
Extensibility of Grid-Enabled Data Mining Platforms:
A Case Study

Dennis Wegener
Fraunhofer IAIS

Schloss Birlinghoven
53754 St. Augustin, Germany

+49 2241 14 2261

dennis.wegener@iais.fraunhofer.de

Michael May
Fraunhofer IAIS

Schloss Birlinghoven
53754 St. Augustin, Germany

+49 2241 14 2039
michael.may@iais.fraunhofer.de

ABSTRACT
In this paper, we discuss requirements for a distributed data
mining platform, putting the requirement of extensibility in the
focus. We describe the extensibility of the DataMiningGrid
system and give a case study where we integrate several new
algorithms of the Weka data mining suite into the grid
environment. Using these algorithms on a regression problem, we
evaluate the system’s performance. Additionally we compare the
extensibility with that offered by several other platforms. We
conclude that DataMiningGrid offers a very flexible environment
for integration of third party Data Mining algorithms, and that this
flexibility does not come at the price of a large performance
overhead.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications – grid-
enabled applications; D.2.11 [Software Architectures]: Domain-
specific architectures – service oriented architectures.

General Terms
Algorithms, Management, Measurement, Performance, Design

Keywords
Grid, Service Oriented Architecture (SOA), Data Mining,
DataMiningGrid, Weka

1. INTRODUCTION
Data mining algorithms are known to be computationally
intensive, making scalability a key issue. Distributed data mining
has emerged as an area of research that addresses this issue. A
second issue is that data is sometimes inherently distributed and
cannot be merged in an easy way, e.g. due to organizational
barriers or the amount of data involved.

If one or both of these problems occurs, Grid computing [6]
appears as a promising candidate technology to apply. It is able to

connect single workstations or entire clusters and provides
facilities for data transport and sharing across organizational
boundaries. In recent years, a number of environments for grid-
enabling data mining tools have been described [1,2-5,7,14,16].
Many of those environments have been developed independently
and at the same time. A comprehensive review and comparison of
these alternative architectures is provided in [14]. One interesting
result is that by now we witness some trend to converge on a set
of standard technologies, including Globus Toolkit, WSRF on the
Grid side and Weka on the Data Mining side.

A data-mining expert will typically have the following set of
criteria to make his choice among the available platforms.

1. The application should become more scalable and/or it
should be able to handle distributed data, possibly over
organizational boundaries including firewalls. (This, of
course, is the main reason to use Grid technology from the
application side.)

2. It should be an easy task for the data miner to extend the
environment by his own tools. No modifications of the
original data mining code should be necessary, since this
code may be unavailable.

3. It should not be necessary to programmatically modify the
Grid environment, neither on the server nor on the client
side.

4. Since the data mining expert is usually not a Grid
technology expert, the Grid should remain transparent to the
user.

5. The environment should be based on standard technology.

In this paper, we argue that requirements 2 and 3 – jointly called
the extensibility requirement – are a crucial requirement for a
successful uptake of grid-enabled data mining platforms, and that
it has been only partially addressed by most existing grid-enabled
data mining platforms.

Most platforms seem to assume availability of a dedicated
platform developer responsible for extending the platform by new
algorithms. From this perspective, it is important that the
developer has an easy task in integrating previously existing
algorithms for which no source-code might be available. But it is
assumed that the developer is responsible to modify the platform
itself, e.g. by adding new GUI components and modifying server
and client side source code.

© ACM, (2007). This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in
DM-SSP’07, August 12, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-838-1/07/0008…$5.00.

While this assumption might be reasonable for more traditional
data mining environments, it is often unrealistic in a grid setting.
A main motivation for a data miner in using grid-technology is to
scale up pre-existing specialized algorithms so that they can take
advantage of grid infrastructure for distributed computing and
data sharing. Those specialized algorithms either have been
implemented by the data mining expert himself; or they provide
domain-specific functionality (e.g. in bioinformatics); or their use
is enforced by company policies.

Often, no dedicated grid platform developer willing to integrate
those specialized algorithms will be available. But the data miner
is normally not in a position to modify the source code of the grid
environment itself; it might be unavailable and the learning curve
for making the modifications would be too high anyway.

A grid-enabled data mining platform meeting all the criteria set
out above at the same time is not easy to design. This comes from
the fact that Grid technology is extremely complex and data
mining tools can appear in all sorts of languages and formats.
Matching the variety of formats with the complexity of the Grid,
multiplied by the flexibility of various data distribution strategies,
may in fact suggest that a system matching all this criteria is
almost impossible.

