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Abstract 
 
An essential key capability for a mobile robot to perform autonomous navigation is the ability to localize itself in its en-
vironment. The most basic way to perform localization is dead-reckoning, i.e., to use relative measuring sensors of the 
robot like odometry (wheel encoders) by incrementally incorporating the measured revolutions of the robots wheels from 
a known starting position. As these sensors only deliver relative measurements and all sensors are subjected to noise, the 
uncertainty of the pose grows boundlessly over the covered distance. In outdoor environments navigation sensors like 
GPS and compass are a viable option. They are measuring absolute quantities and therefore are not suffering from error 
accumulation but are prone to local disturbances by surrounding objects. The measurements of the compass are degraded 
by disturbances of the terrestrial magnetic field, e.g., by metal fences or ventilation fans of air condition systems. Using a 
low-cost differential GPS receiver, the significant remaining source of error is multipath propagation due to reflections 
and shadowing effects of large objects like buildings. As the reflections are dependent on the constellation of the receiv-
er and the satellites relative to nearby reflecting surfaces the errors are time variant and locally varying. For precise self 
localization the combination of several sensors is essential as due to the noisy measurements no single sensor is suffi-
cient. The data from the sensors is fused to a combined estimate resulting in a more accurate localization.  
 
A new Kalman filter based approach will be presented to perform multi-sensor fusion for on-line localization under real-
time constraints. While for indoor applications of mobile robots a 2D localization usually is sufficient, as the robot typi-
cally operates on flat floors, a full 6 DoF estimation of position and attitude is necessary in outdoor environments where 
the assumption of a flat ground cannot be applied. To accomplish the 6 DoF estimation relative measuring sensors and 
absolute measuring sensors are combined by means of multi-sensor fusion. The fusion combines the advantages of the 
relative measuring sensors regarding their local precision with the capability of absolute sensors to confine the global 
uncertainty and thus preventing unbounded error growth. 
 
 

1 Introduction 
The AMROS (Autonomous Multisensoric Robots for Se-
curity Applications) system, currently developed at Fraun-
hofer Institute of Optronics, System Technologies and Im-
age Exploitation (IOSB), is an autonomous mobile robotic 
system for multi sensor outdoor surveillance of real estates 
and building complexes [1,2].  For safety and security sur-
veillance of endangered public and industrial objects (e.g. 
stadiums, waterworks, power plants, chemical facilities, 
etc.) autonomous outdoor inspection robots with the ability 
to automatically patrol and perform adequate protection 
operations around the clock can be an efficient and reliable 
alternative for human guards. Additionally the robots op-

erate in hazardous and dangerous environments without 
problems. Compared to fixed CCTV installations, which 
need a great number of cameras in varying and angled 
spaces, a system with mobile robots as sensor carrier is 
able to efficiently cover these areas. 

1.1 Sensor equipment 
To perform autonomous surveillance and security inspec-
tion the robot must be able to patrol around a building or 
navigate to certain points of interest. An essential key ca-
pability for the mobile robot to be able to navigate auto-
nomously is to determine where it is located. To localize 
itself in the environment the mobile robot platform is 
equipped with several sensors (Figure 1).  
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Figure 1 Sensor equipment of the mobile robot. 
 
The sensors can be divided into two categories as follows. 

1.1.1 Localization Sensors 
Navigation sensors are solely used to determine the pose, 
i.e., the position and attitude of the mobile robot. These 
include wheel encoders, which measure the revolutions of 
the wheels. The robot is also equipped with a low-cost dif-
ferential GPS receiver based on C/A-Code measurements. 
It additionally obtains EPS correction data from the SA-
POS® service provided by the German State Survey. The 
data is broadcasted in Germany by UKW radio stations in 
the RDS carrier, the so called RASANT system [3]. A re-
ceiver based on C/A-Code has an accuracy of below 10m 
GPS without correction data and below 3m with EPS cor-
rection data. For the attitude of the robot an inertial mea-
surement unit (IMU) consisting of 3D axial accelerome-
ters, 3D magnetometers and 3D gyroscopes is used in con-
junction with an additional digital compass. 

