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Abstract. A large-scale study for validating building energy simulation programs against measured 
data was undertaken within IEA EBC Annex 71 “Building energy performance assessment based on 
optimized in-situ measurements” as a more complex and realistic successor of the dataset created 
previously in IEA EBC Annex 58. The validation method consists of a set of high quality 
measurement data and a precise documentation of all boundary conditions. This enables a user to 
create a complete model of the different validation scenarios. The results of this model can be 
compared to the real measurement data. Because of the detailed modelling, the remaining deviations 
should indicate the limitations of the tool under investigation. The definition of the scenarios consists 
of extensive weather data and a detailed description of the building geometry, components 
compositions, thermal bridges, air tightness, ventilation, etc. In addition to the previous Annex 58 
dataset this experiment contains synthetic users with internal heat and moisture gains, operated doors 
and windows and underfloor heating with an air source heat pump. This paper sets out the 
experimental design, a key element in ensuring a useful experimental dataset. 

1 Introduction  

There is increasing emphasis in the design of buildings, 
both new build and retrofit, to reduce energy 
consumption, at the same time as ensuring good indoor 
environmental quality in terms of thermal comfort, air 
quality, lighting and acoustics. This has led recently to an 
increase in the range of available technologies that 
designers need to consider. Examples are advanced 
glazings, ventilation systems, novel heating and cooling 
systems, renewable energy system integration, thermal 
and electrical storage, and the integration and control of 
these systems. Given the complexity of the dynamic heat 
and mass transfer processes involved, modelling is 
commonly needed for selection of the most suitable and 
cost effective energy solution. 

It is therefore essential that the modelling programs 
used to predict energy and internal environmental 
performance are thoroughly tested (as well as the users of 
those programs) in order to give confidence in their ability 
to provide accurate predictions. 

Although there have been a number of large 
international and national validation studies (e.g. [1] and 
[2]) the majority have focused on inter-program 
comparisons such as the well-known BESTEST, or on 
small single room outdoor test cells. These validation 
studies have been useful for uncovering program errors 
and limitations of predictive accuracy. However, there is 

a need to develop some realistic empirical validation test 
cases of full-scale buildings to provide confidence that the 
dynamic thermal simulation programs can represent the 
physical reality, and to quantify simulation uncertainties 
under realistic boundary conditions. Inter-program 
comparisons cannot consider effects not included in the 
models: they do not provide a “truth” model. Simplified 
empirical validation based on test rooms do provide true 
physical behaviour, but they do not include multi-zone 
interactions that may be important in practice, and often 
their scale does not reflect real buildings. In some cases 
also the experimental design excludes certain effects, e.g. 
the air temperature stratification might be avoidance on 
purpose by mixing fans. 

In the IEA EBC Annex 58 “Reliable building energy 
performance characterization based on full-scale dynamic 
measurements" [3] a full-scale validation study was 
undertaken and published [4], [5]. The two fully 
documented datasets obtained in this study ( [6], [7]) are 
available and are frequently downloaded and used for 
validation, training and teaching purposes. 

Full-scale empirical validation is complex, time-
consuming and costly, and requires a high quality 
experimental facility with experienced experimentalists 
and modellers. To be of validation quality, all flow paths 
and boundary conditions must be measured, with the 
building tested through a range of external boundary 
conditions and internal operation. It is believed that there 
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have been no comprehensive full-scale validation datasets 
produced from full-scale buildings before Annex 58 and 
this experiment. The reason for attempting such 
experiments at this time is a combination of factors that 
should now improve chances of success: namely 
widespread availability of sensor and instrumentation 
equipment, the availability of sophisticated test buildings, 
knowledge regarding errors in previous experimental 
programmes and improvements in simulation programs to 
model low energy technologies to assist in the 
experimental design. 

While the Annex 58 experiment had a rather simple 
design, focusing primarily on the basic heat and mass 
transfer mechanisms, the experiment described in this 
paper is intended to provide realistic boundary conditions 
for an advanced validation. (Synthetic) users bring several 
new aspects to a building and the simulations 
characterising its performance. The users’ internal heat 
and moisture sources are stochastic and interact with the 
time-varying heat inputs of the heating system. Also the 
users will change the systems’ heating set point 
temperature actively. All these actions influence the 
thermal-energetic regime inside the building. To use a 
realistic occupancy profile, 10 minute data from a Markov 
chain model, developed from an extensive time use 
survey [8], was used (see section 3.4.). During two 
experimental phases (user 2 / 3 in Fig. 4) the roomwise set 
temperatures of 21°C and 17°C were linked to this 
occupancy information. An internal heat source profile, 
based on the identical model [9], was used in the 
experiment. 

