
RWTH Aachen University

Master Thesis

University Degree in Software System Engineering
2018-2021

Master Thesis

“Design and evaluation of a subsystem
(mircoservice) to create a deployment
client for AI pipelines based on docker

containers using gRPC”

Author

Sajid Naeem

Examiners

Prof. Dr. Jens Lehmann
Prof. Dr. Sven Behnke

Supervisor

Martin Welß

ABSTRACT

Before docker container technology, manual deployment of an application is complex,
resource, and time-consuming. With the help of Kubernetes, it is possible to automati-
cally deploy and manage the AI pipelines on a standard cluster. The thesis aims to provide
the link between the AI4EU experiment platform catalog from the execution environment
to make the system more scalable. In this thesis, we design a solution and implement
the Kubernetes client, which takes the AI pipeline’s topology as input from the catalog
and constructs the deployment and service for all the nodes of the AI pipeline for the
execution environment. Kubernetes client also generates a container specification based
on the pipeline’s topology, which the orchestrator uses to execute the pipeline. Different
AI pipelines are deployed in separate namespaces with the help of a generic deployment
script supporting standard Kubernetes cluster and minikube. The Kubernetes client tested
on simple, advance, and hybrid AI pipelines and is also integrated with the production en-
vironment of the AI4EU experiment platform and gets feedback from the AI community
of this platform.

Keywords: docker, Kubernetes, AI Pipelines, AI4EU experiment platform

iii

DEDICATION

First, I want to thanks my colleague and my supervisor Martin Welß for his support
throughout my thesis work. I am thankful to Martin Welß for supporting me when I was
suffering from the Covid-19 infection and for providing me such a good infrastructure
and other technical supports for experimentation.

Secondly, I would like to show my intense gratitude toward Prof. Dr. Jens Lehmann
and Prof. Dr. Sven Behnke for supporting me. I am thankful to the AI4EU experiment
platform community who are working with me. I am grateful to Fraunhofer IAIS and
especially the NetMedia department for providing me everything for my thesis.

Lastly, I want to thanks my wife and my parents for motivating me to study and work
hard and for every kind of emotional support. I am also thankful to all of my friends for
supporting me.

Aachen, March 30, 2021

Sajid Naeem

v

Zentrales Prüfungsamt/Central Examination Office

Eidesstattliche Versicherung
Statutory Declaration in Lieu of an Oath

___________________________ ___________________________

Name, Vorname/Last Name, First Name Matrikelnummer (freiwillige Angabe)
Matriculation No. (optional)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/

Masterarbeit* mit dem Titel
I hereby declare in lieu of an oath that I have completed the present paper/Bachelor thesis/Master thesis* entitled

__

__

__

selbstständig und ohne unzulässige fremde Hilfe (insbes. akademisches Ghostwriting)

erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt.

Für den Fall, dass die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre ich,

dass die schriftliche und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in

gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
independently and without illegitimate assistance from third parties (such as academic ghostwriters). I have used no other than

the specified sources and aids. In case that the thesis is additionally submitted in an electronic format, I declare that the written

and electronic versions are fully identical. The thesis has not been submitted to any examination body in this, or similar, form.

___________________________ ___________________________

Ort, Datum/City, Date Unterschrift/Signature

 *Nichtzutreffendes bitte streichen

*Please delete as appropriate

Belehrung:
Official Notification:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung

falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei

Jahren oder mit Geldstrafe bestraft.

Para. 156 StGB (German Criminal Code): False Statutory Declarations

Whoever before a public authority competent to administer statutory declarations falsely makes such a declaration or falsely

testifies while referring to such a declaration shall be liable to imprisonment not exceeding three years or a fine.
§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so

tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158

Abs. 2 und 3 gelten entsprechend.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to Negligence

(1) If a person commits one of the offences listed in sections 154 through 156 negligently the penalty shall be imprisonment not
exceeding one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time. The provisions of section 158 (2)
and (3) shall apply accordingly.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:
I have read and understood the above official notification:

___________________________ ___________________________

Ort, Datum/City, Date Unterschrift/Signature

viii

CONTENTS

1. INTRODUCTION. 1

1.1. Motivation . 2

1.2. Problem Description . 2

1.3. Objective . 3

1.4. Goal . 3

1.5. Research Problem . 4

1.6. Layout of Thesis . 4

2. BACKGROUND . 5

2.1. Web Services . 5

2.1.1. SOAP . 7

2.1.2. REST . 8

2.2. AI4EU Experiment Platform . 9

2.2.1. Web Onboarding . 10

2.2.2. Design Studio. 11

2.2.3. Market Place . 11

2.3. Technology Utilization . 12

2.3.1. Why Docker is used for virtualization in AI4EU experiment platform
instead of Virtual Machine . 12

2.3.2. Docker Execution Environment. 14

2.4. Kubernetes . 15

2.4.1. Pods . 16

2.4.2. Deployments . 16

2.4.3. Service . 16

2.4.4. Namespaces. 16

2.4.5. Kubernetes Persistent Volumes . 17

2.5. Pykaldi . 17

3. RELATED WORK . 18

3.1. AI Platform Pipelines . 18

x

3.2. Acumos . 18

4. METHODOLOGY . 20

4.1. AI4EU Experiment Platform Solution Deployment in Private Kubernetes Clus-
ter . 20

4.1.1. Kubernetes Client Architecture . 21

4.2. Component Design of Kubernetes Client . 23

4.2.1. Common Data Service . 25

4.2.2. Automatic Generation of Services and Deployments 26

4.2.3. Docker image handling . 29

4.3. Mapping of the Pipeline Topology to the Artifacts 30

4.3.1. Pipeline Topology . 31

4.3.2. Container Specifications . 31

4.4. Kubernetes Deployment Script . 31

4.5. Generic Serial Orchestrator . 33

4.6. Challenges Faced During Development . 33

5. EXPERIMENTS. 35

5.1. AI Pipelines and Its Deployment . 35

5.2. Example Pipelines . 35

5.2.1. Deployment of Simple Solution . 36

5.2.2. Deployment of Composite Solution . 36

5.3. How to make a Pipeline more Robust and Secure 40

5.4. Challenges Faced During Experimentation . 42

6. DISCUSSION . 43

7. CONCLUSION AND FUTURE WORK . 46

BIBLIOGRAPHY. 48

xi

LIST OF FIGURES

2.1 Communication Between Client and Web Server via Internet 6

2.2 SOAP Nodes . 7

2.3 Rest API Method . 8

2.4 Modern Approach of Rest API . 9

2.5 Audio Pipeline . 11

2.6 A Comparison of Virtual Machine and Docker Container Design [14] . . 13

2.7 Docker Engine . 13

4.1 Solution Folder . 21

4.2 Kubernetes Client Architecture . 22

4.3 Kubernetes Client Execution . 24

4.4 Solution Package . 25

4.5 Creation of Solution Package . 26

4.6 NodePort Service . 27

4.7 Deployment of Sentiment Analysis . 30

4.8 Topology of Sentiment Analysis Pipeline 32

4.9 Container Specification of Sentiment Analysis Pipeline 33

5.1 Audio Segmentation Docker Image . 37

5.2 Simple Solution of Sentiment Analysis 38

5.3 Audio Dialogue Creator Pipeline . 39

5.4 Audio Segmentation Docker Image . 41

5.5 Limiting the Pod Capabilities . 41

xiii

LISTINGS

2.1 Sentiment Analysis Protobuf Definition [1] 9
4.1 Sentiment Analysis Service . 27
4.2 Sentiment Analysis Deployment . 28
5.1 Audio Data Broker [2] . 37
5.2 Audio Segmentation [2] . 38
5.3 Container User . 40

xv

1. INTRODUCTION

Nowadays, micro-services architecture is gaining very popularity in the software de-
velopment industry. This architectural approach is used for building a distributed appli-
cation to achieve faster delivery, high availability, independently deployable, and scalable
system. In this approach, the software is broken into smaller methods, running as an in-
dependent micro-service that can be extended and deployed easily without affecting the
other running micro-services. Usually, services are distributed on multiple hosts, which
is challenging to track and deploy. A stand-alone micro-service can be deployed into
different programming languages with different dependencies like it requires a different
framework, libraries, and data sets. It makes deployment a complex and challenging task
because it requires more resources to manage. These problems are solved using state-of-
the-art Docker container technology.

Docker is a tool used for building and running a stand-alone containerized application
that contains all of its dependencies. For each micro-service, one docker container is cre-
ated, which is itself a stand-alone application. Communication and data-sharing between
the running containers are done with the help of the gRPC framework. In a production en-
vironment, the container is an excellent way to pack all its requirements in one place, but
its management is a challenging task. For example, if one container goes down, then the
new container needs to start immediately. This problem is solved by Kubernetes, which
ensures that there is no downtime. Kubernetes is an open-source orchestration tool which
used for the management of containerized application and their automatic deployment.
With the combination of these toolsets, we get a loosely coupled design, independently
deployable components, communication between the service is managed by the Kuber-
netes.

For the implementation of our designed solution, we are using AI4EU Experiment
platform, and we are practicing a microservice-based design approach. AI4EU platform
is based on ACUMOS instances with lots of customization. In the customization of the
ACUMOS instance, our approach was to build a language-agnostic instance that is solved
using gRPC. The AI4EU experiment platform provides the facilities for modular AI so-
lutions that support the different required languages. The first step is the AI resource
onboarding which needs three things:

• A service definition implemented as a protobuf file (.proto)

• A license as a JSON file (license.json)

• A docker image URI, which is a reference to a container image.

A container contains a core programming logic, and it may be a data broker or generic
data broker, a pre-trained model or training model, etc. The next step is to design a

1

pipeline by using a design studio. The design studio is a visual editor of the AI4EU ex-
periment used to make an AI pipeline. This visual editor provides essential tools and per-
ceptions for creating an AI solution, e.g., the matching point of nodes highlighted while
constructing a pipeline. After making the pipeline, the design studio checks the connec-
tions between the nodes based on the protobuf interface definitions and then saves and
validates it. In the AI4EU experiment platform, every node of a pipeline is considered an
AI model. Design Studio provides the topology of an AI pipeline. Kubernetes-client uses
the topology for the generation of micro-services and is also used to create deployment
and services for each node of a pipeline and later download all the generated artifacts of
the pipeline and run the deployment script to deploy the solution locally. After deploy-
ment, an orchestration is used for the execution of the whole pipeline. The later section
of the first chapter explains the problem statement and my motivation toward the thesis.

1.1. Motivation

This section highlights the urge behind this thesis work. The motivation comes from the
AI4EU experiment platform, which brings scientists, researchers, experts, and compa-
nies on one platform to design and solve AI-based problems. The other motivation is
the learning aspect of the project as it provides the opportunity to work with state-of-
art technologies such Kubernetes, docker, java, gRPC, and google Protobuf, etc. This
project allows me to deploy my solution in the production environment and then received
feedback from the AI community.

