.

80
**

.7

0

35
.5

8
-1

5.
68

*
-.

56

18
.2

2
.6

8*
*

.7
0

26
.6

2
.9

7
.1

0

29
.4

7
.6

7
.1

1
kn

o
w

_d
if

f
LS

EP

b 0

b 1

Be
ta

18
.9

8
-1

.3
0

-.
06

4

24
.0

5
-1

.3
2

-.
25

18
.5

4
-.

10

-.
02

20
.0

0
-.

57

-.
14

19
.0

6
-.

27

-.
07

16
.3

3
10

.0
0

-.
37

23
.0

7
-.

26

-.
30

-2
.0

7
3.

91
*

.4
6

19
.9

3
-.

45

-.
08

kn
o

w
_d

if
f

EP

b 0

b 1

Be
ta

7.
88

-4

.0
9

-.
27

5.
36

.1

1
-.

03

4.
65

.5

6
-.

15

6.
90

-.

36

.1
2

9.
69

-1

.4
4*

-.

50

6.
15

-1

.6
0

-.
08

6.
64

-.

04

-.
06

-5
.6

1
2.

21

.3
5

13
.4

2
-1

.8
2

-.
41

kn

o
w

_d
if

f_
re

m
em

b
er

 L
SE

P
b 0

b 1

Be

ta

4.
48

2.

60

.2
1

4.
36

.3

3
.1

0

6.
54

-.

36

-1
2

5.
70

.0

3
.0

1

3.
88

.7

1
.3

1

6.
05

-1

.3
6

-.
08

8.
64

-.

14

-.
29

-7
.3

4
2.

51
*

.5
0

3.
29

.5

6
.1

7
kn

o
w

_d
if

f_
re

m
em

b
er

 E
P

b 0

b 1

Be
ta

2.
17

-.

45

-.
10

2.
61

-.

15

-.
13

1.
80

.0

7
-0

7

1.
00

.3

2
.3

6

2.
02

-.

03

-.
04

2.
08

-.

68

-.
12

.8
9

.0
5

.2
6

.2
3

.3
1

.1
6

1.
37

.1

3
.1

1
kn

o
w

_d
if

f_
u

n
d

er
st

an
d

 L
SE

P
b 0

b 1

Be

ta

7.
24

-2

.1
4

-.
20

7.
91

-.

40

-.
14

6.
13

.0

2
.0

1

8.
27

-.

72

-.
32

5.
82

.1

3
.0

6

5.
48

3.

41

.2
4

6.
35

-.

01

-.
03

-2
.1

5
1.

59

-.
35

7.
75

-.

37

.1
2

kn
o

w
_d

if
f_

u
n

d
er

st
an

d
 E

P
b 0

b 1

Be

ta

2.
50

-2

.0
1

-.
25

2.
25

-.

17

-.
08

2.
14

-.

30

-.
15

1.
76

-.

09

-.
05

3.
28

-.

68

-.
43

1.
72

-1

.1
4

-.
10

3.
45

-.

09

-.
27

-2
.3

9
.7

74

.2
24

2.
21

-.

16

-.
07

kn

o
w

_d
if

f_
ap

p
ly

 L
SE

P
b 0

b 1

Be

ta

11
.3

4
4.

23

.2
3

3.
41

2.

32
*

.4
7

9.
83

1.

72

.3
8

10
.0

5
1.

16

.3
0

12
.9

4
.1

9
.0

5

15
.5

4
-1

0.
40

-.

42

12
.7

5
.0

1
.0

2

9.
65

.7

3
.0

9

8.
29

1.

07

.1
9

kn
o

w
_d

if
f_

ap
p

ly
 E

P
b 0

b 1

Be
ta

10
.0

5
-2

.1
1

-.
15

6.
33

.6

2
.1

6

8.
31

.3

2
.0

9

11
.6

4
-.

90

-.
30

10
.5

7
-.

59

-.
21

8.
74

1.

30

.0
7

7.
15

.0

8
.1

4

10
.5

1
-.

32

-0
.5

14
.3

4
-1

.2
1

-.
30

A
dd

iti
on

al
 S

ta
tis

tic
s

35

1

exp_dev

exp_jp

exp_ref

exp_sqa

exp_main

tn

pre-test

inf_qa
_LSEP

inf_qa_EP

kn
o

w
_d

if
f_

an
al

yz
e

LS
EP

b 0

b 1

Be

ta

5.
62

-1

.3
6

-.
13

9.
06

-.