One of the lessons learned from the Annex 58 
validation experiment was sensitivity of a building’s 
energy balance to factors related to  the inside air body. In 
particular, these were the assumption of well-mixed air 
inside a single room versus the stratification that occurs in 
reality [10] and also deviations that were believed to 
originate in a poor mathematical representation of the 
inter-zonal air exchange between rooms. 

This experiment was undertaken within the 
framework of the IEA EBC Annex 71 “Building energy 
performance assessment based on optimized in-situ 
measurements” [11]. The aims of the experiment are to 
obtain and apply high quality experimental datasets for 
the validation of building performance simulation tools. 
By applying a two-phase validation strategy with 
disclosed validation goal values during the first (Blind) 
Phase, user errors are separated from critical model 
simplifications and program errors. 

Given the complexity, it is important that a detailed 
experimental design is undertaken to define the 
experiment and instrumentation requirements. This paper 
sets out the developed design for testing over a full winter 
period. 

2 Validation Methodology 

The overall empirical validation methodology applied in 
this study was similar to that employed in IEA EBC 
Annex 58 [4] and other previous validation studies (e.g. 
[12], [13], [14]). The steps were as follows: 

1. Experimental design. Model the selected building 
using a local climate database. The aim of this phase 
is to determine building time constants, suitable test 
sequences, magnitudes of heat inputs and variation in 
internal temperatures. It includes sensitivity tests to 
identify important simulation parameters that need to 
be measured.  

2. Experimental set-up. Calibrate and install all required 
sensors and data acquisition systems, install and 
check the instrumentation system and program the 
heating and/or cooling as required. 

3. Experimental specification. Develop the 
specification, which describes all aspects of the 
building required for modelling. 

4. Experiment. Undertake the experiment and process 
the experimental data. 

5. Blind validation (Blind Phase). Modellers predict 
internal conditions using the experimental 
specification, measured climate data and operational 
schedules but without knowledge of internal 
conditions. At this stage, additional questions can 
arise regarding the experimental details – these 
questions and answers are distributed to all modelling 
teams. Modelling teams submit modeller reports with 
details of the programs used, and assumptions made. 

6. First stage analysis. This compares predictions 
against experimental data for internal temperatures 
and heat fluxes. Inevitably, at this stage, differences 
are due to a mix of user and modelling error (and 
potentially measurement errors).  

7. Re-modelling (Open Phase). The measured data is 
disseminated. Modelling teams are encouraged to 
investigate differences between measurements and 
predictions and resubmit predictions and updated 
reports. Only changes correcting user modelling 
errors or altering a modelling assumption (with 
documented rationale) are allowed. It is important to 
ensure that model input parameters are not simply 
tuned to improve agreement with measurement. This 
step separates the modelling from the user error by 
eliminating the user errors. 

8. Final analysis and archiving of high quality data sets. 
The intention is that the resulting specification and 
datasets will be useful for developers of new 
programs and those improving modelling algorithms, 
as well as providing evidence of predictive capability 
of simulation programs. 
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3 Description of the Experiment 

3.1 Test Buildings 

The Twin Houses of the Fraunhofer IBP (Fig. 1) were 
selected as the most suitable test facility. These buildings 
were previously used during the Annex 58 experiment 
and thus allow for a continuous evolution of the models, 
already created and validated during the previous 
experiment. 

 
Fig. 1. South-South-West view of both Twin Houses. 

Compared to the previous Annex 58 experiment the 
following aspects were added to the Annex 71 experiment 
to create a more realistic and thus a more complex but also 
more comprehensive validation scenario: 
• Night setback of the heating’s set point temperature. 
• Set point temperature profile based on a stochastic 

user model [8]. 
• Internal heat sources of synthetic users, based on a 

stochastic user model [9]. 
• Internal humidity source of synthetic users.  
• Operated internal door. 
• Operated external window. 
• Measurements in the attic space including an open 

horizontal trap door between both floors. 
• Hydronic underfloor heating in the ground floor of one 

of the houses. 
• Dry screed hydronic underfloor heating in the attic in 

one house. 
• Air source heat pump. 
• Two-gas tracer gas measurement for air flow analysis. 
 