1.1.2 Exteroceptive Sensors 
Exteroceptive sensors are capable of observing the envi-
ronment of the mobile robot. 

1.1.2.1 Sensors for environment modelling 
A laser scanner (LIDAR), stereo cameras and a time-of-
flight (ToF) camera are installed on the robot and can be 
used to build a map of the environment and for surveil-
lance and inspection tasks. Due to the errors in the sensors’ 
measurements the algorithms to build the map have to take 
the errors and their dependencies into account, which is 
well-known as the simultaneous localization and mapping 
problem [5].  The built map can also be used for localiza-
tion, which has been separately done in [6].  
For navigation, a map is advantageous as well because it 
provides the possibility of path planning beyond the actual 
sensor coverage. Local path planning includes the map as 
well as current measurements from the LIDAR and the 
ToF-camera to avoid dynamic obstacles. 

1.1.2.2 Safety Sensors 
For safety reasons the robot is equipped with additional 
ultrasound sensors for collision avoidance if the local path 
planning based on laser scanner and ToF-Camera failed to 
discover an obstacle. The ultrasound sensors could also be 
used for mapping and localization but lead to very inaccu-
rate results because of their wide beam-width and reflec-
tions from surfaces. 
If all aforementioned sensors fail to detect obstacles and 
the robot touches an object the bumper buttons are en-
gaged triggering an immediate emergency halt to prevent 
damage of the robot as well as of the obstacle. 

2 Localization and Sensor Fusion 
The easiest way to perform localization is dead-reckoning, 
i.e., to use the odometry sensors (wheel encoders) of the 
robot by incrementally incorporating the measured revolu-
tions of the robot’s wheels from a known starting position. 
As these encoders only deliver relative measurements and 
all sensors are subjected to errors, the uncertainty of the 
pose grows boundlessly over the covered distance. In out-
door environments additional navigation sensors like GPS 
and compass can be used. They are measuring absolute 
quantities and therefore are not suffering from error accu-
mulation but are prone to be disturbed locally by surround-
ing objects. 
For precise self localization the combination of several 
sensors is essential as due to the noisy measurements no 
single sensor is sufficient. The data from the sensors is 
fused to a combined estimate resulting in a more accurate 
localization. 

2.1 Error Sources 
The odometry is bound to systematic errors depending on 
the exact determination of the wheel diameter, which can 
be minimized by calibration. The odometry is still de-
graded by a statistical error plus sporadic errors from 
wheel slippage, which occurs mostly while turning. 
The compass and the magnetometers of the IMU are dis-
turbed by local interferences of the terrestrial magnetic 
field for example by metal fences or ventilation fans from 
air condition systems.  
The position estimate of a GPS receiver is influenced by 
several error sources like varying ionospheric and tropos-
pheric delay, ephemeris and clock errors and multipath 
propagation [4]. Ground based differential GPS receivers 
as the one installed on the mobile robot can mitigate all but 
the latter errors by incorporating correction information 
from a network of reference stations with known geo-
graphic position (Ground Based Augmentation System, 
GBAS). Based on the actual delay of the received satellite 
signals the reference stations calculate correction data 
which is then broadcasted for example by radio stations. 
While the errors due to ionospheric and tropospheric delay, 
ephemeris and clock errors can be corrected by differential 
correction information, the multipath propagation is a local 
phenomenon depending heavily on the surrounding struc-
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tures and cannot be corrected. Errors due to multipath 
propagation can be up to 10 meters [4]. 

