
"�QVCMJDBUJPO�CZ�'SBVOIPGFS�*&4&

5IF�"DDFTTPS�$MBTTJGJDBUJPO�"QQSPBDI�UP�
%FUFDU�"CTUSBDU�%BUB�5ZQFT

"VUIPST�
+FBO�'SBO¾PJT�(JSBSE
.BSUJO�8ÓSUIOFS

*&4&�3FQPSU�/P���������&
7FSTJPO����
%FDFNCFS��������

'SBVOIPGFS *OTUJUVU
&YQFSJNFOUFMMFT

*&4&

4PGUXBSF�&OHJOFFSJOH

'SBVOIPGFS�*&4&�JT�BO�JOTUJUVUF�PG�UIF�
'SBVOIPGFS�(FTFMMTDIBGU�
5IF�JOTUJUVUF�USBOTGFST�JOOPWBUJWF�TPGUXBSF�
EFWFMPQNFOU�UFDIOJRVFT�NFUIPET�BOE�
UPPMT�JOUP�JOEVTUSJBM�QSBDUJDF�BTTJTUT�DPN�
QBOJFT�JO�CVJMEJOH�TPGUXBSF�DPNQFUFODJFT�
DVTUPNJ[FE�UP�UIFJS�OFFET�BOE�IFMQT�UIFN�
UP�FTUBCMJTI�B�DPNQFUFUJWF�NBSLFU�QPTJUJPO�

'SBVOIPGFS�*&4&�JT�EJSFDUFE�CZ
1SPG��%S��%JFUFS�3PNCBDI
4BVFSXJFTFO��
%�������,BJTFSTMBVUFSO

The Accessor Classification Approach to Detect Abstract Data Types

Abstract

This report presents a new approach to identify
abstract data types (ADT) in source code. For each type
defined in a system, this approach assigns a role to func-
tions related to this type. Then, using various heuristics, it
associates these functions with types to form ADTs.

A prototype tool has been implemented to support this
approach. It has been applied to two C systems (31 and 38
Kloc respectively). The ADTs identified by the approach
are compared to those identified by software engineers
who did not know the proposed approach. In a case study,
this approach has been shown to identify, in most cases,
more ADTs than four published techniques applied on the
same systems. This new approach produces a small num-
ber of false positives.

1. Introduction

The Bauhaus project1 aims at recovering the software
architecture of a system “as it is implemented”. That is,
recovering multiple views which would indicate the main
components of the system, their connectors (how they
communicate), and the constraints on these connectors
and components.

This report presents an approach which can be used as a
first step in components identification. A case study
[Gira97a] suggests that abstract data types are instances of
the smallest components which are significant at the archi-
tectural level. The authors have named such building
blocks atomic components, because they can be used to
build larger components.

According to Sommerville [Somm92] an abstract data
type (ADT) is an abstraction of a type which encapsulates
all the type’s valid operations and hides the details of the
implementation of those operations by providing access to
the types exclusively through a well-defined set of opera-
tions.

These atomic components are important to the authors’
research on architecture recovery, but they are also of gen-
eral importance. Their role has been recognized to provide
information hiding and thus to support maintainability
[Ghez91] and reuse [Somm92].

However, these atomic components are not always
explicitly captured in the source code, because program-
ming languages like C do not provide good support to
express them or software development does not always
exploit them. Consequently, reverse engineering tech-
niques are required to identify them in these circum-
stances.

This report presents a new reverse engineering
approach to identify abstract data types (ADT) in source
code. This approach, called accessor classification,
assigns a role (client, constructor, member, violator) to
each function related to a type. When a function related to
more than one type is encountered, the approach either
assigns the function to the type it is mostly related to
(according to its role) or groups the types to form a single
ADT.

In order to evaluate the proposed accessor classification
approach, it was applied to two C systems (31 and 38 Kloc
respectively) and the results were compared to the atomic
components identified by software engineers. four other
published atomic component identification techniques
were applied to these systems. On this benchmark, the
accessor classifcation approach identifies, in most cases,
more correct ADTs than the other techniques.

