
�������

���������

	�
�
�
�
������
�����������������
���������
��
������
�������

�	
���

�
��
���� �����������
������������
�	
���
�������	�� ���������������������
� �

����������������!
��� ��"���
�����������
������������

��������	�
�	���

!"

�#"

�����
�
�	$�

��
�
��
�
����

��%

���	�

�

�
���
�

�

�����������	
���
��	��
��������������
�	
���	
�
�������	

��
����
����
����� �����������
������������

��
���
���������� ���������������������
� �
����������������!
""� ��#���
�����������
�������������

�������	
��
���
��
����������������������

���������
�
��
���
����
������
���
�
��
�����
�� ����!
�����"
����!�#
�!�����$
�� #$��%�����
���

�����
�����
&�����

�
���&������
���

�'�

&�
��(
(
��

)�����������
�
��
�*����(
�����������(�'��&
�����!
+�'
���
���
�
����
(����&
�������
�����
�
�
���
�
���+��
!�������
��!���
�����
�+����!����'+�
�+�!

����
�
&�����&��!
&�
��&
���
(����&�(+������
&��������������
�,��
��,���������
�,����
��(
�!������������
�(�'����
��

�
�+������
��
����
��������
��'+�!
���
&���
���
����
��
��������������������
���(����&���

�
�&�
�!
��
����
�
!
�-���.�
�/���
������������
��
����
���������,�
�
�
��,
+���
������
�!(�+���
�&��&���������
����
���
��������
��
����
����������
�
��,���������
�&���
��������
�
�,�
�������
���
�
!
�-���

0�'+�����������������"$�����
 %$1�234�5�4526���6��7
��
�����
�� ����!
�����"
����!�#
�!�����$
�� #$
�����
&��4��762��3�8�7�%�����
��
1�'
����
9
�����3�862�%�����
��
.
�
���� :72�3���2�3�����8���
.
�
�
;� :72�3���2�3�����8��4
<��
��� �
��
�=��
�����
���

�#>� ���(�??�
��
����
�����
���
�

Elicitation of a Complete Set of Non-
Functional Requirements

Beim Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation
von

Dipl.-Inform. Jörg Dörr

Fraunhofer-Institut für Experimentelles Software Engineering
(Fraunhofer IESE)

Kaiserslautern

Berichterstatter: Prof. Dr. Dr. h.c. Dieter Rombach
 Prof. Dr. Barbara Paech

Dekan: Prof. Dr. Karsten Berns

Tag der Wissenschaftlichen Aussprache: 15.07.2010

D 386

 iii

Acknowledgement

First of all, I would like to thank Prof. Barbara Paech for encouraging me to pursue the
topic of non-functional requirements. I soon realized the importance of the topic for
industry as well as for academia. In the ITEA-funded Empress project, I had the unique
opportunity to cooperate with outstanding people and develop the basis for the method
of this thesis. My thanks go to everyone involved in the Empress project!

Second, I would like to thank my two supervisors Prof. Dieter Rombach and Prof. Barbara
Paech for their valuable advice and guidance during this thesis! I would like to thank Prof.
Dieter Rombach for creating an environment that made it possible for me to pursue my
PhD. The unique environment at Fraunhofer IESE made it possible to develop this meth-
odology, but it particularly enabled the validation in eight industrial case studies.

Third, I would like to thank all former and current colleagues at Fraunhofer IESE for many
fruitful discussions and honest feedback, especially the members of the QSD and later on
RUE department! Also, I would like to thank Dr. Dirk Muthig for his advice on focusing
my thesis topic.

During the development of this thesis, I cooperated with many outstanding people in the
application of the methodology. So, fourth, I would like to thank all people at IESE who
jointly applied the NFR methodology with me in the case studies, i.e., Sebastian Adam,
Michael Eisenbarth, Daniel Kerkow, Tom Koenig, Dennis Landmann, Thomas Olsson, and
Antje von Knethen (in alphabetical order). Furthermore, I would like to thank all the peo-
ple who performed the method without me in the case studies, i.e., Sebastian Adam,
Anne Gross, Tom Koenig, and Thomas Olsson (in alphabetical order).

Fifth, I would like to thank all participants of the working group “Non-functional re-
quirements” of the German Computer Society (GI). I want to thank them for the ex-
change of experiences and for the valuable discussions we had at all the meetings.

Sixth, I would like to thank Martha Hernandez and Michael Yaco who supported the tool
development with their outstanding work as part of their student research assistance
jobs.

Seventh, I would like to thank my dear colleagues and friends with whom I studied, work
and celebrate, i.e., Ralf Carbon, Christian Denger, Michael Eisenbarth, Tom Koenig, Mar-
cus Trapp, and Mario Trapp. With them, study and work were and are always enjoyable
and professional at the same time. I want to thank them for their support!

Last, but far from least, I want to thank my wife Anette and my children Jannik and Ame-
lie! Their love, encouragement, support, and understanding made it possible to spend
evenings, weekends, and vacation time on this thesis instead of on family activities.

 v

Abstract

Requirements engineering is the first activity in engineering a software-
based product. Making mistakes in such an early phase has a strong im-
pact on all subsequent software development phases. Especially non-
functional requirements (NFRs) play an important role for the success of
a project or product. In today’s practice, essential information on a sys-
tem’s NFRs have often not been elicited properly and are thus incom-
plete. As a result, architectures have to change in late development
phases, which leads to increased project or platform development costs
and increased time to market. Alternatively, missing NFRs are not incor-
porated into the product in later phases, leading to low product quality.

This thesis addresses the topic of complete NFR elicitation. It focuses on
NFR elicitation and specification for software-based, interactive systems.
Current state-of-the-practice and state-of-the-art approaches treat NFRs
in parallel to functional specifications. Neither the state-of-the-practice
nor the state-of-the-art approaches offer a possibility to judge the com-
pleteness of the NFR elicitation.

The NFR methodology described in this thesis provides a systematic ap-
proach for the elicitation, analysis and specification of a complete set of
NFRs. To achieve this, the NFR methodology contributes an algorithm to
elicit NFRs, which takes quality model information as input and systemat-
ically processes specific elements of the functional specification. The al-
gorithm is based on a requirements taxonomy and a metamodel relating
functional, non-functional, and architectural concepts. This thesis also
provides complete and detailed process guidance on how to use the elic-
itation algorithm for NFR elicitation and specification. Checklists and tool
support are used to support and partially automate the NFR methodolo-
gy.

The NFR methodology was evaluated in a series of eight, mainly industri-
al, case studies. The evaluation showed that the NFR methodology is fea-
sible and results in a more complete set of NFRs. The ratio of newly iden-
tified, important NFRs ranges from over 100% to 622%. Moreover, the
evaluation showed that the estimated rework effort in the following pro-
ject or platform development phases is significantly reduced. In two case
studies, the NFR methodology application resulted in an ROI > 2 and an
ROI > 17, respectively. As a positive side effect, the evaluation showed
that consequently using the NFR methodology can lead to measurable
NFRs. Rates of 95.5% and even up to 100% of NFRs being measurable
were achieved in the case studies.

 Table of Contents

 vii

Table of Contents

Acknowledgement .. iii�
Abstract ... v�
Table of Contents .. vii�
List of Figures .. ix�
List of Tables ... xi�

1� Introduction ..1�
1.1� The Role of Non-Functional Requirements1�
1.2�Contribution and Research Hypotheses5�
1.3�Research Approach ...7�
1.4�Outline ..10�

2� Classifications, Definitions and Quality Models12�
2.1� State of the Practice and State of the Art12�

2.1.1� Existing Definitions for NFRs ...12�
2.1.2� Existing Quality Models ..17�

2.2� Taxonomy, Definitions, Metamodel & Quality Model...............21�
2.2.1� Requirements Taxonomy ..21�
2.2.2� Metamodel ..23�
2.2.3� Quality Models ..38�
2.2.4� Definition of Completeness ..47�

3� Specification of FRs and NFRs ..50�
3.1� State of the Practice and State of the Art50�

3.1.1� State of the Practice in Specifying FRs and NFRs50�
3.1.2� State of the Art in Specifying FRs and NFRs52�
3.1.3� Relationship Between FRs and NFRs59�

3.2� Integrated FR and NFR Specification ..65�
3.2.1� Relationship of Functional Elements to NFRs65�
3.2.2� The Challenge of Integrated Specification70�
3.2.3� Resulting Locations for NFR Specification74�

4� Elicitation of NFRs ...76�
4.1�Main Difference to Existing Approaches76�
4.2� The Elicitation Algorithm ...78�
4.3� The Role of Checklists as an Elicitation Aid82�
4.4� The Role of Reference Checklists and Templates84�

5� The NFR Elicitation and Specification Process89�
5.1�Overview of the NFR Process ...89�
5.2� Process Activity P1.1: Prioritize QAs ...91�
5.3� Process Activity P1.2: Tailor Quality Models92�
5.4� Process Activity P1.3: Identify Possible Dependencies97�
5.5� Process Activity P1.4: Derive Checklist and Template99�

Table of Contents

viii

5.6� Process Activity P2.1: Elicit and Specify NFRs 104�
5.7� Process Activity P2.2: Identify NFR Dependencies 110�
5.8� Learning from Project Experience ... 113�

6� Increasing the Method’s Efficiency .. 116�
6.1� Focusing the Effort ... 116�

6.1.1� Trading off the Quality Scope 117�
6.1.2� Trading off the Functional Scope 118�
6.1.3� Trading off the Dependencies 119�
6.1.4� Performing the NFR Methodology Iteratively 122�
6.1.5� Change Management View 124�

6.2� Tool Support .. 125�
6.2.1� The Checklist Generation Tool 127�
6.2.2� The Elicitation Guide Tool ... 131�

7� Validation ... 135�
7.1� Introduction ... 136�
7.2�Case Study Contexts .. 137�
7.3�Validation Goals ... 141�
7.4�Case Study Data and Results .. 143�

7.4.1� Feasibility .. 144�
7.4.2� Completeness ... 147�
7.4.3� Effort .. 151�
7.4.4� Further Qualitative or Quantitative Observations 154�

7.5� Summary of Validation Results and Discussion 157�
7.5.1� Summary of Results .. 157�
7.5.2� Threats to Validity ... 158�
7.5.3� Open Questions and Implications 161�

8� Summary .. 163�
8.1�Results and Contribution .. 163�
8.2�Method Limitations and Future Work 166�
8.3�Concluding Remarks .. 168�

References ... 170�

Appendix A:� Example Quality Models 181�

Appendix B:� Template for an Integrated Specification 188�

Appendix C:� Effort Data for Case Studies 195�

Appendix D:� Detailed Expert Estimate in EMERGE 196�

Appendix E:� List of Abbreviations ... 197�

Lebenslauf ... 199�

 List of Figures

 ix

List of Figures

Figure 1: � Specified NFRs as enabler, missing NFRs as threat 2�
Figure 2: � Quality trade-offs in SW architecture phase 3�
Figure 3: � Research approach 8�
Figure 4: � Faceted classification of requirements (figure taken

from [Gli07]) 16�
Figure 5: � ISO 9126 view on qualities 18�
Figure 6: � ISO 9126 quality model for external and internal

attributes 19�
Figure 7: � ISO 9126 quality model for quality in use 19�
Figure 8: � Requirements taxonomy 21�
Figure 9: � Simplified version of the metamodel 24�
Figure 10: � Functional elements of the metamodel 28�
Figure 11: � Quality related elements of the metamodel 31�
Figure 12: � Complete metamodel for the NFR methodology 35�
Figure 13: � Typical set of HLQAs 41�
Figure 14: � Example of QM_RefEfficiency 43�
Figure 15: � Example dependency matrix for QM_RefEfficiency 46�
Figure 16: � Example illustration for completeness definition 48�
Figure 17: � Recommended sections of the Volere specification

template 51�
Figure 18: � Example of a SIG as used in the NFR Framework

(figure taken from [CNY+99]) 54�
Figure 19: � Example of a MOQARE misuse tree showing the main

MOQARE concepts (figure taken from [HKD07]) 56�
Figure 20: � Concepts and examples of the UMD approach

(figure taken from [BDA04]) 57�
Figure 21: � Example of annotating an ER model with quality

attributes (figure taken from [CL99]) 62�
Figure 22: � Non-integrated specification of FR and NFR in state of

the practice and state of the art 64�
Figure 23: � Mapping of functional metamodel elements to the

TORE decision model 66�
Figure 24: � Illustration of the problem of Primary and Secondary

Information Place 72�
Figure 25: � Example of annotation of User Task NFRs in a UC

diagram 75�
Figure 26: � Items to be compared in elicitation algorithm,

illustrated in a comparison matrix 78�
Figure 27: � Simplified version of the elicitation algorithm 79�
Figure 28: � The elicitation algorithm 80�
Figure 29: � The different steps of the algorithm visualized in the

comparison matrix 82�

List of Figures

x

Figure 30: � Checklists as mediator between quality models and
NFRs 84�

Figure 31: � Reference checklist for QM_RefEfficiency 87�
Figure 32: � The NFR process 90�
Figure 33: � Tailored efficiency model: QM_InScopeEfficiency 96�
Figure 34:� Intermediate result of P1.3 98�
Figure 35:� Final dependency matrix for QM_InScopeEfficiency 99�
Figure 36: � Project-specific checklist for QM_InScopeEfficiency 103�
Figure 37: � Physical components in the X project 108�
Figure 38: � Target UCs for NFR elicitation in the X project 108�
Figure 39: � Use Case “Handle Alarm” in the X project 109�
Figure 40: � Added chapter for general NFR 110�
Figure 41: � Comparison matrix after first iteration 122�
Figure 42:� Exemplified instance of NFR algorithm for second

iteration 124�
Figure 43: � Tool support for the NFR process 126�
Figure 44: � Basic design of the Checklist Generation Tool 127�
Figure 45: � Main-Screen of Checklist Generation Tool 128�
Figure 46: � Excerpt of reference checklist for QM_RefEfficiency

generated with additional features 130�
Figure 47: � Basic design of the Elicitation Guide Tool 131�
Figure 48: � Start screen of the Elicitation Guide Tool 132�
Figure 49: � Horizontal scope selection in the Elicitation Guide Tool 133�
Figure 50: � Elicitation support in the Elicitation Guide Tool 134�
Figure 51: � Quality attribute occurrence in case studies 139�

 List of Tables

 xi

List of Tables

Table 1: � Existing definitions for the term non-functional
requirements 14�

Table 2: � Comparison of concepts with state-of-the-art approaches 58�
Table 3: � Minimal set of conceptual elements required in templates 68�
Table 4: � Extension of set of conceptual elements in templates 69�
Table 5: � Sentence pattern for creating checklist advices 86�
Table 6: � Classification of QAs 95�
Table 7: � Change of requirements document template based on QAs100�
Table 8:� Instantiated sentence pattern for checklist advices 101�
Table 9: � Specifying NFRs in an integrated requirements specification 106�
Table 10: �Goals of the focus areas 117�
Table 11: �Overview of the eight case studies 137�
Table 12: �Summary of results for the feasibility goal 144�
Table 13: �Summary of results for the completeness goal 148�
Table 14: �Summary of results for the effort goal 151�
Table 15: �Effort spent and automation potential 152�
Table 16: �Measurable NFRs in FIN 154�
Table 17: �Measurable NFRs in Empress 155�
Table 18: �Measurable NFRs in EMERGE 156�

 1

1 Introduction

“The hardest single part of building a software system is
deciding precisely what to build”

 [Bro87].

Starting with a motivation for the topic of this thesis, this chapter ad-
dresses the contributions of this thesis and describes its structure.