1.2. Problem Description

In the project AI4EU, a format has been specified for re-usable building blocks of AI
pipelines. The typical granularity of such building blocks is a model (e.g., a model for
speaker recognition and not single deep learning layers). The format mainly specifies the
model to be a docker container that exposes its public services by gRPC/protobuf. There
is already a visual editor that allows the composition of a pipeline by Drag and Drop. The
result of the visual editor is the descriptions of the topology. On the way to the execution
of the pipeline, two more steps are needed. First, the deployment of the pipeline to an
execution environment (Kubernetes), and second, a runtime-orchestrator has to control
the actual execution of the pipeline.

Design and evaluate a subsystem (microservice) to create a deployment client for AI
pipelines based on docker containers using gRPC. An AI pipeline in this context consists
of nodes (docker containers) and edges (information flow), thus forming a graph. The
deployment client will create the necessary Kubernetes artifacts like deployment.yaml,
service.yaml and container specifications (docker-info.json) based on the pipeline topol-
ogy specification (blueprint.json). The following tasks require to be completed in the
course of this master thesis:

2

1. Design and implement deployment client, which will create the deployments and
services for the AI pipeline. It should work for a simple and advanced pipeline. The
deployment client should provide the script which deploys the generated artifacts
in the local environment.

2. Analyse the format for the topology specification file (blueprint. json) and create
node parameters (docker-info.json), taking into account the scenarios from step 1
and describe the transformation rules.

3. Design and implement the subsystem as well as the necessary algorithms and test it
with scenarios from step 1.

4. Verify the solution in a Kubernetes cluster by running the orchestrator to execute
the pipeline.

1.3. Objective

The main objective is to design a deployment client which will generate artifacts from the
topology of a pipeline and the topology generated from the design studio. The resultant
artifacts will include deployment and services for each node with correct node mapping
independent of the local execution environment. The deployment script is responsible for
running all the services and deployments. All the running services should be accessible
from the orchestrator. All the DNS name resolution should be resolved and stored in a
docker-info file, and the deployment script will return the IP address and node port of the
orchestrator server. In the end, the result should be tested on a single node pipeline and
also on a composite solution pipeline.

The designed deployment client will run on different AI pipelines. Simple pipelines
include house price prediction and sentiment analysis examples. The deployment client
will also be working fine with an advanced AI pipeline, for example, an audio mining
pipeline. This audio mining pipeline will be implemented using open-source software
pyKaldi by using its pre-trained models. The client should also work fine with the hybrid
pipeline, for example, sudoku.

1.4. Goal

The goal of the thesis, design and implement a scientific solution for deployment clients,
which will work for all kinds of the pipeline. It will consider a simple, advance, and hy-
brid pipeline. The designed solution is integrated into the AI4EU experiment platform.
The deployment client will provide the connection between the AI4EU experiment plat-
form catalog and the local execution environment. The deployment client should create
the artifacts for all kinds of models. The model should be implemented in any program-
ming language, so the deployment client is independent of any programming language.

3

Multiple pipelines should be deployed in a separate way to ensure the separation of con-
cerns.

1.5. Research Problem

Following are the research questions that will be answered in this master thesis.

• RQ1: How can we connect the AI4EU experiment platform catalog and its execu-
tion environment?

• RQ2: How can we transform the topology of the AI pipeline to deployment
artifacts by using scientific research approach? As a topology of the pipeline is
generated from the design studio, and artifact includes the deployment.yaml, ser-
vice.yaml and docker-info.json files.

• RQ3: How can we deploy all kinds of deployments and services which the de-
ployment client generates? Deployments need to be independent and adopt the
local execution environment.

• RQ4: How will the deployment script deploy different kinds of AI pipelines with-
out affecting the other pipelines on a cluster?

1.6. Layout of Thesis

The second chapter is about the background of the work, and it explains the web services
and other tools and techniques used in this project and explains the AI4EU experiment
platform. Related work about pipeline deployment is described in chapter three. Chapter
four is about the methodology of the thesis, where the design of the Kubernetes client is
explained. Next, the fifth chapter is about experimentation, showing how the different AI
pipelines are deployed. Discussion about the thesis can be found in chapter six. Finally,
the last chapter concludes the thesis with some indication about the future work.

4

2. BACKGROUND

The first section of this chapter starts with the introduction of web services. It gives
the reader a brief overview of web services and then provides a general idea of CORBA,
SOAP, and REST services. Afterward, section 2.2 talks about the AI4EU experiment
platform where it provides the reader an overview of Platform architecture. Next, section
2.3 explains the technology used to develop the project, and section 2.4 explains the Ku-
bernetes. The last section is describing the pykaldi, which is used for speech recognition.

2.1. Web Services

Most things are connected with the internet and exchanging data without physical hard-
ware connections in the current digital age. It is an excellent development in the world
of the website, that software starts communicating with each other and smoothly transfer
the data over the network or the internet. This communication between software is pos-
sible with the help of web services, which is originating from the Remote Procedure Call
(RPC). RPC was developed around the 1990s. It is a framework for Distributed Comput-
ing environments to make a distributed application on a single system. Later on, further,
development was made like Microsoft RPC for inter-process communication across dif-
ferent systems. This evaluation process was going on from RPC to XML-RPC and then
towards SOAP [3].

RPC solves the problem of two-tier application communication. It provides a solution
for the development of a two-tier application which becomes very famous in distributed
computing. As distributed computing becomes more popular in the software development
industry, then it is realized that there is a need to develop an N-tier application. RPC does
not provide a solution for this problem because it is not very flexible [4]. For such kind
of application, data is getting more concerns, a researcher in the field of distributed com-
puting purposed two solutions. The first one is typical object request broker architecture
(CORBA) and the second one is distributed common object model (DCOM), and later,
Java remote method invocation (RMI) was designed. CORBA was designed in the 1990s,
and its architecture was designed to specify interoperability between distributed systems
on a network. CORBA designed was very flexible, on a network, distributed objects can
communicate with each other independent of the working environment. For example, if
one object is running on windows, another object can communicate, running on the Linux
operating system. CORBA has another primary feature: interoperability between differ-
ent programming languages such as Java, C and C++, Ada, etc. [5]. DCOM is a protocol
that Microsoft developed in 1996. It allows the two different applications to communicate,
running on the different distributed computers, securely and reliably. It is an extension of
the Component Object Model (COM), which defines how the object can interact. COM

5

allows the development of software components in different languages and environments
which can be easily integrated and deployed. Using the DCOM model, the object can
be accessed on a network by using proxies and stubs. These proxies and stubs allow the
requested object to be accessed on the same addressed space [5]. CORBA and DCOM
achieve great success in his area. Still, they showed certain limitations and shortcomings
when they came into web development, such as creating a tightly coupled distributed web
environment where the specific format of data and messages are defined [4]. After some
time and growth of web development, it has been seen that its complement web services
replace it.

Web services are a modern generation of web application development. It is a frame-
work for developing self-contained application-to-application communications, modular
applications that can be located and invoked across the web. Web services have different
methods to complete the business logic, e.g., the request should be to update or access
the record. Other applications on the internet can access web services, but they need
to be deployed once [6]. Web services can create a loosely coupled design to archive
high performance, scalability, easy modification, and flexibility in their design. It behaves
like a server-oriented architecture to provide a communication channel between services
over the internet that can invokable over the web [4]. It provides support in multiple
languages, e.g., service is developed in one language and can be accessed and used in
different languages [7]. Nowadays, web services are used in many different domains re-
garding data handling, such as virtual reality and machine learning, cloud computing, and
high-performance computing [8] [9].

Fig. 2.1. Communication Between Client and Web Server via Internet

The communication between Web services and client done via the internet, the client
sent HyperText Transfer Protocol (HTTP) request to the web server, and then the server
sends a response message; this is shown in Figure 2.1. There are different kinds of com-
munication protocols. The first one is Simple Object Access Protocol (SOAP), Represen-
tational State Transfer (REST), gRPC, etc. The next section describes different kinds of
services.

6

2.1.1. SOAP

The team of Microsoft developed SOAP in 1998. It is a simple, lightweight, and stateless
protocol for exchanging structured data in XML (Extensible Markup Language) format
or triggering a call to a remote method among the different services over the web. It
supports the various protocols for the transportation of messages like HTTP, FTP (File
Transport Protocol), and SMTP (Simple Mail Transfer Protocol). HTTP protocol plays a
vital role in bridging interactions between the different computers because HTTP protocol
is firewall-friendly [10]. SOAP provides a one-way message exchange paradigm between
the nodes. Combining this strategy with other features of the under-laying transport proto-
cols, or with the help of application-specific information, creates the desired paradigm for
the communication of nodes such as a request-to-response request-to-multiple-response,
etc. SOAP consist of three main nodes: SOAP Sender, SOAP Receiver, and SOAP Inter-
mediary node. SOAP nodes are shown in Figure 2.2.

• SOAP Sender node -It is responsible for the generation and transmission of a SOAP
message.

• SOAP Receiver node -It is responsible for receiving and processing SOAP messages
and sometimes it generates a SOAP response message or fault as well.

• SOAP Intermediary node - It acts as a SOAP receiver and a SOAP sender. It is
responsible for receiving and processing the incoming SOAP header blocks and
send back the SOAP message to the SOAP receiver [11].

Fig. 2.2. SOAP Nodes

However, the main side effect of the SOAP is to overinflate the data. When data is
passed and processed by SOAP protocol, this is due to standards and rules set by the
SOAP. Due to XML, SOAP is supporting the different programming languages, but it
painful to use it in web technologies because the verb represents all the actions. Because
of these and some other performance-related issues, REST is getting more favor. Because
it supports different data representation like XML, JSON (JavaScript Object Notation),
HTML (HyperText Markup Language) and YAML etc.

7

2.1.2. REST

Roy Fielding developed rest at the University of California in 2000 for his Ph.D. thesis. It
is based on client-server style architecture, where requests and responses are constructed
based on the transferring process. All the resources are represented by a distinctive URI
(Uniform Resource Identifier), each URI map a document that is used to capture the
state of the resource. Usually, the REST architecture is faster and lighter as compared
to SOAP. This architecture is straightforward because it does not require a format like a
header is part of the message, which is needed in SOAP [11]. On the other hand, parsing
of JSON is easier and much faster as compared to the XML. In rest, resources are present
in a specific environment on the web, and a way to access these resources is defined in
REST. For a given instance, a server that contains some important documents of a business
company can be accessed through a machine connected to this server of a company. These
documents are known as resources, and a process to access these documents is restful in
style. Now there is a question, how to access these resources.? this is done by exposing
your API within your application for a client that is trying to access your website. The
appropriate request is required to query these RESTFUL services. Usually, this is done by
interfacing with HTTP and then invoke the desired functionality. REST supports multiple
formats for data transfer, such as JSON, XML, and many more, but JSON is the most
regularly used file format for data transfer. Each REST request is unique, and it utilizes
one method. Here the method comes from a verb that explains an action that needs to be
done on a given resource. The first method is a GET used for data retrieval; the second
one is POST; it is used for data upload, whereas the PUT method is used for data updating
of the existing records. The delete method is used for the deletion or removal of existing
data.

