Technical challenges and operational constraints in the search equipment (Vans and Airborne)

Monika Risse

Fraunhofer Institute INT, Euskirchen, Germany

Business unit: Nuclear security policy and detection techniques

Motivation for the use of search equipments

context of potential terrorist threats

options for searching and detecting radioactive and nuclear material during transport and storage in hiding places are necessary

- screening of extended regions
- covert search scenarios

- large area search
- mobile detection systems are required carborne or airborne

German detection systems – carborne

Germany is a federal country

- the civil protection is a state matter
- every Land (state) is differently positioned and equipped with respect to detection systems

nationwide:

- Federal Office for Radiation Protection (BfS) possesses several measurement vehicles
 - large number of measurement vehicles as part of the Integrated Measuring and Information System (IMIS), measurements: stationary with high resolution and on the move (NBR)
 - few, equipped with more sensitive and additional detectors, are operated by the working group defence against nuclear hazards

Nuclear Security Policy and Detection Techniques

source: webside of the BfS

German detection systems – carborne

- Federal Office of Civil Protection and Disaster Assistance (**BBK**) provides measurement vehicle to the Laender (states)
 - approx. 500 CBRN-reconnaissance vehicles
 - Iocated at fire brigades
 - nationwide equipping for threat prevention
 - measurement container radiological detection system:
 - NBR probe
 - dose rate measurement system FH 40 G

source: webside of the BBK

source: webside of the BBK

Fraunhofer INT Measurement Car DeGeN

- Fraunhofer INT developed the carborne measurement system DeGeN
 - integration in a standard station wagon
 - built-in gamma and neutron detection techniques
 - portable detection devices
 - possibility of covert search

INT Measurement Car DeGeN

typical background – screen shot

Operational constraints

- localizing sources in covert search scenarios
- changing background
- shielding effects

Example Detection of a Neutron source ²⁵²Cf 1 · 10⁶ n/s – 10 m distance, walking speed

Example Detection of a Neutron source ²⁵²Cf 1 · 10⁶ n/s – 10 m distance, 20 km/h

Example Detection of a Neutron source ²⁵²Cf 1 · 10⁶ n/s – 10 m distance, 60 km/h

Information on the kind of radioactive source

- Measurement vehicle with neutron and gamma components distinguish between neutron and gamma sources
- Interpretation of generated alarms : additional radioactive source or change in the background?
- Gamma sources:
 - Background radiation and natural variations cannot be neglected
 - Use of NBR (natural background rejection) detectors: distinguish between natural and artificial radiation

Natural background – example 1

Natural background – example 1

Situation: Passing under a bridge

source: Fraunhofer INT

increase due to the material of the bridge, no additional radioacitve source

Natural background – example 2

Situation: Driving over a bridge

source: Fraunhofer INT

decrease due to less material beside the bridge, no additional radioacitve sources

Shielding

shielding:

- Iow dose rate at position of detection
- compton scattering include specific information gets lost

- nuclide identification is rather difficult
- information natural/artificial (e.g. from NBR detector) is possible and therefore valuable

nuclide identification in the presence of shielding

German detection systems – airborne

- large or hard-to-access areas
 - airborne solution is most favorable
 - quickly assess the radioactive contamination in case of an incident
 - detects sources
- BfS equips helicopter from the Federal Police with radiation detection systems: aero gamma spectrometry

source: webside of the BfS

Fraunhofer INT – airborne – UAVs

- Constraints:
 - small and lightweight
 - Iong battery operation duration
 - relay station for long range
 - usable in difficult environments electromagnetic or radioactive radiation
- ANCHORS project
 UAV-Assisted Ad Hoc Network
- autonomous swarm of UAVs
- radiation detector is mounted underneath
- result is a real time mapping display of the dose rate and spectroscopic results

source: webside Mirion technologies

source: webside Mirion technologies

Summary

- In order to meet the needs for an event including RN material various detection systems should be prepared and used
- Carborne and airborne measurement systems are proved to be suitable for extended search tasks
- Scientific experience and competence is important for the evaluation of measurement results (e.g. taking the environment into account)
- The possibility of distinction between natural and artificial radioactive gamma sources is extremely useful
- Continuous exercise with all participants is essential for a reliable good result in case of a real situation