2.2 Coordinate Transformations 
For navigation applications, a number of references for 
coordinate systems also called frames in three dimensions 
exist, differing in the origin and three principal axes. In a 
complex application such as sensor fusion, it is often 
needed to convert between different frames, as well as to 
specify one frame as the main one, in which the output is 
generated [11].  
GPS sensors provide the position with latitude, longitude, 
and altitude values, also referred to as LLA-frame. To 
combine this position with distances and angles from other 
sensors, these values can be projected to a plane. 

2.2.1 Coordinate Frames 

2.2.1.1 𝒃𝒃-frame  
The body-fixed frame has its origin at the rotation center 
of the moving object. The 𝑥𝑥-axis is taken as the principal 
moving direction (forward), the 𝑦𝑦-axis for sideward 
movement (right), and the 𝑧𝑧 axis points down, to the direc-
tion of the center of the earth if the vehicle is standing 
upright on the earth’s surface. This frame is indicated with 
superscript b. 

2.2.1.2 𝒏𝒏-frame 
The navigation frame has the same origin as the b-frame, 
but the coordinate axes 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 point to geographical north, 
east and down (to the center of the earth), respectively. It is 
also called the NED-system, short for the employed direc-
tions. This frame, as opposed to the other frames, does not 
use three principal axes in the three-dimensional space, but 
a projection system to convert from the earth surface to a 
plane and uses its coordinates instead. This is useful be-
cause the earth’s curvature is negligible for small dis-
tances. This frame is indicated with superscript n. 

2.2.1.3 𝒊𝒊-frame  
The inertial frame has the origin at the center of the earth. 
The coordinate axes are defined with respect to fixed ce-
lestial objects, which are for many purposes assumed to be 
inertial, and the 𝑧𝑧-axis is defined to be the axis around 
which the earth revolves, pointing to north. This frame is 
indicated with superscript i. 

2.2.2 UTM Projection 
The process of mapping the points from the surface of the 
earth to a planar map is called a projection. The earth’s 
surface is a nondevelopable surface, i.e., a surface which 
cannot be unrolled into a plane without tearing or stret-
ching [7]. Several systems of projection exist and they dif-
fer in which attributes they preserve. The Universal Trans-
verse Mercator Projection (UTM) was chosen because it 
preserves attributes like conformity, which are essential for 
sensor fusion purposes. The UTM divides the earth surface 

into regions called UTM zones, and does a Mercator pro-
jection separately for each zone. The UTM projection mi-
nimizes distortion inside a zone and is conformal, i.e., an-
gels are maintained, which is important for the incorpora-
tion of digital compass data. One drawback is that non-
uniformities are introduced when changing zones. The lat-
ter is negligible for our purposes, as the zones are usually 
6° wide and 8° high, which is many orders of magnitude 
more than the distance that can be covered by the robot on 
a single charge of battery. Even if it does cross a zone 
boundary, only a greater momentary error of heading value 
should be observed.  

2.3 Fusion Algorithm 
The used sensors are not synchronized and the senor’s data 
rates are different. The naive approach to use the rate of 
the slowest sensor as the estimation rate of the fusion algo-
rithm is not ideal as a lot of information is discarded and 
the output rate would be restricted. Therefore the proposed 
fusion algorithm is capable of incorporating all sensor data 
with their corresponding incoming rate and thus ensuring 
the highest possible output rate. Therefore the proposed 
fusion algorithm is capable of incorporating all sensor data 
with their corresponding incoming rate and thus ensuring 
the highest possible output rate.  
In addition the fusion algorithm is implemented as an 
asynchronous cascaded Kalman filter structure to ensure 
low computational complexity and real-time requirements. 
The Kalman filter is an optimal estimator for the state of a 
linear system with a known model from measurements 
with additive white Gaussian noise [8]. The nine sensors of 
the inertial measurement unit (IMU) are pre-processed and 
fused in a separate Kalman filter to estimate the attitude 
[9]. Cascading of Kalman filters reduces computational 
complexity and in case of our mobile robot the assump-
tions regarding independency between position and atti-
tude subsystems are met because of its comparably low 
dynamics and restricted pitch and roll movements. The es-
timated attitude is combined with the sensor data of odo-
metry, compass, and GPS in the main Kalman filter result-
ing in an estimate of the full 6 DoF. Additional meta 
knowledge about the GPS’ error characteristics is incorpo-
rated by pre- and post-processing combined with an adap-
tive tuning of the Kalman filter (Figure 2). The algorithm 
and used models are explained in more detail in [10]. 

