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Abstract—Current advances in vehicular ad-hoc networks
(VANETs) point out the importance of multi-hop message dissem-
ination. For this type of communication, the selection of neigh-
boring nodes with stable links is vital. In this work, we address
the neighbor selection problem with a data-driven approach. To
this aim, we apply machine learning techniques to a massive
data-set of ETSI ITS message exchange samples, obtained from
simulated traffic in the highly detailed Luxembourg SUMO Traffic
(LuST) Scenario. As a result, we present classification methods
that increase neighbor selection accuracy by up to 43% compared
to the state of the art.

I. INTRODUCTION

Vehicular networking based on IEEE 802.11p has recently
seen a significant increase in popularity with the up-coming
legislation of the DSRC standard in the United States. Further,
with the standardization of the competing LTE-V2X feature in
3GPP Release 14 [1], the race for the technological enabler of
future connected mobility is opened. In this context multi-hop
ad-hoc network architectures are being reconsidered. This is
even the case for V2X in 5G [2], since ubiquitous cellular
coverage is impractical. With ad-hoc networking also being
inherent to IEEE 802.11p based technologies as for example
ETSI ITS-G5, a central question for dynamic network struc-
tures reemerges: In the fast changing topologies of vehicular
networks, which of your neighbors is a reliable communication
partner?

Vehicular network topologies change quickly. Vehicles pass-
ing each other on opposite lanes of a highway easily reach
relative speeds of up to 300 km/h. In urban scenarios buildings
create severe signal blockage towards a receiver which turns
around a corner. Thus, proper selection of neighboring nodes,
that ensure a reliable link at least for the next upcoming
messages is challenging. But, transmitting to a neighboring
node that unexpectedly gets out of reach does not only impact
multi-hop routing strategies. It also hinders other dissemi-
nation aspects. For example geo-messaging according to the
ETSI ITS standard buffers messages based on a neighborhood
decision [3], and also heterogeneous wireless technology se-
lection can be based on the current set of neighbors. Correct
classification of the neighborhood relationship is thus of very
high importance for vehicular networking.

Currently, the state of the art for neighbor selection in
VANETs is defined by a threshold for the time since the
last direct message of a node as specified in the ETSI
GeoNetworking standard [3]. In the scientific literature, more

complex decision criteria are considered, however neighbor
selection is predominantly seen to be part of ad-hoc network
routing. Unfortunately, most of this work is not applicable
since the distinct dynamics of vehicular networks are omitted.
This also accounts for [4] and [5] where neighbor classification
is addressed explicitly. Exceptions that assume vehicular node
movement are either focusing on vehicle grouping for long
term routing stability [6] or leverage information from a mod-
ified PHY-layer to estimate link stability [7]. More recently,
Hoang et. al [8] consider reliable neighbor selection for their
cooperate positioning algorithm but focus on the GPS data
fusion aspect.

Contrary to the work mentioned before we explore neighbor
selection in vehicular networks as an independent problem,
with a data driven approach. By extensive simulation of
ETSI ITS communication using the ezCar2X [9] framework
in combination with the Luxembourg SUMO Traffic (LuST)
Scenario [10] we obtain a wide data basis, which we use
to analyze the behavior of neighbor classification in complex
traffic scenarios. From our data-set, which reflects the success
of message exchange with network neighbors, we analyze the
potential of several classification features to reliably predict
network neighborhood. Then, we evaluate the performance
of various classification methods for neighbor selection in
vehicular ad-hoc networks, which are based on the selected
features. In particular, the contributions of our work are as
follows:

• From a wide set of classification features, we determine
the most relevant ones for neighbor selection in vehicular
networks. Our findings are valid for a broad set of traffic
densities and message update rates.

• Further, the performance of several neighborhood classi-
fication methods is evaluated on highly detailed VANET
simulations based on a realistic city scenario.

• From this we propose improved thresholds for current
state of the art for neighborhood decision based on last-
message-received thresholds.

• Last, we give a recommendation on which classification
method is best used for different vehicular network ap-
plications.

This work is structured as follows. Section II describes
our simulation setup. Section III evaluates the significance of
different classification features, which are used in Section IV



to evaluate the performance of neighbor classification methods.
Section V concludes the paper.