In this paper, we argue that the DataMiningGrid [14] platform
stands out among the various grid-enabled data mining platforms
in meeting the requirements above in a clean design and by
providing a user friendly web interface to integrate new
algorithms into the grid. The system is fully implemented and
distributed as open source.

The rest of this paper is organized as follows. In Sec. 2 we sketch
the architecture of the DataMiningGrid. In Sec. 3 we describe an
extension of the DataMiningGrid platform by three different
algorithms – kNN, Model Trees and Locally Weighted Learning,

taken from the Weak Data Mining suite [18]. We test scalability
and performance using a Grid environment comprising two
clusters in two different organizations in Sec. 4 and show that the
flexibility of the system does not result in a significant overhead.
Finally, in Sec. 5 we compare the DataMiningGrid platform with
a set of alternative Grid-enabled Data Mining platforms.

This paper complements and extends previous work by putting
the extensibility requirement of grid-enabled data mining
platforms at center stage and showing in a detailed case study that
the DataMiningGrid platform meets the above requirements.

This study is partially motivated by the ACGT project, which
aims at developing an open-source grid-enabled biomedical IT
infrastructure to provide tools needed to integrate complex
clinical information in the context of biomedical informatics
research [11]. The ACGT infrastructure has strong requirements
with respect to extensibility.

2. RELATED WORK
The importance of extensibility for data mining platforms has
already been argued in [19]. Today there are a lot of systems
which are capable of distributed data mining. While in [14] a
general comparison of a variety of systems has been done we
focus on the extensibility requirement in this paper. Looking at
the literature, extensibility is addressed in different ways.
GridMiner [3] is designed to support data mining and online-
analytical processing (OLAP) in distributed computing
environments. The system is based on a service oriented
architecture (SOA) supporting OGSA grid services and OGSA-
DAI database access. GridMiner implements a number of
common data mining algorithms, including parallel versions, and
also text mining tasks. A major difference between GridMiner and
DataMiningGrid related to extensibility is that in the GridMiner

Figure 1: DataMiningGrid Application Enabler

system, as well as e.g. in SODDM [5], each data mining
application seems to be integrated as single service. This means
that for each new algorithm there is a need for programming a
new service.
The Federated Analysis Environment for Heterogeneous
Intelligent Mining [2] (FAEHIM) implements a toolkit for grid
based data mining. It consists of data mining grid services and a
workflow engine for service composition. Based on algorithms
taken from Weka, the grid-services split into the types
classification, clustering and association rules. Weka4WS [16] is
a framework for supporting distributed data mining on Grid
environments, designed by using the Web Service Resource
Framework (WSRF) to achieve integration and interoperability
with standard grid environments. Among others, both systems are
based on a special data mining suite, namely Weka. This implies
that the extensibility of these systems is restricted to these
algorithms.
Anteater [7] is a service-oriented architecture (SOA) for data
mining that is based on Web services to achieve extensibility and
interoperability but does not support grid standards such as WSRF
or OGSA. The system provides the capability to distributed fine-
grained parallel data mining applications, based on a runtime
system called Anthill. However, Anteater requires data mining
applications to be converted into a filter-stream structure. While
this feature greatly increases scalability, this approach might limit
the number of applications that will actually be ported to this
platform because of the need for a special customization of every
algorithm to be included.
The Platform Independent Text Mining Engine Tool (Pimiento)
[1] is an object-oriented application framework (OOAF) for text
mining. The Pimiento OOAF aims to hide the complexity implicit
in a text mining engine, the scalable management of text
documents, or access control when developing text mining
applications, facing amongst others the following key
requirements: An open architecture and open interfaces should
ensure the interoperability of the platform and text-mining
applications, a modular approach shall avoid the need for changes
on the applications in case of changes on the platforms
functionality and new applications should not affect the existing
environment and developers without requiring in-depth
knowledge on text mining should be able to add text mining
functionalities to their applications.
The Pimiento OOAF, which can be seen as an application
“template” implemented in Java Standard Edition, provides
advantages such as modularity, reusability, extensibility, and
inversion of control. The different text mining tools implemented
include functions for text categorization, language identification,
clustering and similarity analysis. However, Pimiento is focused
basically on text mining including distributed tasks but does not
seem to address grid aspects as e.g. resource brokering.
Knowledge Grid (K-Grid) [4] is a high-level service-oriented
framework that has been designed to provide grid-based data
mining tools and services. The system facilitates data mining and
related tasks such as data management and knowledge
representation. The system architecture is organized in different
layers: The Core K-Grid Services handle the publication and
discovery of data sources, data mining and visualization tools, and
mining results as well as the management of abstract execution
plans that describe complex data mining processes. The High-
level K-Grid Services are responsible for resource describing
metadata, the mapping of resource requests from the execution

