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ABSTRACT 
In this paper, we discuss requirements for a distributed data 
mining platform, putting the requirement of extensibility in the 
focus. We describe the extensibility of the DataMiningGrid 
system and give a case study where we integrate several new 
algorithms of the Weka data mining suite into the grid 
environment. Using these algorithms on a regression problem, we 
evaluate the system’s performance. Additionally we compare the 
extensibility with that offered by several other platforms. We 
conclude that DataMiningGrid offers a very flexible environment 
for integration of third party Data Mining algorithms, and that this 
flexibility does not come at the price of a large performance 
overhead. 

Categories and Subject Descriptors 
C.2.4 [Distributed Systems]: Distributed applications – grid-
enabled applications; D.2.11 [Software Architectures]: Domain-
specific architectures – service oriented architectures. 

General Terms 
Algorithms, Management, Measurement, Performance, Design  

Keywords 
Grid, Service Oriented Architecture (SOA), Data Mining, 
DataMiningGrid, Weka 

1. INTRODUCTION 
Data mining algorithms are known to be computationally 
intensive, making scalability a key issue. Distributed data mining 
has emerged as an area of research that addresses this issue. A 
second issue is that data is sometimes inherently distributed and 
cannot be merged in an easy way, e.g. due to organizational 
barriers or the amount of data involved. 

If one or both of these problems occurs, Grid computing [6] 
appears as a promising candidate technology to apply. It is able to 

connect single workstations or entire clusters and provides 
facilities for data transport and sharing across organizational 
boundaries. In recent years, a number of environments for grid-
enabling data mining tools have been described [1,2-5,7,14,16]. 
Many of those environments have been developed independently 
and at the same time. A comprehensive review and comparison of 
these alternative architectures is provided in [14]. One interesting 
result is that by now we witness some trend to converge on a set 
of standard technologies, including Globus Toolkit, WSRF on the 
Grid side and Weka on the Data Mining side. 

A data-mining expert will typically have the following set of 
criteria to make his choice among the available platforms. 

1. The application should become more scalable and/or it 
should be able to handle distributed data, possibly over 
organizational boundaries including firewalls. (This, of 
course, is the main reason to use Grid technology from the 
application side.) 

2. It should be an easy task for the data miner to extend the 
environment by his own tools. No modifications of the 
original data mining code should be necessary, since this 
code may be unavailable.  

3. It should not be necessary to programmatically modify the 
Grid environment, neither on the server nor on the client 
side.  

4. Since the data mining expert is usually not a Grid 
technology expert, the Grid should remain transparent to the 
user. 

5. The environment should be based on standard technology. 

In this paper, we argue that requirements 2 and 3 – jointly called 
the extensibility requirement – are a crucial requirement for a 
successful uptake of grid-enabled data mining platforms, and that 
it has been only partially addressed by most existing grid-enabled 
data mining platforms.  

Most platforms seem to assume availability of a dedicated 
platform developer responsible for extending the platform by new 
algorithms. From this perspective, it is important that the 
developer has an easy task in integrating previously existing 
algorithms for which no source-code might be available. But it is 
assumed that the developer is responsible to modify the platform 
itself, e.g. by adding new GUI components and modifying server 
and client side source code. 
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While this assumption might be reasonable for more traditional 
data mining environments, it is often unrealistic in a grid setting. 
A main motivation for a data miner in using grid-technology is to 
scale up pre-existing specialized algorithms so that they can take 
advantage of grid infrastructure for distributed computing and 
data sharing. Those specialized algorithms either have been 
implemented by the data mining expert himself; or they provide 
domain-specific functionality (e.g. in bioinformatics); or their use 
is enforced by company policies. 

Often, no dedicated grid platform developer willing to integrate 
those specialized algorithms will be available. But the data miner 
is normally not in a position to modify the source code of the grid 
environment itself; it might be unavailable and the learning curve 
for making the modifications would be too high anyway. 