Figure 2 Structure of the fusion algorithm. 
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2.3.1 Initialization 
For the initialization of the position and speed state, it is 
assumed that the program is invoked while the robot is 
standing still. The speed is therefore initialized to zero. 
The absolute position is initially unknown, therefore 
processing of the inputs from relative sensors like odome-
try are deferred until a valid position data from an absolute 
sensor, i.e., GPS and compass, is received which is then 
used to initialize the position. 
The initialization of the attitude is estimated by the cas-
caded filter for the IMU from the first 50 values. 

2.3.2 Meta Knowledge 
This includes the knowledge that the position data of the 
GPS is very unreliable directly after an outage. In this case 
the error model for the GPS in the Kalman filter is adapted 
accordingly for a certain period of time after an outage. 
Another measure that has been taken into account is the 
detection of whether the robot is standing still or moving, 
which can be reliably done with the odometry, and treating 
the incoming GPS values accordingly. 
Because of the very slow convergence when under influ-
ence of the multipath propagation, leading to occasional 
near zero displacements in the GPS position, a displace-
ment threshold ∆𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚  depending on the estimated speed of 
the mobile robot has been introduced. The corresponding 
GPS measurements are discarded. 

2.3.3 Asynchronous Processing 
The GPS receiver has an update rate of 1Hz, the odometry 
of 10Hz and the compass of 6Hz. The IMU and its Kalman 
filter are capable of an update rate up to 100Hz. The sen-
sors all have different data rates and also are not synchro-
nized. Not being synchronized would lead to small time 
offsets when fusing the sensors at the rate of the GPS and a 
lot of measurements of the other sensor would be omitted. 
What is more, the system would be limited to the rate of 
the GPS and susceptible to outages of the GPS, leading to 
unavailability of estimates for the time of the outages. 
Thus an asynchronous fusion method was chosen: for 
every incoming sensor data a prediction and correction 
step is performed in the Kalman filter, the correction step 
being done based on the current sensor data only.  

2.3.4 System Model 
To model system inertia resulting from the limited ability 
of acceleration and speed limits, a seventh state is added: 
the scalar speed in the principal direction 𝑣𝑣 =  𝑣𝑣𝑥𝑥𝑛𝑛 . This 
results in the following state vector: 
 

𝑥𝑥 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑥𝑥
𝑦𝑦
𝑧𝑧
𝑣𝑣
𝜙𝜙
𝜃𝜃
𝜑𝜑⎦
⎥
⎥
⎥
⎥
⎥
⎤

. 

The coordinates 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 are tracked in the 𝑛𝑛-frame and, in 
case of 𝑏𝑏-frame sensors like odometry, converted from b-
frame measurements via the current estimated attitude de-
noted as a rotation matrix 𝐶𝐶𝑏𝑏𝑛𝑛 : 
 

�
∆𝑥𝑥𝑛𝑛
∆𝑦𝑦𝑛𝑛
∆𝑧𝑧𝑛𝑛

� = 𝐶𝐶𝑏𝑏𝑛𝑛 �
∆𝑥𝑥𝑏𝑏
∆𝑦𝑦𝑏𝑏

∆𝑧𝑧𝑏𝑏
� . 