1. Research collaboration between the Fraunhofer IESE and
the University of Stuttgart.

Jean-François Girard and Martin Würthner

Fraunhofer Institute for
Experimental Software Engineering
Sauerwiesen 6
D-67661 Kaiserslautern, Germany
{girard,wuerthne}@iese.fhg.de

Paper Overview

The remainder of the report is organized as follows:
Section 2 presents related research. Section 3 presents the
approach. Section 4 describes the experiment setup used to
evaluate atomic components identified by automatic tech-
niques. Section 5 discusses results. Section 6 concludes
and proposes further research.

2. Related Research

This section presents a brief overview of the related
research on ADT identification. There is a rich literature
on the detection of ADTs from systems written in proce-
dural languages (usually C). Many techniques [Ogan94,
Gira97a, Yeh95, Canf93a, Canf94] that aim at ADT recov-
ery focus on the relations between types and the parame-
ters and the return type of a function (called function
signature). These relations are usually represented by
edges in a graph where the nodes correspond to functions
and user-defined data types of a system. The basic idea of
these techniques is that the set of connected components of
this graph form the set of ADT candidates. However, these
candidates are often too large, because of functions which
examine or modify structures of many types. As a result,
these ADT candidates often combine and thereby hide
multiple correct reference ADTs.

Each of the following techniques proposes a different
heuristic to avoid these large candidates by imposing addi-
tional conditions on the connected components:

• Same Module heuristic [Gira97a]: It breaks these
large candidates at the module boundary. Thus groups
only those routines, global variables, and types
together that are declared in the same module (i.e.
file_name.c & file_name.h).

• Part Type heuristic [Ogan94]. It filters out types in a
parameter list that are part of another type in the list.

• Internal Access heuristic [Yeh95]: It filters out rou-
tines which do not access to the fields of record types
that are part of an ADT.

• Enumeration & Dominance heuristic [Canf94]: It fil-
ters out enumerations and subranges from the types
considered to form an ADT when the ADT is too
large. It also uses the dominance relation on the call
graph to identify functions which are called only from
an ADT in order to package them with the ADT.

Another approach, Similarity Clustering [Gira99], does
not rely on these connected components, but exploits simi-
larity of context. It groups entities (functions and user-
defined types) according to the proportion of features
(entities they access, their name, the file where they are

defined, etc.) they have in common. The intuition is that if
these features reflect the correct direct and indirect rela-
tionships between these entities, then entities which have
the most similar relationships should belong to the same
ADT. In a case study [Gira99] comparing it with the other
approaches, it identified more ADTs than any of the other
approaches. However, this result comes with a high num-
ber of false positives.

In practice, in languages like C, atomic components are
seldom captured explicitly and software development does
not always exploit them. As a result, their encapsulation is
often violated by direct accesses which bypass the acces-
sor functions of the atomic components. None of these
approaches attempt to identify these violators and to
exclude them from their ADTs. This often leads to ADT
candidates which are larger than what a software engineer
would describe as an ADT.

3. Accessor Classification Approach

In contrast, the accessor classification approach, identi-
fies violators and clients of ADTs, and excludes them from
the ADT candidates it produces. This approach also yields
a small number of false positives due to an early filtering
of invalid ADTs. This translates in shorter review time for
human analysis or better inputs for tools employing ADTs
as an intermediate step toward other abstractions.

3.1. Outline

The accessor classification approach proceeds accord-
ing to the steps depicted in Figure 1.

1. It classifies each function with respect to every type
to which it is related, according to the role this func-
tion plays with respect to this type.

2. It rejects types which do not lead to a valid ADT.
That is, if the type does not have at least one con-
structor, two members and one client.

The desired effect is to reduce the number of func-
tions that are related to more than one type.

3. Hide functions that are violators or clients from their
respective type

4. For each function F related to type X &Y

apply multi-type heuristics to either
- assigns the function to the type it is mostly

related to
- or group type X and Y to form a single ADT.