A grid-enabled data mining platform meeting all the criteria set 
out above at the same time is not easy to design. This comes from 
the fact that Grid technology is extremely complex and data 
mining tools can appear in all sorts of languages and formats. 
Matching the variety of formats with the complexity of the Grid, 
multiplied by the flexibility of various data distribution strategies, 
may in fact suggest that a system matching all this criteria is 
almost impossible. 

In this paper, we argue that the DataMiningGrid [14] platform 
stands out among the various grid-enabled data mining platforms 
in meeting the requirements above in a clean design and by 
providing a user friendly web interface to integrate new 
algorithms into the grid.  The system is fully implemented and 
distributed as open source. 

The rest of this paper is organized as follows. In Sec. 2 we sketch 
the architecture of the DataMiningGrid. In Sec. 3 we describe an 
extension of the DataMiningGrid platform by three different 
algorithms – kNN, Model Trees and Locally Weighted Learning, 

taken from the Weak Data Mining suite [18]. We test scalability 
and performance using a Grid environment comprising two 
clusters in two different organizations in Sec. 4 and show that the 
flexibility of the system does not result in a significant overhead. 
Finally, in Sec. 5 we compare the DataMiningGrid platform with 
a set of alternative Grid-enabled Data Mining platforms.  

This paper complements and extends previous work by putting 
the extensibility requirement of grid-enabled data mining 
platforms at center stage and showing in a detailed case study that 
the DataMiningGrid platform meets the above requirements. 

This study is partially motivated by the ACGT project, which 
aims at developing an open-source grid-enabled biomedical IT 
infrastructure to provide tools needed to integrate complex 
clinical information in the context of biomedical informatics 
research [11].  The ACGT infrastructure has strong requirements 
with respect to extensibility.  

2. RELATED WORK 
The importance of extensibility for data mining platforms has 
already been argued in [19]. Today there are a lot of systems 
which are capable of distributed data mining. While in [14] a 
general comparison of a variety of systems has been done we 
focus on the extensibility requirement in this paper. Looking at 
the literature, extensibility is addressed in different ways. 
GridMiner [3] is designed to support data mining and online-
analytical processing (OLAP) in distributed computing 
environments. The system is based on a service oriented 
architecture (SOA) supporting OGSA grid services and OGSA-
DAI database access. GridMiner implements a number of 
common data mining algorithms, including parallel versions, and 
also text mining tasks. A major difference between GridMiner and 
DataMiningGrid related to extensibility is that in the GridMiner 

Figure 1: DataMiningGrid Application Enabler 



system, as well as e.g. in SODDM [5], each data mining 
application seems to be integrated as single service. This means 
that for each new algorithm there is a need for programming a 
new service. 
The Federated Analysis Environment for Heterogeneous 
Intelligent Mining [2] (FAEHIM) implements a toolkit for grid 
based data mining. It consists of data mining grid services and a 
workflow engine for service composition. Based on algorithms 
taken from Weka, the grid-services split into the types 
classification, clustering and association rules. Weka4WS [16] is 
a framework for supporting distributed data mining on Grid 
environments, designed by using the Web Service Resource 
Framework (WSRF) to achieve integration and interoperability 
with standard grid environments. Among others, both systems are 
based on a special data mining suite, namely Weka. This implies 
that the extensibility of these systems is restricted to these 
algorithms. 
Anteater [7] is a service-oriented architecture (SOA) for data 
mining that is based on Web services to achieve extensibility and 
interoperability but does not support grid standards such as WSRF 
or OGSA. The system provides the capability to distributed fine-
grained parallel data mining applications, based on a runtime 
system called Anthill. However, Anteater requires data mining 
applications to be converted into a filter-stream structure. While 
this feature greatly increases scalability, this approach might limit 
the number of applications that will actually be ported to this 
platform because of the need for a special customization of every 
algorithm to be included. 
The Platform Independent Text Mining Engine Tool (Pimiento) 
[1] is an object-oriented application framework (OOAF) for text 
mining. The Pimiento OOAF aims to hide the complexity implicit 
in a text mining engine, the scalable management of text 
documents, or access control when developing text mining 
applications, facing amongst others the following key 
requirements: An open architecture and open interfaces should 
ensure the interoperability of the platform and text-mining 
applications, a modular approach shall avoid the need for changes 
on the applications in case of changes on the platforms 
functionality and new applications should not affect the existing 
environment and  developers without requiring in-depth 
knowledge on text mining should be able to add text mining 
functionalities to their applications. 
The Pimiento OOAF, which can be seen as an application 
“template” implemented in Java Standard Edition, provides 
advantages such as modularity, reusability, extensibility, and 
inversion of control. The different text mining tools implemented 
include functions for text categorization, language identification, 
clustering and similarity analysis. However, Pimiento is focused 
basically on text mining including distributed tasks but does not 
seem to address grid aspects as e.g. resource brokering. 
Knowledge Grid (K-Grid) [4] is a high-level service-oriented 
framework that has been designed to provide grid-based data 
mining tools and services. The system facilitates data mining and 
related tasks such as data management and knowledge 
representation. The system architecture is organized in different 
layers: The Core K-Grid Services handle the publication and 
discovery of data sources, data mining and visualization tools, and 
mining results as well as the management of abstract execution 
plans that describe complex data mining processes. The High-
level K-Grid Services are responsible for resource describing 
metadata, the mapping of resource requests from the execution 