Fig. 2.3. Rest API Method

REST gives a response on every request that includes the status code of your request,
whether it is successful or not, whereas more detailed feedback is also attached in plain
text. These features make a restful application very successful and even used in today’s
industry as standard. REST API is lightweight in size as compared to SOAP. It has a
message smaller in size, so it is easy and fast to parse these messages. REST is more
suitable for mobile application development because of its small message size.

8

Fig. 2.4. Modern Approach of Rest API

2.2. AI4EU Experiment Platform

AI4EU experiment platform is an open-source project which Fraunhofer IAIS develops. It
is based on Acumos, with some significant differences in its design to make it more oper-
able and language agnostic. This platform is used to develop, train, share and deploy, and
orchestration of AI models. It empowers data scientists, machine learning researchers,
and computer scientists to use and understand the AI-based process for the development
of software. AI-based collaboration environment is the main strength of this platform,
and here models are trained and ranked according to their ability to understand and an-
alyze the data sets that they are fed and then select the best fitting model for that task.
This platform is not only strict to any specific programming language, tool-kits, or any
other cloud services. It provides a mechanism for creating, packaging, distributing the
AI models in a portable way by making the micro-services and then publish them in the
marketplace. AI4EU experiment platform is different from the acumos project by pro-
viding more freedom to the model provider. In acumos, the model bundle approach is
used where some subset of protobuf is used, protobuf was generated from the reflection
of the model. Our approach provides more freedom to the model provider as the user has
to define its protobuf. The bundle format has severe limitations, which put limits on the
features of protobuf. AI4EU experiment platform works on a standardized approach by
using the gRPC for micro-service communication, which is not unique to any program-
ming language and provides interoperability. Using gRPC gives the opportunity to create
the stubs and skeleton dynamically with the help of protobuf. It will work for any new un-
seen pipeline. Protobuf is simple and well structured as compared to JSON, and also it is
more efficient and faster. Here is the example protobuf of the sentiment analysis pipeline.

CÓDIGO 2.1. Sentiment Analysis Protobuf Definition [1]

1 //Define the used version of proto

2 syntax = "proto3";

3

4 package fraunhofer.sentimentanalysis;

5

6 //Define a message to hold the features input by the client

7 message Text {

9

8 string query = 1;

9 }

10

11 //Define a message to hold the classification result

12 message Review_Classify {

13 float review = 1 ;

14 }

15

16 //Define the service

17 service sentiment_analysis_model {

18 rpc classify_review(Text) returns (Review_Classify);

19 }

AI4EU Experiment platform is designed to bring all AI stakeholders and researchers
together in one dedicated place to speed up AI-based innovation. This platform is a
one-stop-shop to get all AI resources, technology, services, and software in one place.
The following designs are considered while designing our desired solution. Its design
is service-oriented and accessible via web browser only. It supports multiple disciplines
like a wide range of symbolic AI algorithms, a hybrid approach, and machine learning
problems. It raises the achievable AI innovation potential by providing access to different
AI technologies in various fields. AI4EU platform offers a way to combine the diverse
isolated communities to get other solutions to the same problems, enabling the discovery
of a novel way of the same problem. AI4EU platform is scalable and interoperable in
terms of toolkits, data, programming languages, third-party tools, and IT infrastructure. It
provides an effective and efficient way to construct the solution by combining state-of-art
technologies and significant data sources across the various AI fields. It allows the users
of the multiple fields to build the virtual and interdisciplinary team to works on the same
problems by sharing their algorithms, data, and experiment results.

2.2.1. Web Onboarding

The Acumos is using different onboarding techniques. The first technique is onboarding
by the web, which is very specific to programming languages. It works for a particular
pipeline but not for the generic pipeline. For this technique, create a bundle of your model
and then make the bundle and onboard it using the web interface. The second technique
is dockerized onboarding model, in which one docker container is pushed. The problem
with this approach is the size of the container because it stores docker images inside the
acumos DB, which raises a storage problem. For example, in the audio mining pipeline
size of one segmentation container is 10GB. If somebody onboard 100 containers of size
10GB, then it reaches the standard hard disk size. So here, scalability is the biggest
challenge of this technique. Sometimes commercial users don’t want to store the docker
container outside their repository.

In our experiment platform, the onboarding dockerized model URI is used. In this

10

approach, an image is created and stored in another repository while doing onboarding
utilizing this approach, just provide the image’s reference. For the AI4EU experimenta-
tion platform, nexuses repository is used to store the docker image where the docker hub
is not used due to port binding problems. This onboarding approach is very scalable.

2.2.2. Design Studio

Design Studio is a submodule of the open-source AI4EU experiment platform, running
on top of a customized Acumos instance. The AI4EU experiment has a visual editor for
making AI pipelines called design studio. In the design studio, AI resources expose an
interface description in a protobuf format which allows the user to create a pipeline rapidly
and intuitively. It provides an essential tool for AI developers to collect the building blocks
for your problem. The studio offers visual feedback to connect the node with the correct
block by highlighting the target connection node. This experiment platform encourages
the construction of AI solutions in a more scalable, portable, and containerized micro-
service. Users of this platform are free to choose any programming language, toolkit, and
cloud infrastructure to deploy the designed solution. Example pipeline which is created
in designed studio shown in this Figure (2.5).

Fig. 2.5. Audio Pipeline

Design studio user interface invokes the composition engine API for the following
task: It creates the machine pipelines called composite solution with the help of individ-
ual machine learning model uploaded by the open-source user community. It validates
the composite solution and then generates the blueprint of the pipeline or composite so-
lution, which the Kubernetes client uses to deploy the machine learning pipeline. Ku-
bernetes client takes the blueprint, which is the pipeline’s topology, and mapped them to
artifacts such as deployment and services and container specifications. The topology of
the pipeline is represented in the form of a graph. The node of the graph represents the
containers, whereas the edges represent the connections of the graph.

2.2.3. Market Place

AI4EU experiment platform has its app store called Marketplace. It is used to store
datasets, toolkits, and machine learning models. It provides a way to securely distribute
AI microservices along with basic information on how they work. It provides the con-
nection between model developer and application by automating user feedback, software
updates.

11

2.3. Technology Utilization

Developing an AI4EU platform based on Micro-service oriented architecture was quite
challenging because the designed platform should be language agnostic and highly in-
teroperable. To provide more freedom to the model provider and to make it language-
agnostic, we have been using gRPC API instead of REST API. Google developed gRPC
API, which is used for data communication between different microservices. gRPC is
built on HTTP 2 rather than HTTP 1.1 and using protobuf instead of JSON.

2.3.1. Why Docker is used for virtualization in AI4EU experiment platform instead
of Virtual Machine

Virtualization is a technique of making a software-based representation of something, for
example, some virtual applications, servers, sometimes virtual storage and network, etc.
Cloud computing is based on virtualization, which is used to achieve elasticity of a shared
resource. There are many advantages of using virtualization, such as dynamic allocation
of available physical resources and multi-tenancy in which multiple resources share the
same physical resource. Virtualization optimally reduces the cost of operation and also
provides the scalability of applications [12].

Virtual Machines have been used in cloud computing as their core and central part. It
is used to provide different cloud services to the end-user, such as infrastructure, platform,
and software. Virtual machines provide a complete operating system to the user where a
user can install different software to work on it [13]. Virtual machines are controlled by a
manager known as a virtual machine manager (VMM) or hypervisor, and it is responsible
for providing abstractions to the underlying hardware. The machine on which the hy-
pervisor is installed is known as the host. All the other machines running independently
inside the host machine are known as guest machines [14].

There are many advantages of using the virtual machine as compared to the traditional
system. Many virtual machines are running on a single host, but all of them have their
security as none of them is accessed from other virtual machines. In the virtual machine,
all the operating systems are isolated and their application as well. It provides a way for
better resource consumption and also improves the performance of the machine. Virtual-
ization decreases the various server requirements and provides a fault-tolerant system as
compared to the traditional systems. Similarly, there is some limitation of virtualization,
which also needs to be considered when using virtual machine-based solutions. Generally,
virtual machines communicate with each other by exchanging data, and if communication
is not secure, it leads to a security threat. In a virtual machine, a single point failure will
lead to the stop of the whole system. If the hypervisor is stopped working, then the entire
system will stop working [14].

Similarly, the docker container is also used in the same way as the Virtual machines,
but docker containers are lightweight because less time and resources are required to start

12

Fig. 2.6. A Comparison of Virtual Machine and Docker Container Design [14]

it, and container and host share the same kernel [15]. Docker is an open-source project
used for OS-level virtualization and automation of software for the rapid construction of
applications running under a container. A docker engine is used to run a docker container
similar to the hypervisor of the virtual machine. Docker engine is a client-server applica-
tion which consists of the following major components. The first one is a server known as
a demon, and the second one is REST API, the third one command-line interface (CLI)
client, etc.

Fig. 2.7. Docker Engine

Docker is considered as a platform that is designed and builds once and used to run
different applications. It provides batter portability, and interoperability [16]. Docker

13

container acts as a director with all the required packages used to run an application.
Nowadays, operating system-level virtualization is getting very popular in the software
industry. By using containers, all the isolated applications can be run on a single host
operating system. Containers are present on the top layer of the host operating system:
Windows, Linux, or any other. All the containers share the host operating system and
other required documents used to run the application. Due to these shared read-only
resources, containers are very light in weight that why a container takes few seconds to
start [15].

After the invention of virtual machines, different problems related to cloud computing,
for example, scheduling and resource management, have been resolved. Security of the
applications is also improved by making isolated applications with the help of virtual
machines. Problem related to the application management and packaging, which is not
effectively addressed in virtual machines. Docker provides the solution for these problems
effectively, and it provides a responsive deployment and scaling of a project. Docker
container is highly scalable and safe to use, and it is a package that has ready to deploy
parts of the application. Docker container is highly portable, so it does not contain its
operating system. In this way, the application can be run on various platforms. Docker
container is highly scalable, and it can deploy in several environments like a physical
server, data server, and cloud platform. It can be easily moved from cloud environment
to local environment and vice versa. It can be started and shut down within a second, and
it is much faster and cost-efficient and wastes fewer resources than the virtual machines.
Docker containers utilize the resources more efficiently that why more containers are
deployed on a single server. Due to these reasons, we are using docker contain in the
AI4EU experiment platform.

2.3.2. Docker Execution Environment

Docker provides a set of tools and a platform to manage the life-cycle of a running con-
tainer. First, the user needs to develop an application and support the application’s com-
ponents with the help of docker containers. All the code of the application and its depen-
dencies required to run the application are needed to be transferred into a container so that
a container can work independently. After this container becomes a unit for distributing
an application that can be uploaded to the docker repository, other users can download this
independent project and use it for their purpose. In the AI4EU project, each composite
solution pipeline consists of at least two nodes, and a container represents each node. It is
challenging to deploy each node individually. Docker composed is a tool used for defining
and automatically running multi-containers docker applications. In docker-compose, the
YAML file is used to configure your application’s services. All services which are related
to an application are mentioned in YAML. The single command is to run the YAML, cre-
ating and running all the services from your configuration file. Docker-compose is used
to manage the multi-container application on a single node but is not working for cluster

14

management.