1.1 The Role of Non-Functional Requirements

Requirements engineering is the first activity in engineering a software-
based product. Therefore, it sets the foundation for the customers’ and
end users’ perception of the final product. Without a doubt, making
wrong decisions during this phase has a strong impact on the final prod-
uct. Whereas functional requirements deal with the functionality the fi-
nal product will provide, the non-functional requirements (NFRs) deter-
mine to a large extent the product’s quality, such as the product’s per-
formance, usability, or maintainability. Specifying NFR is a key enabler for
various subsequent software development activities. Missing NFRs are a
major threat to project and product success. Figure 1 gives an overview
of the potentials and threats when dealing with NFRs. [BH96], for exam-
ple, states that “without a well-defined set of quality-attribute require-
ments, software projects are vulnerable to failure”. [CL01c] states that
not eliciting NFRs has led to a series of historic failures, including deacti-
vation of a system right after its deployment. [BLF02] and [CL01b] give
the example of the London ambulance system (referring to [FD96])
where the deactivation of the system right after its deployment was
strongly influenced by non-compliance with NFRs. In that context,
[BLF02] states that “we are surprised to verify that non-functional re-
quirements played a very extensive role in the downfall of the system”.
[CL01c] also state that the lack of integration of NFRs can result in pro-
jects that will take more time to be concluded as well as higher mainte-
nance costs.

Introduction

2

In the development of software-based systems, NFRs enable

� well-grounded architectural decisions: Almost all typical quality re-
quirements (usability, maintainability, performance, etc.) impact the
architectural decisions.

� effective subcontracting: In order to get a suitable product or com-
ponent from a subcontractor, one has to specify the required quality
properties in addition to the required functionality. If only functional
requirements are specified, the contractor might be in a situation that
the subcontractor delivers a product that fulfills the contract but is
not usable for the contractor due to insufficient quality.

� early quality assurance: When measurable NFRs are in place, quality
assurance can start immediately after the requirements phase.

When eliciting NFRs systematically, companies can produce high-quality
products and the quality characteristics of the products can be used as
unique selling propositions to distinguish their products from competitor
products. On the other hand, missing NFRs can lead to

� insufficient product quality: If the project responsibles realize that the
product does not fulfill the quality needs but it is too late to change
the product, the product will be delivered with low quality.

� high rework cost & higher time to market: If the project responsibles
realize that the product does not fulfill the quality needs and the pro-
ject decides to rework the product to match the quality expectations,
the project is consuming more effort than planned and the time to
deliver the product is postponed.

Specified NFRs

Well-grounded
Architectural

Decisions

enable

Effective
Subcontracting

Early
Quality Assurance

Missing NFRs

Insufficient
Product Quality

can lead to

Dissatisfied Customers
Failed Projects

Loss of (Company) Image

High Rework
Cost

Higher
TTM

NFR can be used as major
USP against competitors

Figure 1: Specified NFRs as enabler, missing NFRs as threat

 3

The impact of NFRs on the architecture as the very next phase is the
major motivator in the course of this thesis: In today’s practice, architec-
tures often have to change in late development phases, which leads to
increased project or platform development cost and increased time to
market. Typically, there are two reasons for that: The architecture was
not designed properly, or essential information on the system’s require-
ments was not elicited properly or changed. Requirements that have
such a strong impact on the architecture are typically non-functional re-
quirements (NFR), not forgotten functionality. One major task in archi-
tecting a solution for the given requirements is trading off the quality at-
tributes of the architecture (see Figure 2). [Ebe98] states that “The de-
gree of achieving NFRs is predominantely determined during architectur-
al design.” [CL01c] performed three case studies. Their approach to elicit
NFRs more comprehensively had a strong impact on the functional mod-
el: 46% of the existing classes had to be modified, 45% new operations
were inserted into class diagrams, and 35% new attributes had to be in-
serted.

Already [Rom85] stated that “design complexity is also determined by
the nature of the NFR.” Especially in the context of COTS, [Beu00] ar-
gues for the systematic treatment of NFRs as a basis for making architec-
tural decisions. [Pas03] uses trade-off analysis to select architectural deci-
sions based on NFRs. [CL01c] states that NFRs such as safety, perfor-
mance, accuracy, and others frequently demand that the design is stud-
ied carefully in order to fulfill the NFRs to a defined extent. The im-
portance of NFRs for architectural decisions is also emphasized in
[CNY95a] and architecture evaluation methods like the Architecture
Tradeoff Analysis Method (ATAM) [KKC00], [KBK+99].

Impact of
NFRs on
Architec-
ture

Architecture

Usability

Performance

Maintainability

ReliabilitySecurity

Portability …

Figure 2: Quality trade-offs in SW architecture phase

Introduction

4

[BB02] state that there are often many ways of meeting a FR. NFRs pro-
vide guidance for differentiating between these solutions. Furthermore,
[BB02] call NFRs preferences, indicating that when given a choice be-
tween solutions, one would select one based on these preferences. Also,
[Rom85] states that NFRs restrict the types of solutions one might con-
sider.

During the last decades, the state of the art has given much thought to
how to elicit, specify, and validate functional requirements. Concerning
non-functional requirements, already [BBL76] gives examples of the neg-
ative effect of neglecting non-functional properties. According to
[BLF02], the role of non-functional requirements in RE was first brought
up by [YZC+84] in 1984. Since then, academia confirmed the relevance
of NFRs and their huge impact on software engineering: [LWE01], for
example, states:

� Neglecting NFRs is among the top six risks in requirements engineer-
ing

� Neglecting NFRs (performance) is often worse than forgetting a
stakeholder

� Neglecting NFRs (performance) often leads to the need to re-architect

� The NFRs, in their approach called (quality) attribute requirements,
“are the heart and soul of why your customers will value your soft-
ware.”

[Rom85] calls the formalization of NFRs one of the main issues in re-
quirements engineering. [CL01c] point out that NFRs are the most ex-
pensive and difficult ones to correct [Bro87], [CL99], [Dav93]. [CL01b]
states that during the 2001 ICSE, Mantis Chen from ACD System pre-
sented the three most important aspects for a software from the stake-
holders’ point of view and the three most important ones from the de-
velopers’ point of view. All six were non-functional requirements.

Still, few state-of-the-art approaches targeting NFRs have emerged, and
almost none of them has found its way to industry. None of them gives
a satisfactory answer to how to achieve a complete set of NFRs, many of
the existing approaches target at one specific quality aspect. Till today,
NFRs are often not treated systematically. In today’s system develop-
ment, typically the state of the practice foresees some sections on NFRs
in requirements documents, but they are mostly filled in unsystematical-
ly, leading to low quality of the documentation. [BGR09] claim as a result
of a recent industrial study “we did not encounter QR-specific elicitation,
documentation or analysis”. With QR they refer to quality requirements
as synonym to NFRs. The state of the art focuses on NFR identification
more or less independent of the functional specification. NFR identifica-
tion is done in parallel to the functional specification. Efforts to check
the elicited set of NFRs with early quality assurance can reveal the prob-

Role of
NFRs in
State of the
Art and
State of the
Practice

 5

lem that important NFRs might be missing, but do not provide a solution
for how to find a complete set of architecture-relevant NFRs.

This is partly due to the fact that NFRs are not easy to elicit. [Beu00]
states: “Non-functional software requirements are notorious for being
difficult to elicit, express, quantify and test.” [PK04a] and [Jac99] also
state that NFR are difficult to elicit and specify. This is due to several
reasons. One reason is the effort for dealing with NFRs: [CL01c] and
[CL01b] state that NFRs are among the most expensive and difficult to
deal with. Some authors point to the “hidden” nature of NFRs: [CL01b]
states that NFRs are difficult to elicit due to the very abstract nature of
NFRs and because quality aspects, in spite of their importance, are usual-
ly hidden in everyone’s mind. [LL98] states that “It seems to be inherent
into human requirements negotiation that it is easier to state require-
ments in terms of concrete functional requirements and architectural re-
quirements than in terms of quality attributes. Thus, it is important to
better understand and cope with this phenomenon.” Also [Gil07] states
that “We are not skilled at communicating the 'How well' Product Quali-
ties”, referring to NFRs. A third reason is that NFRs are often hard to
specify in a measurable manner: [Ebe98] states that often NFRs “are left
out because they are difficult to specify with measurable acceptance cri-
teria, thus later leading to discussions during acceptance and handover
on exactly these areas.”

1.2 Contribution and Research Hypotheses

On the one hand, NFRs have a strong impact on product quality and in-
fluence especially the architecture phase. On the other hand, there is the
impression that NFRs are not easy to elicit. In 2001, [CL01b] stated that
many approaches for NFRs have almost added nothing to the aspect of
how to elicit NFRs. This is partly due to the fact that several approaches
are strongly dependent on the person eliciting the NFRs. It is natural to
be in some sense dependent on the customers and users who will pro-
vide the concrete NFRs. The degree to which one is dependent on the
requirements analyst who elicits and specifies the NFRs with the custom-
er also adds to this impression. Therefore, requirements analysts need an
approach for NFR elicitation that is as systematic, repeatable, and as per-
son-independent as possible. Furthermore, experience with quality char-
acteristics from previous NFR elicitations can help to make the NFR elici-
tation more complete. To arrive at a repeatable and algorithmic elicita-
tion of requirements, one needs input that can be processed systemati-
cally. [CNY+99] made the statement that “…NFRs … often are retrofit-
ted late in the development process, or pursued in parallel with, but sep-
arately from, functional design.” [CL01c] sees that there is still a gap re-
garding the integration of NFRs into functional requirements, especially
conceptual models. [PK04a] clearly state the necessity to identify NFRs
relative to functional requirements and architectural requirements.

NFRs are
Not Easy to
Elicit

Introduction

6

[Bus09] stated “If a nonfunctional requirement can’t be tied to function-
al requirements, it isn’t needed.”

The key idea of this thesis is the systematic elicitation of NFRs, taking
specific elements of the functional specification as input and algorithmi-
cally processing the functional specification elements. The claim is that a
complete set of NFRs can only be achieved if the NFRs are elicited sys-
tematically on the set of functional requirements. By systematically pro-
cessing the elements of the functional specification, the process be-
comes repeatable and controllable, which is the main driver for increas-
ing the confidence that all important NFRs have been identified. Fur-
thermore, experience-based quality models are used to provide a classi-
fied hierarchy of quality aspects. In the systematic NFR elicitation, the
functional specification elements are checked against these quality as-
pects.

The general goal of this thesis is to provide a systematic approach (in the
following called “NFR methodology”) for the elicitation, analysis, and
specification of a complete set of NFRs. As a positive side-effect, we
expect the set of NFRs to be conflict-free and each NFR to be measura-
ble.

To achieve this, the contribution of this thesis includes:

� a classification of functional, non-functional, and architectural con-
cepts and their relationships,

� a representation of quality models that capture hierarchical, classified
quality attributes and their dependencies,

� a guideline for the integrated specification of functional and non-
functional requirements,

� an algorithm for eliciting NFRs based on functional specification ele-
ments and quality attributes,

� checklists and tools to support and partially automate the NFR meth-
odology,

� means for identifying conflicts between NFRs,

� means for focusing the effort for NFR elicitation on the critical quali-
ties and functionalities, and

� complete and detailed process guidance for using the algorithm, all
artifacts, and the tool support for NFR elicitation and specification.

The scope of this thesis is defined as follows:

� Focus on NFR elicitation and specification for software-based, interac-
tive systems.

� Provide support not for only one specific quality attribute but for as
many quality attributes as possible, i.e., without restriction to one
specific quality attribute (such as efficiency or usability).

Key Idea of
this Thesis

Research
Objectives

Scope

 7

Concerning the benefit and applicability of the methodology developed
in this thesis, there are three main hypotheses:

H1 – Feasibility: The elements of the NFR methodology are feasible, i.e.,
the artifacts can be created for real-life examples and the process activi-
ties can be applied by averagely trained personnel.

H2 – Completeness: The method results in a (more) complete set of
NFRs. About 20% more critical NFRs are identified compared to the state
of the practice. This is expected because the NFRs are elicited using expe-
rience-based quality models in a repeatable process.

H3 – Effort: The estimated rework effort in the subsequent project or
platform development phases is reduced: The estimated saved rework
effort for found NFRs is at least twice the effort spent on systematically
eliciting the NFRs.

In the course of this thesis, these three hypotheses will be further refined
and evaluated in case studies.

1.3 Research Approach

The scientific approach to realizing the aforementioned research objec-
tives is the experimental software engineering paradigm [Bas93]. The
scientific method is used to observe the world, build a new model, and
validate it with regard to explicitly stated hypotheses. More specifically,
for this thesis, we used a combination of the engineering method and
the empirical method:

� Using the engineering method means that we observe existing solu-
tions, develop new and hopefully better solutions, and repeat this
process until no further improvements seem to be possible.

� Using the empirical method means that we take a newly developed
model and validate it by means of case studies and experiments.

Hypotheses

Introduction

8

The general research approach is depicted in Figure 3. In the following,
we explain which elements of the research approach belong to the engi-
neering method and which belong to the empirical method. We experi-
enced the problem of incomplete NFRs in exploratory studies with indus-
trial partners, mainly during the EMPRESS project [Loo03].

Based on this, we observed the state of the practice in our industry pro-
jects in the last eight years, confirmed the situation that NFRs were insuf-
ficiently elicited and specified and we experienced the resulting negative
impact on the later development phases. The same situation is also re-
ported by other sources, e.g., [BBL76], [CL01c], [BLF02], [LWE01].

We surveyed the state-of-the-art approaches with regard to NFR elicita-
tion, specification, and modelling and found no approach that enables
systematic elicitation of NFRs to receive a complete set of NFRs. Addi-
tionally, most approaches were not feasible for industrial application or
few statements about the effort required to perform the approaches ex-
isted. Systematic treatment of NFRs in these approaches was mainly
based on using quality models, which is also an important concept in our
NFR methodology.

Engineering Part Empirical Part

State-of-the-Practice
Observations

Design and Improve-
ment of Metamodel,
Elicitation Algorithm,

and NFR Process

SequenceSequence

State-of-the-Art
Survey

Tool Development Late Case Studies

Early Case Studies

Exploratory Studies

Figure 3: Research approach

Using the
Engineering
Method

 9

As one of the major problems with the state-of-the-practice and state-
of-the-art approaches we identified the fact that they lack a formal basis
for judging when the NFR elicitation is complete. Based on a literature
survey on existing non-functional requirements terminology, a precise
metamodel was defined that states functional, and non-functional con-
ceptual elements and their relationships, which was a key enabler for the
subsequent research activities that led to the methodological innova-
tions. A second element is the algorithm developed for systematic NFR
elicitation. The metamodel served as the basis for the key idea of algo-
rithmically processing certain types of functional elements for NFR elicita-
tion. Third, the places for documenting the resulting NFRs needed to be
specified in accordance with the model. The individual elements of the
NFR methodology were aligned into a coherent NFR elicitation and speci-
fication process. In order to make the methodology more efficient, two
tools were developed. One tool supports the NFR elicitation and one the
preparation of NFR elicitation (i.e., the generation of checklists for NFR
elicitation).

Based on the experience gathered in the exploratory studies, the re-
searched NFR methodology with all the new elements was engineered as
part of the engineering method. This NFR methodology was then vali-
dated in eight mainly industrial settings to provide insights with regard
to the method’s feasibility, NFR completeness, and the effort needed.
The usage of the NFR methodology in early case studies revealed that
the metamodel was incomplete, as some NFRs were hard to elicit and
classify. Therefore, this information was fed back to the engineering part
of the research approach to further improve the model elements, i.e.,
the metamodel and the elements using the metamodel were revised.
Furthermore, by repeating the NFR methodology in the case studies, the
potential for tool support became apparent. This was also fed back to
the engineering method part of the research approach. The revised ver-
sion of the NFR methodological elements as well as part of the tool sup-
port were then validated in the late case studies.