plans to the available resources in the grid and the task execution. 
While the development of the DataMiningGrid was driven by the 
requirements of a different set of scenarios, the design of K-Grid 
was focused on a more conceptual view of the knowledge-
discovery process. Also K-Grid seems to be not available as open 
source in the time of writing. 
Discovery Net [13] provides a service-oriented computing model 
for knowledge discovery, focused on scientific discovery from 
high-throughput data generated in life science, geo-hazard and 
environmental domains that allows to access and use third party  
data analysis software and data sources. Based on Globus Toolkit 
the system provides components to declare the properties of 
analysis tools and data stores, to integrate various data sources 
(e.g. SQL-Databases, OGSA_DAI sources etc.), to discover and 
compose Knowledge Discovery Services, to integrate data from 
different data sources using XML, and to deploy knowledge 
discovery processes as new services. The Discovery Net system 
seems not to support WSRF and it is not clear how e.g. the 
resource brokering in the grid is addressed. 
For the lastly mentioned systems it is not always clearly stated 
how the inclusion of new algorithms is done in the systems, e.g. 
Pimiento [1] and DiscoveryNet [13]. The KnowledgeGrid [4] if 
combined with the Vega front-end seems to be the most similar 
system to DataMiningGrid related to the extensibility but may 
differ in other aspects. One such aspect is that DataMiningGrid is 
available as OpenSource. Also, we did not find any description of 
a functionality similar to the DataMiningGrid’s web-based 
interface for grid-enabling applications (see Figure 1).  

3. DATAMININGGRID 
The DataMiningGrid project (2004-2006) is a shared cost 
Strategic Targeted Research Project (STREP) granted by the 
European Commission (grant no. IST-2004-004475) as part of the 
Sixth Framework Programme of the Information Society 
Technologies Programme (IST). The main project outcome is a 
platform consisting of tools and services for deploying data 
mining applications on the grid. The software is freely available 
under the Apache License 2.0. 

The DataMiningGrid system is designed to meet the requirements 
of modern and distributed data mining scenarios. The system is a 
service-oriented architecture (SOA) which is based on open 
source technology like Globus Toolkit and is compliant to the 
common standards Open Grid Service Architecture (OGSA) and 
the Web Services Resource Framework (WSRF).  

The architecture of the DataMiningGrid system is described in 
[14]. The system is based on a layered architecture which consists 
of 4 layers: Hardware & Software Resources, Grid middleware, 
DataMiningGrid High-Level Services and DataMiningGrid 
application Client layer.  

