

The SAVE Plug-in - Internal Data Model and
Architecture Evaluation Functionality

Authors:
Dominik Rost
Thomas Forster
Jens Knodel

IESE-Report No. 063.06/E
Version 1.0
June 8, 2006

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competitive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach (Executive Director)
Prof. Dr. Peter Liggesmeyer (Director)
Fraunhofer-Platz 1
67663 Kaiserslautern

Copyright © Fraunhofer IESE 2006 v

Abstract

The paper presents a solution for the evaluation of a model generated from an
existing system against a planned architecture, to identify potentially occurring
differences between the architecture and the implementation as soon as possi-
ble, in form of a plug-in for the Eclipse platform with the name of SAVE - Soft-
ware Architecture Visualization and Evaluation. Besides the SAVE Core Model
with which models on a high level of abstraction as well as models close to the
implementation of a system can be built the evaluation process is explained in
detail. Further more some special aspects of the plug-ins implementation which
includes the plug-in structure and fact extraction with the Java Development
Tools provided by the Eclipse SDK are explained. In addition a small case study
is given to demonstrate the evaluation of a software architecture.

Keywords: Architecture Evaluation, Eclipse, Software Architecture, Static Analysis, Visuali-
zation, PuLSE, SAVE

Copyright © Fraunhofer IESE 2006 vii

Table of Contents

1 Introduction 1
1.1 Software Architectures 1
1.2 Motivation 2

2 Related Work 3
2.1 Evaluation of Software Architectures with Eclipse 3
2.2 Evaluation of Graphical Elements and their Adequacy for the

Visualization of Software Architectures 3
2.3 Static Evaluation of Software Architectures 3

3 Background 4
3.1 Reflexion Models 4
3.2 Eclipse 5
3.2.1 Eclipse Platform 5
3.2.2 Eclipse SDK 6
3.2.3 Eclipse Modeling Framework 6

4 SAVE Core Model 8
4.1 SAVEComponentModel 8
4.2 FSModel 9
4.3 SAVEFSConnector 11
4.4 SAVE Core Model 12

5 Evaluation 15
5.1 Abstraction 15
5.2 Evaluation Mapping 16

6 Implementation 18
6.1 Plug-in structure 18
6.2 Fact Extraction with the JDT 18
6.3 Case Study 19

7 Conclusion 23

References 24

Introduction

Copyright © Fraunhofer IESE 2006 1

1 Introduction

The creation of software architectures and their visualization, in different ways
and from different perspectives are important means for developing complex
software systems and essential elements of software engineering processes.
When applying such means one can gain some significant advantages. Espe-
cially the planning on a high level of abstraction and thus, the disregarding of
(at this moment) irrelevant details allows a complete overview over the system
and therefore the identification of possible entities and relations among them.

The following sections will present the common understanding of software ar-
chitecture followed by the mentioned risks and the motivation and the presen-
tation of the problem as a consequence of these risks.

1.1 Software Architectures

There is a variety of definitions for software architecture or architecture in gen-
eral .In [Sof06] the following definition of [BCK03] can be found, which may be
one of the most common accepted definitions of software architecture.

The software architecture of a program or computing system is the struc-
ture or structures of the system, which comprise software elements, the
externally visible properties of those elements, and the relationships among
them.

“Externally visible” properties refers to those assumptions other elements
can make of an element, such as its provided services, performance charac-
teristics, fault handling, shared resource usage, and so on.

[BCK03] elucidates the implications of this definition in the following way:

• The architecture embodies information about how the elements relate to
each other. This means that architecture specifically omits certain informa-
tion about elements that does not pertain to their interaction. Therefore
software architecture is an abstraction and does not represent internal de-
tails.

• Systems can and do comprise more than one structure and no one structure
holds the irrefutable claim to being the architecture.

• Every software system has an architecture because every system can be
shown to be composed of elements and relations among them even if the
system is monolithic.

Introduction

Copyright © Fraunhofer IESE 2006 2

• The behavior of each element is part of the architecture insofar as that be-
havior can be observed or discerned from the point of view of another ele-
ment.

• The definition is indifferent as to whether the architecture for a system is a
good one or a bad one

The definition imparts a good idea of software architecture. It should be
pointed out that there are also different perspectives to look at a software ar-
chitecture, i.e. views, depending on what characteristics are of interest. Exam-
ples of such views are the logical view, physical view or the conceptual view, et
cetera.