It is possible to give the measured temperatures and 
ask for the required energy demand as the validation goal 
or to give the measured heating powers and ask for the 
resulting room air temperatures. Considering the amount 
of controls and time lags in an underfloor heating system 
and the related difficulties in simulation, it was decided to 
provide the heating powers (flow rates and supply 
temperatures for the underfloor heating) in this validation 
(except for the co-heating phase) and ask for the resulting 
temperatures. 

3.2. Geometry, air volumes, air flows and 
Ventilation 

Fig. 2 and Fig. 3 show the Twin Houses floor plan 
including the open/closed doors and windows. As can be 
seen the attic is one single air volume as is most of the 
ground floor, except for the kitchen, depending on the 
internal door’s operation status, and the sleeping room. 
Depending on the experimental phase, the trap door 
connects or separates the two large air bodies of the Twin 
Houses. The attic’s mechanical ventilation is mass flow 
controlled and balanced for each room (50 m³/h). The 
ground floor’s supply air (100 m³/h) is injected into the 
living room and extracted on the building’s other side 
from the dining room and bathroom. This results in air 
movement across the rooms and the connecting doors. 
 

 
Fig. 2. Ground floor plan of the Twin Houses. 
 

 
Fig. 3. Attic floor plan of the Twin Houses. 
 

To allow for a more detailed analysis of the infiltration 
and the inter-zonal airflows two tracer gases are used. CO2 
is injected into child 1 and SF6 into the living room. The 
resulting concentrations of both gases are measured in the 
living room, in child 1, in the kitchen and in the dining 
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room. The accumulation and decay of the concentration 
of these gases should allow for an analysis of the inter-
zonal airflows. The measured concentrations are provided 
together with the other measurement data. Since SF6 is 
about 5.5 times denser than air, the SF6 concentration is 
measured at two different heights in the living room. 
Since CO2 is a natural component of the atmosphere, a 
sixth detection point was installed into the building’s 
supply air duct to be able to consider the baseline 
concentration. 

3.3. Quality control and baseline measurements 

All sensors were calibrated before the start of the 
experiment. The accuracy of the sensors and their data 
acquisition system were documented and provided for 
every measurement point. The airtightness of both 
buildings was measured and compared directly before the 
experiment. As can be seen in Table 1 the overall 
buildings’ mean air tightness is 0.87 h-1 and 1.10 h-1 at 
50 Pa pressure difference. From these measured n50-
values, infiltration air change rates of 0.077 and 0.061 h-1 
can be estimated, assuming 7 % of n50 as average 
infiltration [15]. Together with the buildings’ internal air 
volume of 337 m³ this means a difference of 5.4 m³/h. 
Combining the mechanical ventilation of 200 m³/h and 
the estimated mean infiltration of 23.2 m³/h the absolute 
difference 5.24 m³/h means a relative difference in both 
buildings’ air exchange of 2.4 %. 

Table 1. Results of the pressurisation test. 

 Test house 
(O5) 

Reference house 
(N2) 

entire building 1.10 h-1 0.87 h-1 

ground floor 1.44 h-1 1.19 h-1 

 
The co-heating test ( [16], [17], [18]) at the 

experiment’s start also served as a baseline measurement 
comparing both buildings’ energy consumption under 
identical boundary conditions. The evaluation of the co-
heating test resulted in heat transfer coefficients (HTC) of 
107.4 W/K and 111.7 W/K for the O5 and N2 houses 
respectively (based on daily averaged data). So a 
difference of 3.9 % between both buildings’ energy 
consumption can be expected. The solar apertures were 
10.2 and 11.4 m² for the O5 and N2 houses respectively. 