II. SIMULATING A REALISTIC CITY SCENARIO

Our data-driven approach requires a sufficient amount of
input data covering a variety of situations to avoid biasing the
classification algorithms towards special cases. The Luxem-
bourg SUMO Traffic (LuST) Scenario [10] fits the requirement
well. It provides 24 hours of mobility simulation in the city
of Luxembourg and the surrounding highways. The number of
active cars ranges from a few dozens during night to more than
5000 in rush hours. We selected three different time periods
over day to cover varying traffic densities as summarized in
Table I.

TABLE I
TRAFFIC DENSITIES

Density Time Period Vehicles
low 11:05am - 11:20am 1700

medium 1:20pm - 1:35pm 3200
high 8:15am - 8:30am 5000

In total we captured 17 features for each transmitted packet.
The data includes information about the sender: position,
velocity, channel busy ratio measurement and size of the
neighbor table; and about a potential neighbor: position, ve-
locity, update history and received signal power. Furthermore,
we derived relative metrics like distance, relative speed and
heading. We intentionally limited the features to data that
is directly available or can be collected without additional
communication overhead to ease integration into existing
protocols. The status of neighbors is derived from periodic
GeoNetworking updates (beacons [3] or Cooperative Aware-
ness Messages (CAMs) [11]) and therefore reflects the state of
the last successfully received packet. Local data is assumed to
be sampled from a positioning device with a fixed frequency
of 10 Hz.

Unicast and broadcast transmissions on the medium ac-
cess (MAC) layer behave differently. While the former uses
acknowledgements and a retransmission scheme to improve
reliability, the latter is simply transmitted once. Since we did
not want to limit our investigation to a specific usage scenario,
we investigated both modes separately. A similar approach
was applied to different beaconing schemes for status updates,
see Table II: GeoNetworking beacons [3] and Cooperative
Awareness Messages (CAMs) with adaptive [11] and 10 Hz
fixed frequency. For each combination of scenario, beaconing
scheme and transmission mode we collected approximately
1.5 million samples of which 75% were used as training data
and the remaining 25% for testing.

The simulation environment consists of the network simula-
tor ns-3 [12], the traffic simulator SUMO [13] and the ezCar2X
framework [9] implementing the ETSI ITS protocol stack. The
main simulation models and parameters are summarized in
Table III. Data analysis and statistical inference are based on
Scikit-learn [14].

TABLE II
BEACONING SCHEMES

Scheme fmin fmax

GeoNetworking [3] 0.27 Hz 0.33 Hz
CAM adaptive [11] 1 Hz 10 Hz

CAM 10 Hz 10 Hz 10 Hz

TABLE III
SIMULATION PARAMETERS

Parameter Value
Standard 802.11p

Tx Power, Tx Rate 23 dBm, 6 Mbps
Propagation Model Cheng et al. [15] with [16]

Penetration Rate 20%
Neighbor Timeout 20 s [3]

Packet Size 300 Bytes
Simulation Runs 32
Duration per Run 1000 s
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Fig. 1. Feature relevance based on mutual information estimates averaged
over all traffic densities and beaconing schemes.

III. FEATURE SELECTION

In this section we identify the most predictive features for
the classification of neighbor relationships in VANETs. Using
fewer features can increase the generalization performance of a
classifier and also reduce its complexity. We ranked all features
based on an estimate of the mutual information [17] between
the feature and a successful reception of the packet. Figure 1
summarizes the results for the most relevant predictors with
a distinction between unicast and broadcast transmissions. In
both cases, the four main features are: time since the last
received update, distance between the nodes, signal strength
of the last received packet and the difference between the
headings (driving direction).

In case of unicast all features appear to carry more informa-
tion about the current status of a potential neighbor. This can
be explained by the retransmission scheme that compensates
for some of the random error, e.g. introduced by fast fading,
that cannot be deduced from the collected data. The time
since the last update alone appears to be a very powerful
predictor for the current connectivity - especially for unicast.



This observation is also in line with the common approach of
using timeout values to determine if another node is a direct
neighbor or not [3].

The relevance of most features is consistent across scenarios
and beaconing schemes, with one exception: channel busy ra-
tio (CBR). In most of our scenarios it carries little information
since we see average busy ratios ranging from 0.05% to 3.8%
with rare hotspots of up to 60%. However, with an increase in
generated messages and road traffic density its relevance for
the prediction increases as well. We expect CBR as a feature
to be even more significant in dense and crowded situations
with a constantly saturated channel.

