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Abstract

Tragically, mass gatherings such as music festivals,
sports events or pilgrimage quite often end in terrible crowd
disasters with many victims. In the past, research focused
on developing physical models that model human behavior
in order to simulate pedestrian flows and to identify poten-
tially hazardous locations. However, no automatic systems
for detection of dangerous motion behavior in crowds exist.

In this paper, we present an automatic system for the
detection and early warning of dangerous situations dur-
ing mass events. It is based on optical flow computations
and detects patterns of crowd motion that are characteristic
for hazardous congestions. By applying an online change-
point detection algorithm, the system is capable of identi-
fying changes in pedestrian flow and thus alarms security
personnel to take necessary actions.

1. Introduction
Mass events are (and always have been) popular in hu-

man societies all over the world. Nowadays, typical exam-
ples include sports events, festivals, or concerts. Due to
increasing populations and higher mobility, mass events at-
tract ever growing numbers of visitors and adequate safety
measures are becoming more and more important. Never-
theless, despite of all precautions and the use of technology
such as video surveillance, deadly stampedes and crowd
disasters still occur rather frequently (see Table 1).

At such mass gatherings, the density of the crowd easily
becomes extremely high; studies report densities up to 10
people per square meter [20]. High pedestrian densities usu-
ally come along with typical patterns of mass behavior such
as stop-and-go waves or crowd turbulences [8]. Essentially,
stop-and-go waves show alternating forward pedestrian mo-
tion and backward gap propagation. They occur when the
pedestrian density is critically high and unobstructed pedes-
trian flow becomes impossible [9]. In even more densely
packed crowds, people moving involuntarily induce sudden
movements of other people nearby. These crowd turbu-
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Figure 1. Views of the festival area of the Loveparade 2010 in
Duisburg, Germany [15].

lences propagate through the crowd causing people to stum-
ble and to fall down. As a result, most people die by suffo-
cating due to dangerous pressure of up to 4500 N/m on their
chests [8].

Work towards the prevention of crowd disasters includes
simulations of human behavior in crowds. Using such sim-
ulations, one can identify and defuse places in an environ-
ment that are potentially dangerous. However, human reac-
tions and mass behavior are often unpredictable, in partic-
ular, whenever alcohol consumption is an integral part of a
mass event. Moreover, gathering areas are often large and
become unmanageable if there are many thousands of visi-
tors. In cases like these, automatic video surveillance sys-
tems may help to estimate the visitor density and to detect
indicators of critical situations. This can buy crucial time in
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Year Place Deaths
2010 Loveparade, Duisburg 21
2010 Water Festival, Phnom Phen >380
2006 Stadium, Yemen 51
2006 Pilgrimage, Mena 363
2005 Religious Procession, Bagdad >640
1999 Subway Station, Minsk 53
1990 Pilgrimage, Mena 1426
1989 Stadium, Sheffield 96

Table 1. Examples of recent deadly stampedes and crowd disasters
(see [8]).

which security personnel can be dispatched and streams of
pedestrians can be redirected.

In this paper, we develop a system for motion behavior
analysis of masses that computes dense optical flow fields
which can be calculated in real-time. By using optical flow,
our system avoids the need for detection and tracking of in-
dividual pedestrians which is often impossible due to inap-
propriate camera viewpoints or occlusions due to the large
number of people. Based on histograms of optical flow, we
propose methods to automatically detect congestions and
shock waves. We test this approach on video footage from
the crowd disaster at the Loveparade 2010 in Duisburg, Ger-
many. To the best of our knowledge, this is the first vision-
based system that robustly detects dangerous situations like
overcrowding and crowd turbulences in real-time.

2. Related Work
Pedestrian dynamics have been studied intensively for

more than 40 years. Recently, knowledge about crowd dy-
namics has been used to improve evacuation strategies in
emergency situations and to prevent congestions and over-
crowding (see [22] for an overview). Simulations are a
standard tool in the study of self-organizing effects of large
groups of pedestrians. Physical models modeling pedestri-
ans based on the analogy to gases, fluids or granulates have
been developed in order to account for individual behavior.
The social force model [10, 7] as well as cellular automata
[4, 13] which both model pedestrian dynamics on a micro-
scopic level are among the more widely used approaches.