2.3.5 Position Model 
The position is predicted according to the current scalar 
speed 𝑣𝑣 and the time ∆𝑇𝑇(𝑘𝑘) between the last two mea-
surements:  
 

�

𝑥𝑥�
𝑦𝑦�
𝑧̂𝑧
𝑣𝑣�

�

𝑘𝑘|𝑘𝑘−1

=

⎣
⎢
⎢
⎡1 0 0 ∆𝑇𝑇(𝑘𝑘) cos𝜃𝜃� cos𝜙𝜙�
0 1 0 ∆𝑇𝑇(𝑘𝑘) cos 𝜃𝜃� sin𝜙𝜙�
0 0 1 −∆𝑇𝑇(𝑘𝑘) sin𝜃𝜃�
0 0 0 1 ⎦

⎥
⎥
⎤
∙ �

𝑥𝑥�
𝑦𝑦�
𝑧̂𝑧
𝑣𝑣�

�

𝑘𝑘−1|𝑘𝑘−1

. 

The index 𝑘𝑘 does not denote a time index but merely the 
number of measurements. 

2.3.6 Heading Model 
The heading angle is treated as a separate system. The 
odometry only supplies a heading value in 𝑏𝑏-frame, and 
the change of this heading value is used as a basis for the 
change in the heading state in the 𝑛𝑛-frame. This usage is 
justified, because the change in the heading value is inde-
pendent of the other attitude values because of the used 
convention. 
From the odometry data, only the change between two 
values is calculated and then used for the correction: 
 

𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑂𝑂𝑂𝑂𝑂𝑂 (𝑘𝑘) = 𝜑𝜑�(𝑚𝑚|𝑚𝑚) + [𝜑𝜑𝑂𝑂𝑂𝑂𝑂𝑂 (𝑘𝑘) − 𝜑𝜑𝑂𝑂𝑂𝑂𝑂𝑂 (𝑚𝑚)], 

where 𝑚𝑚 stands for the last discrete time at which an odo-
metry event has been received. The IMU values are, after 
they have been processed in their seperate Kalman filter, 
used in the same way: 
 

𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ,𝐼𝐼𝐼𝐼𝐼𝐼 (𝑘𝑘) = 𝜑𝜑�(𝑚𝑚|𝑚𝑚) + [𝜑𝜑𝐼𝐼𝐼𝐼𝐼𝐼(𝑘𝑘) − 𝜑𝜑𝐼𝐼𝐼𝐼𝐼𝐼 (𝑚𝑚)]. 

The GPS contributes to the heading with an extremely low 
weighting. The used method only uses the last two GPS 
values to determine the heading according to the GPS by 
using the orientation of the vector constructed from the last 
two GPS points, and the data rate of the GPS is 1Hz whe-
reas the mobility of the robot is much higher: 
 
𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ,𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘) = atan2[𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘) − 𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘 − 1); 𝑦𝑦𝐺𝐺𝐺𝐺𝐺𝐺 (𝑘𝑘)

− 𝑦𝑦𝐺𝐺𝐺𝐺𝑆𝑆(𝑘𝑘 − 1)]. 

The compass value is used verbatim: 
 

𝜑𝜑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑘𝑘) = 𝜑𝜑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑘𝑘). 
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2.3.7 Pitch and Roll Model 
Both of the pitch and roll values come from a single 
source, the IMU. As no extra information is available 
about the error except that the dynamics of a ground ve-
hicle is very low with respect to pitch and roll but suffers 
from high frequency disturbances because of the roughness 
of the driving ground, a moving average filter is selected 
for smoothing. 

2.3.8 Speed Model 
For the speed, only the odometry and GPS sensors are 
fused. From the odometry data, the momentary speed is 
calculated with the last displacement and last time interval: 
 

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑂𝑂𝑂𝑂𝑂𝑂 =
1

∆𝑇𝑇(𝑘𝑘) ∙ 

��𝑥𝑥𝑂𝑂𝑂𝑂𝑂𝑂 (𝑘𝑘) − 𝑥𝑥𝑂𝑂𝑂𝑂𝑂𝑂 (𝑘𝑘 − 1)�2 + �𝑦𝑦𝑂𝑂𝑂𝑂𝑂𝑂 (𝑘𝑘) − 𝑦𝑦𝑂𝑂𝑂𝑂𝑂𝑂 (𝑘𝑘 − 1)�2. 