The Hardware and Software resource layer refers to the machines 
and/or clusters in the grid as well as the grid-enabled applications 
and the data they use. The components of the grid middleware 
Globus Toolkit, which are used by the DataMiningGrid system 
and the DataMiningGrid extensions, are depicted in the grid 
middleware layer. This layer also contains an enhanced Condor 
Adaptor which allows connecting local Condor [10] pools to the 
grid environment. The High-Level Services layer consists of the 
components Resource Broker, Information Services and Data 
Services. These provide the functionality of resource brokering 
[9], providing information about available applications and the 



data management inside the system. The client layer refers to the 
client side components of the DataMiningGrid system as the 
Triana Workflow Editor and Manager [17] and web based clients. 
The main user interface is Triana, which was extended by 
components for interoperability with the DataMiningGrid 
environment. Details on the application’s runtime can be found in 
[9]. 
A typical DataMiningGrid grid environment consists of a head 
site that runs unique middleware and high-level services (e.g. the 
Resource Broker service, central MDS4 service, Information 
Integrator service), several central sites that run the GRAM 
service and manage the aggregated resources and a lot of worker 
machines orchestrated e.g. by a local scheduler like Condor. 
In the DataMiningGrid environment an application is defined as a 
stand alone application which is executable (e.g., C, Python, Java) 
by command line. A central feature of the system is the 
DataMiningGrid Application Description Schema (ADS), which 
is used to grid-enable applications in an easy way and helps to 
discover applications in the grid, create user interfaces 
dynamically and generate the GT4 job descriptions. The schema 
is an XML schema for describing the executable application in 
order to define how it is used with the system. Each grid-enabled 
application refers to a particular instance of the ADS that are 
passed, at different levels of specification, between the system 
components to manage interaction. In detail, general information 
about the application (metadata like name, textual description 
etc), execution information (executable file, programming 
language, required libraries etc.) and application information (the 
number and type of the applications options and data in- and 
outputs, the minimum resource requirements etc.) has to be 
specified when grid enabling the applications. When executing 
the application within a workflow the users specify additional 
information like the values for parameters, the specific in- and 
output files or directories, the execution machine if the algorithm 
is to be shipped to a special machine, etc). 
 In order to grid-enable an application the executable has to be 
uploaded to the grid and an instance of the ADS describing the 
executable has to be created. This can either be done by manually 
creating the application description file locally and uploading it 
together with the executable to the grid or by using the 
DataMiningGrid Application Enabler (Figure 1), a web page that 
guides the user through the process of grid enabling. The process 
of grid-enabling is shown in the following section. 
Triana, as the main user interface for the DataMiningGrid 
environment, is used for composition and execution of complex 
data mining workflows. A component inside a Triana workflow, 
which can be sees as wrapper component that refers to special 
operations, is called unit. In order to allow to access and interact 
with the DataMiningGrid grid environment, Triana was extended 
by a set of those components. Aim of the graphical tool is to 
allow to set up even complex distributed data mining workflows 

in a user-friendly way, hiding much of the complexity of grid 
technology.  
The DataMiningGrid Triana units are grouped, together with the 
standard Triana units, in a tree-like structure. They are organized 
in several subgroups referring to their functionality, e.g. the 
Applications package which contains units for application 
discovery and selection, the Data Resources package that is 
responsible for accessing various data sources, the Execution 
package containing units for the execution and monitoring of the 
applications, the Provenance package with units for getting 
provenance info about the application’s execution and the 
Security containing units for creating proxy certificates. 
A workflow for running a Weka application that will be used for 
the experiments (Figure 2) consists e.g. of the following six units: 

• LoadDescription: This unit is from the Applications 
package. Unlike the unit ApplicationExplorer from the 
same package, which is used to browse the grid wide 
application registry, it loads an application description file 
from the client machine. For our experiments this is faster 
than browsing the grid registry for the application and does 
not require user interaction through the process of 
application selection. Additionally, in a local application 
description file, we are able to set the default parameter 
setting to our needs so that less customization of the 
applications parameters is necessary at the 
ParameterControl unit. 

• GridURI: This unit specifies the URI of the file in the grid 
which is used as input file for the selected application. This 
is faster than browsing the grid, e.g. by the unit 
GridExplorer, for the input file and does not require user 
interaction. 

