The eneramic[®] Power Generator – A Reliable Fuel Cell Battery Hybrid System for Off-grid Power Supply

<u>Andreas Pönicke</u>, Sebastian Reuber, Christian Wunderlich, Alexander Michaelis

Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany

38™ INTERNATIONAL CONFERENCE AND EXPOSITION ON ADVANCED CERAMICS AND COMPOSI

January 26-31, 2014 | Hilton Daytona Beach Resort and Ocean Center | Daytona Beach Florida, USA

Need for off-grid power solutions ...

- at low costs
- with long self-contained runtime
- independent from weather conditions
- protected against vandalism

→ Insufficient market solutions

The eneramic[®] power generator Technical specification

Description	Design specification
Technology	Fuel cell battery hybrid system
Operation	Fully automatic, immediately available
Nominal power	100 W _{net} @ 12 V
Fuel	Propane, butane and ethanol fuels
Durability	10,000 h & 250 cycles
Weight / Volume	30 kg / 50 l
Ambient temperature	-15°C up to 35°C

- 2 -

Outline

- System design
- Testing and optimizing operations
 - Core module and stack
 - System prototypes
- Next steps

© Fraunhofer IKTS

System design eneramic[®] prototypes

System prototypes			
Power output	95 W	100 W	105 W
Dimensions	710x510x490 mm	640x425x420 mm	590x420x380 mm
Total volume / Hotbox size	175 / 60 (~ 34 %)	115 / 39 (~ 34 %)	94 / 39 (~ 41 %)
Weight	71 kg	55 kg	36 kg
Produced units	1	1	4

- 5 -

System design Core module development

Developed core modules	Gen-1	Gen-2
Dimensions	70 x 200 x 180 mm	70 x 150 x 170 mm
Volume / incl. isolation	2.52 / 60	1.79 / 39
Total weight / Stack	5.5 kg / 2 kg	4.6 kg / 2 kg
New features	Cathode off-gas pre-heating	New burner and HEX design
Produced units	6	10

- 6 -

System design Components of core module

- Multilayer concept for manufacturing
 → brazed metal sheet technology
- Ease and low cost fabrication
- Integrated manifolds
- Integrated combustion zone
- Reliable and gas-tight design with long-lasting components
 - >140 system cycles without leakage
 - ✓ > 5000 h operation at 850°C

System design SOFC stack

Top plate with current plug

Interconnect Sealing frame Contact ribs

Nickel meshes Sealing frame

Bottom plate with current plug

Planar stack technology

- Crofer 22 APU interconnect
- 3YSZ based electrolyte supported cell
- SiO₂-Al₂O₃-BaO sealing glass

Cost-effective fabrication

- Laser cutting
- Screen printing, dispensing

Outline

System design

- Testing and optimizing operations
 - Core module and stack
 - System prototypes
- Next steps

Core module testing – Gen-1 Short term lab testing – Results shown at 36th ICACC 2012

IKTS

Stack testing in furnace and in core module Analysis and optimization of stack temperatures

Simulated stack temperatures (30th layer) \rightarrow Critical peak especially for sealing materials

30th

Stack in furnace with 3 special interconnect layers (10th, 20th, 30th cell), each with 4 thermocouples

- 11 -

© Fraunhofer IKTS

Many thanks to Gregor Ganzer for the simulation

Stack testing in furnace and in core module Analysis and optimization of stack temperatures

Simulated stack temperatures (30^{th} layer) \rightarrow Critical peak especially for sealing materials

Many thanks to Gregor Ganzer

for the simulation

Previous and modified temperatures in the core module

© Fraunhofer IKTS

- 12 -

Core module testing – Gen-2 Durability testing for 5000 h

Test conditions

- Stack temperature now reduced to 840°C
- Const. current mode \rightarrow 295 mA/cm²

🗾 Fraunhofer

IKTS

© Fraunhofer IKTS

Core module testing – Gen-2 Durability testing for 5000 h

40-cell stack with Ni/GDC anode, system operation with propane

Degradation

 $\Delta P/P_0 < 0.7 \%/1000 h$

Reduction of stack temperature = reduced degradation

Core module testing – Gen-2 Durability testing for 5000 h

Further testing with adjusted parameters

- Const. current mode \rightarrow 313 mA/cm²
- Increased fuel input
- Stack efficiency $\rightarrow \eta_{5000h} = 33.9 \%$
- I ower electric efficiency but enhanced lifetime

Up to now \rightarrow no degradation

Stack testing in furnace Thermal cycling as life-time limiting issue?

濍 Fraunhofer

eneram

Core module testing – Gen 2 Thermal cycling as life-time limiting issue?

Test conditions

- Automated start/stop cycling in test bench
- Const. voltage mode

Results

enerami

- Power degradation due to losses in upper cells
- No cell fractures
- Degradation

 $\Delta P/P_0 < 0.18$ %/cycl.

🗾 Fraunhofer

IKTS

- 17 -

Outline

System design

- Testing and optimizing operations
 - Core module and stack
 - System prototypes
- Next steps

© Fraunhofer IKTS

Testing of eneramic[®] system prototypes Preparation for field testing with LED information board

Operation of eneramic[®] system in metal box

- Protection against weather and vandalism
- Gas supply with 2 x 11 kg gas bottles
- Space for two powerful lead batteries

Aims

- System operation for more than
 500 h with more than 10 cycles
- Operation between -5 to 20°C

Testing of eneramic® system prototypes Preparation for field testing with LED information board

Partial load behavior

Is important to reduce system cycling as power consumption of LED board varies between 20 and 130 W

Stack gross power can be reduced to 70 W

Outline

- System design
- Testing and optimizing operations
 - Core module and stack
 - System prototypes
- Next steps

eneramic[®] by Fraunhofer Next steps

Validation of the safety concept with TÜV (German technical inspection association)

- Environmental tests
- Improving power density, cycleability and losses of power electronics
- Improving manufacturing costs
- Market launch with partners in 2015

© Fraunhofer IKTS

Thank you for your attention.

Thanks for financial support of Fraunhofer future foundation

Contact Andreas.Poenicke@ikts.fraunhofer.de

www.ikts.fraunhofer.de

Stay tuned and visit us at:

Conferences, Exhibitions, Tutorials, Demos, Networks