1.2 Motivation

Software systems continuously reach new dimensions of size and new levels of
complexity. By using visualizations of software architectures on a high level of
abstraction and derived diagrams of single systems containing more details it is
possible to develop good and consistent systems. But often and increasingly
over time discrepancies emerge between the planned architecture or structure
of subsystems and the real implementation in the form of source code. The
later such discrepancies are detected the more time- and cost-consuming the
necessary changes will be to make the system consistent to the specified archi-
tecture.

The question is how such mistakes in the implementation can be detected as
early as possible. The aim of reengineering solutions is often the generation of
models from existing systems. These models are useful in respect to represent-
ing the system most accurately. But a model presenting an architecture which
was derived from a planning process often has a typically different abstraction
level than a generated model, which makes it difficult to compare them. There-
fore mistakes or implementations conflicting with the planned architecture are
hard to detect.

This paper will present a possible solution for the mentioned problems. On the
basis of the idea of the reflexion models we developed a tool which allows the
detection of implementations that conflict with a planned architecture which
allows correcting these mistakes as early as possible.

Related Work

Copyright © Fraunhofer IESE 2006 3

2 Related Work

2.1 Evaluation of Software Architectures with Eclipse

The solution presented in this paper is a further development of Paul Miodon-
ski’s concept of the SAVE-plug-in introduced in Evaluation of Software Archi-
tectures with Eclipse. However in some fields the two versions are basically dif-
ferent. The goal of the redevelopment was to re-implement all existing features
but with attention to better flexibility and extensibility.

2.2 Evaluation of Graphical Elements and their Adequacy for the Visualization of
Software Architectures

In Evaluation of Graphical Elements and their Adequacy for the Visualization of
Software Architectures Matthias Naab introduces a concept for the visualization
of software architectures. During his work this concept was implemented as an
independent plug-in and integrated into the SAVE-plug-in. This extension
serves therefore as the component responsible for displaying all results pro-
duced by the SAVE-plug-in.

2.3 Static Evaluation of Software Architectures

In Static Evaluation of Software Architectures [KLMN06] the authors summa-
rizes there experiences with several industrial and academic case studies where
the architecture of existing system has been assessed. The tool used to conduct
the case studies was the SAVE plug-in using the functionality described in the
next sections.

Background

Copyright © Fraunhofer IESE 2006 4

3 Background

The following sections will describe some issues that form the basis of the de-
velopment of the SAVE-plug-in. This is on the one hand the idea of the reflex-
ion models which are the theoretical basis of the evaluation of software archi-
tectures and on the other the Eclipse project which provides the technical
framework for the development of the plug-in.

3.1 Reflexion Models

The Evaluation of software architectures is based on the idea of the reflexion
models, introduced by Murphy, Notkin und Sullivan in [MNS01]. Reflexion
Models offer the possibility to evaluate models on a high level of abstraction
(high level model) as they are often used by software architects in form of box-
and-arrow-diagrams against the source code of a system and to analyze it in a
way that makes commonalities and differences easily recognizable.

The result of such an evaluation is a reflexion model and is achieved in the fol-
lowing way: We assume that there exists a high level model, i.e. a planned ar-
chitecture on a high level of abstraction and that we abstract from the source
code of a system to gain such a model. A map is built to get a relation between
the components of the high level model and the ones of the source code
model. Now a reflexion model can be computed.

To all relations one of the following types is assigned:

• Convergence: The relation exists in the high level model as well as in the
source code model.

• Divergence: The relation exists in the source code model but not in the high
level model

• Absence: The relation was planned in the high level model but does not ex-
ist in the source code model

The following figure based on [Mio04] illustrates the issue:

Background

Copyright © Fraunhofer IESE 2006 5

Figure 3-1 Reflexion Model Evaluation Types

[KS03] additionally presents an extension to the reflexion models, with which
hierarchical Reflexion models can be computed.

3.2 Eclipse

Eclipse makes up the basis for the development of the tool. The following sec-
tions differentiate between the platform, the software development kit and the
eclipse modeling framework.

3.2.1 Eclipse Platform

“The Eclipse Platform is an open extensible IDE for anything and yet noth-
ing in particular.” [Ecl02]

This definition for the question of what Eclipse is, is very often to be found in
[Ecl02] as well as in many documents and presentations addressing topics that
are related to the Eclipse platform. The platform is very generic, i.e. it can deal
with a great variety of different files and data, but only in a generic manner and
not specialized for a particular data type. The main goal is therefore not to pro-
vide as much functionality by the platform itself but to make it as extensible as
possible to exactly meet the needs of a developer.