The GPS data is calculated the same way: 
 

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ,𝐺𝐺𝐺𝐺𝐺𝐺 =
1

∆𝑇𝑇(𝑘𝑘) ∙ 

��𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘) − 𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘 − 1)�2 + �𝑦𝑦𝐺𝐺𝐺𝐺𝐺𝐺 (𝑘𝑘) − 𝑦𝑦𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘 − 1)�2. 

3 Results 
A critical problem with the experimentation step is that no 
reference, so called ground truth, to compare the filtered 
localization information to, is available. This limitation 
unfortunately cannot be overcome without using costly 
sensors like RTK-GPS which could not be obtained.  

3.1 Loop Closure 
An objective criterion for assessing the performance of the 
sensor fusion is the error of loop closure, i.e., the distance 

Figure 3 Loop closure  

between the first and last points after returning to a known 
starting position. 
The result is shown in Figure 3. The odometry path is 
shown in blue and its final position is marked with a red 
cross. The common starting position and the final position 
of the filtered path are marked with a yellow star and the 
filtered path is shown in green. For comparison the start 
position and heading of the odometry was adjusted accord-
ing to the first filtered pose. 
It can be clearly seen that the filter improves the loop clos-
ing quite well. The distance error with odometry only is 
about 10m, which could be reduced to below 1m. 

3.2 GPS outage 
Figure 4 shows a situation where several short GPS out-
ages occurred and the results of the compensation capabili-
ties of the fusion algorithm. 

Figure 4 GPS outages. 

3.3 Oscillation suppression 
Due to multipath propagation the GPS position tends to 
oscillate around the travelled path. Figure 5 shows that the 
fusion algorithm is capable of suppressing these oscilla-
tions effectively.  

Figure 5 Oscillation suppression 
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3.4 Sawtooth 
A drawback of the asynchronous processing is the occur-
rence of sawtooth patterns as shown in Figure 6. The rela-
tive sensors have higher data rates, and because of the 
asynchronous fusion technique, for every sensor data a 
prediction and correction step is performed. Thus, the rela-
tive sensor data may cause the position estimate to drift 
somewhat because of the cumulative errors caused by the 
addition of the relative measurements. The measurements 
of the absolute sensors arrive less frequently and correct 
the position, possibly causing the recently filtered position 
to be slightly away from the previously estimated pose, 
which causes small skips in the filtered sensor data. This 
cannot be overcome with a causal filter which is needed 
for on-line processing. 

Figure 6 Sawtooth pattern. 

4 Conclusion & Outlook 
In this paper a new Kalman filter based approach was pro-
posed to perform multi-sensor fusion for on-line localiza-
tion under real-time constraints for mobile robots. The fu-
sion structure allows for asynchronous processing of sen-
sor data and the cascading of filters reduces the computa-
tional cost, which is important for on-line use with con-
strained computing power. The hybrid concept allows for 
incorporation of meta knowledge and adaptive tuning of 
the filter parameters to account for degraded GPS position 
measurements.    
One of the remaining problems is the unavoidable saw-
tooth pattern, which could algorithmically only be miti-
gated by acausal smoothing with the present sensor confi-
guration. But this would not comply with real-time con-
straints for on-line localization of the mobile robot. A GPS 
receiver with a higher update rate would reduce the saw-
tooth patterns without the loss of on-line capability. Fur-
ther improvement can be achieved by using a GPS receiver 
with raw data output, which allows for a tightly-coupled 
fusion but also with increased computational cost. 
Future work will investigate the combination of the pro-
posed algorithm with SLAM methods and localization in a 
map respectively [11]. 
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