In addition to simulations, experimental studies are con-
ducted in order to understand human behavior and improve
existing physical models. Parameters such as crowd density,
speed, flow, and crowd pressure (see [9, 19] for definitions)
are determined either manually [18] or by means of digital
image processing [14, 12]. Usually the resulting represen-
tations are based on experimental data and do not consider
real data. Moreover, video-based experiments are typically
carried out using top-view cameras in order to avoid occlu-
sions and to facilitate automatic video analysis. Techniques
that are applied in this context usually detect and track in-

dividuals but there also exist holistic approaches that make
use of optical flow features.

Over the years, various visual tracking approaches have
been reported that were specifically developed for track-
ing pedestrians in crowded scenes [23, 3, 21]. More re-
cently, ideas adopted from simulations of pedestrian dy-
namics were incorporated into the design of visual track-
ing systems. Ali and Shah [2] present a tracking frame-
work inspired by the cellular automaton model [4]. They
automatically calculate force fields that integrate informa-
tion on human behavior as well as the locations of obstacles
and important regions such as exit doors. In their previous
work [1], Ali and Shah propose a flow segmentation frame-
work which enables them to detect changes in flow patterns.
Mehran et al. [16] adopt ideas from the social force model
and estimate interaction forces in order to detect abnormal
events. All these works do not detect and track individuals.
Instead, they apply the technique of particle advection that
places particles onto a grid and moves them according to the
underlying optical flow field. However, in our case, parti-
cle advection is not applicable due to inappropriate camera
view points and the resulting occlusions in situations of high
pedestrian density.

3. Detection of Dangerous Mass Behavior

Traditional approaches to real-time surveillance detect
and track individual people. However, in surveillance of
mass gatherings this is not feasible, since hundreds of peo-
ple are visible from a camera’s viewpoint which necessi-
tates considerable computational efforts. Instead, we con-
sider dense optical flow fields to determine major motion
patterns and motion directions in the crowd. In addition to
computational efficiency, this also guarantees the privacy of
people being monitored.

We compute dense optical flow fields using the method
proposed by Farnebäck [6]. Herein, quadratic polynomials
are used to estimate translations of a local neighborhood and
motion vectors are determined from polynomial expansion
coefficients. In order to account for spatially varying mo-
tion patterns, we superimpose a grid of cells over the video
frames. In case of camera viewpoints similar to that in Fig-
ure 1(b), grid cells towards the back of the scene are smaller
taking perspective distortions into consideration. Given the
dense optical flow field for a grid cell, we compute two-
dimensional histograms (36·100 bins) of motion magnitude
and motion direction of the flow vectors.

3.1. Congestion Detection

In congested areas, the crowd is moving slower or has
come to a halt. When observing such a situation from
above, one can estimate the people’s velocities by consider-
ing the magnitude of optical flow vectors. However, when



the camera’s viewpoint is similar to the viewpoint in Fig-
ure 1(b) where people are going towards the camera, it is
not straightforward to estimate their velocities due to per-
spective effects. In this case, we make use of the follow-
ing observation: In a congested area, one can observe that
people go very slowly while stepping from one foot to the
other in order to keep their balance resulting in oscillating
motions. In fact, Liu et al. [14] reported experiments with
several groups of pedestrians moving with different speeds
from 0.26 m/s to 1.72 m/s. Their movements were filmed
from above and the authors generally observed lateral oscil-
lation in the trajectories. This is due to the fact that people
do not move along a straight line, instead, it is a character-
istic of human gait, that they tend to swing laterally. Liu et
al. [14] also observed that while the amplitude of the lat-
eral oscillation is higher for lower speeds, the frequency
increases for higher speeds. The authors found linear re-
lationships between the velocity and the amplitude as well
as between the velocity and the frequency.