The architecture of the platform reflects this approach (from [Ecl03]).

Background

Copyright © Fraunhofer IESE 2006 6

Figure 3-2 The Eclipse Platform Architecture

The platform provides the necessary services and frameworks to build new fea-
tures and integrate them into it. This is done in the form of plug-ins which are
embedded by plugging them into defined extension points. The platform run-
time is the only part that is no plug-in but administrates the integrated plug-ins.

3.2.2 Eclipse SDK

The Eclipse Software Development Kit extends the platform with two plug-ins,
the Java Development Tools (JDT) and the Plug-in Development Environment
(PDE). The JDT provide the complete development environment for the devel-
opment of Java-projects. The PDE adds the functionality of building custom
plug-ins for the Eclipse platform. This makes the platform extendable for the
needs of the developer.

3.2.3 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) is an Eclipse-plug-in which belongs to
the Eclipse Tools Project and consists of a modeling framework and a code
generator. Models are specified and stored in XML Metdata Interchange (XMI)
data. Besides that models can be specified using Annotated Java, XML docu-
ments or with the help of tools like Rational Rose and then be imported to
EMF.

From such specifications EMF can generate Java Classes for the model, adapter
classes and basic editors. All models generated by EMF are fully compatible and

Background

Copyright © Fraunhofer IESE 2006 7

have the common basis for the realization of interoperability. Furthermore noti-
fication algorithms for model changes, persistent storing of models and a
mighty reflective API are significantly important.

SAVE Core Model

Copyright © Fraunhofer IESE 2006 8

4 SAVE Core Model

The Core Model contains the main data structures for building the SAVEModel
representing the architecture of the analyzed software system. Logically it can
be split into three different entities that carry different types of information:

• SAVEComponentModel

• FSModel

• SAVEFSConnector

The following sections will describe each single part in detail, i.e. the contained
components and the relations among them, as well as the collaboration be-
tween those three parts.

4.1 SAVEComponentModel

The SAVEComponentModel contains the data structures necessary to build the
high level model, i.e. the model representing the software architecture on a
high abstraction level. The following figure is an UML diagram showing those
data structures as well as how they are related to each other.

Figure 4-1 SAVEComponentModel UML Diagram

The main data structure of the SAVEComponentModel is the SAVEComponent,
which represents entities of the software system on a high abstraction level. It
contains an attribute that specifies its type to be capable of representing vari-

SAVE Core Model

Copyright © Fraunhofer IESE 2006 9

ous types of software architecture components, depending on the abstraction
process from which it was built.

SAVERelations are connectors between SAVEComponents representing some
kind of relation between entities of the software system. As well as SAVECom-
ponents SAVERelations contain an attribute that specifies its type, reflecting the
kind of relation of the software system that it abstracts. SAVERelations are con-
tained in SAVEComponents or, more precisely in the SAVEComponent that is
the origin of the relation. The target component is only referenced in the rela-
tion. All SAVEComponents know what relations they contain and from what re-
lations they are referenced.

The SAVEComponentModel is a container for SAVEComponents and SAVERela-
tions and is with their entirety the abstraction of the analyzed software system
or of a part of it.

Obviously all the described data structures extend the abstract SAVEElement,
which indicates that these are members of the model that abstracts the soft-
ware system in contrast to the ones contained in the FSModel. The SAVEEle-
ment extends SAVEModelElement which all members of the core model ex-
tend.

4.2 FSModel

The FSModel is an abbreviation for “File System Model” and a representation
of the analyzed software system on an abstraction level very close to the oper-
ating system. It also holds information at a higher level of detail i.e. entities
within source code files like attributes and methods. Therefore the information
it holds bears some resemblance to the information that can be gained from a
file system or package browser like for example the ones in the Eclipse SDK.
The idea is however to only show information that is relevant to the analysis so
that the number of shown entities and relations is reduced and therefore in-
formation will become better accessible.

The following UML diagram shows the structure of the FSModel.