plans to the available resources in the grid and the task execution.
While the development of the DataMiningGrid was driven by the
requirements of a different set of scenarios, the design of K-Grid
was focused on a more conceptual view of the knowledge-
discovery process. Also K-Grid seems to be not available as open
source in the time of writing.
Discovery Net [13] provides a service-oriented computing model
for knowledge discovery, focused on scientific discovery from
high-throughput data generated in life science, geo-hazard and
environmental domains that allows to access and use third party
data analysis software and data sources. Based on Globus Toolkit
the system provides components to declare the properties of
analysis tools and data stores, to integrate various data sources
(e.g. SQL-Databases, OGSA_DAI sources etc.), to discover and
compose Knowledge Discovery Services, to integrate data from
different data sources using XML, and to deploy knowledge
discovery processes as new services. The Discovery Net system
seems not to support WSRF and it is not clear how e.g. the
resource brokering in the grid is addressed.
For the lastly mentioned systems it is not always clearly stated
how the inclusion of new algorithms is done in the systems, e.g.
Pimiento [1] and DiscoveryNet [13]. The KnowledgeGrid [4] if
combined with the Vega front-end seems to be the most similar
system to DataMiningGrid related to the extensibility but may
differ in other aspects. One such aspect is that DataMiningGrid is
available as OpenSource. Also, we did not find any description of
a functionality similar to the DataMiningGrid’s web-based
interface for grid-enabling applications (see Figure 1).

3. DATAMININGGRID
The DataMiningGrid project (2004-2006) is a shared cost
Strategic Targeted Research Project (STREP) granted by the
European Commission (grant no. IST-2004-004475) as part of the
Sixth Framework Programme of the Information Society
Technologies Programme (IST). The main project outcome is a
platform consisting of tools and services for deploying data
mining applications on the grid. The software is freely available
under the Apache License 2.0.

The DataMiningGrid system is designed to meet the requirements
of modern and distributed data mining scenarios. The system is a
service-oriented architecture (SOA) which is based on open
source technology like Globus Toolkit and is compliant to the
common standards Open Grid Service Architecture (OGSA) and
the Web Services Resource Framework (WSRF).

The architecture of the DataMiningGrid system is described in
[14]. The system is based on a layered architecture which consists
of 4 layers: Hardware & Software Resources, Grid middleware,
DataMiningGrid High-Level Services and DataMiningGrid
application Client layer.

The Hardware and Software resource layer refers to the machines
and/or clusters in the grid as well as the grid-enabled applications
and the data they use. The components of the grid middleware
Globus Toolkit, which are used by the DataMiningGrid system
and the DataMiningGrid extensions, are depicted in the grid
middleware layer. This layer also contains an enhanced Condor
Adaptor which allows connecting local Condor [10] pools to the
grid environment. The High-Level Services layer consists of the
components Resource Broker, Information Services and Data
Services. These provide the functionality of resource brokering
[9], providing information about available applications and the

data management inside the system. The client layer refers to the
client side components of the DataMiningGrid system as the
Triana Workflow Editor and Manager [17] and web based clients.
The main user interface is Triana, which was extended by
components for interoperability with the DataMiningGrid
environment. Details on the application’s runtime can be found in
[9].
A typical DataMiningGrid grid environment consists of a head
site that runs unique middleware and high-level services (e.g. the
Resource Broker service, central MDS4 service, Information
Integrator service), several central sites that run the GRAM
service and manage the aggregated resources and a lot of worker
machines orchestrated e.g. by a local scheduler like Condor.
In the DataMiningGrid environment an application is defined as a
stand alone application which is executable (e.g., C, Python, Java)
by command line. A central feature of the system is the
DataMiningGrid Application Description Schema (ADS), which
is used to grid-enable applications in an easy way and helps to
discover applications in the grid, create user interfaces
dynamically and generate the GT4 job descriptions. The schema
is an XML schema for describing the executable application in
order to define how it is used with the system. Each grid-enabled
application refers to a particular instance of the ADS that are
passed, at different levels of specification, between the system
components to manage interaction. In detail, general information
about the application (metadata like name, textual description
etc), execution information (executable file, programming
language, required libraries etc.) and application information (the
number and type of the applications options and data in- and
outputs, the minimum resource requirements etc.) has to be
specified when grid enabling the applications. When executing
the application within a workflow the users specify additional
information like the values for parameters, the specific in- and
output files or directories, the execution machine if the algorithm
is to be shipped to a special machine, etc).
 In order to grid-enable an application the executable has to be
uploaded to the grid and an instance of the ADS describing the
executable has to be created. This can either be done by manually
creating the application description file locally and uploading it
together with the executable to the grid or by using the
DataMiningGrid Application Enabler (Figure 1), a web page that
guides the user through the process of grid enabling. The process
of grid-enabling is shown in the following section.
Triana, as the main user interface for the DataMiningGrid
environment, is used for composition and execution of complex
data mining workflows. A component inside a Triana workflow,
which can be sees as wrapper component that refers to special
operations, is called unit. In order to allow to access and interact
with the DataMiningGrid grid environment, Triana was extended
by a set of those components. Aim of the graphical tool is to
allow to set up even complex distributed data mining workflows