3.4. Synthetic users 

To ensure the experimental analysis incorporates the 
influence on heat gains of a diverse and representative 
range of occupant behaviours, a stochastic modelling 
approach was used to develop realistic occupancy 
profiles, which were then used to determine occupant heat 
gains, and indirectly to first generate appliance and hot 
water use profiles, and then associated heat gains. These 
unique occupancy, occupancy-driven electrical and hot 

water demand, and heat gains profiles were generated 
using the occupant-differentiated probability-based 
approach [19]; this used UK Census, Time-Use-Survey 
and monitored demand data to generate model calibration 
data that are differentiated by a number of key household 
characteristics (e.g. household type/age, income, tenure, 
etc.) to capture the higher-level behavioural variations. 
The behaviour variations between similar households is 
also incorporated, with further calibration data ensuring 
the model output reflects individual household behaviours 
and not a composite of the group behaviour.  

The profile generation process uses a bottom-up 
approach, with first the occupancy model being 
generated, which is then used to determine individual use 
timing and demand profiles for each of the appliances 
probabilistically assigned to the household based on 
ownership data, and for hot water use. The occupancy 
model uses a Markov-chain approach with further 
statistical manipulations to replicate individual household 
behaviours. The appliance and hot water models uses an 
event-probability approach, where the number of events 
per day are determined probabilistically and then the 
timing in relation to the predicted occupancy. Flett [19] 
describes the profile generation process in detail.  

Heat gains are generated in relation to the occupant 
state (i.e. if awake or asleep) and energy input, including 
a delayed release of generated heat from appliances with 
high thermal inertia, such as a cooker, and a 50% 
allocation for hot water to allow for heat lost in the drained 
water. The calculated heat gains are apportioned to each 
room within the experimental house. For occupancy and 
lighting gains, a probabilistic model based on Time-Use-
Survey data is used to determine the activity and room 
location of each individual. Appliance-related heat gains 
are added based on the expected location and hot water 
gains proportionally split between kitchen and bathroom 
based on volume used. For this experimental analysis, the 
number of bedrooms was set at three, and the number of 
adults and children at two each. For the sensitivity 
analysis described in section 3.7 100 sets of output data 
were generated, with all other household characteristics 
allowed to vary probabilistically. Analysis of typical 
output variability against real data in Flett [19] has shown 
that this number of results should provide a representative 
range of behaviours for this type of household. For the 
experiment itself one randomly selected profile was 
implemented into the Twin Houses PLCs. 

3.5. Underfloor heating system 

The Twin Houses’ ground floors are equipped with a 
typical wet screed underfloor heating, so the piping is 
inside the floor’s screed. The attics are equipped with a 
dry screed system. The piping is fixed into an insulation 
layer, covered by a 25 mm dry screed board. Aluminium 
heat conducting lamellas between the pipes and the screed 
board optimize the system’s heat transfer to the room. The 
heat source is a standard air-to-water heat pump serving 
not only the heating system but also the synthetic users’ 
domestic hot water tappings. 
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3.6. Experimental schedule 

To facilitate the possibility of a side-by-side experiment, 
as is possible at the IBP’s Twin Houses, only a single 
parameter was chosen to be the difference between both 
buildings.  

For the “Main Experiment” this is the heating system. 
While the Reference Building (N2) was heated with 
power controlled electrical convectors (i.e. the underfloor 
heating system was not used), as in the Annex 58 
experiment, the Test Building (O5) was heated with a 
hydronic underfloor heating powered by an air source heat 
pump. 

In the “Extended Experiment” both buildings were 
heated identically with electrical convectors. In the Test 
Building internal moisture sources were added to the 
living room while the Reference Building was still “dry”. 

In these two basic experiments, there were several 
phases, as can be seen in Fig. 4. The following phases 
were contained in the Main and the Extended Experiment: 

3.6.1. Co-heating Phase 
During this phase, also used as the Main Experiment’s 
initialisation to equalise thermal storage in the two 
houses, the indoor air temperature was kept constant at 
21°C by electrical heating in both houses while the air is 
uniform because of mixing fans. The mechanical 
ventilation and synthetic users were off in this phase. The 
data from this phase were analysed to compare both 
houses’ heat loss coefficients as a part of the baseline 
measurements. During the Blind Validation the measured 
air temperatures (at 110 cm) were provided to the 
modelling teams but not the heat inputs. Also, the 
calculated heat transfer coefficients were not released to 
modelling teams until after the Blind Validation. 