Docker swarm was developed and maintained by Docker inc. Docker swarm is an in-
build docker container orchestration tool, and it is used for cluster management. A docker
swarm consists of multiple Docker hosts, and it runs in a swarm mode. Swarm acts as
a manager, which is used to manage the membership and delegation, and it also acts as
workers who are responsible for running the swarm services. It is usually preferred to
use it for simple architecture where ten to twenty containers are present in the production
environment. However, it is very easy to set up the cluster compared to Kubernetes, but
cluster strength is not very strong. In the docker swarm, scaling of the application is done
manually. Docker swarm allows the autoload balancing, whereas, in Kubernetes, manual
configuration is required for load balancing the traffic.

Google develops Kubernetes, and now it is an open-source project with a huge de-
veloper community compared to docker swarm. It is preferably used for complex ar-
chitecture where hundreds of containers are present in a production environment. It is
challenging and complicated to set up the cluster, but the cluster strength is stronger than
the docker swarm. Kubernetes also provides the dashboard to manage the cluster, with
the help of the GUI app, which can be easily deployed and scaled.

In the AI4EU experiment platform, Kubernetes is used instead of docker swarm be-
cause it provides automatic scaling of the application based on server traffic and also a
dashboard for the visual interface. In Kubernetes, automatic rollbacks are done in case
of failure of the pod where the docker swarm does not provide the automatic rollbacks.
In-built logging and monitoring tools are present in Kubernetes, but docker swarm uses
third-party logging and monitoring.

2.4. Kubernetes

Kubernetes [17] is containerized application management system developed by Cloud
Native Computing Foundation and hosted by Google open source. It is a portable, open-
source container management tool that can manage the docker container and deploy it
on the different servers and schedule these containers on the cluster. It is a platform for
automating the deployment process and scaling the containerized application beyond the
cluster. The Kubernetes cluster has a master-slave architecture, and it consists of a set
of different nodes that may be physical or virtual. The master node is responsible for
storing information about the various nodes, managing the cluster, monitoring the nodes,
and planning which container goes. The slave node is managed by the master node and is
responsible for running the containers.

15

2.4.1. Pods

Kubernetes has the smallest deployable unit called a pod, with one or more containers
with shared storage and network resources and specifications for running the containers.
Pod represents a process running on a cluster with a unique IP address, persistent volumes
storage if required, and information on how to run a container. Kubernetes manages
the pods but not the container which is running inside the pod. Kubernetes can also
automatically generate a new replica of a pod if it fails during its execution [18].

2.4.2. Deployments

A Kubernetes deployment [19] describes how to create the instance of the pods that have
the docker container application. It can scale the number of replica of the pods and roll
back the updated code to the earlier development version if needed. It automates the
launching method of the pod and ensures that all the instances of the pods are running
across all the nodes in a cluster. The deployment controller ensures the continuity of the
application by monitoring the pod’s health and replacing the failed pod or bypassing the
down nodes. There are different deployment strategies of the Kubernetes, such as recreate
and rolling updates, etc. In the recreate deployment, the running pods are terminated,
and it recreates the new version, and this strategy is commonly used in the development
environment. The rolling update strategy is mapping one version of an application to
the more recent version. In this version replica of the new version is launched, and it
terminates the old version pods.

2.4.3. Service

Kubernetes services [20] provide a logical abstraction for the deployed pods in a cluster.
Services are responsible for exposing an interface to the pods, and it enables network
access within the cluster or between the external process. It also defines the policies on
how to access. Service uses the selectors and labels for matching the pods which are
running in the different deployments. There are different types of services.

• ClusterIP: It exposes the service which is accessible within the cluster.

• NodePort: It exposes the service is accessible with the static port of node and cluster
IP.

• LoadBalancer: It exposes the service with the help of a cloud provider load balance.

2.4.4. Namespaces

Namespaces [21] provide a way to organize a cluster in a more manageable form by di-
viding it into virtual sub-clusters. Namespaces are very helpful when the different teams

16

are working on projects in a shared Kubernetes cluster. An arbitrary number of names-
paces are supported in a cluster, but they are logically separated from the other and can
communicate. Only a low level of resources such as node and persistent volume exist
outside the namespace, but all other resources exist within the default namespace or in
a user-created namespace. It provides a way to separate the development, testing, and
deployment. It helps to manage the project in a separate virtual cluster without affecting
the other projects.

2.4.5. Kubernetes Persistent Volumes

Persistent Volumes [22] is the part of the storage which the administrator provides as part
of a cluster. It is independent of the lifecycle of the pods, meaning data inside the volume
not erased even if the pod shuts down. Persistent volume claim is the request for storage
by the Kubernetes node. The claim includes the specific storage parameters such as size
required by the application. Pods can send a request for a specific level of the resources,
e.g., CPU and memory, etc.

2.5. Pykaldi

Kaldi [23] is an open-source project for speech recognition written in C++ and avail-
able under the Apache license. Kaldi development based on finite-state transducer (FST)
framework with the extensive support of linear algebra [24]. PyKaldi is a python layer
over the Kaldi speech recognition system. It wraps the Kaldi code and OpenFST library
so that it is easy to use and low-overhead. Pykaldi uses the low-level Kaldi functionality
by writing the simple python code. Pykaldi automatic speech recognition module contains
easy-to-use high-level classes and ignores the boilerplate code. In the AI4EU experiment
platform, Pykaldi is used for constructing the audio pipeline. Different features are used
for making the pipeline, such as segmentation of the audio file and decoding the audio
segments.

17

3. RELATED WORK

This chapter discusses the technologies which are related to the AI4EU experiment
platform. Section 3.1 explains the AI platform pipeline, which was developed by the
google cloud. Later, Section 3.2 describes the Acumos and shows how the approach of
the AI4EU experiment platform is better.

3.1. AI Platform Pipelines

AI platform pipelines [25] developed by google cloud to simplify the process of contin-
uous deployment. MLOps applies the DevOps practices on the machine learning model
to automate, manage, and audit the ML workflow. AI platform pipelines support the user
in implementing the MLOps by providing the platform where the user can orchestrate the
pipelines. In this platform, the Kubeflow pipelines are used with TensorFlow Extended
to deploy and orchestrate the pipelines. Kubeflow pipeline is an open-source platform for
deploying, running, managing, auditing, and monitoring the ML pipelines on the Kuber-
netes. TensorFlow Extended is an open-source project for orchestrating the end-to-end
ML pipelines. AI platform pipelines provide you google Kubernetes cluster and cloud
storage to set up a Kubeflow pipeline cluster in 15 minutes. ML pipeline is portable, scal-
able where each task is packed inside containers. However, this platform is not free, and
users have to pay for training the models and getting the predictions.

AI4UE experiment platform is free so that scientists, researchers, and commercial
users can use this platform for their purpose. Both platforms support the standard Ku-
bernetes cluster, but the AI4EU experiment platform also supports the minikube. AI4EU
experiment platform is language agnostic and supports different kinds of orchestrators.
AI4EU experiment platform provides the facility the visual pipeline creation, and users
can also publish their models for the AI community. In contrast, the AI platform pipeline
has no design studio for the visual pipeline composition. Still, the AI4EU experiment
has a design studio that provides the pipeline’s topology to map the artifacts. AI4EU
experiment platform defines the standard public interface in protobuf for the pipeline
communication, but the AI platform pipeline has no such stander interface.

3.2. Acumos

Acumos [26] is an open-source project and part of the LF AI Foundation [27], an umbrella
organization inside Linux Foundation to support open-source AI and machine learning-
based projects. Acumos is a platform used to enhance the development, sharing, training,
and deployment of AI models. Acumos provides a mechanism for packing, sharing, and
deploying AI models in a portable form that can be published and shared in a secure

18

catalog. Acumos supports the different programming languages, toolkits, and run-time
infrastructure for deploying AI models. In Acumos model can be onboarded and packed
as containerized microservices that are interoperable with other components. Acumos
consist of different components such as data broker, design studio and marketplace, etc.
Data broker is used to getting the data from external sources, and this data is used for
model training or tuning. Acumos design studio is used to create visual pipelines from
the onboarded models, and it returns the topology of the pipelines. Acumos marketplace is
an app store where onboarded models and pipelines are published, and users get feedback
and rating on different models.

Acumos support the web and CLI onboarding, where the client libraries generate the
model package for onboarding. It generates the model-based microservice images inside
the platform, and it contains the image for the orchestrator. This bundled approach is
not language-agnostic, where the model bundle is generated in a specific language. In
this approach, images are created inside the platform, which is a less scalable approach.
Sometimes the size of the image is quite big, and the user has to deploy the multiple
pipelines of which consist of multiple nodes, then the system exceeds the size of the stan-
dard hard disk. Docker image creation inside the platform is not interactive for commer-
cial users because sometimes they have very sensitive docker images. Acumos providing
less freedom to the model providers because it is protobuf is generated from the model
reflection. In AI4EU experiment platform allow the users to utilize all the feature of the
protobuf. Users have to provide the protobuf definition during onboarding. Docker im-
ages are created before model onboarding and stored in some external public or private
repositories.

19

4. METHODOLOGY

The last chapters discuss many technical details about the different components, tech-
nologies, and infrastructure that we have chosen to form our generic infrastructure for AI
pipeline deployments in the local Kubernetes environment. Our goals were to design a so-
lution that will work for all kinds of AI pipelines and developed a language-agnostic and
more operable solution. To achieve our goals, we design and implement the Kubernetes
client that has two different parts.

• It generates a solution.zip inside the AI4EU experiment platform.

• It adjusts the deployment templates to the local environment on the user server and
applies the service and deployment definitions.

Section 4.1 describes the architecture of the Kubernetes client. Section 4.2 shows the
generation of the solution.zip, whereas the Kubernetes client took the pipeline’s topology
as input and mapped them into deployable artifacts is explained in section 4.3. Section 4.4
shows the deployment script, which deploys the generated artifacts in the local execution
environment. Orchestrator, which is integrated into the Kubernetes client, is explained in
section 4.5. The last section presents the challenges that we faced during the development
process.

4.1. AI4EU Experiment Platform Solution Deployment in Private Kubernetes Clus-
ter

This section explains the support of the AI4EU experiment platform in creating deploy-
ment from the blueprint of a pipeline and then deploying the machine learning models in
the private Kubernetes cluster as a simple pipeline consisting of one model and composite
pipeline, which consists of multiple models. Here private Kubernetes cluster means that
a virtual machine or physical machine on which the Kubernetes cluster is deployed so
that the model user can use the kubectl CLI tool on the Kubernetes cluster master node
to manage running applications of the cluster. Minikube builds a local Kubernetes cluster
with small resources to run the small Kubernetes deployment with one single node on
a local machine. In contrast, kubectl is a command-line tool used for interaction with
clusters to create pods, services, and other components.