Besides the more formal validation with case studies, informal validation
of the methodological elements also took place: First, in order to receive
feedback from the academic communities, we published the results at
various workshops, conferences, journals, and in a book [KKD03],
[PvKD+03], [DKvK+03a], [DKvK+03b], [DOS04], [KDP+04], [DKK+05],
[DKK+06], [AD07a], [AD07b], [HKD07], [ADB+08], [ARD09], and
[MRS+09]. Second, we established a working group of the German
Computer Society (Gesellschaft für Informatik) [Doe09] on the topic of
NFRs in order to discuss and informally validate the methodological ele-
ments with people from industry and academia. Third, to further en-
hance the exchange of ideas on dealing with NFRs, we organized two
workshops on this topic at the German Software Engineering conference
[Wor07], [Wor08]. A third one has already been accepted at the German
Software Engineering conference for 2010 [Wor10].

Using the
Empirical
Method

Additional
Informal
Validation

Introduction

10

1.4 Outline

This thesis is structured as follows:

Chapter 2 lays the foundation for the NFR methodology. It starts with a
description of the current state of the practice and state of the art with
regard to non-functional requirements definitions, classifications, and ex-
isting quality models such as ISO 9126 [Iso01] as a basis for non-
functional requirements elicitation. The different kinds of requirements
are arranged in a requirements taxonomy. A metamodel that shows the
relationship between quality, functional, and non-functional concepts is
introduced. The basic concepts of the NFR methodology are explained
and important definitions for terms like elementary quality attributes,
non-functional requirements, or quality models are given. As quality
models also play an important role in this NFR methodology, the role,
typical elements, and the chosen representation for the quality models
are introduced. Finally, a definition of what completeness means for the
set of non-functional requirements in the context of this thesis is given.

Chapter 3 describes how to specify the non-functional requirements to-
gether with the functional requirements in an integrated way. It presents
a summary of the state of the practice and the state of the art with re-
gard to the existing elicitation and specification approaches. This also in-
cludes a summary on existing NFR frameworks and approaches and a
clarification on the relationship between functional and non-functional
requirements specification. This chapter further describes which chal-
lenges occur if NFRs are to be specified with functional requirements in
an integrated manner and how to resolve this challenge, i.e., it deter-
mines the concrete locations for specifying the different types of NFRs.

Chapter 4 presents the elicitation algorithm used in the NFR methodolo-
gy. It describes the difference between the NFR elicitation approach used
in this NFR methodology and existing approaches. The elicitation algo-
rithm is described, followed by a description of how the elicitation algo-
rithm is operationalized in elicitation checklists that guide the NFR elicita-
tion.

Chapter 5 describes the actual NFR elicitation and specification process,
i.e., how the artifacts from Chapters 2, 3, and 4 are organized into a co-
herent process that enables effective and efficient elicitation of a com-
plete set of non-functional requirements. After an overview of the over-
all NFR process, each process activity is defined in detail, presenting the
process activities purpose, inputs, steps, outputs and an illustrating ex-
ample.

Chapter 6 presents possibilities for systematically focusing the effort for
the NFR elicitation and describes the existing tool support. The NFR
methodology foresees several places where focusing can be used to

 11

trade-off result quality and effort to be spent. Both, tool support and fo-
cusing shall increase the methodology’s efficiency, making the NFR
methodology more pragmatic and applicable to real-life projects.

Chapter 7 presents the validation of the NFR approach. It gives an over-
view of a series of eight real-life case studies that used the NFR method-
ology. After introducing the setup of the validation, we present an over-
view of the case studies contexts. The method was used in different do-
mains in projects of different sizes. After that, the hypotheses from Sec-
tion 1.2 are refined to a measurable level by using the GQM approach.
Finally, we present and discuss the results from the case studies, the
threats to validity of the results and questions that remain open for fu-
ture empirical investigation.

Chapter 8 summarizes the results and the contribution. Furthermore, it
discusses limitations as well as potential future work for the methodolo-
gy, the empiricism, and the tool support.

Classifications, Definitions and Quality Models

12

2 Classifications, Definitions and Quality
Models

This chapter lays the foundation for the NFR methodology. It starts in
Section 2.1 with a description of the current state of the practice and the
state of the art with regard to non-functional requirements definitions,
classifications, and existing quality models such as ISO 9126 [Iso01] as a
basis for non-functional requirements elicitation. Based on the state of
the practice and the state of the art, in Section 2.2, a requirements tax-
onomy that classifies the different kinds of requirements is presented.
Furthermore, a metamodel that relates quality characteristics, functional
requirements, and non-functional requirements is introduced. This sec-
tion also explains the basic concepts for the NFR methodology and de-
fines important concepts like elementary quality attributes, non-
functional requirements, and quality models. As quality models also play
an important role in this NFR methodology, the role, typical elements,
and the chosen representation for the quality models are introduced. Fi-
nally, a definition of what completeness means for the set of non-
functional requirements is given.

2.1 State of the Practice and State of the Art

The state of the practice and the state of the art differ a lot for the speci-
fication and elicitation of NFRs (see Section 3.1). For the definition of the
terms functional requirements and non-functional requirements (see Sec-
tion 2.1.1) and for their usage of quality models (see Section 2.1.2), the
state of the practice and the state of the art do not differ too much.

2.1.1 Existing Definitions for NFRs

In almost any presentation that addresses the topic of non-functional re-
quirements, one of the first discussion items after the presentation is
usually the discussion on whether non-functional requirements exist,
what distinguishes them from functional requirements, and how exactly
they are defined. This holds for presentations in academia as well as for
presentations in industrial settings. Therefore, it is important to know
what exactly is meant by the term “non-functional requirement”.

For the state of the practice, the term is usually implicitly defined by the
usage of requirements specification templates such as [IEEE98a],
[IEEE98b], or the Volere shell [RR99]. There, NFR are documented in

State of the
Practice

 13

separate sections with names of typical quality attributes like perfor-
mance, maintenance, or usability. As today Wikipedia also serves as a
source of information for the state of the practice, this definition is also
given here. The term non-functional requirement is defined there as “a
requirement that specifies criteria that can be used to judge the opera-
tion of a system, rather than specific behaviors. This should be contrast-
ed with functional requirements that define specific behavior or func-
tions”.

[Gli07] gives a comprehensive overview of NFR definitions in standards
and academia. For the purpose of this thesis, a modified, i.e., extended
version of this overview is given in Table 1.

The difference between functional and non-functional requirements is
an aspect that needs to be understood in order to deal with non-
functional requirements better. To start with the functional require-
ments, [Dav93] defines that behavioral requirements (synonym to func-
tional requirements) specify the inputs (stimuli) to the system, the out-
puts (responses) from the system and the behavioral relationship be-
tween them. [Ebe98] uses one of the most popular definitions for func-
tional and non-functional requirements when stating “A requirement
that describes not what the software will do, but how the software will
do it is called a nonfunctional requirement (NFR).” This definition states
that the functional requirements describe the “what” and the non-
functional requirements describe the “how”. The nature of “how” only
implicitly directs us to quality aspects. This “how” should not be mistak-
en for the how as used by [Yu97], who uses the words what, how, and
why in order to define functional requirements, design, and con-
text/rationales. There, he uses “How the system shall do it” to refer to
design. To clarify this distinction better, sometimes “how well” is used to
characterize the NFR. It becomes apparent that the usage of the terms
“what” and “how” cannot be sufficient as definition. [LWE01] also gives
an implicit definition, but already uses the word “characteristic” for de-
scribing the nature of NFRs: Functional requirements are “the things our
software systems are supposed to do” and non-functional requirements
are “the characteristics you intend your software to exhibit”. Definitions
like [Dav93], [IEEE90], [IEEE98a] name examples of such characteristics,
like performance, portability or reliability.

State of the
Art

Classifications, Definitions and Quality Models

14

Often, the term “quality requirement” is used as a synonym for a non-
functional requirement. An example of this is the definition of [FC03],
[Fra98], who - similar to the definition in [BBF+01] - argue for arranging
the characteristics that serve as a basis for the NFRs in quality models.

Source Definition
Antón [Ant97]

Describe the non-behavioral aspects of a system, capturing the properties and
constraints under which a system must operate.

Burge and Brown [BB02] Describe desirable overall properties that the system must have.
Davis [Dav93]

The required overall attributes of the system, including portability, reliability,
efficiency, human engineering, testability, understandability, and modifiability.

Ebert [Ebe98] A requirement that describes not what the software will do, but how the
software will do it is called a nonfunctional requirement (NFR).

Franch [Fra98] How the system behaves with respect to some observable attributes like
performance, reusability, reliability, etc.

Franch and Carvallo
[FC03]

…we define quality requirements as restrictions over the quality model.

IEEE 610.12 [IEEE90]

Term is not defined. The standard distinguishes design requirements, imple-
mentation requirements, interface requirements, performance requirements,
and physical requirements.

IEEE 830-1998 [IEEE98a]

Term is not defined. The standard defines the categories functionality, external
interfaces, performance, attributes (portability, security, etc.), and design
constraints. Project requirements (such as schedule, cost, or development
requirements) are explicitly excluded.

Glinz [Gli07] A non-functional requirement is an attribute of or a constraint on a system.
Jacobson, Booch and
Rumbaugh [JBR99]

A requirement that specifies system properties, such as environmental and
implementation constraints, performance, platform dependencies, maintaina-
bility, extensibility, and reliability. A requirement that specifies physical con-
straints on a functional requirement.

Kotonya and Sommer-
ville [KS98]

Requirements which are not specifically concerned with the functionality of a
system. They place restrictions on the product being developed and the devel-
opment process, and they specify external constraints that the product must
meet.

Lawrence, Wiegers,
Ebert [LWE01]

The characteristics you intend your software to exhibit.

Mylopoulos, Chung and
Nixon [MCY+92]

... global requirements on its development or operational cost, performance,
reliability, maintainability, portability, robustness, and the like. (...) There is not
a formal definition or a complete list of nonfunctional requirements.

Paech and Kerkow
[PK04a]

Any requirement describing the quality of the system.

Robertson and Robert-
son [RR99]

A property, or quality, that the product must have, such as an appearance, or
a speed or accuracy property.

Wiegers [Wie03] A description of a property or characteristic that a software system must
exhibit or a constraint that it must respect, other than an observable system
behavior.

Table 1: Existing definitions for the term non-functional requirements

 15

They define “quality requirements as restrictions over the quality mod-
el”1. With quality models they refer to quality models such as ISO 9126
[ISO01] (see next section for details). A broader scope for NFRs is set by
[Ant97] who characterizes NFRs like this: “describe the nonbehavioral
aspects of a system, capturing the properties and constraints under
which a system must operate.” In addition to characteristics or proper-
ties, constraints are also subsumed as NFRs. [Gli07] shares this notion in
his definition. Other approaches tend to emphasize the functional as-
pects and try to avoid the notion of NFR. [ZJ97], for example, state that
”requirements are supposed to describe what the desired machine does,
not how it does it.” With this statement, [ZJ97] would exclude NFRs
from the system requirements. This is emphasized in another section in
their paper, where they state that “soft” requirements, like systems
needing to be secure, reliable or easy to use, are not subject to their re-
quirements refinement until they are precise enough to be formalized
with their approach. The paper “NFR’s: Fact or Fiction” [BB02] specifical-
ly deals with this topic. It defines NFRs as desirable overall properties that
the system must have.

In addition to classifications of NFRs into different quality categories such
as performance, usability, etc., some works also introduce orthogonal
classifications. [Ebe98] classifies NFRs into customer-oriented NFRs and
developer-oriented NFRs. This is a distinction that is relevant for our NFR
methodology as the elicitation of NFRs will focus on different stakehold-
ers. [Gli05] and [Gli07] give an overview of other existing classifications
and an own, which Glinz calls a faceted classification (see Figure 4). Ac-
cording to his classification, non-functional requirements are require-
ments that are of the type “performance” or “specific quality con-
straint”. An interesting classification is the satisfaction facet: Hard re-
quirements are those that are either completely satisfied or not. Soft re-
quirements can be gradually satisfied (similar to the satisfaction functions
suggested by [LAG07]). In addition, the representation facet determines
whether a requirement is specified in an operational, quantitative, quali-
tative, or declarative way. The role facet determines whether a require-
ment is prescriptive, i.e., a typical system requirement, or a normative or
assumptive domain requirement. So we can say that NFRs can be classi-
fied with regard to several dimensions, including the quality attributes
they are related to, their visibility (customer vs. developer), their measur-
ability, and their relevance.

1 An interesting observation is the trend of moving away from the “what” and “how”
definition to a more quality model based definition. For example, Franch used in his early
definitions [Fra98] the term “how”, and in his definition in [FC03], he switched to the
quality model based definition.

Classifications, Definitions and Quality Models

16

Non-functional requirements are often addressed by goal-oriented ap-
proaches such as [MCY+92] or [Lam01a]. In this context, the distinction
between functional and non-functional goals is of interest: [Lam01a]
states that goals address functional and non-functional issues: “func-
tional concerns associated with the services to be provided, and non-
functional concerns associated with quality of service – such as safety,
security, accuracy, performance, and so forth”. [KKP90] gives a similar
definition: “Functional goals underlie services that the system is expected
to deliver whereas non-functional goals refer to expected system quali-
ties such as security, safety, performance, usability, flexibility, customiza-
bility, interoperability, and so forth.” One can see that the distinction on
the goal level is almost identical to the one on the requirements level.

To summarize, almost all definitions agree that the functional require-
ments describe what the system is supposed to do, i.e., they describe the
behavior or services of the system. Most definitions tend to describe
non-functional requirements as information on or restrictions with re-
gard to quality characteristics of the system. Some definitions make use
of the term “quality model” to describe non-functional requirements.
The next section will therefore summarize the state of the practice and
the state of the art with regard to quality models. None of the existing
definitions is precise enough for the NFR methodology in this thesis;
therefore, a specific definition of the term non-functional requirements is
given in Section 2.2.2.

Figure 4: Faceted classification of requirements (figure taken from [Gli07])

 17

2.1.2 Existing Quality Models

Generally, quality models are a list or hierarchy of quality attributes (also
known as quality aspects or quality factors). According to [Mil00], who
surveyed the most popular existing quality models, “The elements which
describe the quality of a piece of software are usually referred to as qual-
ity factors, and collectively they are usually referred to as a software
quality model”.

To start with the state of the practice, the NFR categories in the tem-
plates of the IEEE 830 and 1362 standards [IEEE98a], [IEEE98b], the pop-
ular Volere shell [RR99], and the ISO 9126 standard [Iso01] name quality
attributes and are typically used as implicit or explicit quality models for
specifying NFRs.

The IEEE 1362 standard, which is often used as a template for high-level
requirements specifications (Concept of Operations Document), suggests
specifying the following information as part of Section 3.3 “Description
of the current system or situation” and also as requirements for the new
system in Section 5.3 “Description of the proposed system”:

� “Performance characteristics, such as speed, throughput, volume,
frequency”

� “Quality attributes, such as: availability, correctness, efficiency, ex-
pandability, flexibility, interoperability, maintainability, portability, re-
liability, reusability, supportability, survivability, and usability”

� “Provisions for safety, security, privacy, integrity, and continuity of
operations in emergencies”.

The IEEE 830 standard which is often used as a template for more de-
tailed requirements documents, suggests specifying requirements for the
following quality attributes:

� Performance (Section 3.3)

� Reliability, availability, security, maintainability, and portability (all in
Section 3.5).

In the Volere shell, more specifically in the Volere requirements specifica-
tion template, Edition 9, the following sections are listed in the chapter
on non-functional requirements: look and feel requirements, usability
requirements, performance requirements, operational requirements,
maintainability and portability, security requirements, cultural and politi-
cal requirements, legal requirements. Some of them are refined into
more fine-grained sub-attributes.