95

-.
34

4.
67

.1

3
.0

5

4.
73

.0

7
.0

3

7.
18

-.

83

-.
41

3.
44

7.

50
*

.5
3

6.
43

-.

09

-.
19

7.
29

-.

45

-.
10

7.
57

-.

65

.2
1

kn
o

w
_d

if
f_

an
al

yz
e

EP

b 0

b 1

Be
ta

2.
26

-.

52

-.
06

.3
0

.4
0

.1
8

1.
30

.3

3
.1

6

3.
52

-.

52

-.
30

3.
30

-.

49

-.
30

1.
82

0.

90

.0
8

1.
96

.0

0
.0

1

-3
.2

4
1.

02

.2
9

8.
25

-1

.4
2*

*
-.

60

kn
o

w
_d

if
f_

cr
ea

te
 L

SE
P

b 0

b 1

Be
ta

1.
55

-.

65

-.
19

1.
23

0.

00

0.
00

.6
8

.2
6

.3
2

1.
24

-.

01

-.
01

1.
37

2
-.

06

-.
09

1.
22

0.

00

0.
00

.5
7

.0
3

.2
1

.6
9

.1
0

.0
7

2.
10

.2

1
.2

2
kn

o
w

_d
if

f_
cr

ea
te

 E
P

b 0

b 1

Be
ta

1.
03

-1

.1
7

-.
36

.3
6

.0
2

.0
2

.2
61

.3

3
.4

2

.5
19

-.

03

-.
03

.9
9

-.
20

-3

2

.5
81

-.

68

-.
16

.4
4

.0
0

-.
01

-.
96

.2

6
.2

0

1.
11

-.

15

-.
17

ae
ff

 L
SE

P
b 0

b 1

Be

ta

.5
8

-.
22

-.

21

.1
1

.0
8

.3
0

.3
5

.0
6

.2
1

.5
1

-.
01

-.

05

.4
9

-.
01

-.

03

.5
5

-.
39

-2

7

.5
9

-.
01

-.

16

.5
5

-.
02

-.

03

.3
6

.0
2

.0
7

ae
ff

 E
P

b 0

b 1

Be
ta

.3
3

-.
14

-.

33

.1
8

.0
2

.2
0

.2
8

0.
00

-.

06

.3
9

-.
04

*
-.

49

.3
0

-.
01

-1

9

.2
6

.0
5

.0
8

.2
6

.0
0

.0
0

.2
1

.0
1

.0
5

.3
6

-.
02

-.

19

ac
o

m
p

 L
SE

P
b 0

b 1

Be

ta

.4
7

.1
7

.2
2

.1
4

.1
0*

.4

7

.4
10

.0

7
.3

8

.4
2

.0
5

.3
0

.5
4

.0
1

.0
5

.6
5

-.
43

-.

42

.5
3

.0
0

.0
2

.4
0

.0
3

.0
9

.3
46

.0

4
.1

9
ac

o
m

p
 E

P
b 0

b 1

Be

ta

.4
2

-.
09

-.

15

.2
6

.0
2

.1
6

.3
5

.0
1

.0
9

.4
8

-.
04

-.

31

.4
4

-.
02

-.

21

.3
6

.0
5

.0
7

.3
0

.0
0

.1
4

.4
4

-.
01

-.

05

0.
60

-.

05

-.
30

aa

cc
u

 L
SE

P
b 0

b 1

Be

ta

.7
7

-.
11

-.

16

.6
3

.0
2

.1
1

.6
3

.0
4

.2
6

.7
1

.0
0

.0
1

.8
1

-.
03

-.

27

.7
4

-.
13

-.

14

.7
0

.0
0

.0
6

1.
09

-.

07

-.
26

.7
1

.0
0

.0
2

aa
cc

u
 E

P
b 0

b 1

Be

ta

.7
6

-.
37

*
-.

55

.8
9

-.
07

-.

40

.7
4

-.
08

*
-.

48

.6
3

-.
02

-.

12

.7
3

-.
06

-.

44

.5
2

.2
7

.3
0

.8
8

-.
02

*
-.

56

.0
3

.1
0

.0
37

.3
2

.0
6

.3
1

Si
gn

ifi
ca

nt
 c

or
re

la
tio

ns
 (p

<
0.

01
 h

av
e

be
en

 m
ar

ke
d

w
ith

 a
 *

*;
 p

<
0.

05
 w

ith
 *

)

Additional Statistics

 352

In order to interpret the regression parameters, Pearson’s correlation co-
efficients between each dependent variable and disturbing factor are
displayed in Table 113. Significant correlations p<0.01 have been
marked with ** and with * for p<0.05.