In addition, we ranked the features using the feature rele-
vance derived from a Random Forest [18] classifier as well
as a forward step-wise selection as described by Hastie et
al. [19]. Both were consistent in identifying the main features
but showed diverging results for the less significant variables.

IV. NEIGHBOR CLASSIFICATION

We model the estimation of the current relationship with
a remote node r as a binary classification problem, where
an input vector ~xr consisting of p features is used to make
predictions of an output yr denoted by ŷr with ŷr ∈ [0, 1]. r
is considered to be a neighbor if ŷr > 0.5 [19]. Our goal is
to find a suitable approximation function ŷr = f̂(~xr).

A. Classification Methods

In the following we describe the classification methods that
were evaluated on the datasets. We differentiate between the
state of the art threshold for last-message-received times and
machine learning concepts.

Time Threshold. Our baseline classification function uses
a threshold tup for the time xr,t since the last status update
from remote node r:

f̂t(~xr) =

{
1, if xr,t ≤ tup
0, if xr,t > tup

(1)

This rule is widely applied in different routing protocols
and also used in the ETSI GeoNetworking standard where the
default threshold tup,GN is defined to be 20 s [3].

However, 20 s appear to be very long especially compared to
the short beaconing intervals between 0.1 s (CAM with 10 Hz)
and 3.75 s (GeoNetworking beacon). We therefore used the
training data to compute the optimal threshold tup,opt for the
different data sets. We intend to maximize the classification
accuracy, thus we minimized the zero-one loss function:

L(y, ŷ) =
1

n

n∑
1

I (y 6= ŷ) (2)

where I is the indicator notation and n is the number of
training samples.

Figure 2 shows the optimal thresholds for the individual
scenarios, beaconing schemes and transmission modes. It is
obvious that the value highly depends on the update frequency.
Higher update rates lead to lower thresholds. There is also a
significant difference between unicast and broadcast. While
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Fig. 2. Optimal update thresholds for low, medium and high traffic densities
with varying beaconing schemes.

broadcast needs to cope with more uncertainty due to random
fading and collisions, unicast allows for higher threshold
values due to the its increased reliability. However, the road
traffic scenario appears to have very little influence. We also
determined the optimal threshold for a combined data set with
samples equally selected from all three traffic scenarios which
lead to values almost identical to those for medium density.

Machine Learning. We applied several approaches from
the machine learning domain taking all features or a subset
thereof into account: k-nearest neighbors, decision trees, ran-
dom forests and the multilayer perceptron (MLP) [19]. With
proper parameter tuning they all provide a similar classification
performance with less than 2% of deviation. We therefore
focus on the MLP in this paper because once trained it has
the lowest memory requirements (weight matrices only) and its
output can be computed efficiently with basic linear algebra.
This makes it the most suitable candidate for integration into
embedded devices and networking protocols.

MLPs according to [20] are multi layered networks of nodes
that apply a non-linear activation function σ(υ) to map their
input to an output value:

zk,l = σ(βk,l + ~αTl ~zl−1) (3)

where zk,l is the output of the k-th node in the l-th layer with
l ∈ [1,m], βk,l is a static bias term, and ~αl are the weights
applied to the outputs ~zl−1 = {z0,l−1, ..., zi,l−1} of the i nodes
of the previous layer l−1. The input is applied as ~z0 = ~xr. For
binary classification the output layer consists of a single node
with its own activation function σout to calculate f̂ applying
eq. 3 for each intermediate node:

f̂MLP ( ~xr) = σout(β1,m + ~αTm~zm−1) (4)

In our evaluation all input variables were standardized, i.e.
scaled to have mean µ = 0 and standard deviation σ = 1,
before being fed into the network. Training of the MLP is



based on stochastic gradient descent as described in [21].
Parameter tuning was performed using a grid search [19]
with cross-validation [22] on the training data. We found a
MLP consisting of two hidden layers - with 50 nodes in
the first and 20 nodes in the second - to perform best if all
features are included. With fewer features smaller networks
were considered as well. Further, we selected the rectified
linear unit function σ(υ) = max(0, υ) for the activation
of hidden layer nodes while the output node uses a logistic
activation σout(υ) = (1 + e−υ)−1.