The standard ISO 9126 is used in the state of the practice as well as in
the state of the art. The ISO 9126 standard defines a quality model as
“the set of characteristics and the relationships between them which

Qualities in
IEEE 1362

Qualities in
IEEE 830

Qualities in
Volere

Qualities in
ISO 9126

Classifications, Definitions and Quality Models

18

provide the basis for specifying quality requirements and evaluating qual-
ity”. An important distinction in the ISO 9126 standard is the differentia-
tion of qualities into different levels of qualities (see Figure 5). There are
internal, external and quality in use attributes. The quality in use attrib-
utes are quality attributes that can only be measured (and therefore also
specified) in the context of their use. The quality attributes of this level
are illustrated in Figure 7. The ISO standard defines these quality attrib-
utes as those perceived by the user. They are used to evaluate the effect
the software product has on its environment. Most of the time, subjec-
tive metrics are used to measure these quality attributes. ISO 9126 also
defines the internal and external quality attributes. It establishes a first
level of quality attributes with six characteristics. Each is then refined into
sub-characteristics. Strong similiarities exist to the categories of the
aforementioned templates. Metrics that are intended for measuring the
qualities are given in the remaining parts 2-4 of the ISO 9126 standard.
Those metrics do not only assist in measuring product quality, but can
also serve as help for expressing NFRs (more information on the usage of
metrics to express NFRs can be found in Section 2.2.2). Therefore, the in-
ternal and external quality attributes are the typical quality attributes for
NFR elicitation and specification (see also Figure 6). Sometimes, NFRs are
also expressed for quality in use attributes, but typically, these are not
the kinds of attributes used to specify NFRs, as they are too context-
dependent. Work on using quality in use quality attributes for require-
ments engineering can be found for example in [DHK+07], [DKL+08].

Process
quality

Internal
Quality

attributes

External
Quality

attributes

Quality
in use

attributes

process software product effect of
software product

influencesinfluences influencesinfluences influencesinfluences

depends ondepends ondepends ondepends ondepends ondepends on

process
measures
process

measures
internal

measures
internal

measures
external
measures
external
measures

contexts
of use

Figure 5: ISO 9126 view on qualities

 19

In the state of the art, other quality models have also emerged. In 2000,
Miller [Mil00] performed a survey on existing software quality models.
These quality models include:

� Boehm from 1976 [BBL76],

� Cavano & McCall, which originated from studies done at USAF in
1978 [CM78],

� the FURPS+ model from Hewlett Packard from the mid-1980s
[Gra92],

� the Garvin and Plsek’s Dimension of Quality from the end of the
1980s [Gar88], [Pls87],

� the 1991 version of the ISO 9126 standard [ISO91],

� the SEI model from the mid 1990s [BKL+95].

External and
Internal Quality

External and
Internal Quality

functionalityfunctionality reliabilityreliability usabilityusability efficiencyefficiency maintainabilitymaintainability portabilityportability

suitability
accuracy

interoperability
security

functionality
compliance

maturity
fault tolerance
recoverability

reliability
compliance

understandability
learnability
operability

attractiveness
usability

compliance

time behavior
resource utilization

efficiency
compliance

analyzability
changeability

stability
testability

maintainability
compliance

adaptability
installability
co-existence

replaceability
portability
compliance

Figure 6: ISO 9126 quality model for external and internal attributes

Quality in UseQuality in Use

effectivenesseffectiveness productivityproductivity safetysafety satisfactionsatisfaction

Figure 7: ISO 9126 quality model for quality in use

Other Qual-
ity Models

Classifications, Definitions and Quality Models

20

[Mil00] comes to the conclusion that none of the quality models com-
pletely subsumes any of the others and that ISO was well aware of the
models of Boehm, FURPS+, and Cavano and McCall. When choosing a
model, he recommended the ISO9126 model as being among the most
comprehensive and most frequently used one. Since then, few additional
models and attributes have emerged. The 2001 version of ISO mainly
added some sub-attributes for the first-level attributes usability and port-
ability. [BLF02] in 2002 also summarize classifications that are composed
of Boehm’s model [BBK+78], McCall’s model [McC94], and, additionally,
classifications by Kirner and Davis [KD96], Mylopulous et. al. [MCY+92],
and Yeh et. al. [YZC+84]. But the additional classifications do not yield
significantly more quality attributes.

One conclusion of this is that there is no such thing as a detailed quality
model that fits all purposes. If they need to be detailed, the quality mod-
els have specificities depending on the domain of usage. [FC03] also
argues that there is no single general-purpose quality model; such a
quality model always has to be tailored to a domain. They state that this
domain-specific breakdown of quality attributes to a measurable level is
usually not trivial. The NFR methodology in this thesis will therefore
make use of experience-based quality models that can, but do not need
to, be based on such quality models such as ISO or Boehm’s model.

Another source for quality model information is experience on typical
refinements of qualities. This can emerge due to approaches like
[CNY+99] or [CL01a]. They use graphs to decompose high-level attrib-
utes into lower-level attributes. Mostly these decompositions are per-
formed for specific products rather than for general purposes. Neverthe-
less, interesting refinement information can be extracted from these
models. [CNY+99], for example, has a rich taxonomy of non-functional
goals. The MOQARE approach [HP08] also uses this project-specific re-
finement to decompose quality information from high-level goals into
design decisions called countermeasures. In [CL01a], [CL01c] it is stated
that they store knowledge about typical decomposition of quality attrib-
utes and interdependencies in a tool called the OORNF tool. This project-
specific refinement information could be abstracted to create experi-
ence-based quality models for certain domains.

Currently, there are two efforts to create new, more comprehensive
quality models. First, the ISO 9126 standard is going to be revised and
incorporated into a new series of standards called “Software product
Quality Requirements and Evaluation (SQuaRE)” in the ISO 25000 series
[ISO05], [Boe08]. Second, the ongoing German project “Quamoco”
[Qua09] aims at defining a general quality standard that makes intensive
use of quality models. For this purpose, many quality models are being
surveyed according to a classification scheme for quality models
[KHM+09].

No Detailed
General
Purpose
Quality
Model

Other
Sources for
Quality
Model In-
formation

Emerging
New Quali-
ty Models

 21

2.2 Taxonomy, Definitions, Metamodel & Quality Model

This section lays the foundation for the next chapters. Several terms used
in this thesis are defined throughout this section. First, a requirements
taxonomy is described that helps to distinguish the notion of NFRs used
in this methodology from other approaches. Second, the metamodel for
the NFR methodology is introduced. In this metamodel description, it be-
comes clear which functional elements are supported by this NFR meth-
odology and which further elements are needed to formalize the NFR
definition. Third, the quality model structure typically used for the NFR
methodology based on ISO 9126 is presented. The definition for com-
pleteness for the set of NFRs is given in the fourth part.

2.2.1 Requirements Taxonomy

In order to define the notion of non-functional requirement for this the-
sis, we want to first introduce a requirements taxonomy. This taxonomy
is based on the results of a joint workshop of German-speaking NFR ex-
perts from industry and academia during the course of the Working
Group “Non-Functional Requirements” of the German Computer Society
GI (Gesellschaft für Informatik), which was founded and is being led by
the author. This basis [Doe09] is similar to the one found in [Rom09]. It
was modified and the taxonomy shown in Figure 8 is the basis for the
NFR methodology in this thesis.

The first differentiation is the separation of requirements into organiza-
tional requirements and system-related requirements (system require-
ments and product requirements are used synonymously). [Gli07] also

Requirement

Organizational
Requirement

Project Requirement

System/Product
Requirement

Functional
Requirement

Non-Functional
Requirement

Product Constraint

Architectural Constraint
(incl. Interfaces,

subsystems)
Environment constraint

Product Constraint from:
-Cultural Issues
-Legal Issues

Constraint on:
-Usability
-Efficiency

-Maintainability
-Portability
-Security

...

Business Processes
Tasks

Interaction Descriptions
Function Descriptions

Data Items
Behavior Descriptions

Stimuli
Responses

Process Requirement

Standard Compliance
Maturity Levels

Usage of certain Methods/
Techniques

Constraint on
-Company Organization

-Cost
-Time

-Know-How
-Employee Skills

...

Figure 8: Requirements taxonomy

Classifications, Definitions and Quality Models

22

argues that project and process requirements are conceptually different
from product requirements and should therefore be distinguished and
separated at the root level. Organizational requirements address process
and project issues like constraints on project cost or time, or the maturity
level the development process has to fulfill. Requirements on specific de-
velopment methods or techniques are also requirements in this category.
Sometimes the term non-functional requirements comprises require-
ments from the category of organizational requirements. This is one of
the reasons why the term non-functional requirements is sometimes re-
garded as fuzzy and is not well defined. For this thesis, the set of non-
functional requirements is composed of requirements for the system to
be built and not for the project or the process that enables the develop-
ment of the system under development. As this term is frequently used
during the course of this thesis, it will be defined now:

Definition:
 The SUD (system under development) is the system that should be

developed from the given set of product requirements (functional and
non-functional requirements and other constraints).

As can be seen in Figure 8, the product requirements are distinguished
into three groups:

� Functional requirements

� Non-functional requirements

� Product constraints

The taxonomy shows a list of typical types of functional requirements
from different domains. Whereas business processes and interaction de-
scriptions (often called operational scenarios) are typical for the infor-
mation system domain with interactive systems, the terms stimuli, re-
sponses, and behavior descriptions are typical representatives of the em-
bedded area. But even neutral terms like function descriptions and data
items can be found in the category of functional requirements. After the
introduction of the metamodel, Section 2.2.2.1 will present the key
functional elements used in our NFR methodology.

The taxonomy already gives a first hint with regard to the non-functional
requirements definition: One of the properties of non-functional re-
quirements is their nature of restricting the solution space by constrain-
ing qualities. The term NFR will eventually be defined after introduction
of the metamodel in Section 2.2.2.

The third SUD-related category of requirements are product constraints,
which are usually known before the actual system development starts.
These typically comprise constraints on the system architecture (like pre-
determined system components), constraints due to a certain culture the
system is used in, constraints imposed by physical laws, constraints im-

 23

posed by the operating environment, or legal constraints on the product
to be developed (e.g., required functionality).

2.2.2 Metamodel

The taxonomy presented here only gives a rough classification for re-
quirements. In order to better understand the nature, the differences,
and the relationships between functional and non-functional require-
ments, a metamodel is introduced. The basic concepts in the metamodel
will first be explained by using a simplified version of the metamodel;
later, the full metamodel will be introduced.

Besides explaining the basic concepts used in this thesis, the metamodel
with its relationships lays the foundation for the definition of complete-
ness of the set of NFRs. Furthermore, this formalization of the metamod-
el elements is used by the elicitation algorithm to systematically process
the elements and to define precise end criteria for the elicitation process.
The metamodel can therefore be seen as the first necessary formalization
step to enable semi-automatic algorithmic processing of NFR elicitation.

Elements of the taxonomy presented in Figure 8 that are also represent-
ed in Figure 9 are:

� Product requirement

� Functional requirement

� Non-functional requirement

� Architectural constraint (as the subset of product constraints relevant
for the NFR methodology)

In the metamodel, new elements are introduced.

Definition:
 A Functional Conceptual Element is an abstract concept that serves as

a placeholder for different kinds of functional conceptual elements, like
system functions or data items.

Functional requirements describe the different functional conceptual el-
ements. A more detailed characterization of functional conceptual ele-
ments will be introduced in Section 2.2.2.1.

Usage of
the Meta-
model

Classifications, Definitions and Quality Models

24

The concept (sub-)system refers to the system itself and its physical com-
ponents that are predetermined by the architectural constraints, such as
existing networks, servers, or predetermined end devices like mobile
phones, etc. For ease of reading, we will use the term subsystem instead
of the term (sub-)system. The term subsystem is therefore used as the set
of objects containing the system and all its physical subsystems.

A key element in the metamodel for defining non-functional require-
ments is the introduction of the Elementary Quality Attribute. The ele-
mentary quality attributes are quality characteristics of the functional
conceptual elements and subsystems. Therefore, they can be measured
with the corresponding metric in an analytical usage, i.e., for quality as-
surance of the SUD. For NFR definition, we use them in a constructive
way.

Non-functional Requirement

(Sub-) System

1

*

is of type

<<Abstract>>
Functional Conceptual

Element

Elementary
Quality Attribute

*

*

characterizes

*

*

characterizes

*
*constrains

*
*constrains

Product Requirement

Functional Requirement

Architectural Constraint

1..* 1..*

describes

*

*

expressed by

Value

Metric

1..* 1..*
measured by

1
1..*

expressed on

1..*1..*

Figure 9: Simplified version of the metamodel

Elementary
Quality
Attribute

 25

Definition:
 An elementary quality attribute is a measurable characteristic of one

or more functional conceptual elements or subsystems that describes
any other characteristic of this element but not its functionality (i.e., in-
puts, outputs, or input-output relationship). These other characteristics
are often called quality characteristics.

Typical elementary quality attributes are, for example, “response time”,
“network throughput”, or “storage capacity”. The concept of elemen-
tary quality attribute is intentionally defined by exclusion as in the defini-
tions in the state of the art for NFRs.

An important part of the definition is the relationship to a functional
conceptual element or subsystem. [MCY+92] already introduced a simi-
lar link between functional objects and quality attributes in their notion
of non-functional goals, e.g, the term “Accuracy [attributes(employee)]”
as a non-functional goal describes that the quality “accuracy” is related
to the attributes of an employee, which is a data object.

Another important characteristic in the definition of elementary quality
attribute is that one or more metrics can be attached to the quality at-
tribute. A trivial example would be the metric “time in milliseconds” for
the quality attribute “Response Time”.

Definition:
Set “EQAS”

EQAS := the set of all elementary quality attributes for the development
of a system.

More information on the hierarchy and relationships of elementary quali-
ty attributes can be obtained in Section 2.2.2.2. The completeness of the
set of elementary quality attributes is one of the major success factors
for obtaining a complete set of NFRs. Therefore, Section 2.2.4 provides
some information on how to obtain a complete set of elementary quality
attributes.

As already stated in Section 2.1.1, none of the existing state-of-the-art
definitions is detailed enough to serve as a basis for the NFR methodolo-
gy. Therefore, the following definition is given:

Classifications, Definitions and Quality Models

26

Definition:
 A non-functional requirement (NFR) constrains one or more func-

tional conceptual elements or subsystems by determining values (or val-
ue domains) for one or more metrics of a specified elementary quality
attribute that should be achieved by the functional conceptual element
or subsystem. The non-functional requirement is of the type of the ele-
mentary quality attribute that characterizes the functional conceptual el-
ement or subsystem.

This definition is similar to some definitions in the state of the art in the
sense that a NFR describes a property or quality (elementary quality char-
acteristic). As in the definition of elementary quality attribute, there are
two important new aspects in this NFR definition.

First, the usage of metrics ensures that the NFR is testable or measurable.
For example, the NFR “The system function X shall be performed in 3
milliseconds.” is of the elementary quality attribute type “response time”
and constrains the functional conceptual element “system function X”.
The value “3 milliseconds” is determined based on the metric “time in
milliseconds”, which is a metric including measure associated with the
elementary quality attribute “response time”. But the whole area of
metrics must be seen in a much more differentiated way: Many ap-
proaches such as [CNY+99], [LX99] and also [Gli07] state that there are
soft or hard (rigid) goals and NFRs, respectively. In this NFR methodology,
the rigidness of an NFR is expressed by the type of metric that is used to
constrain a quality attribute. The level of measurability (objective vs. sub-
jective) - whether it is an enumeration type (low, medium, high) or a
numerical scale - makes the metric a flexible instrument for expressing
soft and hard NFRs. [GS05] use so called worst-case settings to specify
measurable NFRs. Another alternative for describing a metric would be
the use of satisfaction functions as proposed by [LAG07]. In practice, it is
also common to express values of metrics relative to existing or compa-
rable systems, e.g., “the response time of the new system must be 10%
below the response time of the existing system”, rather than expressing
absolute values like “10 ms”. The work of [KOK04] uses this kind of in-
formation on changes to NFRs due to new product versions for identify-
ing and specifying NFRs.