in a user-friendly way, hiding much of the complexity of grid
technology.
The DataMiningGrid Triana units are grouped, together with the
standard Triana units, in a tree-like structure. They are organized
in several subgroups referring to their functionality, e.g. the
Applications package which contains units for application
discovery and selection, the Data Resources package that is
responsible for accessing various data sources, the Execution
package containing units for the execution and monitoring of the
applications, the Provenance package with units for getting
provenance info about the application’s execution and the
Security containing units for creating proxy certificates.
A workflow for running a Weka application that will be used for
the experiments (Figure 2) consists e.g. of the following six units:

• LoadDescription: This unit is from the Applications
package. Unlike the unit ApplicationExplorer from the
same package, which is used to browse the grid wide
application registry, it loads an application description file
from the client machine. For our experiments this is faster
than browsing the grid registry for the application and does
not require user interaction through the process of
application selection. Additionally, in a local application
description file, we are able to set the default parameter
setting to our needs so that less customization of the
applications parameters is necessary at the
ParameterControl unit.

• GridURI: This unit specifies the URI of the file in the grid
which is used as input file for the selected application. This
is faster than browsing the grid, e.g. by the unit
GridExplorer, for the input file and does not require user
interaction.

• ParameterControl: This unit is used for the specification
of the applications parameters, which are in detail the
options, in- and outputs and requirements. For the
parameters sweeps can be specified.

• Execution: The execution unit is used for specifying the
applications output dir and the execution of the application
itself.

• Provenance: The provenance unit shows provenance
information about the applications execution. This is
information about the runtime, the machines used etc. The
provenance information can be stored in an XML-file which
is later used for analysis and the generation of the runtime
figures.

• GridExplorer: The grid explorer is used for browsing the
applications result directory, which contains the
application’s output file as well as the standard out and the
standard err.

Figure 2: Weka Workflow

It would also be possible to specify the input file, parameters etc.
directly in the local application description file. This would result
in a fully specified application description which can directly be
used as input for the execution unit which would make the units
GridURI and ParameterControl redundant. This way of
specifying the applications parameters is less user friendly but
faster in workflow execution once the applications are set up
because it does not need any user interaction before the job
submission at all.

4. GRID ENABLING WEKA-ALGORITHMS
This section describes the grid-enabling of some Weka algorithms
from the data mining expert’s or user’s perspective. The following
subsections will introduce the Weka suite and the algorithms
which are going to be grid enabled as well as the process of grid
enabling.

4.1 Weka
Weka [18] is a comprehensive Data Mining toolbox written in
Java. It is available as Open Source and is in widespread use
especially in the academic community. It has modules for pre-
processing, classification, regression, clustering, feature selection
and visualization. Weka is equipped with a set of user interfaces,
but the individual components can also be run in command-line
mode. We use this second option.

We use Weka 3.5.5 in our experiments to allow easy
reproducibility of our experiments, as well as a performance
comparison with other Grid-enabled Data Mining platforms. We
stress the fact that the DataMiningGrid platform can integrate
algorithms in all sorts of formats and is not limited to Weka.

In our case study, we focus on a regression problem. We use the
following Weka algorithms for our experiments:

4.1.1 K-nearest neighbors classifier (IBK)
K-Nearest-Neighbors [18] is a well-known, simple yet powerful
method both for classification and regression. For predicting an
unknown instance the k nearest instances, according to some
distance function are selected and, for regression, the target value
is calculated using some possibly distance-weighted mean of the
nearest neighbors. Crucial parameters are the correct choice of the
distance function, the weighting function and the number of
neighbors.