• ParameterControl: This unit is used for the specification 
of the applications parameters, which are in detail the 
options, in- and outputs and requirements. For the 
parameters sweeps can be specified. 

• Execution: The execution unit is used for specifying the 
applications output dir and the execution of the application 
itself. 

• Provenance: The provenance unit shows provenance 
information about the applications execution. This is 
information about the runtime, the machines used etc. The 
provenance information can be stored in an XML-file which 
is later used for analysis and the generation of the runtime 
figures. 

• GridExplorer: The grid explorer is used for browsing the 
applications result directory, which contains the 
application’s output file as well as the standard out and the 
standard err. 

Figure 2: Weka Workflow



It would also be possible to specify the input file, parameters etc. 
directly in the local application description file. This would result 
in a fully specified application description which can directly be 
used as input for the execution unit which would make the units 
GridURI and ParameterControl redundant. This way of 
specifying the applications parameters is less user friendly but 
faster in workflow execution once the applications are set up 
because it does not need any user interaction before the job 
submission at all. 

4. GRID ENABLING WEKA-ALGORITHMS 
This section describes the grid-enabling of some Weka algorithms 
from the data mining expert’s or user’s perspective. The following 
subsections will introduce the Weka suite and the algorithms 
which are going to be grid enabled as well as the process of grid 
enabling. 

4.1 Weka 
Weka [18] is a comprehensive Data Mining toolbox written in 
Java. It is available as Open Source and is in widespread use 
especially in the academic community. It has modules for pre-
processing, classification, regression, clustering, feature selection 
and visualization. Weka is equipped with a set of user interfaces, 
but the individual components can also be run in command-line 
mode. We use this second option. 

We use Weka 3.5.5 in our experiments to allow easy 
reproducibility of our experiments, as well as a performance 
comparison with other Grid-enabled Data Mining platforms. We 
stress the fact that the DataMiningGrid platform can integrate 
algorithms in all sorts of formats and is not limited to Weka.  

In our case study, we focus on a regression problem. We use the 
following Weka algorithms for our experiments: 

4.1.1 K-nearest neighbors classifier (IBK) 
K-Nearest-Neighbors [18] is a well-known, simple yet powerful 
method both for classification and regression. For predicting an 
unknown instance the k nearest instances, according to some 
distance function are selected and, for regression, the target value 
is calculated using some possibly distance-weighted mean of the 
nearest neighbors. Crucial parameters are the correct choice of the 
distance function, the weighting function and the number of 
neighbors.  

4.1.2 Locally weighted learning (LWL) 
Locally weighted learning [18] is an instance-based algorithm that 
assigns weights to instances according to the distance to the test 
instance. This is similar to kNN, but not limited to a fixed number 
of neighbors. LWL performs a linear or non-linear regression on 
the weighted data, using the weighted instances.  

4.1.3 M5P 
M5P [18]  is a tree-based algorithm. In contrast to a regression 
tree, which uses the mean value in the leafs of a tree for 
prediction, a linear model is fitted for each leaf.  

All three methods have proven to be powerful and robust when 
applied to real-world data. Each of them is able to capture the 
local structure of a data set. 

4.2 Process of grid enabling 
The Data Miner’s application to be made available in the grid has 
to be compliant to the definition of an application in the 
DataMiningGrid environment (see section 2). If the application 
that is to be grid enabled supports a flag/value format it can 
directly be described with an application description file. 
Otherwise a wrapper has to be provided that translates a 
flag/value command line call into the format of the specific 
algorithm. 

As Weka does not use flag/value pairs when specifying 
parameters by command line and Weka command line calls do 
not execute the algorithms directly but call them through an 
evaluation class we need a wrapper component which is 
responsible for the transformation of the command line calls. The 
Weka source code does not have to be customized. The wrapper 
component for the Weka algorithms is the class which is called by 
the grid job and has to be capable of the following parameters: 

• The class name of the algorithm to execute 

• The name/path of the input file 

• The class attribute to predict 

• The name/path of the output file to create 

• The number of cross validation runs which shall be 
performed 

• The options of the algorithm 

As a convenience, we have provided a standard wrapper for 
Weka, which does the translation automatically for many Weka 
algorithms. This is flexible, because there is no need for a specific 
translation for each different algorithm. Even the Weka version 
can be changed. The standard wrapper has the disadvantage that it 
is not possible to specify parameters for sub-classes for some 
algorithms. 