SAVE Core Model

Copyright © Fraunhofer IESE 2006 10

FSModel

FSFolder

FSCompilationUnit

FSElement

FSRelation FSGeneralCompilationUnit FSOOCompilationUnit

FSType

FSOORoutine

FSVariable

FSProceduralRoutine

FSConstructor

FSRoutine

+getOffset()
+getLength()

«interface»
FSIMember

+getPath()

«interface»
FSISourceReference

+getIncomingFSRelations()
+getOutgoingFSRelations()

FSRelationable

SAVEModelElement

Figure 4-2 FSModel UML diagram

The structure on the top level is very similar to one of the SAVEComponent-
Model. There is also a container for the model components that represents the
whole model, which is here the FSModel. It also extends a component that in-
dicates that it is a member of the FSModel, namely the FSElement, which in
turn extends SAVEModelElement, like the SAVEComponentModel component
in the SAVEComponentModel does.

The components lying under the FSModel component are used to build a repre-
sentation of all relevant parts of the analyzed software system. Particularly im-
portant about it is the differentiation between object oriented and other,
mostly procedural programming languages, realized by the FSGeneralCompila-
tionUnit and the FSOOCompilationUnit components on the one hand and by
the FSProceduralRoutine and the FSOORoutine and FSConstructor components

SAVE Core Model

Copyright © Fraunhofer IESE 2006 11

on the other. The benefit of this separation of programming language concepts
is an increase of flexibility and extendibility regarding the kinds of software sys-
tems that can be processed. The elements in detail are:

• FSFolder: represents a directory, which can in the case of an object oriented
language such as Java also be interpreted as a package. It can contain other
FSFolders or FSCompilationUnits.

• FSCompilationUnit: represents a compilation unit such as a .java source file
in Java context. FSOOCompilationUnit and FSGeneralCompilationUnit ex-
tend this for the reason explained above.

• FSType: represents an object oriented type such as a class or an interface
and can contain FSVariables or FSOORoutines.

• FSOORoutine: represents a function, procedure or method in an object ori-
ented context and extends therefore FSRoutine. It is contained in an FSOO-
CompilationUnit.

• FSConstructor: is a special FSOORoutine and represents a constructor of a
class.

• FSProceduralRoutine: represents a function or procedure of a not object ori-
ented programming language and extends therefore FSRoutine. It is con-
tained in an FSGeneralCompilationUnit.

• FSVariable: represents a variable or member of the context being specified
by the element that contains the FSVariable, which can either be an FSGen-
eralCompilationUnit or an FSType.

To reflect relations between entities in the software system like calls, imports or
accesses there has to be a connection between FSModel elements which is real-
ized by the FSRelation component. Like the SAVERelation it is capable of repre-
senting various types of relations and is contained in the element that is the
source of the relation. The ability to build such a connection is inherited by
FSRelationable.

The two remaining interfaces FSISourceReference and FSIMember extend im-
plementing elements with information of the path, the offset and the length of
the file system element they represent.

4.3 SAVEFSConnector

The SAVEFSConnector bridges the gap between the two models described in
the previous sections by building references from every SAVEElement to n FSE-
lements. Thus the information that can be extracted from this mapping is which
file system model elements are represented by what element in the high level
model.

SAVE Core Model

Copyright © Fraunhofer IESE 2006 12

The structure of the SAVEFSConnector is shown in the following UML diagram.

SAVEFSConnector

SAVEFSConnection

SAVEFSEntityConncetion

SAVEFSRelationConnection

Figure 4-3 SAVEFSConnector UML diagram

The SAVEFSConnector holds SAVEFSConnections which build the mapping be-
tween SAVEElement and FSElements. The SAVEFSEntityConnection connects
entities, the SAVEFSRelationConnection relations to each other.

4.4 SAVE Core Model

The three models described in the previous sections together form the SAVE
core model and are thus the basis for all processes in analyzing a software sys-
tem with SAVE. The following UML diagram shows, how those three parts are
linked and how collaboration works between them.

SAVE Core Model

Copyright © Fraunhofer IESE 2006 13

Figure 4-4 SAVE Core Model UML diagram

For the reason of better differentiability some colors have been added to the
components depending to what model they belong. Members of the SAVE-
ComponentModel are green, the ones of the SAVEFSConnector yellow and
FSModel elements are blue. Apart from these there are some uncolored com-
ponents and new connections which illustrate the collaboration between the
single models.

The container for exactly one of each of these models is the SAVEPackage
which in turn is contained in the SAVEProject. Since it should be possible to
analyze several systems or several parts of a system the SAVEProject can contain
multiple SAVEPackages, one for each analyzed system.