Table 113 Pearson’s correlations between the dependent variables and disturbing factors

Correlation
ex

p
_d

ev

ex
p

_j
p

ex
p

_r
ef

ex
p

_s
q

a

ex
p

_m
ai

n

tn

Pr
e-

te
st

in
f_

q
u

a_
LS

EP

in
f_

q
u

a_
EP

ucorr LSEP .283 .444 .330 .177 .411 -.161
.611*

*
.140 -.182

ucorr EP .444
.795*

*
.607*

*
.567

*
.697*

*
.115

.697*
*

.099 .060

know_diff LSEP .042 -.098 .012 -.057 -.020 -.077 -.302
.480

*
-.077

know_diff EP -.273 -.001 .145 -.129
-

.501*
-.400 -.061 .353 -.400

know_diff
_remember LSEP

.320 .075 -.163 -.026 .527* .302 -.292
.492

*
.168

know_diff
_remember EP

.045 .550* .401 .191 .171 -.228 .256 .163 .073

know_diff
_understand LSEP

-.152 -.090 .016 -.289 .076 -.123 -.028 .358 -.123

know_diff
_understand EP

-.309 -.172 -.175 -.112 -.451 -.048 -.268 .224 -.048

know_diff_apply
LSEP

.238 .538* .268 .242 .171 .244 .016 .133 .193

know_diff_apply EP -.201 .167 -.052 -.458 -.155 -.318 .143 -.053 -.311
know_diff_analyze
LSEP

.013 -.140 .085 .119 -.321
.559*

*
-.191 -.047 -.208

know_diff_analyze
EP -.091 .119 .150 -.314 -.313 .060 .013 .290

-
.591*

*
know_diff_create
LSEP

-.004 .261 .332 .110 .084 -.206 .209 .108 -.222

know_diff_create EP -.181 .431 .495* .104 -.079 -.153 -.006 .196 -.174
aeff LSEP -.113 .252 .280 .078 -.073 .008 -.156 -.005 .074
aeff EP -.200 .300 -.026 -.383 -.132 -.208 .003 .048 -.209
acomp LSEP .238 .538* .268 .242 .171 .244 .016 .133 .193
acomp EP -.201 .167 -.052 -.458 -.155 -.318 .143 -.053 -.311
aaccu LSEP -.218 .023 .230 -.041 -.292 .021 .055 -.277 .021
aaccu EP -

.459*
-.305

-
.459*

-.081 -.408 .292
-

.559*
.369 .292

There is a relationship between the correlations and the regression pa-
rameters: Significant regression parameters were found for most de-
pendent variable/disturbing factor combinations where Pearson’s correla-
tion coefficient was significantly high. Hence, high correlations corre-
spond to linear regression, whereas lower correlations refer to non-linear
correlations or no correlation at all. Further, the more the disturbing
factor correlates with the dependent variables, the more the error vari-

High correla-
tions corre-
spond to a
linear regres-
sion and the
chance to
reduce error
variance

Additional Statistics

 353

ance is reduced by the disturbing variable. When the correlation is not
significant, the reduction of the error variance is due to chance. There-
fore, the table gives first indications about which disturbing factors may
reduce error variance. All the cells with a significant regression coeffi-
cient (i.e., slope) have a beta higher than 0.46. Table 112 and Table 113
provide guidance for further applications of ANCOVA and should help to
prevent looking for a needle in a haystack and unsystematic poking into
the data.

Looking at the data of Table 112, the disturbing factors exp_jp and pre-
test correlate with several dependent variables. It can be seen, for exam-
ple, that the understanding correctness for EP depends much more on
human experience than the understanding correctness for LSEP. Almost
all experience disturbing factors correlate significantly with the under-
standing correctness (ucorr). This makes the effect of learning spaces on
understanding correctness less dependent on human experience. It can
be assumed that the p-value for hypothesis tests will decrease further
when ANCOVA is applied with the experience factors for ucorr com-
pared to the results of the corresponding t-test, respectively Wilcoxon
test.

Regarding homoscedasticity, this check was done graphically by looking
at a scatter plot of the residuals. The x-axis stands for the estimated
values of the dependent variable (�) based on the regression equation.
The y-axis stands for the standardized residuals of the observed values.
Figure 106 shows one example of ucorr (EP). The assumption of homo-
scedasticity was fulfilled for all variables because no obvious relationship
between � and the residuals could be found.