The wrapper, together with the Weka distribution, is packaged 
into a jar file which is the executable file compliant with the 
DataMiningGrid environment. 

In order to make the three algorithms available in the grid we now 
have to follow the procedure of grid enabling it and create the 
application description files. These files are instances of the ADS 
and contain the following description for each application: The 
information in the element application type is Data Mining 
specific metadata about the application like the application’s 
name (which is the algorithms name) the group (Weka), the 
application domain (Data Mining), the CrispDMPhase (Modeling) 
etc. The element general information contains further metadata 
such as version, id, a description, the upload date and so on. In 
the execution element we have to specify execution type (java), 
the main class (e.g. weka.Wrapper), interpreter arguments (e.g. 
the maximum java heap size -Xmx1000m) and the application run 
file (path to the jar file). The element application information 
contains information about the options of the application (which 
are the options which can be specified in the Weka GUI) as well 
as the number of cross validation folds, the class attribute to 
predict and a hidden option specifying the algorithm’s class name. 
Each of these options is specified by data type, default value, a 
tooltip, the flag, a label shown in the GUI etc. Additionally it 
specifies the data input, which is a single file in the arff format, 
the data output, which is a text file containing the textual output 



Weka creates and the system requirements (which are not set for 
the Weka algorithms). 
The last step is to upload the executable and the application 
description files to the designated place in the grid. Once the 
application is grid-enabled it appears in the grid wide application 
registry. (It is left to the service provider to define proper access 
restrictions for this functionality; it can also be disabled). 

5. EXPERIMENTS 
In the following we will perform different experiments with the 
grid enabled Weka algorithms in the grid. We show two simple 
experiments with the execution of a single algorithm with 
different parameter settings and one more complex scenario 
where we test different classifiers on the same input data. 

5.1 The Workflows 
At first we will run two experiments in which just a single Weka 
algorithm will run in the grid. The workflow which is set up for 
running one of the Weka applications was shown in Figure 2. The 
workflow, as described in section 2, consists of the six units 
LoadDescription, GridURI, ParameterControl, Execution, 
Provenance and GridExplorer. 
For the more complex experiment there is an obviously more 
complex workflow (Figure 5). The units used are more the less 
the same but occur multiple times and are renamed in this full 
workflow for a clearer view. In principle it consists of 3 times the 
workflow from the simple experiments in parallel but with the 
same input data and an additional Transfer unit which is 
responsible for copying the result files to a single directory. 

5.2 The experimental setup 
In the following we describe the settings during the execution of 
the workflow for the new included Weka algorithms. 

The application to execute and the input file are, dependent on the 
experiment, preset by the values specified in the 
LoadDescription and the GridURI units. 

When starting the workflow, it directly passes on to the 
ParameterControl unit, where the application’s parameters can 
be specified. Most of the setting, e.g. the default values for the 
application’s options and the system requirements are preset. 
These default values are taken from the application description 
file where the default values from the Weka algorithms were 

included (e.g. it is specified that each job shall perform 10 fold 
cross validation). What is left to be done is the following: We 
want to perform jobs which run the same algorithm with different 
parameter setting, so we have to select the options on which we 
will perform the sweep. At the Options panel of the 
ParameterControl unit we can then set the details for the sweep 
by choosing either a list or a loop for the parameter. For two 
parameters of the M5P algorithm this is shown in Figure 3 (loop) 
and Figure 4 (list). Out of these settings the system generates a 
multi-job description. The detailed settings which are used for the 
experiments in this paper are described in the following section 
about the evaluation. 