Our designed solution is currently tested on a private Kubernetes cluster but not on
public or other cloud environments. AI4EU experiment platform provides a local Kuber-
netes cluster as a playground for experimentation. The deployment process on the local
Kubernetes cluster begins after downloading the solution package from the web interface
of the AI4EU experiment platform.

20

Fig. 4.1. Solution Folder

The solution folder consists of

• The deployment directory contains all the deployment and services for all the nodes
of a pipeline and orchestrator.

• The microservice folder includes all protobuf specifications for all the pipeline
nodes, whereas the model user provides protobuf files during model onboarding.

• The orchestration client folder contains scripts that are used for the orchestration of
the AI pipeline.

• Pipeline blueprint file, produced by design studio, which includes the topology of
the pipeline.

• The container specifications of the pipeline are stored in the docker-info file.

• Kubernetes client script is used for the deployment of pipelines in a local Kuber-
netes environment.

4.1.1. Kubernetes Client Architecture

In this section, the architectural overview of the Kubernetes client is present in different
segments. In the first segment, a high-level overview of the design is shown with the help
of a design diagram. It provides a generic overview of the AI4EU experiment platform
and how the Kubernetes client interacts with other components. The remaining segment
will give a deeper look at the internal working of the Kubernetes client. Kubernetes client
establishes the connection between platform catalog and execution environment. Figure
4.2 shows its connection with the catalog.

21

The reader can understand the architecture of the AI4EU experiment platform from the
step-by-step summary of processes. First, a user of the platform has to open the platform’s
web interface and then select the desired pipeline and choose "deploy to local." Here the
assumption is the user already creates that pipeline and validates it.

• The user has to click on the "Download Solution Package" button for downloading
the solution.zip file.

• The portal-marketplace triggers a rest API call the /getSolutionZip of the Kuber-
netes client service.

• Kubernetes client sends a request to common-data-service to retrieve the URL of
the artifacts of the pipeline.

• Then Kubernetes client calls the maven artifact API of the nexus repository to re-
trieve the artifacts like protobuf files.

• Prepare a solution package containing microservices and deployments and blueprint
of AI pipeline and return this package to the portal-marketplace, which downloads
the solution package to the user machine.

Fig. 4.2. Kubernetes Client Architecture

In figure 4.2, the docker registry is shown outside the AI4EU experiment platform,
which means that docker images are stored outside. During onboarding, the URI of
docker images is provided, retrieved from the docker registry during the deployment for

22

the pipeline. Docker registry can be public or private Kubernetes client is supporting them
both.

Kubernetes client also establishes the connection with the local execution environment
by generating the artifacts. These artifacts are deployed in the local execution environ-
ment with the help of the deployment script. Figure 4.3 shows the execution environment
of the Kubernetes client. The user has to download the solution package and needs to start
deployment in the local Kubernetes environment. For the deployment process, the user
needs to unpack the solution package in their local system.

• Run the Kubernetes-client-script.py, and this script deploys the services and deploy-
ments for all the models of the AI pipeline. It also runs the service and deployment
for a serial orchestrator. The user needs to provide the name of the separate names-
pace for each pipeline to ensure the separation of concerns and make our design
more scalable. The role of namespaces to separate or isolate the pipelines from
each other, increase security and exclude side effects. This script is used to deploy
the solution in a local Kubernetes cluster or on mini-kube.

• After running the services and deployment for the orchestrator server, the user needs
to run the Orchestrator client. The cluster IP address and port number are input
parameters for the execution of the orchestrator.

4.2. Component Design of Kubernetes Client

In this section, the components of the Kubernetes client are explained here. On the call
to /getSolutionZip API, the Kubernetes client performs different actions to compose the
downloadable solution package. The first step is to retrieve the artifacts like blueprint.json
from the Nexus repository by querying the Common Data Service (CDS) and providing
the solution and revision id of the AI pipeline as a parameter. The AI pipelines are clas-
sified based on the presence of the blueprint.json file which the design studio creates.
Suppose the buleprint.json is present in the repository. In that case, the solution is con-
sidered a composite solution, and the solution package contains deployments, protobuf
definition, orchestrator-client, Kubernetes-client-script, and artifacts like dockerinfo.json
and buleprint.json. For simple solutions, if the blueprint is not present on the nexus repos-
itory, then the solution does not contain the orchestrator-client and artifacts like blueprint
and docker-info, as shown in figure 4.4. Deployment and services are generated based on
information that is present inside the database. URI of the docker image and model name
is required, and the model user provides this information during model onboarding.

For the composite solution, the blueprint.json containing topology of a pipeline, mod-
els represent the nodes whereas edges explain the connection of the pipeline, thus forming
a graph. Metadata for each node retrieved after parsing the file once and stored inside the
object. Kubernetes client only considers the information about nodes for the generation

23

Fig. 4.3. Kubernetes Client Execution

of deployments and services. Two YAML files are generated first one is service, and the
second is deployment, stored in a hashmap. The name of a file is a key of the hashmap,
and its value is the content of the file. The pipeline’s container specification contains the
information about the nodes stored inside the docker-info.json file. These specifications
are generated based on the metadata of the pipeline and contain information like node
name and IP address. The orchestrator uses these specifications for the execution of the
pipeline.

Kubernetes client service exposes the API of the portal marketplace to get a download-
able solution package. Kubernetes client service exposes the API of the portal market-
place to get a downloadable solution package. The URL for this API is http://<kubernetes-
client-host>:<port>whereas URL to get resources is /getSolutionZip/solutionId/revisionId.
SolutionId is a unique identification of a solution present in CDS, whereas revisionId
presents the version of the solution present in CDS. On the successful creation solution
package, the http response is 200, which means the request is successful, and the body
of the response contains the solution package. The unsuccessful request response is 404,
which confers the invalid solutionId and revisionId, as shown in figure 4.5.

24

Fig. 4.4. Solution Package

4.2.1. Common Data Service

The AI4EU experiment platform Common Data Service (CDS) provides the storage and
query layer between the AI4EU experiment platform component and relational database.
Kubernetes client developed in Java Spring-Boot framework, the server components in
Spring-Boot application provides the rest services, and it uses Hibernate to manage the
persistent storage. Here Java library is a client component that includes business models
and functions to utilize the REST services.

25

Fig. 4.5. Creation of Solution Package

4.2.2. Automatic Generation of Services and Deployments

Kubernetes client automatically generates deployments and services for each model of
an AI pipeline from the logical definition of a pipeline given by the design studio. The
primary role of deployment is to keep pods running, and services are used to access these
set pods by enabling network access. When the network request is sent to the service in
a cluster, and the service can access similar pods based on their labels, select one pod
and forward it to the network request. Kubernetes has different kinds of services, and it
allows you to specify the type of service you want to expose in your service definition.
ClusterIP is the default type of service that opens the service on the internal cluster IP.

26

Only applications inside a cluster can access this service, so there is no external access.
This kind of service is used for debugging your services or allowing internal traffic like
displaying an internal dashboard. NodePort is a type that exposes the service on each
node IP with a static freely available port on the host machine. NodePort is the most
natural and cost-efficient way to get traffic to your service as it opens a specific port on
all the nodes of the VMs, and any traffic sent to this port is forwarded to this service, as
shown in Figure 4.6. Some disadvantages of service are that only users can bind one port
to service, and users can use the port from 30000 - 32767 [28].

Fig. 4.6. NodePort Service

LoadBalancer service is a standard and default way to expose a service on the internet
as a network load balance. It will provide you a single IP address to forward all the traffic
on your service via a specific port. The disadvantage is that each service that the user
exposes with a load balancer will get its IP address, and the user has to pay for each
exposed service with the load balancer [28].

Kubernetes client creates services of type NodePort but without specifying the node-
Port because services generated by AI4EU experiment platform without knowing any
information about the host machine. NodePort is assigned directly during the deployment
process on the local Kubernetes environment. Service definition is shown in CODIGO 4.1
contains one target port responsible for application communication. The application is lis-
tening to the gRPC request on this port for the service to work. In the AI4EU experiment
platform, there are two standard ports, and the first port is 8061 is called protobuf-api,
which Kubernetes client uses for port mapping like gRPC server communication and the
second port is 8062 for Web-UI, which is used for human interaction, whereas Web-UI is
optional for pipeline execution.

CÓDIGO 4.1. Sentiment Analysis Service

27

1 ---
2 ap iVers ion : v1
3 kind : S e r v i c e
4 metadata :
5 name: s e n t i m e n t a n a l y s i s
6 spec :
7 s e l e c t o r :
8 app: s e n t i m e n t a n a l y s i s
9 type : NodePor t

10 p o r t s :
11 - name: p r o t o b u f −a p i
12 port : 8556
13 t a r g e t P o r t : 8061
14 ---

Kubernetes deployments present the user a declarative update to your application be-
cause it is a resource object in Kubernetes. A deployment describes an application life
cycle, such as which docker image is used by the running pod, how pods are present,
and how they are updated. Kubernetes deployment is also responsible for automatically
updating the application, which takes a couple of steps if operated manually. The Kuber-
netes backend manages deployment, and the whole update process is performed on the
server-side without client interaction. In the AI4EU experiment platform, the Kubernetes
client generates a deployment with one replica-set and docker image URI present in a
public or private docker repository. If docker images are present in a private repository,
the user needs to provide the docker registry under the specification section of the deploy-
ment definition file. Sentiment Analysis deployment is generated by Kubernetes client
as shown in CODIGO 4.2, where platform standard ports are open to send and receive
traffic.

CÓDIGO 4.2. Sentiment Analysis Deployment

1 ---
2 ap iVers ion : apps / v1
3 kind : Deployment
4 metadata :
5 name: s e n t i m e n t a n a l y s i s
6 l a b e l s :
7 app: s e n t i m e n t a n a l y s i s
8 spec :
9 r e p l i c a s : 1

10 s e l e c t o r :
11 matchLabels :

28

12 app: s e n t i m e n t a n a l y s i s
13 t empla te :
14 metadata :
15 l a b e l s :
16 app: s e n t i m e n t a n a l y s i s
17 spec :
18 i m a g e P u l l S e c r e t s :
19 - name: acumos− r e g i s t r y
20 c o n t a i n e r s :
21 - name: s e n t i m e n t a n a l y s i s
22 image: c i c d . a i4eu −dev . eu:7444 / s e n t i m e n t _ a n a l y s i s

: l a t e s t
23 p o r t s :
24 - name: p r o t o b u f −a p i
25 c o n t a i n e r P o r t : 8061
26 - name: webui
27 c o n t a i n e r P o r t : 8062
28

29 ---

In the AI4EU experiment platform, everything the user onboard is considered a model,
such as a data broker and other pipeline modules. A deployment is automatically created
for each model in an AI pipeline, which has the same label as the service has, as shown
in figure 4.7. After generation of deployment and service, Kubernetes deployment script
deploys it in a target Kubernetes environment. The service and deployment are generated
from the information that the user only provides during model onboarding. URI of the
docker image is provided during model onboarding is concatenated with the host’s address
and port number. The complete address of the docker image is present in the deployment
definition.