SAVE Core Model

Copyright © Fraunhofer IESE 2006 14

As already mentioned the SAVEFSConnector bridges the gap between the in-
dependent models by building connections between elements. The arrows go-
ing from the two types of SAVEFSConnections to components and relations of
both models illustrate this. More precisely the SAVEFSConnection type holds
references of the elements between which a mapping is to be built. The
SAVEFSRelationConnection maps FSRelations to SAVERelations, the SAVEFSEn-
tityConnection FSRelationables to SAVEComponents.

Evaluation

Copyright © Fraunhofer IESE 2006 15

5 Evaluation

The Evaluation is based on the idea of the reflexion models described in chapter
3.1. To be able to evaluate an existing software system against a planned archi-
tecture the system has to be abstracted and a mapping has to be built. The ab-
straction process as well as the building of the mapping will be explained in the
following sections.

5.1 Abstraction

Basically before an evaluation there exist a software system and a planned ar-
chitecture which should be evaluated against each other. But since two models
on the same level of abstraction are a precondition to do an evaluation, a
model has to be abstracted from the software system, i.e. the system has to be
lifted. The model generated in this way is the Source Code Model (SCM).

Different strategies for this lifting process are imaginable. Packages or directo-
ries respectively or compilation units are possible elements from which entities
of the SCM could be generated. From relations between or below packages or
compilation units are then abstracted to relations between the entities. The fol-
lowing figure illustrates the issue.

Evaluation

Copyright © Fraunhofer IESE 2006 16

Figure 5-1 Model Abstraktion

Based on the SAVE-plug-in depending on the chosen strategy packages or
compilation units are abstracted to SAVEComponents and relations to SAVERe-
lations. The resulting SAVEComponentModel can be evaluated against the High
Level Model, which in this case is also a SAVEComponentModel.

5.2 Evaluation Mapping

When the Source Code Model and the High Level Model are available a map-
ping has to be built. Since the Source Code Model is generated from an exist-
ing system and the High Level Model represents a planned architecture which is
far less detailed, the Source Code Model tends to consist of more components
than the High Level Model. Therefore a mapping has to be built as an 1:n-
relation which allows a mapping of many SCM-components to one HLM-
component.

The SAVEEvaluationMapping generates such a mapping by building references
between SAVEComponents of the HLM to ones of the SCM.

Evaluation

Copyright © Fraunhofer IESE 2006 17

Figure 5-2 SAVEEvaluationMapping

The evaluation process runs in two phases and with it in two directions: from
the high level model to the source code model and vice-versa. During the first
phase all relations of all SAVEComponents are checked. If a corresponding rela-
tion for a certain relation is found in the source code model the relation is
marked with the evaluation type convergence, otherwise with absence. During
the second phase relations of the type convergence are identified which means
that no corresponding relation is found in the high level model.

All SAVERelations contain the attribute SAVEEvaluationType which can be set
during the process and can be used for the visualization of the model.

Implementation

Copyright © Fraunhofer IESE 2006 18

6 Implementation

The following sections cover some specific aspects of the implementation of the
SAVE plug-in. Besides the structure of the plug-in and the implementation of
the fact extraction an example is given which demonstrates the use of the plug-
in to evaluate a software architecture.

6.1 Plug-in structure

The SAVE-tool is a plug-in for the Eclipse platform. Because of its size and com-
plexity it is reasonable to unitize the plug-in, i.e. in this case to separate it in
several different plug-ins On top level three different systems can be differenti-
ated. de.fhg.iese.pulse.common is the basis for reuse which means that it con-
tains plug-ins that can be used cross-project, which complies with the software
product line approach used in this project. de.fhg.iese.pulse.fe combines plug-
ins that are used for fact extraction, or more precisely, for every supported lan-
guage in one plug-in. The third system is de.fhg.iese.pulse.SAVE which contains
the core model and the core features of the SAVE-plug-in.

Figure 6-1 SAVE plug-in structure

6.2 Fact Extraction with the JDT

The Java Development Tools are part of the Eclipse SDK and contain the sub-
projects JDT APT1, JDT Core, JDT Debug and JDT UI. The JDT Core project pro-
vides a tool which makes the extraction of relevant facts from java projects very
easy.