Given these observations, we propose a method for
the automatic detection of dangerous congestion situations.
First, we compute dense optical flow and corresponding
two-dimensional histograms of motion direction and mag-
nitude. Then, we average the histogram over a short time
interval. When observing a scene from above, we can di-
rectly make use of the magnitude of optical flow motion
vectors by computing the center of mass (cdir,t, cmag,t) of
the histogram and taking cmag,t as a feature for congestion
detection for topview cameras. Low values of cmag,t in-
dicate that the velocity of the people is low which might
be indicative for a congestion. Contrarily, when the scene
is observed by a front view camera (see Figure 1(b)), we
make use of increasing lateral oscillations in congestions.
Here, histograms that are indicative of congestion situations
show motion along two major directions (rightwards and
leftwards) which reflect lateral oscillation of the people’s
upper bodies. Such histograms show a high degree of sym-
metry (see Figure 2) so that we measure the mirror symme-
try of an optical flow histogram and consider the resulting
value a feature for congestion detection for front view cam-
eras.

We compute the symmetry measure by summing the
absolute differences between the histogram and a flipped
version of itself. As described above, we subdivide each
frame into a set of cells with cells in the background of
the scene being smaller to account for effects of viewing
perspective. Let Hi,c(dir,magn) be the two-dimensional
histogram of direction and magnitude of cell c at time i.
Then, denoting by Ĥi,c(dir,magn) the flipped version of
Hi,c(dir,magn), we compute

symi,c =
∑

dir,mag

∣∣Ĥi,c(dir,magn)−Hi,c(dir,magn)
∣∣.
(1)

Figure 2. A histogram of optical flow that is characteristic for mo-
tion in congestion situations. It shows small motion along two ma-
jor directions. This left- and rightward motion is caused by people
swinging laterally to keep their balance.

Accordingly, low values of symi,c indicate that
Hi,c(dir,magn) is highly mirror-symmetric and is
indicative for a congested area. Figure 3 shows results
obtained from video footage of the Loveparade.

Now, we apply a sequential change-point detection algo-
rithm for detecting unusual events and congestions in partic-
ular. The method proposed by De Oca et al. [5] extends the
conventional cusum algorithm [17]. It is a non-parametric
cusum algorithm that allows for distributions varying in
time and uses historical data for obtaining suitable thresh-
olds above which an alarm is raised. We extend this algo-
rithm to compute an additional measure that characterizes
the severity of an alarm.

Let us denote an observation symt,c as Yi and consider
a sequence of observations {Yi}Ni=1. We use previous ob-
servations {Yj}i−kj=i−k−l to estimate a reference distribu-
tion where k is a fixed time interval and l is a fixed num-
ber of historical observations that are used for estimating
the reference distribution. Next, we denote the upper and
lower α-percentiles of the reference distribution as Q(α)
and Q(1−α), respectively, where α is specified by the user
and controls the degree a deviation from the reference distri-
bution is considered as critical. The cusum algorithm con-
tinuously accumulates deviations of incoming observations
from the reference distribution:

S+
i = max{0, S+

i−1 + Yi −Q(α)}, S+
0 = 0

S−i = max{0, S−i−1 +Q(1− α)− Yi}, S−0 = 0
(2)

It raises an alarm if either S+
i > Θ or S−i > Θ, where

in the first case, we detect an upward shift of the signal and
a downward shift in the latter case. The threshold Θ is cal-
culated from the reference distribution as follows: Suppose
that the sequence of observations is drawn from the refer-
ence distribution, that is, no anomaly occurs. Using a boot-
strap resampling method, Θ is selected so that the proba-
bility of a false alarm is equal to γ, a parameter specified
by the user. For that purpose, M sequences are sampled
from the reference distribution. For each sampled sequence