Figure 1. Approach’s outline

3.2. Roles of Functions

For each type, the functions related to this type are clas-
sified according to their role with respect to the ADT con-
taining the type. The classification uses the following
rules:

• A function F is a constructor of the ADT containing
type T if

- F has T as a return type

- F accesses at least one field of T

- F has no parameter of type T

• F is an member of the ADT containing type T if

- F accesses at least one field of T

- F has a parameter of type T, *T or &T

• F is a client of the ADT containing type T if

- F does not access any field of T

- F calls at least one routine R with parameter of type
T, *T or &T and R accesses at least one field of T

• F is a violator of the ADT containing type T if

- F accesses at least one field of T

- F does not have a parameter of type T, *T or &T

3.3. Multi-type Heuristics

The approach can be extended by adding heuristics to
deal with functions that are related to more than one type.
These heuristics decide if such a function should be
assigned exclusively to one type or if the types should be
grouped to form a single ADT. The following two heuris-
tics have been used to produce the reported results. Given
a function F, which is related to types X and Y:

• F is constructor(X) vs. member(Y)

if X is the type of a field of Y then
remove F as the constructor of X

else
group X and Y in the same ADT

• F is member(X) and member(Y)

group X and Y in the same ADT

4. Experiment Setup

In order to evaluate our accessor classification
approach, it was applied to two medium-size programs,
and the results were then compared to the atomic compo-
nents identified by software engineers. The components
identified by the approach are called the candidate compo-
nents. The atomic components identified by software engi-
neers will be called reference components. This section
summarizes the experimental setup and the analysis
method used.

4.1. Systems Studied

The analyses described above were applied to two
medium size C programs (see Table 1 for their characteris-
tics). Aero is an X window system-based simulator for
rigid body systems [Kell95] and bash is a Unix shell.

4.2. Human Analysts

Four software engineers were given the task of identi-
fying atomic components in each system. These systems
were unknown to them. There was no overlap of their
work. They needed about 20 hours for each system to
gather the atomic components of the respective systems.

The software engineers were provided with the source
code from each system, a summary of connections
between global variables, types, and functions, and guide-
lines defining what is an ADT (and other type of atomic
components they should look for), mentionning that pro-
grammers break encapsulations and that they should fol-
low their understanding of the code rather than structural
rules.

Table 3 shows the numbers abstract data types that
were identified by the group of software engineers for
each studied system.

The variation in experience and the number of people
working on each system prevent comparison of different
techniques across systems. However, a study [Gira99],

Table 1. Systems Studied

System
Name

Version
Lines of

Code

User
Defined
Types

Global
Variables

User
Defined
Routines

aero 1.7 31 Kloc 57 480 488

bash 1.14.4 38 Kloc 60 487 1002

Table 2. Human Analysts.

software
engineer

Programming Experience System
Analyzed

se1 2 years research bash

se2 2 years research bash

se3 5 years research bash

se4 > 5 years industry; 1.5 years research aero

Table 3. Reference Atomic Components.

System #ADT

Aero 10

Bash 22

where these software engineers analyzed the same sub-
systems sugests that the agreement among the ADT identi-
fied is suffient to be used as a reference point.
Furthermore, the fact that none of the software engineers
knew the automatic analyses to be applied to the systems,
prevented a bias toward a specific technique.

4.3. Comparison of Candidate and Reference
Components

This subsection explains how imperfect matches
between candidate and reference components are com-
pared and classified.

Candidate components Cs and reference components
Rs are compared using an approximate matching to
accommodate the fact that the distribution of functions,
global variables, and types into atomic components is
sometimes subjective. We treat one component S as part of
another component T (denoted by S << T) if at least 70
percent of the elements of S are also in T.

Based on this approximation, the generated candidates
are classified into 3 categories according to their useful-
ness to a software engineer looking for atomic compo-
nents:

• Good when the match between a candidate C and a
reference R is close (i.e., C << R and R << C).

Matches of this type require a quick verification in
order to identify the few elements which should be
removed or added to the atomic component.