4.1.2 Locally weighted learning (LWL)
Locally weighted learning [18] is an instance-based algorithm that
assigns weights to instances according to the distance to the test
instance. This is similar to kNN, but not limited to a fixed number
of neighbors. LWL performs a linear or non-linear regression on
the weighted data, using the weighted instances.

4.1.3 M5P
M5P [18] is a tree-based algorithm. In contrast to a regression
tree, which uses the mean value in the leafs of a tree for
prediction, a linear model is fitted for each leaf.

All three methods have proven to be powerful and robust when
applied to real-world data. Each of them is able to capture the
local structure of a data set.

4.2 Process of grid enabling
The Data Miner’s application to be made available in the grid has
to be compliant to the definition of an application in the
DataMiningGrid environment (see section 2). If the application
that is to be grid enabled supports a flag/value format it can
directly be described with an application description file.
Otherwise a wrapper has to be provided that translates a
flag/value command line call into the format of the specific
algorithm.

As Weka does not use flag/value pairs when specifying
parameters by command line and Weka command line calls do
not execute the algorithms directly but call them through an
evaluation class we need a wrapper component which is
responsible for the transformation of the command line calls. The
Weka source code does not have to be customized. The wrapper
component for the Weka algorithms is the class which is called by
the grid job and has to be capable of the following parameters:

• The class name of the algorithm to execute

• The name/path of the input file

• The class attribute to predict

• The name/path of the output file to create

• The number of cross validation runs which shall be
performed

• The options of the algorithm

As a convenience, we have provided a standard wrapper for
Weka, which does the translation automatically for many Weka
algorithms. This is flexible, because there is no need for a specific
translation for each different algorithm. Even the Weka version
can be changed. The standard wrapper has the disadvantage that it
is not possible to specify parameters for sub-classes for some
algorithms.

The wrapper, together with the Weka distribution, is packaged
into a jar file which is the executable file compliant with the
DataMiningGrid environment.

In order to make the three algorithms available in the grid we now
have to follow the procedure of grid enabling it and create the
application description files. These files are instances of the ADS
and contain the following description for each application: The
information in the element application type is Data Mining
specific metadata about the application like the application’s
name (which is the algorithms name) the group (Weka), the
application domain (Data Mining), the CrispDMPhase (Modeling)
etc. The element general information contains further metadata
such as version, id, a description, the upload date and so on. In
the execution element we have to specify execution type (java),
the main class (e.g. weka.Wrapper), interpreter arguments (e.g.
the maximum java heap size -Xmx1000m) and the application run
file (path to the jar file). The element application information
contains information about the options of the application (which
are the options which can be specified in the Weka GUI) as well
as the number of cross validation folds, the class attribute to
predict and a hidden option specifying the algorithm’s class name.
Each of these options is specified by data type, default value, a
tooltip, the flag, a label shown in the GUI etc. Additionally it
specifies the data input, which is a single file in the arff format,
the data output, which is a text file containing the textual output

Weka creates and the system requirements (which are not set for
the Weka algorithms).
The last step is to upload the executable and the application
description files to the designated place in the grid. Once the
application is grid-enabled it appears in the grid wide application
registry. (It is left to the service provider to define proper access
restrictions for this functionality; it can also be disabled).

5. EXPERIMENTS
In the following we will perform different experiments with the
grid enabled Weka algorithms in the grid. We show two simple
experiments with the execution of a single algorithm with
different parameter settings and one more complex scenario
where we test different classifiers on the same input data.

5.1 The Workflows
At first we will run two experiments in which just a single Weka
algorithm will run in the grid. The workflow which is set up for
running one of the Weka applications was shown in Figure 2. The
workflow, as described in section 2, consists of the six units
LoadDescription, GridURI, ParameterControl, Execution,
Provenance and GridExplorer.
For the more complex experiment there is an obviously more
complex workflow (Figure 5). The units used are more the less
the same but occur multiple times and are renamed in this full
workflow for a clearer view. In principle it consists of 3 times the
workflow from the simple experiments in parallel but with the
same input data and an additional Transfer unit which is
responsible for copying the result files to a single directory.

5.2 The experimental setup
In the following we describe the settings during the execution of
the workflow for the new included Weka algorithms.

The application to execute and the input file are, dependent on the
experiment, preset by the values specified in the
LoadDescription and the GridURI units.