Regression Standardized Predicted Value
210-1-2

R
eg

re
ss

io
n

St
an

da
rd

iz
ed

 R
es

id
ua

l

3

2

1

0

-1

-2

Dependent Variable: Understanding Correctness of EP

Figure 106 Scatter plot for testing of homoscedasticity

Check for
homoscedas-
ticity

Additional Statistics

 354

Furthermore, the equality of slopes for both treatments has to be inves-
tigated. This can be done either graphically or by performing a F-test and
testing whether there is a significant treatment*disturbing variable inter-
action. This interaction should be nonsignificant. If the interaction is
significant (p-value < 0.05), then the slopes for the two treatments are
significantly different and the ANCOVA assumption has been violated.
Looking at the values in Table 112, it can be seen that several regression
coefficients differ a lot between both treatments. The regression pa-
rameters were calculated based on data from the LSEP treatment or EP
treatment separately. ANCOVA will use both data sets and will create a
so-called pooled slope (i.e., a kind of average slope of both treatments)
to reduce the difference between the slopes. Therefore, large differences
in Table 112 do not mean that these covariates are not suitable for AN-
COVA. Table 114 shows the results of the univariate ANCOVA, whose
intent was to uncover different slopes of regression lines (i.e., these dis-
turbing factors should not be used in the ANCOVA):

Table 114 P-values of treatment *disturbing factor covariate

Disturbing
variable

Dep. variable

ex
p

_d
ev

ex
p

_j
p

ex
p

_r
ef

ex
p

_s
q

a

ex
p

_m
ai

n

tn

p
re

-t
es

t

in
f_

q
u

a_
LS

EP

in
f_

q
u

a_
EP

ucorr .577 .155 .327 .204 .275 .224 .621 .922 .429
know_diff .423 .747 .757 .905 .239 .103 .381 .409 .469
know_diff_remember .259 .735 .307 .764 .059 .859 .527 .178 .175
know_diff_understand .777 .891 .625 .499 .160 .234 .560 .525 .780
know_diff_apply .211 .153 .322 .055* .359 .185 .719 .565 .118
know_diff_analyze .791 .450 .930 .240 .765 .066 .507 .381 .406
know_diff_create .666 .801 .852 .927 .647 .413 .705 .630 .782
aeff .958 .836 .312 .272 .969 .547 .877 .896 .635
acomp .211 .153 .322 .055* .359 .185 .719 .565 .118
aaccu .450 .331 .038* .905 .711 .147 .058* .054* .421

The cells marked with * were checked graphically by a scatter plot (dep.
variable*disturbing variable).

Check for
equality of
slopes of
regression
lines

Lebenslauf

 355

Lebenslauf

Name Eric Ras

Wohnort Carl-Euler-Str. 53

67663 Kaiserslautern

Geboren 24.07.1975

Geburtsort Luxemburg

Familienstand Verheiratet (ein Kind)

Staatsangehörigkeit Luxemburgisch

Werdegang 1981-1987

1987-1994

1994-2000

2000-heute

Ècole primaire Wincrange

Lycée Technique Wiltz
(Abitur)

Technische Universität
Kaiserslautern
(Dipl.-Technoinform.)

Wissenschaftlicher Mitar-
beiter am Fraunhofer Institut
Experimentelles Software
Engineering, Kaiserslautern

Kaiserslautern, den 18. Dezember 2008

PhD Theses in Experimental Software Engineering

Volume 1 Oliver Laitenberger (2000), Cost-Effective Detection of Software Defects
Through Perspective-based Inspections

Volume 2 Christian Bunse (2000), Pattern-Based Refinement and Translation of
Object-Oriented Models to Code

Volume 3 Andreas Birk (2000), A Knowledge Management Infrastructure for
Systematic Improvement in Software Engineering

Volume 4 Carsten Tautz (2000), Customizing Software Engineering Experience
Management Systems to Organizational Needs

Volume 5 Erik Kamsties (2001), Surfacing Ambiguity in Natural Language
Requirements

Volume 6 Christiane Differding (2001), Adaptive Measurement Plans for Software
Development

Volume 7 Isabella Wieczorek (2001), Improved Software Cost Estimation
A Robust and Interpretable Modeling Method and a Comprehensive
Empirical Investigation

Volume 8 Dietmar Pfahl (2001), An Integrated Approach to Simulation-Based
Learning in Support of Strategic and Project Management in Software
Organisations