4.2.3. Docker image handling

The design of the AI4EU experiment platform is very scalable to support the hundreds
of running AI pipelines. All the docker images are stored in a public or private docker
repository like the docker hub. During the onboarding of the machine learning models, the
model users provide the URI of the docker images. Sometimes the size of docker images
is in gigabytes. If docker images are stored inside the AI4EU experiment platform, they
will overflow the size of the standard hard disk. Kubernetes client gets the references of
the docker images from the blueprint of the pipeline supplied by the design studio. During
the deployment of the pipeline, pods are created based on these docker images.

29

Fig. 4.7. Deployment of Sentiment Analysis

4.3. Mapping of the Pipeline Topology to the Artifacts

The main goal of the Kubernetes client is to generate the artifact from the topology of
the pipeline. Topology of the pipeline consist of node and edges. Kubernetes client only
considers the information about the node parameters, whereas information about edges is
considered during the execution of the pipeline.

30

4.3.1. Pipeline Topology

The topology of the pipeline is very important because it stores the information about
the input and output parameters of the nodes in the form of a graph. A design studio
for composite solutions generates it. Kubernetes client uses the information of the node
parameters and ignores edges. Figure 4.8 shows the topology of the sentiment analysis
pipeline. In this topology, all the nodes are present under the node section, whereas
each node contains the name, URI of a docker image, and URI protobuf. The operation
signature list has information about the task that a specific model has to perform. Base on
this information, it generated all the artifacts for the composite solution.

4.3.2. Container Specifications

It contains all the information about the docker container, and in the solution archive,
the docker-info file contains this information. Kubernetes client generates it based on
the topology of a pipeline, and the orchestrator uses it for the execution of a pipeline. It
includes the information about the container IP address and node port during its creation.
Default values are assigned, but all information is updated in this file during deployment.
Figure 4.9 shows the container specification of the sentiment analysis pipeline. In this
example name of the container is similar to its IP address because the DNS name is used,
and it automatically resolves the cluster IP address. Here node is identical to the service
name because it is easy for humans to understand.

4.4. Kubernetes Deployment Script

Manual deployment of all services and deployment is very time-consuming. It takes a lot
of effort to search free port, deploy a service on it, and then update it in the docker-info file.
The deployment script resolves this problem and working perfectly with different kinds
of AI pipelines. Kubernetes deployment script is responsible for automatically deploy all
the services and deployments of the AI pipeline, including the deployments for the or-
chestrator. The deployment script is developed in python programming language because
it is easy to maintain and extend its functionality compared to shell script. Kubernetes
client creates the deployments and services inside the AI4EU experiment platform with-
out the information of the host Kubernetes cluster. Kubernetes client generates services
of type nodePort, but the client cannot assign any port to the services because services
are deployed in the host Kubernetes cluster. The deployment script is used to deploy the
pipeline in a local cluster, so its first responsibility of the deployment script is to fetch
free ports from 30000 to 32767 and select one port and assign it to service as nodePort.
NodePort opens the service externally to the cluster as it is a port on the node where the
external traffic will come on. The second responsibility of the deployment script is to
save the nodePort in the docker info file. A generic serial orchestrator uses a docker info

31

Fig. 4.8. Topology of Sentiment Analysis Pipeline

file for the iteration of a pipeline. As each running node doesn’t know anything about
the other nodes of a pipeline, the orchestrator is responsible for transferring the informa-
tion between all the pipeline nodes. This deployment script also deploys the orchestrator
server for the execution of an AI pipeline. Later, the user runs an orchestrator client to
trigger the execution of a pipeline.

The deployment script deploys all the AI pipelines in separate namespaces to ensure
the separation of concerns. The different users on the same Kubernetes cluster can deploy
different or same AI pipelines simultaneously in his namespace without modifying the

32

Fig. 4.9. Container Specification of Sentiment Analysis Pipeline

other users running services and deployments. The deployment script requires the name
of a namespace as an argument to deploy an AI pipeline. The deployment script creates
one extra service called Web-UI to make the designed solution more interactive. Web-UI
allows the user to play with the model on target port 8062.

4.5. Generic Serial Orchestrator

In the AI4EU Experiment platform, the orchestrator is responsible for the communication
between all the nodes of the AI pipeline. Each node is a stand-alone model with no
information about the other nodes of a pipeline, so the orchestrator is responsible for all
kinds of message transfer and management of the running pipeline. Orchestrator consists
of two parts the client part and the server part. The server side of the orchestrator is
responsible for executing the pipeline, whereas the client-side is accountable for initiating
the execution of a pipeline. Orchestrator client script takes two arguments as a parameter
the node IP address and port number of running orchestrator service.

4.6. Challenges Faced During Development

We faced different kinds of challenges during the development of a Kubernetes client.
Some problems are easily solved, but others take more than a week. For development,
we use acumos, but the Kubernetes client is not functional there. The first challenge
was to resolve all the problems and make them work in our local system. The problem
was solved in more than one week after setting all the application properties according
to our local environment, and then it’s running. The second main challenge that I face

33

was the generation of the corrupted zip folder. Swagger api integrated inside Kubernetes
client to see output locally, but the user interface of the swagger returns the corrupted zip
file. Problem solved after generating a link to download the solution zip instead of the
user interface of the api. But downloaded zip files give you all the files and directories
correctly if the user unzips with the command line. The deployment script works well with
the standard Kubernetes cluster, but it’s causing a problem with minikube that running
services are not accessible cluster IP. After a lot of research, this problem needs a node IP
address to access the service. Integration of the orchestrator with Kubernetes client was
also very challenging. Communication between the services was also causing problems,
but the problem was solved using the orchestrator service with cluster IP and correction
using target port and node port. The naming conflict was also faced during the integration
of the orchestrator, and that problem was solved by setting naming rules for Kubernetes
client and orchestrator. The generation of the simple solution was also consuming a lot of
time.

34

5. EXPERIMENTS

This chapter explains the experimentation of the thesis by implementing the different
AI pipelines. Section 5.1 describes a pipeline and how a user can deploy it in a local Ku-
bernetes environment. In contrast, section 5.2 explains the construction and deployment
of example pipelines such as simple AI, advanced AI, and hybrid AI pipelines.

5.1. AI Pipelines and Its Deployment

AI pipelines consist of different components it includes a data broker, trained model,
and orchestrator. Deploying and managing these pipelines in an ad-hoc manner is very
difficult and time-consuming. AI4EU experiment platform provides you a mechanism to
deploy an AI pipeline automatically, and then the user can orchestrate the entire pipeline
with the help of a generic orchestrator.

A pipeline represents a machine learning workflow, which has information about all
the components and how they are connected. A pipeline includes a logical definition of
each component, whereas each component is independent of other components. Each
component in a pipeline is self-containing a packed code along its dependencies to run
the docker image that performs the one step in a pipeline. For example, a component
can provide a video broker, image recognition, image classifier, etc. All the nodes of
the AI pipeline must follow the container specifications [29]. The container specification
contains the rules about writing the protocol buffer and information about a container of
each node. Protobuf interface meant to specify the public interface of the node and not
to expose the private internal methods. In the AI4EU experiment platform, the user can
generate a pipeline from the visual editor just by dragging the components and connect
the node in the correct position. Each component is a machine learning model and packed
inside a docker image stored on the Docker registry. The user only provides the URI of the
docker image while onboarding the model. Kubernetes client generates the deployment
and services for each component of the model and then deployed with the help of a generic
deployment script. Each pipeline deployed in a separate namespace to avoid conflicts
and to ensure the separation of the concerns. User can clean their working space just
by deleting the namespace. These pipelines are reusable, portable, and can be deployed
anywhere.

5.2. Example Pipelines

In this section, we test our designed solution by implementing different AI pipelines. To
create pipelines, we pick one deep-learning example, split it into blocks based on the task,
and then write the protobuf for each block to specify the public interface and generate the

35

necessary stubs and skeleton for each section for the required programming language.
For each block, create a gRPC based container and push these containers into the docker
registry. Then onboard the block of pipeline and connect the in the design studio. In
the first subsection, we execute the sentiment analysis pipeline, whereas, in the second
section, we choose the audio mining pipeline.

5.2.1. Deployment of Simple Solution

In Kubernetes client, a simple solution consisting of a single node pipeline without an
orchestrator. We choose a sentiment analysis example for experimentation. First, we
write a protobuf definition for the sentiment analysis node and generate necessary stubs
and skeletons for gRPC communication, as shown in CODIGO 2.1. Then we implement
sentiment analysis in a client-server architecture where the client sends user review as
a request to the sentiment analysis server. The server sends the sentiment of review as
a response to the client. After implementing this application, we pack it inside docker
images and push it to the Docker repository. Docker file is shown in figure 5.1, which
contains all the tools as libraries required to run this application.

After packing the application inside the docker image, we did onboarding by provid-
ing the docker URI and protobuf file and then download the simple solution. The down-
loaded solution consists of deployment and services generated by the Kubernetes client
and a deployment script responsible for automatic deployment. AI4EU Experiment Plat-
form has its Kubernetes cluster for deployment, and with the help of deployment script,
we deploy our solution, as shown in figure 5.2.

After the deployment, the user has to provide the node port number of the running
service to the sentiment analysis client script and bind it with the localhost and run it.
Sentiment analysis client script retrieves the data from the attached CSV file and sends
the request to the server. The sentiment analysis server sends the response back to the
client, whereas the whole communication between client and server is done with the help
of the gRPC protocol.

5.2.2. Deployment of Composite Solution

In the context of deployment, a composite solution consists of multiple nodes and orches-
trators as well. For the composite solution, we choose an advanced AI example, the audio
mining pipeline, which consists of an audio-data-broker node, segmentation node, audio-
to-text node, dialogue-creator node, and orchestrator node. This audio mining pipeline
is responsible for generating the text dialogue from the given audio file. We use Pykalid
[30], a python layer on the Kaldi speech recognition system. First, we write the protobuf
definition for all the nodes and generate the necessary stubs and skeleton. The responsi-
bility of the audio data broker is to receive an audio file request and send a response as an
audio file job. In the audio file request, the name of the working directory is provided to

36

Fig. 5.1. Audio Segmentation Docker Image

the data broker, which contains all the audio files. Audio file job includes the name of the
audio file, the path of the working directory, its priority, etc. The protobuf definition of
the audio broker is shown in CODIGO 5.1.