• Ok when the relationship holds only in one direction
for candidates Ci and references Ri:

- Ci << R, but not R << Ci (i > 0)

- Ri << C, but not C <<Ri (i > 0)

Partial matches of this type require more attention to
split, combine, or refine a component.

• Bad candidate components are not close enough to
the reference components to guide the software engi-
neer’s work.

4.4. Accuracy

In order to indicate the quality of imperfect matches of
candidate and reference components, an accuracy factor
has been associated with each match. The accuracy
between a candidate C and a reference R is computed by
the following formula:

For matches between more than two components (n~1
and 1~n) the union of all elements of the n components is
used to compute the accuracy. The accuracy is not defined

for n~m matches, because the m references are not always
unique.

5. Results

This section compares the atomic components recov-
ered by similarity clustering with those recovered by other
techniques. Then it discusses the impact of false positives.

Benchmark Results.

The following techniques to recover atomic compo-
nents were applied on the two systems described :

• naive connected components

• same module [Gira97a]

• part type [Ogan94]

• internal access [Yeh95]

• accessor classification

The number of recovered ADTs and their accuracy are
reported in Table 4.

The number of atomic components and their accuracy
are not the only aspects to consider, one has to look a the
number of false positives (bad category) and the number
of reference components which were not recognized by a
technique are also important. Both of them are depicted in
Table 5, where one can note that the number of false posi-
tives and missed reference components are similar for
each approach with the exception of same module with
bash and internal access for aero.

accuracy C R,() C R∩
C R∪

------------------=

Table 4. Detected ADT.

Method System
ADT

Good OK

acc. # acc

Naive

Connected
components

Aero 1 1 1 0.31

Bash 7 1 4 0.41

Same
Module

Aero 1 0.91 2 0.30

Bash 2 0.86 3 0.43

Part Type Aero 1 1 2 0.44

Bash 7 1 4 0.44

Internal
Access

Aero 2 0.98 2 0.47

Bash 10 0.93 4 0.40

Accessor
classification

Aero 3 0.93 3 0.41

Bash 15 0.88 2 0.25

6. Conclusions

In this report, we presented a new approach to extract
abstract data types from source code. This approach,
called accessor classification, assigns a role (client, con-
structor, accessor, member, violator) to each function
related to a type. When a function related to more than one
type is encountered, the approach either assigns the func-
tion to the type it is mostly related to (according to its role)
or groups the two types to form a single ADT.

We compared the components identified by a group of
software engineers on two C systems (31 and 38 Kloc
respectively) to the components identified by similarity
clustering and four other published approaches. Our acces-
sor classification approach identifies more ADTs than the
other approaches. Still it performs this task producing a
low number of false positive and missed references similar
to the other approaches.

Future work

This experiment will be extended to a larger number of
systems to obtain more significant results and to be able to
evaluate if these conclusions can be generalized.

New heuristics should be developed to decide if the
functions related to many types should be assigned exclu-
sively to one type or if the types should be grouped to
form a single ADT. Similarly more precise filtering heu-
ristics should be constructed.

Notes

The results for the internal access approach differ from
those previously published, because the approach has been
modified to focus only on fields of records and unions.

Acknowledgment

We would like to express special thanks to Joachim
Bayer, Hiltrud Betz, Stephan Kurpjuweit, Minna
Mäkäräinen, and Klaus Schmid for their manual analysis
of the subject systems used in our comparison.

References

[Bigg89] T. J. Biggerstaff. Design recovery for mainte-
nance and reuse. IEEE Computer, 22:36–49,
July 1989.

[Canf93a] G. Canfora, A. Cimitile, and M. Munro. A re-
verse engineering method for identifying reus-
able abstract data type. In Working
Conference on Reverse Engineering, pages
73–82. May 1993.

[Canf93b] G. Canfora, A. Cimitile, M. Munro, and C. J.
Taylor. Extracting abstract data type from C
programs: A case study. In International Con-
ference on Software Maintenance, pages 200–
9. September 1993.