For the following results we trained the classifier on a
combined data set with data from all three traffic scenarios.
However, we evaluated the performance on each test set
individually to identify potential bias issues with respect to
the traffic densities. Besides accuracy, precision and recall we
also calculated the Brier score [23] on the test data:

B =
1

n

n∑
1

(ŷ − y)2 (5)

where n is the number of test samples and B ∈ [0, 1]. A low
Brier score indicates that a classifier is capable of estimating
not only the class but also the probability of that class with
high accuracy.

B. Results: Unicast

We first investigated the classification performance on
unicast transmissions comparing two last-message-received
threshold classifiers (standard and optimal) as well as two
MLPs, one with all features (MLPfull) and one where only
the four most significant features according to Section III are
considered (MLP4).

Figure 3 shows the classification accuracy for each bea-
coning scheme averaged over all traffic scenarios. Overall,
performance of classifiers increases with higher update fre-
quencies due to more recent information from remote nodes.
Furthermore, missing updates can be detected more quickly
leading to shorter periods of uncertainty.

Comparing the individual classifiers reveals the standard
neighbor timeout defined in [3] to perform only slightly better
than random guessing. In contrast, the other three approaches
perform significantly better with a slight advantage for the
MLPs over the optimal last-message-received threshold. While
the latter improves by up to 32% over the state of the art,
the MLP based approaches achieve additional accuracy in the
range of 2%. The false positive rate is around 11% for all three
approaches with the MLPs offering better recall. The perfor-
mance is consistent across traffic scenarios indicating good
generalization properties. Further, the Brier score displayed in
Fig. 5 shows that the MLP is much better in estimating the
probability compared to the simple thresholding.

If the improvement offered by the MLPs is worth the added
complexity depends on the application. We assume that the
thresholding approach should suffice for most scenarios were
only binary classification is required. However, if algorithms
depend on an estimate for the class probability, MLPs are
the better choice, e.g. in an advanced platooning algorithm
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Fig. 3. Classification accuracy for unicast transmissions averaged over the
traffic densities.

the controller could adapt the inter-vehicle gap based on the
estimated probability to compensate for potential packet loss.

C. Results: Broadcast

Similar to the unicast results, Figure 4 shows the classi-
fication accuracy for broadcast transmissions. Broadcasting
is relevant for routing algorithms with receiver-based next
hop selection, e.g. Contention Based Forwarding in [3], and
multicast or broadcast dissemination in general.

In contrast to the unicast observations all classifiers perform
worse with increasing beacon rates since without retrans-
missions broadcast packets are much more susceptible to
frame collisions. However, these cannot be predicted from
the collected features leading also to an overall decrease in
accuracy compared to unicast transmissions. Also, precision
drops with higher network load, e.g. the optimal threshold
classifier drops from 77% to 57% if CAMs with 10 Hz are
used instead of GeoNetworking beacons.

Despite its high predictive value, the significance of time
since the last update for broadcast packets is less compared
to unicast. This explains why, in contrast to unicast com-
munication, the MLPs with more than one input variable
offer a substantial performance gain over the optimal last-
message-received threshold. While the latter offers up to 38%
improvement over the state of the art, the MLPfull achieves
4-5% additional accuracy and up to 8% more precision than
the threshold approach. MLP4 performs very equally, with
exception of the 10 Hz scenario were the inclusion of channel
busy ratio in the MLPfull leads to a slightly larger gap. Similar
to unicast, results are consistent across scenarios indicating
good generalization properties. The Brier score depicted in
Fig. 5 also shows the advanced MLPs’ probabilities estimation
compared to the last-message-received threshold.

V. CONCLUSION

In this work, we addressed the problem of neighbor selec-
tion in VANETS with a data-driven approach. By methods
from the field of statistical learning we evaluated the infor-
mative value of several neighbor classification features, which
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averaged over the traffic densities.

are obtainable in practice without additional communication
overhead. We highlighted link-age, vehicle distance, received
power and heading difference as the significant indicators
and identified channel-busy-ratio as an additional promising
candidate under high network load. From theses findings we
analyzed the performance of a binary multilayer perceptron
(MLP) classifier and reevaluated link-age-based neighbor se-
lection as the current state of the art. We show that with a
link-age threshold optimized for the beaconing rate of the
communication system significant classification improvements
above 30% can be achieved. Further, we show that our MLP
based alternate schemes outperform state of the art selection
accuracy by up to 43% and present recommendations, which
classification methods fit varying application requirements.
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