3.6.2. User 1 Phase 
All rooms were heated identically with a fixed night 
setback between 11 pm to 6 am; the Test Building’s 
underfloor heating was operational and the synthetic 
users’ internal heat gains were active. Ground floor and 
attic space were separated by the closed trap door. During 
the Blind Validation the room air temperatures were 
disclosed to the participating modelling teams. For the 
Reference House the electrical heating powers were 
provided. Time-varying supply water temperatures and 
flowrates were provided for the Test House’s underfloor 
heating for each room. 

3.6.3. User 2 Phase 
In the User 2 Phase the rooms’ set temperature profiles 
were provided for each room, following the occupancies 
of the synthetic users. These users also operated the 
internal kitchen’s door and the external child 1’s window; 
the trap door was open permanently. 

3.6.4. (Re-)Initialisation Phase 
After the User 2 Phase, between the Main and the 
Extended Experiment, there was another initialisation 
phase. Both Houses were heated electrically again at a 
constant set temperature with no synthetic users. Also 
during the Blind Validation, all data are available to the 
modelling teams. 

3.6.5. User 3 Phase 
The User 3 Phase marked the start of the Extended 
Experiment. From now on both houses were heated 
electrically and the Test House’s living room had an 
internal moisture source aligned with the occupancy 
profile. Otherwise this phase was identical to User 2. 
During the Blind Validation the electrical heat inputs were 
available while the room air temperatures were disclosed. 

3.6.6. PRBS Phase 
During this phase the heating inputs and the internal heat 
sources were replaced by heat inputs following a Pseudo 
Random Binary Signal (PRBS). The signal magnitude 
was determined in the experimental design by a 
simulation of the experiment. There are no influences 
from the synthetic users except for the moisture source. 
The trap door is closed for a part of this phase. This PRBS 
Phase is primarily intended for the training of low order 
building models. During the Blind Validation the 
electrical heat inputs were available while the room air 
temperatures were disclosed. 

3.6.7. Free-float Phase 
In this last experimental phase all aspects of the synthetic 
users were active except the external window in child 1 
and there was no heating, so the room air temperatures 
were free-floating. During the Blind Validation the 
synthetic occupant heat gains were available while the 
room air temperatures were disclosed. 
 
3.7. Sensitivity analysis 

Building Performance Simulation (BPS) was used to 
assist the experimental design of the full-scale empirical 
validation exercise. The Fraunhofer Twin Houses were 
simulated using EnergyPlus V8.8 [20]. The input 
parameters used in the simulation models were specified 
based on up-to-date information for the buildings, 
including post-construction drawings of building 
geometry, construction details of existing fabric, 
infiltration rates measured with a blower door test, among 
others [21]. An additional simulation based on 
WUFI PlusTM [22] was deployed to design the extended 
experiment’s internal moisture source. 

Deterministic simulation was initially used to replicate 
the actual experiment, acknowledging that almost all 
input parameters fed to the simulation models were 
subject to a certain level of uncertainty. To overcome this 
issue, a Sensitivity Analysis (SA) using the method of 
Morris ( [23], [24]) was employed, as a screening method, 
to indicate which input parameters have the most 
significant impact over simulation predictions and which 
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factors need to be measured more accurately in 
preparation or during the monitoring experiment. The 
Morris sampling method shows the overall influence of 
the input parameters on the results (i.e. absolute value of 
μ* - Fig. 5), as well as the monotonic behaviour in the 
model (graphical representation of σ vs μ* - Fig. 6) ( [24], 
[25], [26], [27]). If the input factors are positioned below 

the σ/μ* = 0.1 line then their behaviour is considered 
linear. If the input factors are positioned between the lines 
σ/μ* = 0.1 and σ/μ* = 0.5 then they are monotonic. If the 
input factors are between the lines σ/μ* = 0.5 and σ/μ* = 
1 they are almost-monotonic. Finally, if they are above the 
σ/μ* = 1 line they are considered highly non-linear and 
non-monotonic [27].    

 

 
Fig. 4. Experimental schedule of the IEA EBC Annex 71 BES Model Validation Experiment. 

