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Classification of storages
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Considered PV power plant in Germany

Installed power 5101 kWp
2011 generated energy | 5 861 000 kWh
Solar modules 22 360

Located

48.072°N / 8.796, 940 UNN
Schwabische Alb

Operation since

01.06.2010

Operating company

BES GmbH, Durbheim

abs. Max. 1304 kWh/m?| ™~
Mittel 1037 kWh/m?
abs. Min. 834 kWh/m?| |

|||||
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Case study: PV power plant with battery storage

Targets: Grid meter Grid
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Case study: PV power plant with battery storage

Targets: Grid meter Grid

KEink
Kverk

B Maximization of
solar fraction

® Minimization of
energy purchased
from the grid

B Quick amortization
time of the battery
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distribution grid !!!
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Case study: PV power plant with battery storage

M Approach:

» Annual savings = reduction of
“external” electricity costs

» Annual savings 2 what a battery
can cost
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Case study: PV power plant with battery storage

M Approach:

» Annual savings = reduction of

“external” electricity costs

» Annual savings 2 what a battery
can cost

e |oad profile
e Generation profile

e EEX —stock market
prices

e Consumer tariff
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Battery dimension:
Power & Energy

<

Battery model

e Annual savings

e Optimized

battery design for

the application
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B Method:
>

Use of input profiles

(PV generation and loads)

LCC
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e factor of proportionality

s

(project time, operation
costs, discount rate)

Battery dimensioning
Annual simulation
Internal rate of return (IRR)

e Specific storage costs

e Specific investment
costs for the battery
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Simulation models Discharge:

AC

» I:)INV

DC
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B Energy flux models
B Battery model

» Efficiency according to
power and SOC

DC
Chem

» PEE

| Pchem

® Inverter model

» Efficiencies depending on
requested power

® AC round-trip efficiency
» Redox-flow approx. 66 %

— Inverter: 95 % oy,
— Battery: 73 % g
» Lithium approx. 81 % - 05 0 ImERpe’
—  Inverter: 95 % o . :
0 Efficiency of a redox-flow Efficiency of an inverter
— Battery: 30 % battery according to SOC according to requested
and requested power power 9
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Input data: Energy fluxes

B PV generation profile
» 27.5.2011 to

21.5.2012
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Input data: Energy fluxes

B PV generation profile
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Input data: Energy fluxes

B PV generation profile
» 27.5.2011 to
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Input data: Energy fluxes

B PV generation profile

» 27.5.2011 to
21.5.2012

B Load profile divided
into three periods

» Summer
> Transition
» Winter

B Variation of the
considered load
profile

» Transition time:
EIoad = EPV

» Summer time:
EIoad = 1'87*EPV

> Winter time:
EIoad = 0'3*EPV
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First step: Annual savings and optimized battery design

First step

e Load profile
e Generation profile

e EEX—stock market
prices

e Consumer tariff

=b

Battery dimension:

Power & Energy

<

Battery model

N L

i |
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e Annual savings

e Optimized
battery design for
the application

LCC

n
e —a;

e +
°T@a+nn

; e
t:ﬂ(l + i)

Ip=k-e k:(i-(1+!)u N )—1

Q+on-1 7%

iy
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e Specific storage costs

:> e Specific investment

costs for the battery
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Annual savings in dependence of the battery layout
Example vanadium redox-flow battery

M Variable
dimensioning of

» Installed
power

» Installed
capacity

m Case:
“"Transition time”

B Annual savings
increase linear
with the power to
energy ratio up to
a factor of
approx. 0.3

Annual savings (T€/a)

Vanadium-Redox-Flow Battery
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Epy =2.361.420kWh/a Ejyuq
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Second step: Specific storage and investment costs

Load profile
Generation profile

EEX — stock market
prices

Consumer tariff

Battery dimension:
Power & Energy
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Battery model

e Annual savings

e Optimized
battery design fo
the application

Second step

LCC
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Results: Variation of end-user electricity tariff