Second, the NFR is directly linked to a functional conceptual element or
subsystem. No consensus exists among the definitions in the state of the
art in this respect. Whereas [MCY+92] supports this linkage, this link
remains in contrast to the statement of [BB02], namely, that a main
characteristic of NFRs is that “NFRs do not relate to a specific system
component, instead they “cross-cut” software functionality.” Whereas
this statement might be true for some qualities, it is not for others. The
introduction and differentiation of the functional conceptual elements is
one key aspect to make an NFR elicitation possible based on functional
conceptual elements and subsystem information. A linguistic analysis

Usage of
Metrics

Relation-
ship to
Functional
Element

 27

[Eva95] stated that “non-functional requirements tend to be stated in
terms of constraints on the results of tasks which are given as functional
requirements (e.g., constraints on the speed or efficiency of a given
task), a task-based functional requirements statement is a useful skele-
ton upon which to construct a complete requirements statement.” And
“It can be helpful to think of non-functional requirements as adverbially
related to tasks or functional requirements: how fast, how efficiently,
how safely, etc.”. The next section will give details on typical functional
conceptual elements. The set of NFRs is defined as follows.

Definition:
Set “NFRS”

NFRS := the set of all NFRs for the development of a system.

In order to express that an NFR is of the type of a certain elementary
quality attribute, the relation isOfType is defined.

Definition:
Relation “isOfType”

EQAS xNFRSisOfType �

value. the express to q to

 associated metric a uses n NFR the iff q attribute quality elementary the

 of type the of is n NFR the iff isOfType)q,n(:EQASq,NFRSn �����

Typical requirements documents are not limited to product requirements
but also contain requirements with regard to the organization or devel-
opment process. As explained in Section 2.2.1, we concentrate on the
product-related requirements, namely the functional requirements, the
non-functional requirements, and the architectural constraints.

2.2.2.1 Functional Elements of the Metamodel

Figure 9 showed a simplified version of the metamodel. Depending on
the domain, different types of functional conceptual elements can exist.
A typical inheritance of functional conceptual elements that can be used
for the elicitation and specification of NFRs can be found in Figure 10.

Classifications, Definitions and Quality Models

28

As can be seen in Figure 10, the functional requirements describe func-
tional conceptual elements. In the domain of interactive systems, these
are typically:

� Tasks: We distinguish between two types of tasks:

– User tasks are tasks that users have to perform with the system. They
are supported by the system (e.g., “monitoring of certain ma-
chines”), but include some user involvement. The granularity of these
tasks may vary a lot, ranging from view interaction sequences like in
a typical use case to complex interactions as for a complete work-
flow.

– System tasks (synonym for system functions or automated tasks) are
tasks the system performs on its own. In contrast to user tasks, the
user is not involved in system tasks.

Tasks can be refined into further tasks. Furthermore, user tasks can be
refined into parts carried out by the user and system tasks (e.g., a user
task “monitoring machine x” is refined into a set of system tasks such as
“system displays alarm message if machine runs out of filling”). A task is
typically described by one or more functional requirements (FRs). User
tasks are typically described in the shape of Business Processes, Scenari-
os, or textual Use Case (UC) descriptions. System tasks are typically de-
scribed by function descriptions. For the more complex system tasks, the
algorithms are sometimes specified with activity diagrams.

� Data items: Especially in the area of information systems, data items

Functional Requirement

1..*
1..*

describes

<<Abstract>>
Functional Conceptual

Element

User Task System Task Data

Task1

*

refined into

Figure 10: Functional elements of the metamodel

 29

are entered into the system, manipulated in the system, and handed
over to other systems or to the environment (reports, etc.).

That the functional part of the metamodel is based on these concepts is
not surprising. In computer science, input data is transformed to output
data by system functions. The interaction of the end-user with the sys-
tem, encapsulated in user tasks, is especially important in the domain of
information systems. These concepts are also the core concepts of state-
of-the-art approaches such as the TORE approach [PK04b], [ADE+09].

During the course of this thesis, we will make use of several abbrevia-
tions. One important distinction is the difference between currently elic-
ited items and the theoretical complete set (i.e., all items that should
have been elicited). For the functional elements, the following definitions
will be used:

Definition:
Set “UT_E”

UT_E := all user tasks that are specified in the current status of the re-
quirements specification for the SUD

Within a user task, various steps are performed by humans and the sys-
tem. Each step in a user task is either a human step or a system step.

Definition:
Set “UT_S”

Let UT_E,ut �

UT_S:= the set of all steps in the User Task ut

In case an s�UT_S is performed by the system, this step of the user task
is directly related to the corresponding system task st. In this case UT_S
uses system function st. The set of elicited system tasks and elicited data
items are defined as follows

Definition:
Sets “ST_E”, “DI_E”

ST_E := all system tasks that are specified in the current status of the re-
quirements specification for the SUD

DI_E:= all data items that are specified in the current status of the re-
quirements specification for the SUD

Classifications, Definitions and Quality Models

30

The set of UT_E, ST_E and DI_E shape the set of elicited functional re-
quirements that are specified in the current status of the requirements
specification for the SUD.

Definition:
Set “FR_E”

DI_EST_EUT_EFR_E: ���

In contrast to the elicited functional requirements, the theoretical com-
plete set of functional requirements for the SUD is defined as:

Definition:
Set “FR”

FR := the set of all functional requirements that are needed to compre-
hensively describe the user tasks, system tasks, and data items. It is the
set of functional requirements that should have been elicited in order to
get a complete functional description for a system.

With the assumption that all elements in FR_E are correct requirements,
FR_E �� FR holds.

As user tasks are often refined into system tasks and this refinement is
used in the elicitation algorithm, we want to define the “refines” rela-
tion:

 Definition:
Relation “refines”

UT_E x ST_Erefines �

stusesyS_utyiffrefines)ut,st(:ST_Est,UT_Eut �	�����

This means that if and only if an elicited user task uses an elicited system
task in one of the steps of the user task description, the elicited user task
is refined by the corresponding elicited system task.

 31

2.2.2.2 Quality-related Elements of the Metamodel

The simplified metamodel in Figure 9 shows the concept elementary
quality attribute. Figure 11 puts this concept into context. The elemen-
tary quality attributes are a specific type of quality attributes. The hierar-
chy of quality attributes starts with the high-level quality attributes
(HLQA).

Definition:
Set “HLQA”

HLQA:= the set of relevant high-level quality attributes for the SUD

The elements of HLQA are typically not measurable. A typical example
set is HLQA = {Efficiency, Maintainability, Portability, Reliability, Security,
Usability}.

An element of the set HLQA is typically refined by further quality attrib-
utes.

Figure 11: Quality related elements of the metamodel

Classifications, Definitions and Quality Models

32

Definition:
 A quality attribute (QA) is a quality (non-functional) characteristic of a

functional conceptual component or subsystem. As in the definition of
elementary QA, the term quality characteristic refers to any characteristic
other than functionality.

Quality attributes can influence other quality attributes in a positive or
negative way. If the “workload”, for instance, is higher, the “response
time” might increase (example of a negative influence). This information
will be relevant later for identifying NFR interdependencies. The concept
quality attribute is abstract, as no instances of this concept exist. Instanc-
es can exist for the derived concepts “Structural QA” and “Elementary
QA”:

A quality attribute is of the following type:

� Structural QAs (depicted by the stereotype <<struct>>) such as “Time
Behavior” are used to structure the elementary QAs into so-called
quality models. Structural QAs do not have a metric attached and no
non-functional requirement can be expressed directly on these QAs.
Eventually, Structural QAs are refined to one or more elementary
QAs.

� Elementary QAs were already defined at the beginning of Section
2.2.2. As can be seen in Figure 11, the elementary QAs can be of
four different types:

– System QAs (depicted by the stereotype <<system>>), such as “Ca-
pacity”, are measurable QAs that characterize the system or one of
its subsystems (e.g., related to the database, secondary storage, or
network). NFRs for these kinds of elementary QAs are typically elicit-
ed for the complete SUD or subsystems in the physical architecture of
the SUD.

– User Task QAs (depicted by the stereotype <<utask>>), such as “Us-
age Time”, are measurable QAs that characterize the tasks in which
the system and the user are involved. NFRs for these kinds of elemen-
tary QAs are typically elicited for business processes or complete UCs,
as these functional requirements exhibit the user/system interaction.

– System Task QAs (depicted by the stereotype <<stask>>), such as
“Response Time”, are measurable QAs that characterize system
tasks, i.e., tasks that are carried out by the system, not including the
user any more (e.g., calculation of results). NFRs for these kinds of el-
ementary QAs are typically elicited for system functions, system fea-
tures, or UC steps that are solely performed by the system, as these
are the functional requirements that describe the pure system tasks.

– Data QAs (depicted by the stereotype <<data>>), such as “Precision
of Data Storage”, are measurable QAs that characterize data objects
in the SUD. NFRs for these kinds of QAs are typically elicited for data
items in the domain.

 33

[LX99] gives a definition that a goal (which can be FR or NFR in content)
has a view that is either actor-specific or system-specific. This notion can
be found in this classification, as the actor-specific NFR goals are trans-
lated into User Task QAs (which relate to an actor) and the system spe-
cific NFR goals are translated into the System QAs.

In the following, we define the sets of the refined types of elementary
quality attributes.

Definition:
Sets “QASYS”, “QAUT”, “QAST”, “QADI”

QASYS:= the set of all elementary quality attributes for the SUD that
characterize the system or one of its subsystems.

QAUT:= the set of all elementary quality attributes for the SUD that
characterize the tasks in which the system and the user are involved.

QAST:= the set of all elementary quality attributes for the SUD that
characterize system tasks, i.e., tasks that are carried out by the system,
not including the user any more.

QADI:= the set of all elementary quality attributes for the SUD that char-
acterize data objects in the SUD.

As can be seen in Figure 11, a User Task QA can be refined into System
Task QAs. Therefore, we define the refines relationship for QAs as fol-
lows:

Definition:
Relation “refines”

QAUT x QASTrefines �

utq to associated metrics the

to compared NFRs of expression refined a allow stq to associated

 metrics the iff attribute quality task user the refines attribute quality

task system theiffrefines)utq,stq(:QASTstq,QAUTutq �����

As can be seen in Section 2.2.3.2, QAs will be arranged in quality models
in the shape of out-trees. Therefore, instead of using the relation refines
to express the relationship, the terminology “the system task QA is a
child system task QA of the user task QA” is also used.

In order to express that an elementary QA characterizes a functional
conceptual element or subsystem, we define the relation characterizes as
follows:

Classifications, Definitions and Quality Models

34

Definition:
Relation “characterizes”

SYSFR x EQASzescharacteri ��

)QADIqDI_Ef()QASYSqSYSf(

)QASTqST_Ef()QAUTqUT_Ef(

iffzescharacteri)f,q(:SYSFRf,EQASq

�
���
�
��
���
�

������

2.2.2.3 Complete Metamodel

Now that the functional and quality elements have been introduced, the
complete metamodel is introduced to explain the remaining concepts
and relationships.

A rationale justifies one or more product requirements. In the context of
NFRs, a rationale states reasons for the NFR’s existence, i.e., why it is
important and cannot be neglected (e.g., “user will be unsatisfied if it
takes more than 2 seconds to display alarm message”). [Bus09] states
that often NFRs are unnecessary or extreme. Therefore, using a rationale
can help to find out the justification for an NFR and help to eliminate
such unnecessary or extreme NFRs.

The metamodel also depicts a “refine” relationship between NFRs: A
non-functional requirement of the type “Usage Time” that states “The
Use Case x must be executable within 1 minute” can be refined into
several NFRs of the type “Response Time” that state that “Function X
must have a response time of 1 second”. This refinement relationship
corresponds to the refinement relationship between tasks and between
User Task QAs and System Task QAs, respectively.

Use of Ra-
tionale

 35

The metamodel further depicts an “achieved by” relationship between
NFRs and FRs: This relationship explains a part of the reasons why some
people state that there are no non-functional requirements. It is a com-
mon procedure that non-functional requirements are refined into func-
tional requirements (or means, see following section). For instance, a se-
curity requirement that an authentication mechanism is needed can lead
to (what we call “secondary”) functional requirements demanding a log-
in screen, an authentication algorithm, etc. But the origin of these sec-
ondary functional requirements is the NFR. Furthermore, there is an
“achieved by” relationship between NFRs and means. An NFR can also
be achieved by selecting a means to positively influence a quality attrib-
ute (see section on architectural constraints and means below).

The two “achieved by” relationships originating from the non-functional
requirements can be compared to the relationships that [CNY+99] uses

Figure 12: Complete metamodel for the NFR methodology

Classifications, Definitions and Quality Models

36

to relate operationalizations (which are additional functional require-
ments and means in this metamodel) with softgoals.

Furthermore, the metamodel depicted in Figure 12 contains architectural
elements. The architectural elements and relationships are included in
the metamodel to show the relationships between non-functional re-
quirements and architectural elements. This does not mean that these
elements should be elicited in the requirements phase, but taken as giv-
en product requirements if they are predetermined. Architectural con-
straints constrain the SUD and can be of two types:

� expressing information on necessary subsystems (e.g., “the system
shall have a database”, “there will be a wireless network between
the server and the mobile device”). The subsystems can again be re-
fined into further subsystems. This information is relevant for the NFR
elicitation, as System QAs characterize the subsystems that are al-
ready predetermined. Neglecting the subsystem information could
therefore lead to missing NFRs of the type System QA.

� expressing the necessity to implement a means: A means describes
an architectural decision that can be applied to the architecture to in-
fluence a certain QA and therefore achieve certain NFRs (e.g., “load
balancing” is used to achieve a set of NFRs concerning the QA
“workload distribution”). A means should have positive influence on
the target quality attribute (but can also influence other QAs nega-
tively as a side effect). The means are included in the metamodel for
the following reasons:

– Means are not considered as requirements but either as architectural
constraints or architectural decisions (if decided in the subsequent ar-
chitecture development phase). Only if means are predetermined as
architectural constraints is the constraint treated as a product re-
quirement. This is also important, as means correspond to elements
of other state-of-the-art approaches, e.g, operationalizations in
[CNY+99].

– Means illustrate that the NFRs elicited can have an impact on the ar-
chitecture phase in the sense that the selection of means should be
based on the NFRs that are of the type of the QA that the means in-
fluence.

It is important to state that means are not always architectural con-
straints. A means can also be process- or project-related (e.g., the means
“automatic test case generation” is used to improve the QA “reliabil-
ity”). Means are most often selected and used by the developers (e.g.,
use of design patterns), but can also be visible for and demanded by the
customer (e.g., documentation). An overview of some architectural and
process-related means is given in [BH96]. More information on the rela-
tionship between the metamodel elements and architectural constraints
can be found in [PvKD+03].

 37

For the elicitation of NFRs, we take the information on subsystems as in-
put.

Definition:
Set “SYS”

SYS:= the set of involved subsystems (databases, networks, server) for a
SUD.

Please note that the system itself is also part of this set (see Section
2.2.2). The set SYS does not refer to software components, but high lev-
el physical components such as networks, database servers, etc. If the
SUD is so small that there are no subsystems, the set SYS only contains
one element: the system itself.

In order to complete the abbreviations for the types of requirements, we
define the abbreviations for the sets NFR and NFR_E:

Definition:
Set “NFR”

NFR:=the set of all non-functional requirements that are requested by a
stakeholder to comprehensively describe all related quality characteristics
of user tasks, system tasks, data items and systems. It is the set of non-
functional requirements that should have been elicited in order to get a
complete non-functional description of SUD.

Finding all related quality characteristics, i.e., all relevant elementary QAs
is a key to making the set of NFR complete. More information on how to
obtain a complete set of elementary quality attributes can be found in
Section 2.2.4.

Without the restriction “requested by a stakeholder”, the set NFR would
be the set of all non-functional requirements that attach a value for a
metric for all elementary quality attributes to all functional conceptual
elements they characterize. In practice, many of these statements are not
needed, as a characterization of the functional conceptual element with
a certain elementary quality attribute is not requested by any stakehold-
er. Therefore, the set NFR contains only those statements where a stake-
holder request exists.