CÓDIGO 5.1. Audio Data Broker [2]

1

2 syntax = "proto3";

3

4 message AudioFileJob {

5 string job_uuid = 1;

6 int64 priority = 2;

7 string file_name = 3;

8 string work_dir = 4;

9 int64 length = 5;

10 }

37

Fig. 5.2. Simple Solution of Sentiment Analysis

11

12 message AudioSegment {

13 string job_uuid = 1;

14 string segment_uuid = 2;

15 string segment_file = 3;

16 string work_dir = 4;

17 int64 index = 5;

18 int64 length = 6;

19 int64 start_time = 7;

20 int64 end_time = 8;

21 }

22

23

24 service AudioSegmentation {

25 rpc getNextAudioSegment(AudioFileJob) returns(AudioSegment);

26 }

The audio segment is the core part of this pipeline. In this part, the large-sized audio
file is split into the smallest audio segment by using different approaches for making seg-
mentation of the audio file, e.g., utterance to utterance, speaker to utterance, etc. For this
pipeline, we used the utterance to utterance segmentation technique. For segmentation,
we used already trained speech activity detection models (SAD) model [31]. Segmenta-
tion makes the segments of the audio file, and based on segmentation small audio file is
generated. This segmentation node received an audio file job and returned the audio seg-
ment, which contains all the necessary details of the segment, and its protobuf definition
is shown in CODIG 5.2.

CÓDIGO 5.2. Audio Segmentation [2]

1

2 syntax = "proto3";

38

3

4 message AudioFileJob {

5 string job_uuid = 1;

6 int64 priority = 2;

7 string file_name = 3;

8 string work_dir = 4;

9 int64 length = 5;

10 }

11

12 message AudioSegment {

13 string job_uuid = 1;

14 string segment_uuid = 2;

15 string segment_file = 3;

16 string work_dir = 4;

17 int64 index = 5;

18 int64 length = 6;

19 int64 start_time = 7;

20 int64 end_time = 8;

21 }

22

23

24 service AudioSegmentation {

25 rpc getNextAudioSegment(AudioFileJob) returns(AudioSegment);

26 }

Each segment is passed to the audio-to-text node, which is responsible for decoding
the audio segment. We are using a pre-trained zamia model [32] for offline audio to
text conversion, and based on this converted text, we generate a dialogue. After running
each segment of the audio pipeline, we make a docker image of each node and pack the
application and its dependencies inside the container. On-board all the pipeline nodes
in the AI4EU experiment platform and create an audio pipeline in the design studio by
connecting the correct nodes, as shown in figure 5.3.

Fig. 5.3. Audio Dialogue Creator Pipeline

After saving the pipeline, we download a composite solution that contains deploy-
ments, microservices, orchestrator client, and deployment script. We run the deployment

39

script, which needs the namespace name as an argument for deploying all the services
and running the pods. Each pod of a pipeline runs independently without knowing the
internal details of other pods on the cluster. The deployment script returns the node IP
address and orchestrator server port number. These values are passed to the orchestrator
client to trigger the orchestration process.

In this experiment section, we test our solution on a simple and advanced AI pipeline.
After successful testing on our development environment [33] now, our designed solution
is integrated with our production environment [34]. We received positive feedback from
the AI4EU experiment platform community. Our designed generic solution is working
fine with a hybrid AI pipeline which is implemented by Dr. Peter Schüller [35].

5.3. How to make a Pipeline more Robust and Secure

AI Pipelines can be made robust by using different approaches like container optimiza-
tions which significantly reduces the container image size. It allows Kubernetes to retrieve
that docker image faster and run the docker container more efficiently. An optimized con-
tainer image should pack one application or perform only one task, e.g., data-broker or
audio-segmentation, etc. It contains small-size docker images because it is difficult to
handle the bulky docker image, and it is cumbersome for the port to manage. Users can
reduce the size of the docker image by avoiding the extra layers, but it is not always help-
ful. Every RUN instruction in the docker file will add a new layer in the docker image
that why different layers need to be merged into one docker instruction using operator.
Docker caching is also very important for building docker images in a faster way. Docker
builds use the previously build docker layers if there is no change in docker layers. There
are some rules for caching algorithm, and if there is a change in one layer, then the cache
is not loaded for all subsequent layers. These instructions are vital, especially when users
are working to make large-size docker images. The audio-mining pipeline size of one
container is nearly 10 GB which takes an hour to build again if caching is not used wisely.
Docker file of audio segmentation is shown in figure 5.4.

AI pipelines can be made secure by reducing the kernel capabilities of the root user,
only provide those capabilities required to run the application. Docker demon attack
can be controlled by running the application as an app user instead of a root user. For
our experimentation we are making our containers by making our app user as shown in
CODIGO 5.1. Kubernetes pod can be less vulnerable to running as the non-root user, as
shown in figure 5.2.

CÓDIGO 5.3. Container User

1 RUN useradd app

2 USER app

3 CMD ["java", "-jar", "/app.jar"]

40

Fig. 5.4. Audio Segmentation Docker Image

Fig. 5.5. Limiting the Pod Capabilities

41

5.4. Challenges Faced During Experimentation

Our goal was to construct AI pipelines that can be deployed in the execution environment
successfully during experimentation. The construction of the simple AI pipelines is not
very challenging, but the advanced AI pipelines’ construction was complicated. The first
challenge was the installation of pykaldi, which takes a week to work correctly. The
second challenge was the building of a docker image, which takes nearly 5 to 6 hours.
The size of one pykaldi image is near ten gigabytes, and we need at least three containers
of that size. During the building of the docker image, it slows down the whole working
environment. On the slight change, we need to build the complete docker image.

42

6. DISCUSSION

This section summarizes our reflection about outcomes and answers the research ques-
tions from our AI4EU experiment platform. To answer the first research question, we can
establish the connection between the AI4EU experiment platform and its execution en-
vironment. For establishing the connection with the AI4EU experiment platform, we
design and implement the Kubernetes client who takes the topology of the AI pipelines
and maps them into the deployable artifacts. The design studio generates the topology
of the pipeline by connecting the onboarded AI models. The topology of the pipeline
contains the information which the user provides during the model onboarding. The user
needs to give the model’s name, docker image URI, and protobuf definition. In the topol-
ogy of a pipeline, information about models is stored as nodes, whereas information about
the connection of models is stored as edges of a graph. Kubernetes client only considers
the information about nodes for the mapping of artifacts, whereas information about the
edges is important for the execution of the pipeline. We mapped the pipeline’s topology
into different sections to address the second research question so that the pipeline was de-
ployed and orchestrated easily. The artifacts like deployment and service can be deployed
into the execution environment.

In contrast, information about the container specification is stored inside the docker-
info file, which adopts the local execution environment after the deployment of the pipeline.
We implement the deployment script to address the third and fourth questions, deploying
all the services and deployment into the local execution environment. The deployment
script solves the problem of the manual deployment of the AI pipelines. Each pipeline
is deployed in a separate namespace to ensure the separation of the concerns and avoid
the other pipelines’ side effects. Users need to provide the name of the namespace as
an argument to the deployment script. Kubernetes client has no information about local
execution environment, so deployment script fetch the free ports and bind it with service
and deploy it on standard Kubernetes cluster. The deployment script is generic enough
that work for all kinds of AI pipelines. For experiment and evaluation, we implement
a simple and advanced AI pipeline. We implement the sentiment analysis pipeline and
audio mining pipelines which consist of different nodes such as audio data broker, audio
segmentation, audio to text, and dialogue creation. Kubernetes client creates the artifacts
for both pipelines, and the generic deployment script deploys all the artifacts on a standard
Kubernetes cluster.

Another objective of the thesis is to integrate the orchestrator with Kubernetes client,
and this is achieved. Kubernetes client creates the deployment artifact for the orchestrator
server and provides an orchestrator client for triggering the execution of the pipeline.
The deployment script deploys two kinds of services first one is the protobuf api for the
pipeline interaction, and the second one is the web-ui for the human interaction, and this

43

service is optional.

AI pipelines consist of a different number of nodes that are connected. Each node,
the model, is packed inside the docker container with no information about the other
nodes of the pipelines. Protobuf interfaces describe the only public interface of the nodes,
whereas all other internal methods are hidden. gRPC is used for communication between
the nodes. It provides the mechanism for communication and serialization based on the
protocol buffers. All the nodes in a pipeline are independently working, whereas commu-
nication is performed with the help of the orchestrator. Protocol buffer and gRPC make
the platform language agnostic as it supports the different programming languages and
toolkits. Users can write the AI model in any programming language and then generate
gRPC stubs and skeletons based on the protocol specifications.

Existing acumos uses a bundle formate approach where docker image is created inside
the platform, which means it is less scalable. In the AI4EU experiment, platform images
are stored outside the platform in a public or private registry. Researchers and commercial
users can also store their docker images in a private registry. In Acumos, the user creates
a bundle, zip them in a folder, and then on-board. In the AI4EU experiment platform,
the user has to write the protobuf specification and then generate necessary stubs and
skeleton for the gRPC communications. Acumos is not using the full power of Protobuf
because it is generated inside the platform, whereas in the AI4EU experiment platform, it
is provided by the user.

We face different challenges during development, port mapping between the service
to support the gRPC based communication. We face different challenges in building the
advanced AI pipeline for experimentation and evaluating the designed solution. Installing
the pykaldi for audio mining and building the docker images for the audio pipeline is
complex. During the development of the Kubernetes client, we faced different problems,
such as integrating the orchestrator inside the Kubernetes client.

We have designed a solution which works well for all kind of AI pipeline deployment.
Design a generic Kubernetes client who is working on unseen problems. Our designed
approach is not only limited to deep learning models. It supports any AI tool from any AI
area like reasoning, semantic web, symbolic AI, etc. Kubernetes client integrated into the
production environment of the AI4EU experiment platform and used by the AI4EU part-
ners and associated projects like ELG, AI4Copernicus. AI4Copernicus a project about
artificial intelligence for earth observation. Artificial intelligence is used to quickly and
efficiently analyze the time series of the earth observation. Some scientists working on
robotic software are also inspired by our product and want to use the AI4EU experiment
platform to develop robotic software using Robot Operating System (ROS). AI4EU ex-
periment platform is used for the testing of High-Performance Computing (HPC). For
HPC, Singularity containers are required to run the containerized application on HPC.
AI4EU experiment platform made the docker container a singularity container by making
the app user inside the docker file. Singularity limits the abilities of the non-privileged

44

user to escalate from its permissions.

45

7. CONCLUSION AND FUTURE WORK

The thesis research aims to design and implement the deployment client who takes
the topology of the AI pipeline and maps them into deployable artifacts. It provides an
opportunity for the researcher, scientist, and commercial user to onboard the AI models
and make deployment and execute in their local execution environments. The designed
solution was implemented and tested using different technologies and frameworks such
as spring boot for deployment client, Kubernetes to execute docker containers and gRPC
and Protocol buffers for communication.

Kubernetes client was designed and implemented to address the research questions
that establish the link between the catalog and its execution environment. It took the
topology of the AI pipeline and mapped them into the deployable artifacts. Kubernetes
client has the generic deployment script, which will deploy all the deployment artifacts
by adopting the local execution environment. The deployment script is integrated inside
the Kubernetes client and packed along the downloadable solution.zip. Kubernetes client
is integrated into the production environment of the AI4EU experiment platform and is
working fine on different kinds of simple, advance, and hybrid AI pipelines.