[Canf94] G. Canfora, A. Cimitile, M.Tortorella, and
M. Munro. A precise method for identifying
reusable abstract data types in code. In Inter-
national Conference on Software Mainte-
nance, pages 404–413. September 1994.

[Ghez91] C. Ghezzi, M. Jazayeri, and D. Madrioli. Fun-
damental Software Engineering. Prentice Hall
International, 1991.

[Gira97a] J.F Girard and R. Koschke. Finding compo-
nents in a hierarchy of modules: a step towards
architectural understanding. In International
Conference on Software Maintenance, 1997.

[Gira97b] J.F Girard, R. Koschke, and G. Schied. Com-
parison of abstract data type and abstract state
encapsulation detection techniques for archi-
tectural understanding. In Fourth Working
Conference on Reverse Engineering, October
1997.

[Gira99] J.-F. Girard, R. Koschke, and G. Schied. A
Metric-based Approach to Detect Abstract
Data Types and State Encapsulations. To be
published in Journal of Automated Software
Engineering, vol 6, 1999.

Table 5: False Positives and Missed References

Technique aero bash

F.P M. F.P. M.

Naive
Connected

Components

4 1 6 2

Same Module 5 7 5 15

Part Type 4 1 7 2

Internal
Access

1 1 4 4

Accessor
Classification

4 3 4 5

[Kell95] H. Keller, H. Stolz, A. Ziegler, and T. Bräunl.
Virtual mechanics simulation and animation
of rigid body systems with aero. Simulation
for Understanding, 65(1):74–79, July 1995.

[Ogan94] R.M. Ogando, S.S. Yau, and N. Wilde. An ob-
ject finder for program structure understand-
ing in software maintenance. Journal of
Software Maintenance, 6(5):261–83, Septem-
ber-October 1994.

[Rich92] Richter. Classification and learning of similar-
ity measures. In Annual Conference of the
German Society for Classification, number
16th. Springer Verlag, 1992.

[Schw91] R. W. Schwanke. An intelligent tool for re-en-
gineering software modularity. In Internation-
al Conference on Software Engineering, pages
83–92, May 1991.

[Shan72] C. E. Shannon. The mathematical theory of
communication. Urbana: Univ. of Ill. Press,
1972. ISBN 0-252-72548-4.

[Somm92] I. Sommerville. Software Engineering. Addi-
son Wesley, fourth edition, 1992.

[Yeh95] A.S. Yeh, D.Harris, and H. Reubenstein. Re-
covering abstract data types and object in-
stances from a conventional procedural
language. In Second Working Conference on
Reverse Engineering, pages 227–236, Los
Alamitos, California, July 1995.

$PQZSJHIU������'SBVOIPGFS�*&4&�
"MM�SJHIUT�SFTFSWFE��/P�QBSU�PG�UIJT�QVCMJDBUJPO�NBZ�
CF�SFQSPEVDFE�TUPSFE�JO�B�SFUSJFWBM�TZTUFN�PS�USBOT�
NJUUFE�JO�BOZ�GPSN�PS�CZ�BOZ�NFBOT�JODMVEJOH�
XJUIPVU�MJNJUBUJPO�QIPUPDPQZJOH�SFDPSEJOH�PS�
PUIFSXJTF�XJUIPVU�UIF�QSJPS�XSJUUFO�QFSNJTTJPO�PG�
UIF�QVCMJTIFS��8SJUUFO�QFSNJTTJPO�JT�OPU�OFFEFE�JG�
UIJT�QVCMJDBUJPO�JT�EJTUSJCVUFE�GPS�OPO�DPNNFSDJBM�
QVSQPTFT�

%PDVNFOU�*OGPSNBUJPO

5JUMF� 5IF�"DDFTTPS�$MBTTJGJDB�
UJPO�"QQSPBDI�UP�%FUFDU�
"CTUSBDU�%BUB�5ZQFT

%BUF� %FDFNCFS��������
3FQPSU� *&4&��������&
4UBUVT� 'JOBM
%JTUSJCVUJPO� 1VCMJD