Next, we define the current state of elicited non-functional requirements
(NFR_E).

Classifications, Definitions and Quality Models

38

Definition:
Set “NFR_E”

NFR_E:=the set of all non-functional requirements that are specified in
the current status of the requirements specification for the SUD. It com-
prises the non-functional requirements wrt. data items, system func-
tions, user tasks, and subsystems.

Assuming that all elements of NFR_E are correct, NFR_E � NFR holds.

We refer to the product requirements by using the term REQ. The com-
plete set of requirements relevant for NFR elicitation for the SUD is de-
fined as:

Definition:
Set “REQ”

SYSNFRFR:REQ ���

2.2.3 Quality Models

Section 2.1.2 summarized the state of the art in quality models. On the
one side, those quality models can serve as a good starting point for cre-
ating quality models. On the other side, they are not detailed enough for
eliciting non-functional requirements. There is a need to handle experi-
ence-based, domain-specific quality models.

As can be seen in the metamodel (see Figure 12), the NFR methodology
differentiates between NFRs and QAs. The various types of QAs de-
scribed in Section 2.2.2.2 belong to the high-level quality attributes and
should be arranged in quality models. For each of the elements of the
set HLQA, a quality model is defined. The quality model gathers the
quality attributes for an element of HLQA, puts them into a hierarchical
order, and gives information on the relationship between the elements.
For the remainder of this thesis, some definitions and abbreviations will
be introduced:

Definition:
QM_InScopeQA is the project-specific quality model for the element
QA�HLQA. The quality model contains all quality attributes, metrics, and
means and the information about the relationships between these
objects in the model for the SUD.

The project-specific set of all quality models in scope for SUD is defined
as

 39

Definition:
Set “QM_InScope”

 Let ,HLQAQA�
QM_InScope:= {QM_InScopeQA | QA is in scope for the project}

In some cases, we want to refer to the set of all quality attributes that
are in a quality model for a given quality attribute.

Definition:
Set “QA_InScopeA”

 QA_InScopeA :=the set of all quality attributes in QM_InScopeA

To refer to the complete set of quality attributes in the scope for the
SUD, we define QA_InScope.

Definition:
Set “QA_InScope”

 Let ,InScope_QMA�

QA_InScope := �
A

AInScope_QA

2.2.3.1 The Role of Reference Quality Models

As depicted in Section 2.1.2, many different quality models exist. Experi-
ence has shown that there is no single, universal quality model that can
be used in each and every context. Rather, one should start from so
called reference quality models. The reference models can be obtained
from different sources:

� Reference models that exist (or are created) in one’s own organiza-
tion

� Reference models from consultancy or research organizations or from
state-of-the-art approaches, like [CL01a], [CNY+99], or [HP08]

� Reference models from the literature, like ISO 9126 [ISO01]

An adaptation of the reference quality models to the project context is
usually necessary. Some approaches such as [RW07] also propose meth-
ods to create such reference quality models.

Classifications, Definitions and Quality Models

40

We first need to define some more terms that refer to the usage of ref-
erence models in contrast to the quality models that are specific for a
concrete project.

The term QM_RefQA refers to the reference quality model for the quality
attribute QA. In contrast to QM_InScope, this set comprises all quality at-
tributes for the QA�HLQA that were gathered by experience (e.g., from
former projects or projects of other companies), including those that are
not relevant for the current SUD.

Definition:
QM_RefQA is the reference quality model for the element QA�HLQA.

 This quality model is not specific to the SUD but to a domain or
company. The quality model contains all quality attributes, metrics, and
means that are included in the model and the information about the
relationships between these objects in the model.

For future reference, we define the set of all reference quality models.

Definition:
Set “QM_Ref”

QM_Ref := {QM_RefQA |QA� HLQA}

In some cases, we want to refer to all the quality attributes that are in a
reference quality model for a given quality attribute.

Definition:
Set “QA_RefA”

QA_RefA := the set of all quality attributes in QM_RefA

In contrast to QA_InScope, which depicts all quality attributes that are in
scope for the SUD, we define QA_Ref as all quality attributes that exist in
the reference models.

Definition:
Set “QA_Ref”

Let HLQAA� ,

QA _Ref:= �
A

AfRe_QA

 41

If one wants to start building quality models, the first question to answer
is which elements the set HLQA provides. Generally, the NFR methodol-
ogy works with any kind of set of qualities. Experience has shown that
the widespread standard ISO 9126 can serve as a good basis (see also
Section 2.1.2 for details). The ISO 9126 standard, as the most commonly
used standard in this area, offers two quality models, one for the internal
and external quality attributes and one for quality in use. As already ar-
gued in Section 2.1.2, the quality model of the internal/external quality
attributes is suitable for NFR elicitation and specification. It suggests a set
of six attributes, functionality being among this set. The attribute of se-
curity is hidden under the attribute functionality, and safety does not
appear on this level (it is suggested in the quality in use model). The term
functionality in the standard is quite misleading. Therefore, a typical
starting set of elements for HLQA is the set of elements depicted in Fig-
ure 13.

In the following, we want to sketch the reasons why the typical set devi-
ates from ISO 9126: First, we experienced that security is conceptually on
the same level as the other QAs. Also, industrial partners view security as
equally important as reliability, usability, etc. Therefore, we elevated se-
curity to the top level. Second, we removed the term “functionality”
from the standard set HLQA as it leads to confusion. The target of this
NFR methodology is to express NFRs as constraints on functional concep-
tual elements and subsystems. The functional capabilities of a product
are expressed by its functional requirements. The other sub-
characteristics of the ISO functionality characteristics (among them in-
teroperability and accuracy) were moved to the quality models of the
other elements of HLQA.

After having identified the set HLQA, the next relevant step for the NFR
methodology is to determine the viewpoint (visibility) of the QAs in the
quality models. ISO claims that the attributes are internal and external at-
tributes. For the purpose of NFR elicitation from a customer point of
view, the clear focus is on externally observable attributes. But there are
also circumstances that lead us to focus on the internal attributes, for in-

Typical El-
ements of
HLQA

Typical
set of HLQA

Typical
set of HLQA

securitysecurity reliabilityreliability usabilityusability efficiencyefficiency maintainabilitymaintainability portabilityportability

Figure 13: Typical set of HLQAs

Classifications, Definitions and Quality Models

42

stance if the stakeholder also has knowledge about internal attributes
and wants to influence them (a situation that is often found in industry).
Then, we do not restrict the elicitation of NFRs to external attributes.

2.2.3.2 An Adequate Representation for Quality Models

While there are common formats for specifying functional and non-
functional requirements, we also need an adequate representation for
the quality models. For example, it would be possible to use plain lists,
trees, or graphs as representation forms. As one of the most important
features of these quality models is the representation of the hierarchical
relationship between the quality attributes, the tree representation is
most adequate for this purpose. The plain list is not powerful enough to
provide this overview. The graph representation would have the benefit
that the non-hierarchical relationships (influences) between QAs could
also be depicted and that a QA would not have to appear in two quality
models, but the hierarchical character of the representation would be
destroyed. Therefore, the quality models will be represented as trees (to
be concrete: Out-Trees, i.e., trees with directed edges, going from the
root to the children). The disadvantage of trees compared to graphs is
compensated by using a separate matrix for capturing the non-
hierarchical dependencies. Furthermore, quality attributes are replicated
in case they must appear in two places in the quality model. As quality
models are trees, the common tree-specific terminology can be used.

Figure 14 illustrates an example reference model for the quality attribute
efficiency (QM_RefEfficiency) as an out-tree. All QAs are arranged as unfilled
rectangles. Means are depicted by filled rectangles and metrics are de-
picted as ovals. The element of HLQA for which this quality model is cre-
ated is “Efficiency”. This attribute is refined into the three structural child
QAs: “Time Behavior”, “Resource Utilization”, and “Accuracy”. The
Structural QA “Time Behavior” is in turn refined into the User Task QA
“Usage Time”, which is refined into the System Task QA “Response
Time”. The metric for expressing the QAs “Usage time” and “Response
Time” is seconds. NFRs can be expressed for all quality attributes that
have an oval (metric) attached. The tree further describes that means like
“Load Balancing” will positively influence the System QA “Workload Dis-
tribution”. One can see that the box around the quality attribute “Net-
work Topology” is in dashed lines. This should indicate that this quality
attribute is usually not from a customer point of view but from a devel-
opment point of view. Therefore, it is usually not the target of our NFR
methodology. Example models that illustrate how company-specific
models might look like can be found in Appendix A.

 43

<<struct>>
Resource
Utilization

<<struct>>
Efficiency

<<struct>>
Time Behavior

<<utask>>
Usage Time

seconds

#Data units /
time unit

Observation of
Arrival Pattern

Observation of
Execution Time

Spare Schedule

Locality

Parallelism

Jitter

<<system>>
Throughput

<<stask>>
Response Time

<<system>>
Boot / Start Time

<<system>>
Workload

#jobs
/ time unit

Cost of
processor

<<struct>>
Capacity

<<struct>>
Capacity of

Network

<<system>>
Capacity of

Memory

<<system>>
Capacity of
Processor

Sharing

Load Balancing

<<system>>
Workload

Distribution

Cost of
memory

Cost of
network

Resource
consumption of

memory

Resource
consumption of

processor

WLAN: Sqm
covered

of nodes

<<system>>
Shutdown Time

Seconds for
cold start

Seconds for
warm start

% max

Gigabyte

Mbit/s

GHz

of supported
user

Seconds for
shutdown

seconds

<<struct>>
Accuracy

<<data>>
Precision of Data

Storage

<<stask>>
Precision of
Calculation

#digits after
comma

% of error in
rounding

<<system>>
Network Topology

Means

Quality Attribute

Metric

Quality Attribute
from developer
point of view

Figure 14: Example of QM_RefEfficiency

Classifications, Definitions and Quality Models

44

2.2.3.3 Representing Non-Hierarchical Dependencies

As already described in the previous section, the out-tree representation
of the quality model has the disadvantage compared to a graph repre-
sentation that non-hierarchical dependencies within the quality model
(so-called intra-quality model dependencies) cannot be incorporated.

The “refines” relationships between the quality attributes captured in
the tree structure are used in a constructive way for eliciting the non-
functional requiements. In contrast to this, the non-hierarchical “influ-
ence” dependencies are a crucial input for the analytical step of identify-
ing conflicting NFRs after the elicitation of the NFRs. Therefore, we also
need to represent the non-hierarchical dependencies. As non-hierarchical
dependencies usually also exist between quality attributes of different
quality models (we speak of inter-quality model dependencies), an addi-
tional representation of non-hierarchical dependencies is needed any-
way.

Non-hierarchical dependencies are usually used to express that one QA
might influence another QA, i.e., two QAs can be in conflict. This can al-
so impact the NFRs that are of the type of the QAs. We will see later that
NFRs also can be in conflict with each other. We define the relation con-
flict for elements of NFR.

Definition:
 Relation “conflict”
 NFR_E x NFR_Econflict �

 :E_NFRn,n �� 21 (n1, n2) � conflict iff n1, n2 stay in conflict iff there is

 no solution for building a system that can satisfy n1 and n2

For this definition, it does not matter whether the reason for the fact
that there is no solution for building a system with the two conflicting
NFRs is a technical reason (it is not possible with current technology) or
an economical reason (it is too expensive to build such a solution).

As elements of NFR can be in conflict, we also have a similar relation on
the level of elements of QA.

Definition:
 Relation “influence”
 QA_InScopeQA_Ref x QA_InScopeQA_Refluenceinf ���

isOfType)q,n(

isOfType)q,n(conflict)n,n(|NFRn,niff

luenceinf)q,q(:InScope_QAfRe_QAq,q

�

�
��	

����

22

112121

2121

 45

The interpretation of this definition is as follows: Two quality attributes
influence each other if the potential exists that one can express corre-
sponding NFRs that will stay in conflict.

In order to represent the non-hierarchical dependencies (influence-
relation), the concept of dependency matrices is introduced. A depend-
ency matrix represents relationships between QA�QA_InScope or
QA�QA_Ref. The following relationships that can be seen as a refine-
ment of the influence relationship on QAs are represented in a QA de-
pendency matrix:

1. A � B: A influences B

2. A � B: B influences A

3. A � B: Bidirectional influence: A influences B and B influences A

4. A � B: A is identical with B (this is often used if the QA appears in
more than one quality model)

Proportional dependencies (the higher A, the higher B) and inversely
proportional dependencies (the higher A, the lower B) are distinguished
by using background patterns in the dependency matrix:

� Proportional dependencies are marked with a dotted background
pattern

� Inversely proportional dependencies are marked with a striped back-
ground pattern

In order to give a complete overview of the dependencies, hierarchical
information that is already represented in the quality model is added by
using the same symbols as the influence symbols, but with color coding
(symbol is used with gray color):

� A � B: A is part of B

� A � B: B is part of A

If structural QAs are not the target of conflicting QA, they can be omit-
ted from the matrix in order to make the matrix as small as possible.

Classifications, Definitions and Quality Models

46

Figure 15 is an example of such a dependency matrix that primarily
shows the non-hierarchical dependencies for the QM_RefEfficiency shown in
Figure 14. One can see, for example, that “Precision of Calculation” can
influence “Response Time” (the higher the precision, the more time is
needed), i.e., (Precision of Calculation, Response Time)�influence. This
means that for two NFRs n1,n2� NFR_E | (n1, Precision of Calculation) �
isOfType
 (n2, Response Time)�isOfType, it needs to be checked for n1
and n2 whether (n1,n2)�conflict. The quality attribute “Network Topolo-
gy” was left out of the matrix for simplicity reasons (as a developer point
of view quality attribute it is normally not considered in the NFR meth-
odology).

Furthermore, we want to stress that for reasons of simplicity, we do not
replicate information in the matrix: e.g., as workload influences usage
time, we put a marker into the matrix in the column “Workload”, row
“Usage Time”. We could have added the relationship in the opposite di-
rection in row “Workload”, column “Usage Time”, but this would not
add new information.

As already announced in the definition of the term quality model (see
Section 2.2.3), we want to emphasize that the relationships information

U
sa

ge
 T

im
e

R
es

po
ns

e
Ti

m
e

W
or

kl
oa

d

B
oo

t /
 S

ta
rt

 T
im

e

Sh
ut

do
w

n
Ti

m
e

W
or

kl
oa

d
D

is
tr

ib
ut

io
n

C
ap

ac
ity

 o
f M

em
or

y

Th
ro

ug
hp

ut

C
ap

ac
ity

 o
f P

ro
ce

ss
or

Pr
ec

is
io

n
of

 D
at

a
St

or
ag

e

Pr
ec

is
io

n
of

 C
al

cu
la

tio
n

Usage Time � � � � �
Response Time � � � � � �
Workload � � � �
Boot / Start Time � �
Shutdown Time � �
Workload Distribution �
Capacity of Memory � �
Throughput �
Capacity of Processor

Precision of Data Storage �
Precision of Calculation

Figure 15: Example dependency matrix for QM_RefEfficiency

 47

depicted in the dependency matrices belongs to the quality model
QM_QA for a QA�HLQA.

2.2.4 Definition of Completeness

Now that the basic elements of the approach have been described, we
want to explain what completeness means in the context of this NFR
methodology. In Figure 12 we see that NFRs constrain elements of FR
and SYS. For the definition of completeness, we introduce the abbrevia-
tion for the relation c.

Definition:
 Relation “constrains”

NFR x SYSFRconstrains ��

constrains)n,f(:NFRn,SYSFRf ������ iff the NFR n constrains f
iff the NFR n limits the possible solution space for fulfilling f

To make the goal of this thesis clearer, the term completeness is defined.