For experimentation and evaluation of the thesis, we implemented a simple and com-
posite solution. The simple solution consists of one node model, whereas the composite
solution consists of an AI pipeline generated in the design studio. We have implemented
a sentiment analysis pipeline for a simple solution, whereas, for a composite solution, we
have to implement an audio mining pipeline, which consists of different nodes like an
audio broker, audio segmentation, audio to text, and audio dialogue creator node. The
Kubernetes client successfully mapped the AI pipeline topology into deployable artifacts
that were automatically deployed by the generic deployment script. Kubernetes client
provides supports to different kinds of orchestrators by producing container specification
artifacts. These specifications are updated by deployment script according to the local
execution environment.

This thesis solves the problem of automatic deployment of all kinds of AI pipelines,
but the process can be improved using persistent volume. In this approach, a shared space
is attached to the pipeline, and each node can use the data from the shared space.

This thesis solves the problem of automatic deployment of all kinds of AI pipelines,
but the process can be improved using persistent volume. In this approach, a shared space
is attached to the pipeline, and each node can use the data from the shared space. In the
future AI4EU experiment platform can be made more secure by increasing the security at
an external and internal level. For the external level, the docker container can be made safe
by trust signature verification. We need to develop a mechanism for a docker container
verification where the container can only run the signed images. It can also be made
secured by reducing the Linux kernel capabilities of the root user because the user does

46

not need these capabilities such as:

• It denies all mount operations and also prohibits the raw socket from preventing
packet spoofing.

• It restricts access to the file system operations, for example, altering the owner of
the file.

We also need to make our deployment cluster more secure at the internal level of
the AI4EU experiment platform by limiting the container’s resources. In contrast, CPU
requests and limits are associated with the containers. By resource and limit mechanism,
we can save our system from DOS attacks. We also need to develop a strategy to check
how many resources are required to run an AI pipeline so that automatic deployment
cannot be stoped in the middle.

47

BIBLIOGRAPHY

[1] Sentiment Analysis Protobuf definition, https://github.com/ai4eu/tutorials/
tree/master/Sentiment_Analysis, Accessed: 2021-04-29.

[2] Audio Mining Protobuf definition, https://github.com/ai4eu/interfaces/
tree/master/audio-pipeline, Accessed: 2021-04-29.

[3] D. Box. (). “A brief history of soap,” [Online]. Available: https://www.xml.
com/pub/a/ws/2001/04/04/soap.html. (accessed: 4.3.2021).

[4] C. Pennington, J. Cardoso, J. Miller, R. Patterson, and I. Vasquez, “Introduction to
web services,” in. Jan. 2007. doi: 10.4018/978-1-59904-045-5.ch007.

[5] S. Kim and S.-Y. Han, “Performance comparison of dcom, corba and web service.,”
Jan. 2006, pp. 106–112.

[6] H. Wang, J. Z. Huang, Y. Qu, and J. Xie, “Web services: Problems and future di-
rections,” Journal of Web Semantics, vol. 1, no. 3, pp. 309–320, 2004. doi: https:
//doi.org/10.1016/j.websem.2004.02.001. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1570826804000058.

[7] S. Islam, R. Kumar, and A. Dar, “A comprehensive study on web services basics,”
Jul. 2018.

[8] Haishan Tian, Yuanjun He, and Hongming Cai, “A vr web service for active scene
using x-vrml,” in IEEE International Symposium on Communications and Infor-
mation Technology, 2005. ISCIT 2005., vol. 1, 2005, pp. 405–408. doi: 10.1109/
ISCIT.2005.1566879.

[9] R. Wu et al., “A new workflow to interact with and visualize big data for web ap-
plications,” in 2016 International Conference on Collaboration Technologies and
Systems (CTS), 2016, pp. 302–309. doi: 10.1109/CTS.2016.0063.

[10] S. Islam, R. Kumar, and A. Dar, “A comprehensive study on web services basics,”
Jul. 2018.

[11] F. Halili and E. Ramadani, “Web services: A comparison of soap and rest ser-
vices,” Modern Applied Science, vol. 12, p. 175, Feb. 2018. doi: 10.5539/mas.
v12n3p175.

[12] R. Ranjan, “The cloud interoperability challenge,” IEEE Cloud Computing, vol. 1,
no. 2, pp. 20–24, 2014. doi: 10.1109/MCC.2014.41.

[13] R. P. Goldberg, “Survey of virtual machine research,” Computer, vol. 7, no. 6,
pp. 34–45, 1974. doi: 10.1109/MC.1974.6323581.

48

https://github.com/ai4eu/tutorials/tree/master/Sentiment_Analysis
https://github.com/ai4eu/tutorials/tree/master/Sentiment_Analysis
https://github.com/ai4eu/interfaces/tree/master/audio-pipeline
https://github.com/ai4eu/interfaces/tree/master/audio-pipeline
https://www.xml.com/pub/a/ws/2001/04/04/soap.html
https://www.xml.com/pub/a/ws/2001/04/04/soap.html
https://doi.org/10.4018/978-1-59904-045-5.ch007
https://doi.org/https://doi.org/10.1016/j.websem.2004.02.001
https://doi.org/https://doi.org/10.1016/j.websem.2004.02.001
https://www.sciencedirect.com/science/article/pii/S1570826804000058
https://www.sciencedirect.com/science/article/pii/S1570826804000058
https://doi.org/10.1109/ISCIT.2005.1566879
https://doi.org/10.1109/ISCIT.2005.1566879
https://doi.org/10.1109/CTS.2016.0063
https://doi.org/10.5539/mas.v12n3p175
https://doi.org/10.5539/mas.v12n3p175
https://doi.org/10.1109/MCC.2014.41
https://doi.org/10.1109/MC.1974.6323581

[14] A. K. Yadav, M. L. Garg, and Ritika, “Docker containers versus virtual machine-
based virtualization,” in Emerging Technologies in Data Mining and Information
Security, A. Abraham, P. Dutta, J. K. Mandal, A. Bhattacharya, and S. Dutta, Eds.,
Singapore: Springer Singapore, 2019, pp. 141–150.

[15] M. J. Scheepers, “Virtualization and containerization of application infrastructure
: A comparison,” 2014.

[16] R. Ranjan, “The cloud interoperability challenge,” IEEE Cloud Computing, vol. 1,
no. 2, pp. 20–24, 2014. doi: 10.1109/MCC.2014.41.

[17] Kubernetes, https://kubernetes.io/, Accessed: 2021-04-03.

[18] Pods, https://kubernetes.io/docs/concepts/workloads/pods/, Ac-
cessed: 2021-04-15.

[19] Deployments, https://kubernetes.io/docs/concepts/workloads/controllers/
deployment/, Accessed: 2021-04-14.

[20] Service, https://kubernetes.io/docs/concepts/services-networking/
service/, Accessed: 2021-04-13.

[21] Namespace, https://kubernetes.io/docs/concepts/overview/working-
with-objects/namespaces/, Accessed: 2021-05-8.

[22] Persistent Volume, https://kubernetes.io/docs/concepts/storage/
persistent-volumes/, Accessed: 2021-02-20.

[23] Kaldi, https://kaldi-asr.org/doc/index.html, Accessed: 2021-03-6.

[24] D. Povey et al., “The kaldi speech recognition toolkit,” in IEEE 2011 Workshop on
Automatic Speech Recognition and Understanding, IEEE Catalog No.: CFP11SRW-
USB, Hilton Waikoloa Village, Big Island, Hawaii, US: IEEE Signal Processing
Society, Dec. 2011.

[25] AI Pipelines, https://cloud.google.com/ai-platform/pipelines/docs,
Accessed: 2021-04-10.

[26] Acumos, https://www.acumos.org, Accessed: 2021-05-6.

[27] LF AI Foundation, https://lfaidata.foundation/, Accessed: 2021-05-9.

[28] Service, https://kubernetes.io/docs/concepts/services-networking/
service/, Accessed: 2021-03-21.

[29] Container Specification, https://github.com/ai4eu/tutorials/blob/
master/Container_Specification/ai4eu_container_specification.

pdf, Accessed: 2021-05-16.

[30] Pykaldi, https://github.com/pykaldi/pykaldi, Accessed: 2021-04-29.

[31] Speech Activity Detection Models, https://kaldi- asr.org/models/m4,
Accessed: 2021-04-29.

49

https://doi.org/10.1109/MCC.2014.41
https://kubernetes.io/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kaldi-asr.org/doc/index.html
https://cloud.google.com/ai-platform/pipelines/docs
https://www.acumos.org
https://lfaidata.foundation/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://github.com/ai4eu/tutorials/blob/master/Container_Specification/ai4eu_container_specification.pdf
https://github.com/ai4eu/tutorials/blob/master/Container_Specification/ai4eu_container_specification.pdf
https://github.com/ai4eu/tutorials/blob/master/Container_Specification/ai4eu_container_specification.pdf
https://github.com/pykaldi/pykaldi
https://kaldi-asr.org/models/m4

[32] Zamia Speech, https : / / github . com / gooofy / zamia - speech # zamia -
speech, Accessed: 2021-04-29.

[33] Development environment of AI4EU experiment platform, https : / / acumos -
dev-fhg.ai4eu.eu/, Accessed: 2021-04-29.

[34] Production environment of AI4EU experiment platform, https://acumos-int-
fhg.ai4eu.eu/, Accessed: 2021-04-29.

[35] Hybride AI: Sudoku Example, https://github.com/peschue/ai4eu-sudoku/,
Accessed: 2021-04-29.

50

https://github.com/gooofy/zamia-speech##zamia-speech
https://github.com/gooofy/zamia-speech##zamia-speech
https://acumos-dev-fhg.ai4eu.eu/
https://acumos-dev-fhg.ai4eu.eu/
https://acumos-int-fhg.ai4eu.eu/
https://acumos-int-fhg.ai4eu.eu/
https://github.com/peschue/ai4eu-sudoku/

	Introduction
	Motivation
	Problem Description
	Objective
	Goal
	Research Problem
	Layout of Thesis

	Background
	Web Services
	SOAP
	REST

	AI4EU Experiment Platform
	Web Onboarding
	Design Studio
	Market Place

	Technology Utilization
	Why Docker is used for virtualization in AI4EU experiment platform instead of Virtual Machine
	Docker Execution Environment

	Kubernetes
	Pods
	Deployments
	Service
	Namespaces
	Kubernetes Persistent Volumes

	Pykaldi

	Related Work
	AI Platform Pipelines
	Acumos

	Methodology
	AI4EU Experiment Platform Solution Deployment in Private Kubernetes Cluster
	Kubernetes Client Architecture

	Component Design of Kubernetes Client
	Common Data Service
	Automatic Generation of Services and Deployments
	Docker image handling

	Mapping of the Pipeline Topology to the Artifacts
	Pipeline Topology
	Container Specifications

	Kubernetes Deployment Script
	Generic Serial Orchestrator
	Challenges Faced During Development

	Experiments
	AI Pipelines and Its Deployment
	Example Pipelines
	Deployment of Simple Solution
	Deployment of Composite Solution

	How to make a Pipeline more Robust and Secure
	Challenges Faced During Experimentation

	Discussion
	Conclusion and Future Work
	Bibliography