Volume 9 Antje von Knethen (2001), Change-Oriented Requirements Traceability
Support for Evolution of Embedded Systems

Volume 10 Jürgen Münch (2001), Muster-basierte Erstellung von Software-
Projektplänen

Volume 11 Dirk Muthig (2002), A Light-weight Approach Facilitating an Evolutionary
Transition Towards Software Product Lines

Volume 12 Klaus Schmid (2003), Planning Software Reuse – A Disciplined Scoping
Approach for Software Product Lines

Volume 13 Jörg Zettel (2003), Anpassbare Methodenassistenz in CASE-Werkzeugen

Volume 14 Ulrike Becker-Kornstaedt (2004), Prospect: a Method for Systematic
Elicitation of Software Processes

Volume 15 Joachim Bayer (2004), View-Based Software Documentation

Volume 16 Markus Nick (2005), Experience Maintenance through Closed-Loop
Feedback

Volume 17 Jean-François Girard (2005), ADORE-AR: Software Architecture
Reconstruction with Partitioning and Clustering

Volume 18 Ramin Tavakoli Kolagari (2006), Requirements Engineering für Software-
Produktlinien eingebetteter, technischer Systeme

Volume 19 Dirk Hamann (2006), Towards an Integrated Approach for Software
Process Improvement: Combining Software Process Assessment and
Software Process Modeling

Volume 20 Bernd Freimut (2006), MAGIC: A Hybrid Modeling Approach for
Optimizing Inspection Cost-Effectiveness

Volume 21 Mark Müller (2006), Analyzing Software Quality Assurance Strategies
through Simulation. Development and Empirical Validation of a Simulation
Model in an Industrial Software Product Line Organization

Volume 22 Holger Diekmann (2008), Software Resource Consumption Engineering for
Mass Produced Embedded System Families

Volume 23 Adam Trendowicz (2008), Software Effort Estimation with Well-Founded
Causal Models

Volume 24 Jens Heidrich (2008), Goal-oriented Quantitative Software Project Control

Volume 25 Alexis Ocampo (2008), The REMIS Approach to Rationale-based Support
for Process Model Evolution

Volume 26 Marcus Trapp (2008), Generating User Interfaces for Ambient Intelligence
Systems; Introducing Client Types as Adaptation Factor

Volume 27 Christian Denger (2009), SafeSpection – A Framework for Systematization
and Customization of Software Hazard Identification by Applying Inspection
Concepts

Volume 28 Andreas Jedlitschka (2009), An Empirical Model of Software Managers’
Information Needs for Software Engineering Technology Selection
A Framework to Support Experimentally-based Software Engineering
Technology Selection

Volume 29 Eric Ras (2009), Learning Spaces: Automatic Context-Aware Enrichment of
Software Engineering Experience

Software Engineering has become one of the major foci of
Computer Science research in Kaiserslautern, Germany. Both the
University of Kaiserslautern‘s Computer Science Department and the
Fraunhofer Institute for Experimental Software Engineering (IESE)
conduct research that subscribes to the development of complex
software applications based on engineering principles. This requires
system and process models for managing complexity, methods and
techniques for ensuring product and process quality, and scalable
formal methods for modeling and simulating system behavior. To
understand the potential and limitations of these technologies, expe-
riments need to be conducted for quantitative and qualitative evalu-
ation and improvement. This line of software engineering research,
which is based on the experimental scientific paradigm, is referred to
as ‘Experimental Software Engineering‘.
In this series, we publish PhD theses from the Fraunhofer Institute
for Experimental Software Engineering (IESE) and from the Software
Engineering Research Groups of the Computer Science Department
at the University of Kaiserslautern. PhD theses that originate else-
where can be included, if accepted by the Editorial Board.

Editor-in-Chief: Prof. Dr. Dieter Rombach
Executive Director of Fraunhofer IESE and Head of the AGSE Group
of the Computer Science Department, University of Kaiserslautern

Editorial Board Member: Prof. Dr. Peter Liggesmeyer
Director of Fraunhofer IESE and Head of the AGDE Group of the
Computer Science Department, University of Kaiserslautern

Editorial Board Member: Prof. Dr. Frank Bomarius
Deputy Director of Fraunhofer IESE and Professor for Computer
Science at the Department of Engineering, University of Applied
Sciences, Kaiserslautern

ISBN: 978-3-8396-0016-0

Ph
D

 T
h

es
es

 in
 E

xp
er

im
en

ta
l S

o
ft

w
ar

e
En

g
in

ee
ri

n
g

AG Software Engineering