Definition:
Completeness is defined as follows:
NFR_E is complete iff NFR_E = NFR iff

��� ,UT_Ef(QAUT:QA_InScopeq ��

)constrains)n,f(isOfType)q,n(:E_NFRn(�
��	
))constrains)n,f(isOfType)q,n(:NFRn(�
��
	�

��� ,ST_Est(QAST:QA_InScopeq ��

)constrains)n,st(isOfType)q,n(:E_NFRn(�
��	

))constrains)n,st(isOfType)q,n(:NFRn(�
��
	�

��� ,DI_Ed(QADI:QA_InScopeq ��

)constrains)n,d(isOfType)q,n(:E_NFRn(�
��	
))constrains)n,d(isOfType)q,n(:NFRn(�
��
	�

��� ,SYSs(QASYS:QA_InScopeq ��

)constrains)n,s(isOfType)q,n(:E_NFRn(�
��	
))constrains)n,s(isOfType)q,n(:NFRn(�
��
	�

In other words: The set NFR_E is complete if there is a non-functional
requirement expressed for each pair of elicited functional conceptual
element or subsystem and corresponding elementary quality attribute
(e.g., in case of user tasks (UT_E), an elicited user task f and a
User Task QA q), or there is no stakeholder request for it (which means
there is no n�NFR).

Classifications, Definitions and Quality Models

48

In the example in Figure 16, the one user task UT needs to be compared
with the one User Task QA “Usage Time”. The three system tasks
marked with ST need to be compared with the one system task QA “Re-
sponse Time” and the two subsystems SYS1 and SYS2 need to be com-
pared with the System QA “Capacity”. If there is no NFR expressed in
NFR_E for such a pair (see filled circle in FR_E in Figure 16), then the set
NFR_E is either incomplete or there is no NFR applicable (no stakeholder
requests this NFR). In the situation in Figure 16, no stakeholder requests
the NFR. If there is an NFR n�NFR that is related to a functional concep-
tual element or subsystem but not included in NFR_E (see filled square in
Figure 16), then the set NFR_E is incomplete.

The set NFR_E is complete with this definition based on three assump-
tions:

1. The set of functional conceptual elements and subsystems is com-
plete, i.e., all user tasks, system functions, data items, and subsys-
tems were input to the NFR methodology.

2. The set QA_InScope is complete, i.e., all relevant quality aspects were
determined in the quality models.

3. The stakeholder does not intentionally hide NFRs when asked for
NFRs in the elicitation process. This might happen for political reasons
or due to group pressure in a workshop.

FRNFR

SYS1 SYS2
SYS

<<struct>>
Efficiency

<<utask>>
Usage Time

<<stask>>
Response Time

<<system>>
Capacity

REQ

FR_ENFR_EIs of type

constrains

QM_InScopeEfficiency

UT

ST

ST
ST

Set of requirements
or subsystems

Quality attribute in
quality model

refined

Figure 16: Example illustration for completeness definition

Assump-
tions

 49

The second point is the most difficult one to assure. As each NFR con-
strains an element of FR � SYS by expressing a value on the metrics of a
QA, the set of QAs for the project QA_InScope plays a major role for
making the set of NFR_E complete. An NFR can only be elicited if the
corresponding QA is an element of QA_InScope. Therefore, getting a
complete set of QA is a major objective of the NFR methodology and a
kind of prerequisite for getting a complete set NFR_E. A major contribu-
tor to getting the completeness of the set QA_InScope is the existence of
the reference quality models QM_Ref. They capture the existing know-
how on the elements of HLQA, which is based on the literature or on
knowledge from standard as well as from previous projects. So if a NFR
was missed in a project because the corresponding QA was not in the
model, this QA will usually be incorporated into QM_Ref so that this will
not happen again in the future (for this learning from project experience,
please refer to Section 5.8).

The definition of completeness used in this thesis is limited in the sense
that only those NFRs are addressed that originate from a relationship
between a quality aspect and a functional conceptual element and sub-
system, respectively. One could ask whether NFRs can exist that do not
fulfill these criteria. Till today, no such NFRs have occurred in our work.
But an absence of such NFRs is not proven. To prove such an absence,
one would need a more comprehensive theory on which concepts NFRs
are grounded. But none of the existing state-of-the-art approaches pro-
vides a more comprehensive set of concepts for grounding NFR com-
pleteness than the metamodel used in this thesis.

Limitation
of Com-
pleteness
Definition

Specification of FRs and NFRs

50

3 Specification of FRs and NFRs

This chapter will describe how to specify non-functional requirements
and functional requirements in an integrated way. This structural infor-
mation about documentation locations shall

1. enable the role in the software development process that elicits the
NFRs to store these NFRs effectively, i.e., he or she stores each NFR in
the correct location of the document.

2. enable the roles in the software development process that are inter-
ested in the NFR information to effectively and efficiently access this
information. Effectively means that a person searching for NFRs finds
all relevant NFRs, whereas efficiently refers to the time needed to find
all relevant NFRs.

Chapter 4 will then describe how the elicitation is performed in a struc-
tured process. This chapter begins with a summary of the state of the
practice and the state of the art with regard to the existing elicitation
and specification approaches (see Section 3.1). This also includes a sum-
mary of existing NFR frameworks and approaches and clarifies the rela-
tionship between functional and non-functional requirements from an
elicitation and documentation point of view. Section 3.2 describes the
challenge in specifying non-functional requirements and functional re-
quirements in an integrated manner and how to resolve this challenge,
i.e., it determines the concrete locations for specifying the different types
of NFRs.

3.1 State of the Practice and State of the Art

This section describes the state of the practice and the state of the art
with regard to specifying non-functional requirements.

3.1.1 State of the Practice in Specifying FRs and NFRs

Currently, most industrial companies still use natural language to capture
their requirements. Typically, they use corporate requirements specifica-
tion templates based on standards like [IEEE98a] or [IEEE98b], or the
popular Volere Shell [RR99]. As the Volere requirements specification
template is available free of charge, it found widespread use. As an ex-
ample of such a template, we illustrate the typical chapters of the Volere
requirements specification in Figure 17. Volere, like the two IEEE stand-

Usage of
Natural
Language

 51

ards, completely separates the NFR information from the functional re-
quirements.

All standards give no concrete advice on notations to be used for speci-
fying the information in the sections. Most companies use plain natural
language. Some use sentence patterns like the ones described in
[Rup07]. A very common technique is the usage of textual UCs as also
proposed by the Unified Process [JBR99]. Often, templates similar to
[Coc00] are used. Figure 24 shows a partially filled typical UC template.
According to [Gli07], the RUP proposes to document NFRs as close to
UCs as possible, and only to put the general NFRs into separate chapters.

PROJECT DRIVERS
1. The Purpose of the Product
2. Client, Customer and other Stakeholders
3. Users of the Product
PROJECT CONSTRAINTS
4. Mandated Constraints
5. Naming Conventions and Definitions
6. Relevant Facts and Assumptions
FUNCTIONAL REQUIREMENTS
7. The Scope of the Work
8. The Scope of the Product
9. Functional and Data Requirements
NON-FUNCTIONAL REQUIREMENTS
10. Look and Feel Requirements
11. Usability Requirements
12. Performance Requirements
13. Operational Requirements
14. Maintainability and Portability Requirements
15. Security Requirements
16. Cultural and Political Requirements
17. Legal Requirements
PROJECT ISSUES
18. Open Issues
19. Off-the-Shelf Solutions
20. New Problems
21. Tasks
22. Cutover
23. Risks
24. Costs
25. User Documentation and Training
26. Waiting Room
27. Ideas for Solutions

Figure 17: Recommended sections of the Volere specification template

Specification of FRs and NFRs

52

Most often, the requirements are stored in text documents or spread-
sheet documents. Sometimes Wiki-based solutions [URW+08] or data-
base-oriented solutions are used to support both, the requirements spec-
ification and management. Typical requirements databases found in in-
dustry are IBM Telelogic Doors, Borland Caliber RM, and QA Systems
IRQA. A comprehensive list of available tools can be found in [INC09].

One approach that found its way into industrial practice at some com-
panies and that has a special focus on NFRs is the Planning Language
(Planguage) approach of Kai and Tom Gilb [Gil05], [Gil07]. Some case
studies like [Jac99] show that this approach can be beneficial for the
specification of measurable quality requirements, i.e., measurable NFRs.
Planguage differentiates between different requirement types, among
them performance requirements. The term performance is quite mislead-
ing, as in Planguage it subsumes all quality characteristics, such as Usa-
bility, Reliability, Maintainability, and others. The approach suggests to
start from quite abstract statements (called complex quality require-
ments). They are similar to the concept of QAs in our NFR methodology.
These complex requirements shall be decomposed to a measurable level.
Various tags are used for the specification of the measurable quality re-
quirements. Besides the name of the requirement, the Tag “Scale” de-
termines the quantification scale that shall be used for the requirement.
The tag “Meter” describes the process that shall be used to measure
how well the requirement is fulfilled. The tags “Past” and “Goal” de-
termine the current and the intended value for the requirement. [Gil07]
also proposes to write down quality requirements together with func-
tional requirements, not in separate chapters.

In industrial practice, one rarely finds requirements specifications mod-
eled extensively with UML diagrams using Case Tools. In the area of
large business information systems, workflow modeling with EPCs
[Sch99], UML activity diagrams [RJB99], and data modeling with tables,
UML class diagrams, or entity-relationship diagrams is widespread.
Sometimes UML state-charts [RJB99] are used to model state transitions
of important data objects. Figure 24 shows an example using EPCs and
UML class diagrams.

3.1.2 State of the Art in Specifying FRs and NFRs

As this thesis aims at capturing a complete set of non-functional re-
quirements, the state of the art in specifying NFRs is relevant. Further-
more, the state of the art with regard to functional requirements is
summarized if it is relevant for the NFR elicitation or specification. The
goal of this section is not to provide a complete state of the art for all
possible functional requirements approaches. Rather than that, Section
3.2 will introduce the TORE approach as a state-of-the-art and state-of-
the-practice compliant approach to modeling functional requirements.
The NFR methodology is built on top of this functional approach.

Usage of
Modeling
Notations

 53

The intention of the NFR methodology developed in this thesis is to be
usable for as many HLQA as possible, not being specific for a single qual-
ity attribute. With regard to the state of the art in non-functional re-
quirements approaches, we therefore focus on frameworks that are ap-
plicable to more than just one HLQA. These are typically the goal-
oriented approaches, such as [CNY+99], the most popular approach
among these. Furthermore, we also describe approaches that originated
from one specific HLQA, but broadened their scope to others. We there-
fore introduce the MOQARE approach [HP08] which uses concepts from
security requirements elicitation, i.e., the concept of misuse cases, and
broadened its scope to basically all quality attributes. We also introduce
in more detail the UMD [BDA04] approach which originated from the
dependability community and can be used for multiple quality attributes
as well.

[Fra98] and [MCY+92] divide approaches for dealing with NFRs into
product- and process-oriented approaches. According to [Fra98], pro-
cess-oriented approaches “use non-functional information to guide the
development of software systems”. Product-oriented approaches deal
with products from an evaluation point of view and focus on checking
the non-functional characteristic. He also argues that a combination of
both approaches is needed to treat NFRs successfully.

Several approaches that deal with NFRs are based on goal modeling.
According to [EYM06], a goal model basically consists of the following
elements:

� A set of nodes representing hierarchically decomposed goals

� A set of edges representing relationships among goals

� A set of actors that are owners of goals.

A good overview of goal modeling is given by [Lam01a]. According to
[Lam01a] “a goal is an objective the system under consideration should
achieve”. Typical goal-modeling approaches are the ones by Yue
[Yue87], Robinson [Rob89], Berzins and Luqi [BL91], Darimont, Fickas
and Lamsweerde [DFvL91], Jarke and Pohl [JP93], Mylopulous et al.
[MCY+92], and Zave [Zav97]. According to [PK04a], the most popular
and comprehensive approach with regard to NFR specification is the NFR
Framework developed by Chung, Mylopulous et al. [MCY+92],
[CNY+99]. The NFR Framework treats NFRs as goals. High-level goals are
decomposed into trees of sub-goals and more detailed sub-attributes. In
those trees, also called softgoal interdependency graphs (SIGs), interde-
pendencies between goals are modeled as well. Figure 18 gives an ex-
ample of a softgoal interdependency graph as a goal model for non-
functional requirements. Goal modeling is also supported by the GRL
(Goal-oriented requirements language) [GRL02a], [GRL02b], which is
based on the i* framework [Yu93], [Yu97] and is intended to describe
NFRs. It uses the three main concepts intentional elements (goal, task,

Goal-based
NFR Ap-
proaches

Specification of FRs and NFRs

54

softgoal, belief, resource), intentional relationships (means-ends, decom-
position, contribution, correlation, dependency), and actors (cp. set of
typical goal modeling elements). Furthermore, the tool OME (Organiza-
tion Modelling Environment) is a general, goal-oriented modeling and
analysis tool that supports i* and modeling with the NFR Framework.

Several additions to the i* and NFR Framework have been suggested
over the last years. [KDO07], for example, argues for adding hard goals
to the NFR Framework, as non-functional goals are not always soft, but
should also be phrased as measurable, rigid requirements. As can be
seen, the NFR Framework provides a good way to model NFRs almost in-
dependently from functional requirements. The goal-modeling notation
might be familiar to people who also structure their top-level require-
ments with goal models. Even though goal modeling has a strong aca-
demic community, until today, goal modeling has not found its way into
the state of the practice. Furthermore, goal models are not the silver bul-
let for modeling all functional aspects of a software system. Therefore,
even in the state of the art, the functional requirements specifications
(especially on lower levels of abstraction) are modeled with features,
structured natural language, scenarios, and UCs or UML diagrams. Only
few approaches like [CL01a] relate the goal models to some UML models
and UCs. It is obvious that one then has to use the NFR Framework goal

Figure 18: Example of a SIG as used in the NFR Framework (figure taken from [CNY+99])

 55

models in addition to the functional modeling techniques, or find anoth-
er way to handle the NFRs. Using NFR goal models as an additional spec-
ification artifact tends to lead to low acceptance in industry for two rea-
sons: 1) The goal models become large and, therefore, incomprehensi-
ble, and 2) the relationships of the NFRs to the functional requirements
are difficult to observe. Therefore, NFR goal models are not a good can-
didate for the integrated specification of functional and non-functional
requirements. The same holds for the treatment of NFRs in other related
goal-modeling approaches such as Tropos [CKM01], which represents
the graphs in a textual specification called “formal tropos specification”.
KAOS [Lam01a], [Lam01b] offers more functional models, such as an ob-
ject and operation model. The object models and operational models are
derived from the goal models. This means that if NFRs are captured in
goal models, they are still separated from the objects and operational
models. It is unclear how NFRs in the goal models would be systematical-
ly linked to elements in the object and operation model. As in other ap-
proaches, KAOS derives these models at a later stage in the require-
ments engineering process from the goal models instead of using the
functional models as input for NFR elicitation.