3 VRFB
,E 500
e w CIEJ'.E' 400
Allowed specific investment costs 832
2 5 300
® Vanadium redox-flow battery: S oo
Approx. 150 to 200 €/kWh A
B Lithium-ion battery: 0
Approx. 150 to 260 €/kWh 100 ° 0 2_0 ==
consumer tariff (ct/kWh)
600
Li-ion battery
500

2.000 kWh

specific investment costs

10 20 30
consumer tariff (ct/kWh)

40 50
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System analysis

Variation of end-user electricity tariff

Allowed specific investment costs
® Vanadium redox-flow battery:
Approx. 150 to 200 €kWh
B Lithium-ion battery:
Approx. 150 to 260 €kWh
Scenario:

> 4 % increase of the end-user
electricity tariff every year

» 2020: 0.397 € kWh

® Vanadium redox-flow battery:
Approx. 220 to 300 €kWh

B Lithium-ion battery:
Approx. 300 to 400 €kWh

specific investment cost

specific investment costs

600
500

VRFB

consumer tariff (ct/kWh)

Li-ion battery

2.000 kWh

10 20 30 40 50
consumer tariff (ct/kWh) 18
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System analysis
Variation of the number of full cycles

B Under German weather
conditions number of
full cycles per year are

limited: VRFB u. Li-ion Battery

» Redox-flow:
Max. 210 cycles/a
year

N
(V)
o

3

» Lithium-ion:
Max. 250 cycles/a

(RN
9]
o

specific energy costs (€/kWh)

e e 1.000 kWh

» = 2.000 kWh
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number of full cycles per year (1/a)
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System analysis

M For this case study vanadium redox-flow batteries have to cost below
> 440 €/kW (stack costs)
» 40 €/ kWh (electrolyte costs)

M Lithium-ion batteries have to cost below 220 €/kWh

M BUT: The actual market prices are higher

B Which are the main cost drivers for vanadium redox-flow batteries and
lithium-ion batteries?
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Key parameters

ecological

AN

Operation

\

Manu-
facturing \
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pcos te Invest costs
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Key parameters — Sensitivity analysis

Vanadium redox-
flow battery:

B Project life time: 100
10 years <
.. E 90 ——discount rate
W Efficiency: = (5 %)
78 % =2 %9
..3 20 —— electrolyte investment costs
® SOC-range: 9 e (120 €/kwh)
80 % 9>_.0 60 -#-stack investment costs
o 48,29 (1750 €/kW)
B Cycles per year: S 30 e
250 B a0 —+—maintenance costs
i o (6 %Inv)
B Ratio power to 8 30 - / \ N
. 5 ——number of full cycles
energy. 0.25 8 20 : (250 per year)
:?, 10 ——cycle stability
a (10000)
“ 0 ‘ ‘
-50 % -25% 0 +25 % +50 %
difference
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Key parameters — Sensitivity analysis

Lithium-ion
battery:
. . . 100
M Project life time: =
10 years 2 %
~
B Efficiency: 5 #0
90 % "g 70 —e—discount rate
5%
B SOC-range: > 60 %)
90 % 5 e ey
W
c 50
| CyCIGS per year: g —+-maintenance costs
250 o 40 (6 %Inv)
<}
7 30 ——number of full cycles
ey
S (250 per year)
g 20 —cycle stability
5 10 (6000)
Q
o
-50 % -25% 0 +25 % +50 %
difference
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Conclusions

B Competing battery technologies on the market or close to market entry
(e.g. lithium-ion batteries and vanadium redox-flow batteries)

M PV power plants:
» Lithium-ion batteries suitable as short-term storages
» Redox-flow batteries suitable as mid-term storages

B The specific investment costs for lithium-ion batteries and redox-flow
batteries have to decrease drastically

W Efficiencies affect the justifiable investment costs

B The number of full cycles and the investment costs have a huge influence
on the specific storage costs (costs per “out-stored” kWh)

B Multiple use of storage systems enables an economic operation (achieved

number of full cycles during the calendar life time) ”
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