 
 

A list of uncertain parameters was created, 
considering what will/can be measured as part of the 
experiment and what information will be released to the 
modelling teams of the empirical validation exercise. 
Their base values were specified to the best of existing 
knowledge at the time of the analysis. A uniform 
distribution with a fixed relative range of 20% was 
assigned to each parameter, as an initial estimate, in the 
absence of more certain information. The SA was 
performed using Python SALib [28]. 570 simulations 
were conducted using JEPlus 1.7 [29]. The results of the 
SA showed that the most influential input factor was the 
specification of thermal bridges in the model (Fig. 5), 
having a linear effect on the heating demand (Fig. 6). This 
ranking obtained in Fig. 5 was used to identify the 
experimental aspects with the most significant 
contributions to uncertainties, allowing for a systematic 
improvement of the initial experimental design. 
Consequently, a higher number of junctions were 
analysed in detail as part of the experiment than was 
initially intended. 

 

Fig. 5. Morris analysis on zone heating demand of House O5 
(underfloor heating): sensitivity ranking. The black, dotted 
rectangle encloses the parameters with a significance factor > 
5%. 
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Fig. 6. Morris plot of absolute mean (μ*) and standard 
deviation (σ) on zone heating demand of House O5 (underfloor 
heating), showing the 6 out of 27 most sensitive parameters. 

The mechanical ventilation supply flow rate of the 
living room and the attic space were also found to have a 
significant impact and a linear effect on the sensitivity of 
the simulation output. Recognising, however, that this is 
a parameter that can be specified and measured with high 
precision during the actual experiment, this observation 
did not alter the experimental design considerably. 
Finally, the temperature of the cellar boundary condition 
and the hot water flow rate of the underfloor heating 
system were found to be two more important parameters; 
a finding that resulted in parts of the instrumentation 
undergoing a second calibration process (i.e. the 
underfloor heating flowmeter) and further temperature 
and heat flux sensors being installed in the cellar. 

4 Conclusions  

Undertaking a comprehensive full-scale validation study 
requires a large commitment in time and resources. Key 
requirements are: 

 A high quality, fully documented test facility 
with an experienced experimental team 

 Several modelling teams with experienced 
modellers using a range of simulation programs. 

 Realistic test sequences that cover a range of 
internal and external conditions. 

 
Attention to experimental design is critical in ensuring 

the resulting datasets are fit for purpose. A pragmatic 
procedure was adopted to cover the following aspects: 

 Determination of the main influencing factors on 
performance, varying them through a realistic 
range.  

 Inclusion of random elements which cover the 
range of conditions expected in “real life”. For 
weather it means covering an extended period 
and for occupancy it means making sure the 
magnitude and stochasticity are realistic. 

 Ensuring the variable factors have a significant 
effect on the “independent” metric used. This 
could be temperature (e.g. in a free float period) 
or heat input to maintain a setpoint. 

 Ensuring all important influencing factors are 
measured to a sufficient level of accuracy. This 
was investigated through sensitivity analysis. 

 Reducing measurement error through calibration 
and data checking. 

 Full documentation of the experimental 
specification and measurements. 

 Use of side-by-side experiments to focus on one 
or more important influencing factors. 

 
The experimental design benefitted from the 

experience gained in Annex 58, with an evolution in 
complexity level. This led to additional sensors to 
measure air temperature distribution for monitoring 
stratification, and airflow instrumentation to monitor 
inter-zone air exchanges. 

The presented experiment provides a comprehensive 
dataset including detailed documentation that can be used 
either for the validation of Building Energy Simulation 
(BES) programs or for teaching and training purposes. 
This experiment complements the experiment already 
carried out in IEA EBC Annex 58 by adding synthetic 
users, a hydronic underfloor heating system, tracer gas 
measurements and more complex internal airflows.  

The deployment of a simulation of the intended 
experiment proved to be of high importance in setting 
several parameters during experimental design, for 
example the amplitude of the heat inputs during the PRBS 
phase and the design of the internal moisture source. In 
addition, the sensitivity analysis, derived from the 
EnergyPlus simulation, revealed several flaws in the 
initial design that could be avoided with the information 
gained and the resulting changes to the experiments 
design, documentation and instrumentation used. 

A Blind and Open Phase approach, separating user and 
program errors, is currently underway with the 
participation of a number of modelling teams using a 
variety of detailed simulation programs. Since the Open 
Data are already released, a truly blind validation is no 
longer possible. Nevertheless, this Validation Exercise 
can continue to serve its purposes very well. Since all data 
are available now, a validation team can choose its 
validation goals freely. This allows for an adaption of the 
validation procedure to be more suitable for the individual 
validation task of the simulation researcher or engineer. 
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