Marker-free GPU-based Digital Image Correlation System for High-Temperature Strain-Controlled Fatigue Measurements

A. Blug^{1*}, D.J. Regina¹, S. Eckmann², M. Senn², C. Eberl², A. Bertz¹, D. Carl¹

¹: Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg, Germany

- ²: Fraunhofer Institute for Mechanics of Materials IWM, Freiburg, Germany
- *: <u>Andreas.blug@ipm.fraunhofer.de</u>; +49 761 8857-328

Annual International DIC Society Conference, November 6-9, 2017, Barcelona, Spain

Standard Strain-controlled Testing (ASTM E 606)

- Strain amplitude resolution of 1 % ⇔ 400 strain measurements per cycle
- Cycle frequency limited by sampling rate: $f_{Cycle} < f_{\varepsilon}/400$
- Typical low cycle fatigue (LCF) lifetime: 10.000 cycles

State-of-the-Art 2D DIC Systems

- Optical extensometers (DIC): $f_{\varepsilon} \sim 160 \ Hz \Leftrightarrow f_{Cycle} < 0.4 \ Hz$ → measurement time of 15 h for 10.000 cycles
- Mechanical extensometers: $f_{\varepsilon} \sim 5000 \ Hz \iff f_{Cycle} \sim 1..10 \ Hz$ → measurement time of 0.3 to 3 h for 10.000 cycles

Reference: Zwick Roell Produktinformation videoXtens 2-120 HP, https://www.zwick.de/extensometer/videoxtens-hp

Setup for Strain-controlled Closed-Loop System

Marker-free DIC Measurement

Sample surface

- Camera resolution: 2040 x 256 pixel
- Field-of-view: 11.2 x 1.4 mm² (5.5 µm/Pixel)

Strain:
$$\varepsilon = \frac{l - l_0}{l_0}$$

Subpixel Displacement Measurement

Ref:

Meas.:

2D Image Correlation of Graphics Boards (GPU)

Calculation on CPU in space domain:

$$c_{ROI}(i,j) = \frac{1}{\sigma_a \sigma_b} \sum_{k=i-r}^{i+r} \sum_{l=j-r}^{j+r} ROI_a(k,l) ROI_b(k+i,l+j) \qquad O(N^2)$$

Calculation on CPU in Fourier domain:

$$c_{ROI}(i,j) = FFT^{-1}(A^*(\omega_i,\omega_j)B(\omega_i,\omega_j)) \qquad O(N \log_2 N)$$

with $A(\omega_i, \omega_j) = FFT(ROI_a(i, j))$ $B(\omega_i, \omega_j) = FFT(ROI_b(i, j))$

Measured correlation rate on Core i7, 256 x 256 Pixel: 600 Hz

Calculation on GPU in Fourier domain: $O(log_2N)$

Measured correlation rate on Nvidia GTX 1080, 256 x 256 Pixel: 12.000 to 25.000 Hz

Strain Measurement with $f_{\varepsilon} = 1.2 \ kHz$ and 10 ROIs

Real-Time Full-field Analysis at 10 Hz with 2500 ROIs

Closed-loop System: Mean Dead Time < 2 ms

Calibration with Strain Gauge

Calibrated strain gauge (Sylvac S_Dial Work Nano Bluetooth 2.5 mm)

Zero-strain Test Result

Out-of-plane Error

Uncertainty \$\Delta z < 0.1 mm\$ in axial direction (sample thinning, machine tolerance ...)
Telecentric lens: \$|\Delta \varepsilon| < 1.5 10^{-4} mm^{-1} \cdot 0.1 mm = 1.5 10^{-5}\$
Standard lens: \$|\Delta \varepsilon| < 68.5 10^{-4} mm^{-1} \cdot 0.1 mm = 68.5 10^{-5}\$

Tactile and Optical Strain Measurements

Strain-controlled Measurement at 1 Hz Cycle Frequency

Strain-controlled LCF-Measurement on Al: Start

🗾 Fraunhofer

IWM

Strain-Controlled LCF-Measurement on Al: After 20 h

Strain-Controlled LCF-Measurement: Stress Amplitude

Marker-free Strain-controlled Measurements at 1000 °C

Rene-80: Coating required above 800 °C

Variation of Cycle Frequency

Conclusion

	Mechanical Extensometer	2D DIC on CPU (state-of-the-art)	2D DIC on GPU
Displacement uncer- tainty (FOV 10 mm)	0,5 µm	0,5 µm	0,5 μm
Contacting	yes	no	no
Strain sampling rate $f_{arepsilon}$	5 kHz	160 Hz	1,2 kHz (dead time: 2 ms)
Cycle frequency <i>f_{Cycle}</i>	1 10 Hz	0,4 Hz	3 Hz
LCF measurement time (10.000 cycles)	0.3 - 3 h	7.5 h	1 h
Full-field analysis	no	yes (offline)	yes (real-time, 10 Hz)
	Errors due to normal pressure and slippage	Contactless, marker required	Contactless, marker-free,

Combines advantages of both, optical and mechanical extensometers