The ASTParser2 builds up a syntax tree which means that for every relevant fact
a node is generated which has exactly one parent and can have many children.
With an ASTVisitor this tree can be traversed recursively. The following source

1 Annotation Processing Tool
2 AST = Abstract Syntax Tree

Implementation

Copyright © Fraunhofer IESE 2006 19

code listing illustrates how the classes are to be used to create a syntax tree and
traverse it.

protected void parseFile(ICompilationUnit unit) throws Java-
ModelException {
 ASTParser parser = ASTParser.newParser(AST.JLS3); // 1.
 parser.setResolveBindings(true);
 parser.setSource(unit); // 2.
 CompilationUnit rootCU = (CompilationUnit)
 parser.createAST(null); // 3.
 if (rootCU != null) {
 rootCU.accept(new JavaASTVisitor(unit, saveModel, fsModel,
connector)); // 4.
 }
}

This is what is done during the execution of the source snippet:

1. A new parser object is generated. The parameter is an integer constant and
specifies the API level.

2. A source is specified which is in this case a compilation unit, i.e. a .java file.
3. The parser generates the syntax tree.
4. The recursive traversing of the tree is started. Therefore a JavaASTVisitor ob-

ject is generated which extends the JDT class ASTVisitor. It contains visit- and
endVisit-methods overloaded for every relevant fact. These methods contain
the source code to be executed when a certain type of node is reached.

The following methods contain implementations because the corresponding
nodes represent relevant facts in our case:

• visit(ClassInstanceCreation node)

• visit(ImportDeclaration node)

• visit(MethodInvocation node)

• visit(SuperMethodInvocation node)

• visit(TypeDeclaration node)

• visit(SingleVariableDeclaration node)

• visit(VariableDeclarationFragment node)

6.3 Case Study

The following example demonstrates the evaluation of a software architecture.
The analyzed software system is a small one and of low complexity to make the
process of the evaluation and the results better understandable.

Implementation

Copyright © Fraunhofer IESE 2006 20

The system consists of three packages with one class each. All of these classes
contain a method call to generate relations between the components. The
source code of the three classes is as follows:

package scm1;
public class SCM1 {
 public static void call() {
 scm2.SCM2.call();

}

package scm2;
public class SCM2 {
 public static void call(){
 scm3.SCM3.call();
 }
}

package scm3;
public class SCM3 {
 public static void call(){}
}

The relations are calls between the methods. That means there is a call from
the call-method of class SCM1 to the one SCM2 and from SCM2 to SCM3.

The first step is the fact extraction from the software systems source to gener-
ate the source code model which generates the following model whereas a
strategy to build components from packages was used.

Figure 6-2 Case Study: Source Code Model

The model shows three components which represent the packages as well as
two purple connectors that represent the calls.

Implementation

Copyright © Fraunhofer IESE 2006 21

The high level model against which the source code model will be evaluated
also consists of three components and two relations but in this case the rela-
tions are from hlm1 to hlm2 and from hlm3 to hlm1.

Figure 6-3 Case Study: High Level Model

Now a mapping between the components of the SCM and the HLM has to be
created. The following figure shows the dialog to create a SAVEEvaluation-
Mapping.

Figure 6-4 Case Study: SAVE Evaluation Mapping

Every component of the SCM is mapped to the corresponding one in the HLM,
i.e. scm1 to hlm1, scm2 to hlm2 and scm3 to hlm3. The following figure shows
the result of the evaluation.

Implementation

Copyright © Fraunhofer IESE 2006 22

Figure 6-5 Case Study: Evaluation Result

The model generated during the evaluation process is always based on the high
level model, which means that the components are the ones of the high level
model. The relation between hlm1 and hlm2 exists and carries no additional
mark which marks the type convergence. The relation between hlm2 and hlm3
does not exist in the HLM but was adopted from the SCM and carries an ex-
clamation mark which indicates the type divergence. The last relation carries a
red cross which indicates absent relations, i.e. it was planned in the HLM but
not realized in the SCM.

Conclusion

Copyright © Fraunhofer IESE 2006 23

7 Conclusion

This paper presents a solution to evaluate existing software systems against a
planned architecture. It was developed on the basis of the reflexion models as a
plug-in for the Eclipse Platform. Therefore the SAVE-plug-in addresses the prob-
lem of potentially occurring discrepancies between a planned architecture and
the realization.

The SAVE Core Model contains all data structures necessary to build a model
which represents the architecture of a software system. Logically it can be split
into three different entities, namely the SAVEComponent Model which repre-
sents the system on a high level of abstraction, the FSModel which represents a
system very close to the implementation and the SAVEFSConnector which
builds a mapping between the two mentioned models.