Additionally we have to specify the applications data input. This 
is done by just selecting the URI which was passed from the 
GridURI unit in the input data drop down box at the Data 
mappings tab. At the same tab we have to set the naming of the 
output files which will be generated by the Weka algorithm. We 
can set some string and additional reference to the variable used 
for the parameter sweep so that each output file has a unique 
name and is not overwritten. 

For the regression experiments all algorithms will be executed on 
the same dataset. We used the dataset House(16L) from a 
database which was designed on the basis of data provided by US 
Census Bureau and is concerned with predicting the median price 
of the house in the region based on demographic composition and 
a state of housing market in the region. The dataset, which was 
taken from the UCI Machine Learning Repository and the UCI 
KDD archive [8,12] and made available in the grid environment, 
contains 22784 cases and 17 continuous attributes. This size of 
data is justified because we are mainly interested in measurements 
of the overhead caused by grid computing in the DataMiningGrid 
environment which becomes clearer when using smaller datasets. 
For the evaluation and the resulting comparison of runtimes on a 
different number of machines and with a different number of jobs 
we can set execution mode (Fork/Condor) and the maximum 
number of machines at the requirements tab. It is not necessary to 
restrict these requirements when running jobs.  
The next step of the workflow is the execution unit, which 
submits the (multi) jobs to the resource broker. The jobs will be 
executed, and after all jobs are finished the Provenance unit and 
the GridExplorer show the provenance information about the 
execution and the result directory. 

Figure 3: Parameter sweep - loop 

Figure 4: Parameter sweep - list



5.3 Evaluation 
In the following we will perform different kind of experiments. 
The grid-test bed on which we will run the jobs contains 2 
GRAMs (Intel Pentium 4 2.40GHz, 2GB memory) and 6 Condor 
processors (AMD Opteron 244 1.80GHz, 4GB memory). An 
evaluation on a large test bed is not that easy, because in order to 
have comparable results the pool has to be free for the 
experiments and the jobs do not get blocked by other users and 
wait in the queue for a long time. Therefore the number of 
machines on which we run the experiments is not that large, but 
we expect the results to look the same on larger pools. For the 
evaluation we will vary the number of machines and/or the 
number of jobs and we will look at and compare the runtime. 
 

Experiment M5P  
During the M5P experiment we submit jobs to the grid which 
execute the Weka M5P algorithm with different parameter 
settings. The execution mode is Condor, which means that all jobs 
are submitted to the Condor pools which are connected to the 
GRAMs. In this experiment we will have a fixed number of jobs 
and we will vary the number of machines in the grid. We generate 
10 jobs in total by using a list for the option BuildRegressionTree 
(true/false) and a loop for the option MinNumInstances (from 2 to 
10 step 2). These jobs will be submitted to 1 to 6 machines. 
Figure 6  visualizes the results of the M5P experiments. The graph 
shows the relation of the number of machines in the grid and the 
runtime of all 10 jobs. As expected, in general the runtime 
decreases the more machines the grid contains till the number of 
machines in the grid reaches the number of jobs. The jobs are 
distributed equally to the Condor machines.  
 

Table 1 shows the maximum number of jobs which one of the 
machines has to compute (e.g. 10 jobs on 3 machines, so 2 
machines take 3 jobs and one takes 4). This explains why there is 
no decrease in total runtime from 5 to 6 machines. 

 
Table 1: Job distribution M5P 

NumMachines 1 2 3 4 5 6 

MaxJobNum 
per Machine 

10 5 4 3 2 2 

 

 
Figure 6: M5P results. Results in logscale.  