m, cusum statistics according to equation 2 are computed
and max{S+

sampled,m, S
−
sampled,m} is determined. Next,

for each sampled sequencem, we select the maximum value
of max{S+

sampled,m, S
−
sampled,m} and compute the thresh-

old Θ as the (1−γ)-percentile from these maximum values.
Whenever either S+

i or S−i exceeds the computed thresh-
old Θ, we raise an alarm. De Oca et al. [5] also propose a
method for detecting the end time of an alarm. They apply
a slope testing technique for detecting a downward trend in
the cusum statistics which indicates that the deviations from
the reference distribution become smaller: Without loss of
generality, we assume that S+

i exceeds Θ at time a (The
same rationale holds for S−i .). Then, a linear regression
model is continuously fitted to a sliding window of cusum
values {S+

i }ni=n−ν+1 for n = a, a + 1, . . . and ν being a
fixed size of the sliding window. The end time of an alarm
is detected, when the slope of the linear regression model
is less than or equal to zero. Then, cusum statistics S+

i

or S−i , respectively, are set to zero. Additionally, we pro-
pose to measure the severity of the raised alarm as a value
L ∈ [0 . . . 1] by computing the angle of the regression line
in degrees and dividing it by 90◦. This is motivated by idea
that the slope of the linear regression model of the cusum
statistics S+

i (or S−i , respectively) depends on the deviation
of the current observation Yi to the reference distribution:
The higher the deviation is compared to the reference dis-
tribution, the larger the slope of the regression line is. If L is
near to one, the slope is large and the situation is considered
to be very critical.

In particular, congestions are characterized by low values
of symt,c as described above. Thus, an alarm raised by the
system is very severe and may indicate a congestion, if L
is near to one and S−i exceeds the threshold indicating that
symt,c decreases due to optical flow histograms becoming
more and more mirror-symmetric. Section 4 gives results
obtained from video sequences showing congested areas.

3.2. Detection of Crowd Turbulences

In areas of extremely high pedestrian density, the move-
ment of a person affects other nearby people. Shock waves
might occur and propagate through the crowd. Situation
like these are extremely dangerous since people cannot con-
trol their motion anymore but are moved by the crowd; peo-
ple who loose their balance and fall down in a shock wave
typically get crushed and suffocate.

Shock waves are characterized by a sudden increase of
the magnitude of the optical flow motion vectors. Moreover,
since several people in a local neighborhood move into the
same direction, the standard deviation of local motion di-
rections σdir is small. Therefore, in order to accomplish the
automatic detection of shock waves, we divide the frame
into C cells. For each cell c and each time t, we compute
µt,c, the average magnitude of optical flow motion vectors.

Then, we compare the current average magnitude to previ-
ously observed values. Let

µprev,c =
1
r

t−1∑
i=t−k

µi,c, r > 1 (3)

be the average magnitude value of frames t − r to t − 1 in
cell c and µt,c the average magnitude of the current frame
t in cell c. Then, we compute a measure for the increment
of local velocities as ac =

µt,c
µprev,c

. As shock waves are

characterized by a sudden acceleration of the crowd and a
small standard deviation of motion directions, we also com-
pute a value pc =

ac
σdir,c

for each cell c. In those cells of a

frame where a shock wave is observed to propagate, pc will
be high. Thus, we compute the average value of all pc for
the entire frame

µframe =
1
C

C∑
c=0

pc, C = total number of cells (4)

as well as the standard deviation σframe of all pc values.
This allows us to detect shock waves in locations where∣∣pc − µframe∣∣ is greater than n · σframe, n = 2.5. Figure
4 shows an example of automatically detected shock wave
regions colored in red.