When starting the workflow, it directly passes on to the
ParameterControl unit, where the application’s parameters can
be specified. Most of the setting, e.g. the default values for the
application’s options and the system requirements are preset.
These default values are taken from the application description
file where the default values from the Weka algorithms were

included (e.g. it is specified that each job shall perform 10 fold
cross validation). What is left to be done is the following: We
want to perform jobs which run the same algorithm with different
parameter setting, so we have to select the options on which we
will perform the sweep. At the Options panel of the
ParameterControl unit we can then set the details for the sweep
by choosing either a list or a loop for the parameter. For two
parameters of the M5P algorithm this is shown in Figure 3 (loop)
and Figure 4 (list). Out of these settings the system generates a
multi-job description. The detailed settings which are used for the
experiments in this paper are described in the following section
about the evaluation.

Additionally we have to specify the applications data input. This
is done by just selecting the URI which was passed from the
GridURI unit in the input data drop down box at the Data
mappings tab. At the same tab we have to set the naming of the
output files which will be generated by the Weka algorithm. We
can set some string and additional reference to the variable used
for the parameter sweep so that each output file has a unique
name and is not overwritten.

For the regression experiments all algorithms will be executed on
the same dataset. We used the dataset House(16L) from a
database which was designed on the basis of data provided by US
Census Bureau and is concerned with predicting the median price
of the house in the region based on demographic composition and
a state of housing market in the region. The dataset, which was
taken from the UCI Machine Learning Repository and the UCI
KDD archive [8,12] and made available in the grid environment,
contains 22784 cases and 17 continuous attributes. This size of
data is justified because we are mainly interested in measurements
of the overhead caused by grid computing in the DataMiningGrid
environment which becomes clearer when using smaller datasets.
For the evaluation and the resulting comparison of runtimes on a
different number of machines and with a different number of jobs
we can set execution mode (Fork/Condor) and the maximum
number of machines at the requirements tab. It is not necessary to
restrict these requirements when running jobs.
The next step of the workflow is the execution unit, which
submits the (multi) jobs to the resource broker. The jobs will be
executed, and after all jobs are finished the Provenance unit and
the GridExplorer show the provenance information about the
execution and the result directory.

Figure 3: Parameter sweep - loop

Figure 4: Parameter sweep - list

5.3 Evaluation
In the following we will perform different kind of experiments.
The grid-test bed on which we will run the jobs contains 2
GRAMs (Intel Pentium 4 2.40GHz, 2GB memory) and 6 Condor
processors (AMD Opteron 244 1.80GHz, 4GB memory). An
evaluation on a large test bed is not that easy, because in order to
have comparable results the pool has to be free for the
experiments and the jobs do not get blocked by other users and
wait in the queue for a long time. Therefore the number of
machines on which we run the experiments is not that large, but
we expect the results to look the same on larger pools. For the
evaluation we will vary the number of machines and/or the
number of jobs and we will look at and compare the runtime.

Experiment M5P
During the M5P experiment we submit jobs to the grid which
execute the Weka M5P algorithm with different parameter
settings. The execution mode is Condor, which means that all jobs
are submitted to the Condor pools which are connected to the
GRAMs. In this experiment we will have a fixed number of jobs
and we will vary the number of machines in the grid. We generate
10 jobs in total by using a list for the option BuildRegressionTree
(true/false) and a loop for the option MinNumInstances (from 2 to
10 step 2). These jobs will be submitted to 1 to 6 machines.
Figure 6 visualizes the results of the M5P experiments. The graph
shows the relation of the number of machines in the grid and the
runtime of all 10 jobs. As expected, in general the runtime
decreases the more machines the grid contains till the number of
machines in the grid reaches the number of jobs. The jobs are
distributed equally to the Condor machines.

Table 1 shows the maximum number of jobs which one of the
machines has to compute (e.g. 10 jobs on 3 machines, so 2
machines take 3 jobs and one takes 4). This explains why there is
no decrease in total runtime from 5 to 6 machines.

Table 1: Job distribution M5P

NumMachines 1 2 3 4 5 6

MaxJobNum
per Machine

10 5 4 3 2 2

Figure 6: M5P results. Results in logscale.