The evaluation is used to identify discrepancies as described above. The process
can be subdivided into three phases. During the abstraction relevant facts are
extracted from an existing software system and a model on high level of ab-
straction is generated. Two models on the same level of abstraction are a pre-
condition to perform an evaluation. The generated model is the Source Code
Model (SCM), the planned architecture the High Level Model (HLM). Further
more a mapping between the components of the SCM and the HLM has to be
built. This is done in form of the SAVEEvaluationMapping. During the evalua-
tion process one of the following SAVEEvaluationTypes is assigned to every re-
lation: convergence if the relation exists in the SCM as well as in the HLM, di-
vergence if the relation exists in the SCM but was not planned in the HLM or
absence if the relation was planned in the HLM but not realized in the SCM.

The structure of the plug-in can be split into three different subsystems. First
this is de.fhg.iese.pulse.common which contains data structures that can be
used cross project according to the product line approach. de.fhg.iese.pulse.fe
contains data structures used for the fact extraction from projects of different
programming languages and de.fhg.iese.pulse.SAVE such that realize the core
features of the SAVE-plug-in.

Moreover the characteristics of the fact extraction with the help of the Java De-
velopment Tools provided by the Eclipse SDK were explained, with which com-
pilation units can be parsed and a syntax tree is generated, that can be trav-
ersed and used to extract relevant facts.

In addition a case study was presented which demonstrates the evaluation of
rudimentary software architecture.

References

Copyright © Fraunhofer IESE 2006 24

References

[AL04] Arthorne, John ; Laffra, Chris: Official Eclipse 3.0 FAQ. Addison-
Wesley Professional, 2004. ISBN 0321268385

[BCK03] Bass, Len ; Clements, Paul ; Kazman, Rick: Software Architecture in
Practice 2nd Edition. Addison-Wesley Professional, 2003. ISBN
0321154959

[BSM+03] Budinsky, Frank ; Steinberg, David ; Merks, Ed ; Ellersick, Raymond ;
Grose, Timothy J.: Eclipse Modeling Framework. Addison-Wesley
Professional, 2003. ISBN 0131425420

[Ecl02] eclipse project FAQ. http://www.eclipse.org/eclipse/faq/eclipse-
faq.html. nov 2002

[Ecl03] Eclipse Platform Technical Overview.
http://www.eclipse.org/whitepapers/eclipse-overview.pdf . feb
2003

[EMF06] Eclipse Modeling Framework. http://www.eclipse.org/emf/. mar
2006

[GB03] Gamma, Erich ; Beck, Kent: Contributing to Eclipse: Principles, Pat-
terns, and Plugins. Addison Wesley Longman Publishing Co., Inc.,
2003. ISBN 0321205758

[KLMN06] Knodel, Jens ; Lindvall, Mikael ; Muthig, Dirk ; Naab, Matthias:
Static Evaluation of Software Architectures. 10th European Confer-
ence on Software Maintenance and Reengineering (CSMR 2006),
Bari, Italy.

[KS03] Koschke, Rainer ; Simon, Daniel: Hierarchical Reflexion Models. In:
WCRE, 2003, S. 36 – 45

[MFK04+] Miodonski, Paul; Forster, Thomas ; Knodel, Jens ; Lindvall, Mikael;
Muthig, Dirk : Evaluation of Software Architectures with Eclipse /
Fraunhofer Institute for Experimental Software Engineering. 2004.
Technical Report

[MNS01] Murphy, G.C. ; Notkin, D. ; Sullivan, K.J.: Software Reflexion Mod-
els: Bridging the Gap between Design and Implementation. In: IEEE
Transactions on Software Engineering 27 (2001), Nr. 4, S. 364 –

References

Copyright © Fraunhofer IESE 2006 25

380

[NFK+05] Naab, Matthias ; Forster, Thomas ; Knodel, Jens ; Muthig, Dirk :
Evaluation of Graphical Elements and their Adequacy for the Visu-
alization of Software Architectures / Fraunhofer Institute for Ex-
perimental Software Engineering. 2005. Technical Report

[Sof06] How Do You Define Software Architecture?
http://www.sei.cmu.edu/architecture/definitions.html . mar 2006

Document Information

Copyright 2006, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Title: The SAVE Plug-in - Internal
Data Model and Architec-
ture Evaluation Functional-
ity

Date: June 8, 2006
Report: IESE-063.06/E
Status: Final
Distribution: Public