4. Results
We tested our approach for detecting critical situations

in crowds on video footage from the crowd disaster at the
Loveparade 2010 in Duisburg, Germany. In this terrible
stampede, 21 visitors died and more than 500 were injured.
The festival area was monitored by seven cameras where
three of them were static cameras. Video footage recorded
by all cameras can be downloaded from [15]. In particular,
we analyzed motion patterns from camera 15 that was lo-
cated in the western bridge area (see Figure 1(b) for an ex-
emplary screen-shot). Figure 3 shows the development of
symt,c measuring the mirror symmetry of the optical flow
histograms. To create this plot, we averaged histograms of
optical flow over a time period of 10 seconds and summed
the values of symt,c for the cells in the scene foreground.
We automatically detect change-points in an online manner
using the cusum algorithm presented in section 3.1. Here,
we use l = 90 observations of historical data to estimate a
reference distribution which corresponds to a time interval
of 15 minutes whereas k is set to 30 observations (= 5 min-
utes). We set α, the parameter to control the degree a devia-
tion from the reference distribution is considered as critical,
to 0.95 and γ which controls the probability of false alarms
to 0.1. Next, the parameter ν used in the detection of the end
time of the alarm is set to 8 and M specifying the number
of sampled sequences for computing a suitable threshold is



set to 100. Alarms that have been raised by our system are
colored in red, if the signal is at a low level, whereas a jump
to a high value is marked in green. In the lower part, the
alarm level L is depicted which measures the severity of the
alarm.

Comparing the automatically detected alarms with the
video footage reveals that seven out of ten alarms corre-
spond to anomalies in the video, e.g. ambulances or police
cars crossing the scene. Figure 3 gives interpretations for
these alarms. In particular, at about 16:27 the system raises
a severe alarm (L > 0.7) and reports low values of symt,c

which is indicative for a congestion. In fact, at this time
point the crowd is densely packed and has come to a halt. In
this situation, our system would have detected a very critical
situation and alarmed the security personnel to take neces-
sary actions in order to prevent a deadly stampede.

Only two false alarms at the beginning of the video
recordings are reported which can be explained by the fact
that our system has not yet integrated enough observations
of normal crowd behavior. A third false positive alarm is
raised at 16:17, but has a low severity (L = 0.1) and lasts
for just a few seconds.

We also tested our approach on a dataset recorded by
the Hermes project [11] under laboratory conditions. Here,
pedestrians walk through a corridor with a bottleneck at the
end of the corridor. The scene is recorded by two topview
cameras which distinguished this dataset significantly from
the Loveparade videos. We compute the center of mass
(cdir,t, cmag,t) of the histogram and take cmag,t as a fea-
ture for congestion detection for topview cameras. Using
the proposed change-point detection method, our system
successfully detects different phases: Firstly, it detects that
people enter the field of view. Next, it recognizes a phase
where the corridor is congested and then it correctly iden-
tifies the timepoint when people leave the camera’s field of
view. However, the system reports a false alarm at the be-
ginning, because it has not yet integrated enough observa-
tions.

We also tested our approach for detecting shock waves
on videos from the Loveparade stampede. Particulary, cam-
era 13 (see Figure 1(a)) monitoring the main entry ramp
to the festival area shows short sequences of shock waves
propagating through the densely packed crowd. Regions of
high pressure are automatically detected by the method pre-
sented in section 3.2 and are depicted in Figure 4.

5. Conclusions

Mass events are becoming more and more popular. De-
spite of more than four decades of research in crowd dynam-
ics and pedestrian simulation for improving security, terri-
ble stampedes such as the crowd disaster at the Loveparade
2010 occur all over the world rather frequently.

Figure 4. Detection of Crowd Turbulences. Camera 13 which
monitored the main entry ramp to the Loveparade festival area
shows short sequences of shock waves that are propagated. We
automatically detect regions of high pressure which are colored
red in the above Figure.

We presented a system that automatically detects crit-
ical situations in crowded scenes and warns security per-
sonnel in order to take all necessary actions to prevent a
crowd disaster. Apparently, our computationally efficient
approach to motion pattern analysis is applicable in many
different situations, for example at concerts, in stadiums or
in subway stations. The described features of motion vector
histograms reflects a very general pattern of crowd motion
that is characteristic for hazardous congestions. Moreover,
it preserves privacy of people being monitored at the mass
event, since it does not detect and track individual people.
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