Figure 5: Complex Weka Workflow

Experiment IBK
In the IBK experiment we will submit jobs to the grid which
execute the Weka IBK algorithm. We make different experiment
series, each on a different kind of machine/pool, which are
compared afterwards. The jobs are generated by varying the
parameter KNN (from 1 to maximum 16) so that we have up to 16
jobs in total. These jobs will run a) in fork mode on the Globus
machine, b) on a single machine inside the Condor pool and c) on
the whole grid (which consists for our tests of 6 Condor
machines). In each experiment series we have a fixed number of
machines and we will vary the number of jobs.
The result (Figure 7) is as expected. At a) and b) the jobs are all
executed on a single machine, the fork execution on the Globus
machine has worse performance than the Condor machine. The
runtime increases linear, but the Condor execution seems to be
faster. This looks confusing, because the submission from the
Globus machine to Condor should take some time so that the
Condor execution should definitely take longer. The reason for
this result is that the Globus machine has older hardware. When
executing the jobs c) on 6 Condor machines, the runtime also
increases linear, but in comparison to the Condor execution on a
single machine the runtime decreases by a factor about 6.

Figure 7: IBK results

Complex Experiment
This experiment is a more complex experiment with a more
complex workflow than the previous ones. As can be seen in
Figure 5 there are 3 branches inside the workflow which means
that we have 3 application executions in parallel. Each application
execution can, as in the previous experiments, result in a number
of different jobs.
Each branch of the workflow belongs to one of the grid enabled
Weka algorithms. For the M5P and the IBK algorithms we will
vary the same parameters as in the previous experiments. For
LWL we will vary the value for kNN and the weighting kernel,
where we can use a Linear, Epnechnikov, Tricube and Constant
kernel. Inverse and Gaussian kernels increase the runtime in
comparison to the other jobs in a way (by a factor > 25) that the
results are not usable.

For each of the algorithms the same number of jobs is submitted.
Starting from 1 job per algorithm up to 6 we will have from 3 to
18 jobs.
As it is not possible to specify the jobs to run on the same Condor
machine when having 3 different executions in the workflow
(each of the executions would run on a single, but different
machine) and we do not want to remove all but one machine from
the pool we estimate the runtime on a single machine by summing
up and multiplying the runtimes generated by the running of a
single job per algorithm.
The results of the experiment are shown in Figure 8. The results
are as expected and comparable with the ones from the previous
experiment, although the steps in the runtime graph of 6 Condor
machines are not as different. From the experiment we can see
that the runtime does not depend on the complexity of the
workflow but just on the number of jobs which are submitted and
their runtime.

Figure 8: complex experiment results

The evaluation of the different – simple and complex - analysis
scenarios emphasizes the easy set up and submission of data
mining tasks. As the runtime analysis shows, the flexibility of the
system does not result in a big performance overhead. The
runtime of the experiments depend on the speed and the number
of available machines. Grid enabled applications in the
DataMiningGrid system can reach a very good scalability,
especially when making use of organization overlapping
computing resources.

6. CONCLUSION
In the last years, a number of Grid-enabled Data Mining platforms
have been described. We see some technological convergence on
standards based technology, e.g. WSRF and Globus. From a
superficial architectural level one might be tempted to think that
all those platforms are quite similar.

What is needed in the next stage of discussion is a systematic
comparison of the capabilities, the strengths and the weaknesses
of these platforms from a Data Miner’s point of view. In this
paper we made a first attempt to evaluate a system from the user’s
point of view, putting the extensibility requirement at center stage

and investigating in some detail how it is met by the
DataMiningGrid platform.

To this end, we introduced the DataMiningGrid system as
environment for distributed Data Mining in the Grid. In a detailed
case study, we integrated new Weka algorithms into the system.
We have shown that the DataMiningGrid platform stands out
among other platforms by meeting the extensibility requirement
without sacrificing scalability and increasing the grid computing
related overhead.

We gave an evaluation of simple and more complex experiments
which showed that the requirements were met. The system is
capable of handling even more complex scenarios, e.g. where
algorithms or the data should not be moved etc. The system is
user friendly in a way that a data miner is able to use the system -
from the inclusion of new applications to their execution in the
context of complex experiments - without any specific knowledge
of the system details.

For the future, we believe more such case studies and specific
comparisons of functionality from a data miner’s point of view
are needed.

7. ACKNOWLEDGMENTS
This work was supported by the European Commission FP6 grant
No. 004475. The DataMiningGrid Consortium
(www.datamininggrid.org) consists of five organizations:
University of Ulster, Fraunhofer Institute for Intelligent Analysis
and Information Systems IAIS, DaimlerChrysler AG, Technion -
Israel Institute of Technology, and University of Ljubljana. We
hereby acknowledge the cooperation of all DataMiningGrid
partners and collaborators in the DataMiningGrid project.