Figure 5: Complex Weka Workflow 



Experiment IBK  
In the IBK experiment we will submit jobs to the grid which 
execute the Weka IBK algorithm. We make different experiment 
series, each on a different kind of machine/pool, which are 
compared afterwards. The jobs are generated by varying the 
parameter KNN (from 1 to maximum 16) so that we have up to 16 
jobs in total. These jobs will run a) in fork mode on the Globus 
machine, b) on a single machine inside the Condor pool and c) on 
the whole grid (which consists for our tests of 6 Condor 
machines). In each experiment series we have a fixed number of 
machines and we will vary the number of jobs. 
The result (Figure 7) is as expected. At a) and b) the jobs are all 
executed on a single machine, the fork execution on the Globus 
machine has worse performance than the Condor machine. The 
runtime increases linear, but the Condor execution seems to be 
faster. This looks confusing, because the submission from the 
Globus machine to Condor should take some time so that the 
Condor execution should definitely take longer. The reason for 
this result is that the Globus machine has older hardware. When 
executing the jobs c) on 6 Condor machines, the runtime also 
increases linear, but in comparison to the Condor execution on a 
single machine the runtime decreases by a factor about 6.  
 

 
Figure 7: IBK results 

 
Complex Experiment  
This experiment is a more complex experiment with a more 
complex workflow than the previous ones. As can be seen in 
Figure 5 there are 3 branches inside the workflow which means 
that we have 3 application executions in parallel. Each application 
execution can, as in the previous experiments, result in a number 
of different jobs. 
Each branch of the workflow belongs to one of the grid enabled 
Weka algorithms. For the M5P and the IBK algorithms we will 
vary the same parameters as in the previous experiments. For 
LWL we will vary the value for kNN and the weighting kernel, 
where we can use a Linear, Epnechnikov, Tricube and Constant 
kernel. Inverse and Gaussian kernels increase the runtime in 
comparison to the other jobs in a way (by a factor > 25) that the 
results are not usable.  

For each of the algorithms the same number of jobs is submitted. 
Starting from 1 job per algorithm up to 6 we will have from 3 to 
18 jobs. 
As it is not possible to specify the jobs to run on the same Condor 
machine when having 3 different executions in the workflow 
(each of the executions would run on a single, but different 
machine) and we do not want to remove all but one machine from 
the pool we estimate the runtime on a single machine by summing 
up and multiplying the runtimes generated by the running of a 
single job per algorithm. 
The results of the experiment are shown in Figure 8. The results 
are as expected and comparable with the ones from the previous 
experiment, although the steps in the runtime graph of 6 Condor 
machines are not as different. From the experiment we can see 
that the runtime does not depend on the complexity of the 
workflow but just on the number of jobs which are submitted and 
their runtime. 

 
Figure 8: complex experiment results 

 
The evaluation of the different – simple and complex - analysis 
scenarios emphasizes the easy set up and submission of data 
mining tasks. As the runtime analysis shows, the flexibility of the 
system does not result in a big performance overhead. The 
runtime of the experiments depend on the speed and the number 
of available machines. Grid enabled applications in the 
DataMiningGrid system can reach a very good scalability, 
especially when making use of organization overlapping 
computing resources. 

6. CONCLUSION 
In the last years, a number of Grid-enabled Data Mining platforms 
have been described. We see some technological convergence on 
standards based technology, e.g. WSRF and Globus. From a 
superficial architectural level one might be tempted to think that 
all those platforms are quite similar.  

What is needed in the next stage of discussion is a systematic 
comparison of the capabilities, the strengths and the weaknesses 
of these platforms from a Data Miner’s point of view. In this 
paper we made a first attempt to evaluate a system from the user’s 
point of view, putting the extensibility requirement at center stage 



and investigating in some detail how it is met by the 
DataMiningGrid platform.  

To this end, we introduced the DataMiningGrid system as 
environment for distributed Data Mining in the Grid. In a detailed 
case study, we integrated new Weka algorithms into the system. 
We have shown that the DataMiningGrid platform stands out 
among other platforms by meeting the extensibility requirement 
without sacrificing scalability and increasing the grid computing 
related overhead. 

We gave an evaluation of simple and more complex experiments 
which showed that the requirements were met. The system is 
capable of handling even more complex scenarios, e.g. where 
algorithms or the data should not be moved etc. The system is 
user friendly in a way that a data miner is able to use the system - 
from the inclusion of new applications to their execution in the 
context of complex experiments - without any specific knowledge 
of the system details.  

For the future, we believe more such case studies and specific 
comparisons of functionality from a data miner’s point of view 
are needed. 
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