The authors also gratefully acknowledge the financial support of
the European Commission for the Project ACGT, FP6/2004/IST-
026996.

8. REFERENCES
[1] Adeva, J. and Calvo, R., Text mining with Pimiento, IEEE

Internet Computing 10 (4), 2006, pp. 27-35.
[2] Ali, A.S., Rana, O. and Taylor, I., Web services composition

for distributed data mining, in: Proc of the 2005 IEEE
International Conference on Parallel Processing Workshops
(ICPPW'05), 2005.

[3] Brezany, P., Janciak, I. and AM, A.T., GridMiner: A
fundamental infrastructure for building intelligent grid
systems, in: The 2005 IEEE/WIC/ACM International
Conference on Web Intelligence (WI'05), 2005.

[4] Cannataro, M., Talia, D. and Trufino, P., Distributed data
mining on the grid, Future Generation Computer Systems 18
(8), 2002, pp. 1101-1112.

[5] Cheung, W., Zhang, X.-F., . Luo, Z.-W. and Tong, F.,
Service-oriented distributed data mining, IEEE Internet
Computing 10 (4) 2006, pp. 44-54.

[6] Foster, I., Kesselman, C., and Tuecke, S., “The Anatomy of
the Grid: Enabling Scalable Virtual Organizations,”
International Journal of High Performance Computing
Applications, vol. 15, no. 3, 2001, pp. 200-222.

[7] Guedes, D., Meira, W.J. and Ferreira, R., Anteater: A
service-oriented architecture for high-performance data
mining, IEEE Internet Computing 10 (4), 2006, pp. 36-43.

[8] Hettich, S. and Bay, S. D., The UCI KDD Archive
[http://kdd.ics.uci.edu]. Irvine, CA: University of California,
Department of Information and Computer Science, 1999.

[9] Kravtsov, V., Niessen, T., Stankovski, V., and Schuster, A.,
Service-based Resource Brokering for Grid-based Data
Mining, In Proceedings of The 2006 International
Conference on Grid Computing and Applications, Las-
Vegas, USA, 2006.

[10] Litzkow, M., Livny, M., Experience with the condor
distributed batch system, in: Proc IEEE Workshop on
Experimental Distributed Systems, 1990.

[11] May, M., Potamias, G. and Rüping, S., Grid-based
Knowledge Discovery in Clinico-Genomic Data, In:
Proceedings of the 7th International Symposium on
Biological and Medical Data Analysis (ISBMDA 2006), pp.
219-230, Springer, 2006.

[12] Newman, D.J. & Hettich, S. & Blake, C.L. and Merz, C.J.
UCI Repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html].
Irvine, CA: University of California, Department of
Information and Computer Science, 1998.

[13] Saira, S. A. , Emmanouil, F. S., Ghanem, M., Giannadakis,
N., Guo, Y., Kalaitzopolous, D., Osmond, M., Rowe, A.,
Syed, iJ. and Wendel, P., The design of discovery net:
Towards open grid services for knowledge discovery,
International Journal of High Performance Computing
Applications 17.

[14] Stankovski, V., Swain, M., Kravtsov, V., Niessen, T.,
Wegener, D., Kindermann, J. and Dubitzky, W., Grid-
enabling data mining applications with DataMiningGrid: An
architectural perspective, Future Generation Computer
Systems, 24 (4), 2008, p.p 259-279.

[15] Sotomayor, B. and Childers, L., Globus Toolkit 4:
Programming Java Services, Morgan Kaufmann, 2006.

[16] Talia, D., Trunfio, P. and Verta, O., Weka4WS: A WSRF-
Enabled Weka Toolkit for Distributed Data Mining on Grids.
In Proc. of the 9th European Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD
2005), Vol. 3721:309-320 of LNAI, Springer, Porto,
Portugal, 2005.

[17] Taylor, I., Shields, M., Wang, I. and Harrison, A., The
Triana Workflow Environment: Architecture and
Applications, in: I. Taylor, E. Deelman, D. Gannon, M.
Shields (eds.), Workflows for e-Science, Springer, New
York, NJ, USA, 2007, pp. 320-339.

[18] Witten, I. and Frank, E., Practical machine learning tools and
techniques. 2nd Edition, Morgan Kaufmann, 2005.

[19] Wrobel, S., Wettschereck, D., Emde, W.. Extensibility in
Data Mining Systems. In Simoudis, E, Han, J., and Fayyad,
U., 2nd International Conference on Knowledge Discovery
and Data Mining, KDD-96, 1996, pp. 214-219.