The work of Cysneiros and Leite [CL01a], [CL01b], [CL01c] investigates
best the relationship between functional requirements and non-
functional requirements. They use the NFR Framework to elicit and speci-
fy non-functional properties in the shape of goal trees. But additionally,
they store information (primarily functional, but also non-functional
information) in their LEL (Language Extended Lexicon), which is intended
to be a vocabulary for the context of the system. In the LEL, words or
phrases relevant for the specified field of the application are stored. They
clearly state that they deploy two independent cycles for the functional
requirements and for the non-functional requirements that need to be
synchronized. Their main target is that when operationalizations (mainly
new functionality) of NFRs are specified in the goal-trees, these should
be integrated into the functional view. This is primarily done by extend-
ing the LEL to explicitly link LEL entries with functionality that results
from goal trees. The additional information with regard to the opera-
tionalizations from the goal trees in the LEL can then be incorporated in-
to UCs or sequence diagrams [CL01a] or UML class diagrams [CL01c]. In
[CL01c], the authors clearly state that they do not use the UML specifica-
tions that describe the functional requirements for the elicitation of
NFRs. They state that dealing with these aspects of NFRs can be quite
difficult to be accomplished directly in UCs, scenarios, etc. For the NFR
elicitation, they make use of the NFR Framework. They require that for
each entry in the LEL, it has to be checked whether NFR goal trees exist
or could apply and if so, they create a NFR goal graph (with the LEL sym-
bol as related attribute) and incorporate the operationalizations into their
LEL. The problem with this approach is twofold: The comparison regard-
ing whether a goal tree applies is done on every LEL entry with only the
top-level quality attribute (like Performance). On the one hand, this is

Work on
Integrating
Goal Mod-
els into
Functional
Models

Specification of FRs and NFRs

56

time-consuming as every LEL entry must be taken into account and, on
the other hand, it is not precise enough, as they are only checked
against the top-level quality attributes. Furthermore, the concept of the
LEL does not represent a typical approach in state-of-the-art require-
ments engineering, thus being difficult to integrate into other modeling
approaches.

[GS05] describe that they derive scenarios from goal models and later on
they attach NFRs motivated from the goal models to a set of scenarios.
No further information is given on how this is done, nor do they use the
scenarios in a systematic way to elicit the NFRs.

The starting point of the MOQARE method (Misuse-oriented Quality
Requirements Engineering) [HP08] is a functional description or draft of a
planned or existing system, its business goals, and quality goals. From
security requirements engineering, MOQARE adopts the general idea of
identifying misuses [MF99], [SFO03], [SO00]. But MOQARE is designed to
offer support for the elicitation and specification of all ISO 9126 internal
and external attributes. Figure 19 shows a part of a MOQARE misuse
tree, giving examples of the main concepts of MOQARE: Business goals

The
MOQARE
Approach

Figure 19: Example of a MOQARE misuse tree showing the main MOQARE concepts (figure taken from
[HKD07])

 57

might be threatened by business damages, which are caused by quality
deficiencies of the system. A quality goal describes more specifically
which part and property of the system supports the business goals. A
quality goal is the combination of an asset and a quality attribute. Both
have to be protected. The quality attributes used are those of ISO 9126.
An asset is any part of the system. A misuse case describes a whole mis-
use scenario, including misuser, threat, and consequences (e.g., quality
deficiency). A misuse is prevented, mitigated, or detected by counter-
measures. The countermeasures can be new FRs, NFRs on FR, architec-
tural requirements, or other quality goals. An interesting observation is
that the term NFR does not occur in the MOQARE method. Rather than
talking about detailed positive characteristics for a functional object
(NFR), MOQARE uses the positive statement for the high-level quality
goals and then determines countermeasures solely by eliciting and speci-
fying negative characteristics (misuse cases, threats, misuser). As with the
goal-oriented methodologies, no concrete definition for the target set of
NFRs is provided, i.e., it is not clearly defined when the set of elicited
NFRs is complete. This is also due to the fact that MOQARE does not use
the complete set of functional requirements as systematic input as we do
in our NFR methodology. Furthermore, MOQARE also proposes an addi-
tional, separate specification in addition to the functional specification. A
detailed comparison between the NFR methodology elaborated in this
thesis and the MOQARE method can be found in [HKD07].

[BDA04] provides “a structured framework for eliciting and organizing
dependability needs”. Similar to MOQARE [HP08], the approach uses a
traced chain of concepts to describe situations to be avoided and phrase
measures to prevent them. The basic concepts are Events, Issues, and
Scope (see Figure 20). An event might cause an issue (that is, an unde-
pendable behavior, such as a failure) to happen. The issues are traced to
the elements in scope they concern. The issues that can occur are classi-
fied with typical quality attributes like “Accuracy”, “Response Time”,
etc. So a negated issue often corresponds to a non-functional require-
ment. The scope objects can be functional conceptual elements. UMD
[BDA04] themselves state that the UMD “lets stakeholder specify the is-
sues they don’t want to occur. However, this doesn’t suffice”. So they
also argue for a positive phrasing of non-functional requirements (de-

The UMD
Approach

Figure 20: Concepts and examples of the UMD approach (figure taken from [BDA04])

Specification of FRs and NFRs

58

pendability in their context). The concept “Measure” in the UMD ap-
proach relates to the metrics in this NFR methodology and the concept
“Reaction” to the means in this NFR methodology.

To facilitate the comparison between our NFR methodology and the
three main NFR Frameworks presented in the state of the art, Table 2
shows the comparison of the different concepts of the approaches.

[Ebe98] suggests dealing with NFRs in the same way as with FRs, but
does not give advice on how to systematically do that. In consequence,
this will not lead to a systematic elicitation of NFR.

[SM98] proposes using the QOC (question, option, criteria) notation de-
scribed in [MYB+91] to define quality requirements. The requirements
are captured in the criteria that are used to select the best (design) op-
tion concerning a question someone has with regard to to the future
system. But this work again uses quality attributes to decide on design
options rather than giving help in phrasing and documenting NFRs.
[SM98] also proposes a process to be followed. It sets the quality attrib-
utes based on taxonomies, selects assessment metrics suggested by
templates, and creates scenarios for the NFRs. The system model (e.g.,
architecture) is then assessed in terms of NFR scenarios. The promised
benefits of this scenario-based approach are that a scenario explains
what an NFR means to a user and a scenario acts as a definition of the

NFR Methodology NFR Framework MOQARE UMD

QA Softgoal Quality Goal Classification for Issues

NFR Softgoal
-

(indirectly by negating
the misuse)

-
(indirectly by negating

the issue)

Usage of FR Types - - -

QA Types according to
ISO and Functional

Classification
-

QA Types according to
ISO

QA Types according to
ISO

Direct Relationship of
NFR to FR

Relationship via
Attribute in Softgoal

-
(indirect relationship via

relation misuse and
asset)

-
(indirect relationship via
relation issue and scope)

Experience-based
Quality Models

-
(indirectly by set of goal

model instances)
(indirectly via checklists)

Typical classifications for
Issues

Project-specific
Quality Models

Instances of goal models Instances of misuse tree -

Means Operationalizations Countermeasures Reactions

Table 2: Comparison of concepts with state-of-the-art approaches

Other Ap-
proaches

 59

NFR because it provides an operational setting. The positive aspect of
this setting is that in these scenarios, functional requirements are en-
riched with sometimes measurable quality information. Unfortunately,
this happens unsystematically, i.e., there is no systematic guidance, nor
do the NFRs seem to be highlighted in the scenario description.

[BH96] presents a tool-supported methodology for modeling quality at-
tributes. This approach does not provide a detailed NFR elicitation. The
focus of this method is on detecting conflicts among different quality at-
tributes. The approach has a strong empirical basis (discussed in
[IBR+01]) and is a relevant source for typical dependencies among quality
attributes.

[BBF+01] and [Fra98] see the risk that quality attributes in standards are
too high-level to model NFRs. Therefore, they introduce the language
NoFun (acronym for NOn-FUNctional). NoFun shall serve as a language
that provides a means to formulate the non-functionality in a precise
way. NoFun allows binding NFRs to software modules, but only to sys-
tem components (not functions, tasks, etc.). Basic concepts of the NoFun
language described in [BBF+01] are:

� Three kinds of quality entity modules, i.e., characteristic, sub-
characteristic and attribute modules. These modules correspond to
the refinement hierarchy in quality model standards like ISO 9126.

� Behavior modules are assigned to each system component. Behavior
modules are abstractions of software components and contain all rel-
evant information for their quality evaluation. These behavior mod-
ules provide a mapping between the software components and the
attributes modules from the quality entities.

� Quality Requirements are defined as restricting the values for the
quality entities (see first bullet).

By evaluating the behavior modules, one can determine whether the
quality requirements are met. The work of [BBF+01] and [Fra98] does
not provide an algorithm or systematic help on how to elicit the quality
requirements. According to [BBF+01], the UML proposes to annotate
NFRs in UCs by using notes. [BBF+01] claims that this is insufficient and
suggests a more ordered form. Thus, they propose using OCL and stere-
otypes to model Quality Entities, Quality Requirements, and Quality Be-
havior, but do not give sufficient detail to understand how this will be
used.

3.1.3 Relationship Between FRs and NFRs

Several state-of-the-art approaches explicitly or implicitly link functional
and non-functional requirements. As argued in Section 3.1.2, no ap-
proach provides detailed and comprehensive support, or joint specifica-

Specification of FRs and NFRs

60

tion support for all NFRs. Typically, approaches such as [CL01a],
[CNY+99] deal with functional requirements and non-functional re-
quirements as two separate (independent) processes that are integrated
later on. In this section, we present the state of the art with regard to
approaches taking

� functional requirements or subsystem information as input to NFR
elicitation

� functional requirements and NFR information as input to integrate
them after a separate elicitation.

� functional requirements as output of NFR elicitation.

Few approaches use the functional requirements as input for NFR elicita-
tion in a systematic way. [CL01c] and [CL01b] propose doing a pair-wise
comparison of each quality attribute in their knowledge base with each
symbol in the LEL (see also Section 3.1.2). But with this approach, too
many comparisons need to take place, as the objects in the LEL are not
classified as metamodel elements and therefore, the NFR elicitation can-
not be focused beforehand. Furthermore, it is not specific enough, as
the concepts in the LEL knowledge base are only the top-level QAs. The
work of [CL01c] and [CL01b] anchors an NFR to a FR by using a type,
which represents the link to the functional requirement it refers to.

Solms in [MS95] claim to have a method called Constraints Acquisition
Technique (CAT) for dealing with Security, Safety, and Resilience Re-
quirements starting from functional requirements and the environment.
But what they call NFRs are rather quality attributes and the 3-D matrices
used in their approach are more a prioritization of the quality attributes
with regard to functional requirements and environment components.
Questions that are asked there are, for example, “What is the im-
portance of confidentiality for requirement 1 used by user 1?” So this
approach seems to be more suitable for mapping quality attributes to
functional requirements rather than for using the functional require-
ments as input.

[BMA02] use UCs to identify which QA have a cross-cutting nature in the
sense that they constrain more than one UC. But [BMA02] do neither
distinguish between QA and concrete NFR, nor do they use other func-
tional conceptual elements or subsystems as input for NFR elicitation. Al-
so [KOK04] use UCs as a source to identify NFRs, but they also do not
use other functional conceptual elements or subsystems, nor do they sys-
tematically make use of quality models for the NFR elicitation.

[WDW08] use typical tasks of maintainers and quality models to identify
maintainability requirements. Their approach seems limited to maintain-
ability and only takes tasks of the type of the quality, i.e., maintenance
tasks as input. Nevertheless, the idea is related to the derivation of NFRs
of the type of User Task QAs in this NFR methodology.

Functional
Require-
ments as
Input to
NFR Elicita-
tion

 61

[CNY+99] uses functional requirements for the breakdown of the NFR
“Accuracy” to a more detailed level. But neither advice nor a systematic
method is given across the QAs on how to use the functional infor-
mation to derive detailed NFRs. Rather, [CNY+99] gives examples, e.g.,
example system elements in the NFR type catalogs.

[LX99] also uses goals mainly to handle NFRs. They state that goals can
have functional or non-functional content. They also state that a “non-
functional goal is defined as constraints to qualify its related functional
goal”. [LX99] therefore indicate that non-functional goals should be
directly related to functional goals. [KS95] present some work on inte-
grating safety analysis into requirements engineering. In their work, they
argue for a view-based documentation and attach non-functional re-
quirements to certain viewpoints and, if applicable, to concrete func-
tionalities (services). This is done in simple tables. Even though they did
not introduce an explicit classification, the NFRs that were not attached
to services were requirements on the project or development process.

In [Nix00], a work is presented that uses the NFR Framework for specify-
ing performance requirements. Even if they do not deploy types of quali-
ty attributes or an explicit mapping of types of quality attributes to types
of functional conceptual elements, they link performance requirements
to business processes (i.e., to user tasks) and to the complete system.
This mapping is done by putting the functional object in brackets behind
the corresponding softgoal.

According to [JBR99], there are local NFRs (e.g., performance NFR) and
global requirements such as security or reliability. As can be seen in the
metamodel (see Figure 12), we agree with the distinction between local
NFRs (constraining individual functional conceptual elements) and global
NFRs (relating to the complete system), but this cannot be generalized
for complete HLQA such as performance or security. This implies that
NFRs will be documented at different documentation places.

[CL99] integrate QAs into an Entity Relationship (ER) model by adding
them with a relationship to entities and relationships (see Figure 21).
[BMA02] integrates QA into use cases and UML diagrames. [BMA02]
does not distinguish between QA and NFR. Instead, they use a template
to describe a QA like response time and include a field “where” and
“requirements” where they specify which functional requirements are
constrained by the QA.

The Squid Quality Process described in [BDK+99], makes use of quality
requirements which are expressed by using metrics on various QA. They
relate the quality requirements to objects called project portions. These
project portions are project, not product artifacts, i.e., project activities,
review points and deliverables. This makes sense as the focus of this ap-
proach is on expressing and achieving internal qualities, i.e., qualities
that describe characteristics related to how the product was developed.

Mapping
NFRs to
Functional
Require-
ments

Specification of FRs and NFRs

62

NFRs can and should also be linked to early quality assurance measures.
[CMB08], for example, describe an approach to achieve complete trace-
ability from goal-level to design level for the purpose of using this trace-
ability information for impact analysis. They describe that quality goals
should be related to design and code artifacts on the one side, and to
quality assessment models such as ATAM or misuse cases on the other
side.

Several approaches like [Pas03] or [CNY+99] claim that NFRs are realized
by introducing new functionality. [MRS+07] describe that NFRs can even-
tually evolve into a functionality of the system, into architectural deci-
sions, or that they influence the development process. They also state
that approaches dealing with NFRs as aspects solely work for the opera-
tionalized NFRs of the first type, i.e. the ones that result in functionality.
Those kinds of functional requirements stay in a kind of “output” rela-
tion to the NFR. In [CL01c], [CNY+99] these new functionalities are part
of the operationalizations and the authors include these resulting func-
tional requirements in their goal trees. [CY98] focus on linking design
decisions (design pattern) to goals. [CL01c] propose integrating the op-
erationalizations of NFRs into the functional view. [LX99] use the “ex-
tends”-mechanism of UCs to create extension UCs that address non-
functional goals. The extension UCs are also functional extensions that
resulted from operationalized non-functional goals.

Most of the existing approaches that deal with NFRs also give some
thought to modeling relationships between the different quality attrib-

Figure 21: Example of annotating an ER model with quality attributes (figure taken from [CL99])

Functional
Require-
ments as
Output of
NFR

 63

utes (typically depicted by relationships in goal models). Also, some em-
pirical studies on typical dependencies exist, such as the work of
[IBR+01], which investigats the usefulness of the QARCC knowledge
base.

To summarize the current state of the practice and state of the art with
regard to an integrated specification of functional and non-functional
requirements, some major challenges to be addressed with this NFR
methodology shall be pointed out:

� No clear distinction between QAs and NFRs: This makes it difficult to
reuse the quality model information in a project-spanning way. Fur-
thermore, some approaches attach means (countermeasures or oper-
ationalizations) directly to quite abstract quality attributes (see, for
example, Figure 18) instead of enforcing the specification of a de-
tailed, measurable NFR. Then the actual NFR is often not recorded
explicitly. This situation makes quality assurance (e.g., the system test)
difficult, as the implicit requirements (NFRs) cannot serve as a basis
for test case derivation. Instead, the solution (means, operationaliza-
tions) is tested. Furthermore, having measurable NFRs enables the ar-
chitect to systematically trade off the possible
means/countermeasures. Having architectural alternatives related to
quality attributes in a fuzzy way might cause the architect to make
suboptimal decisions. Maybe the selected architectural means con-
tribute to some qualities, but one cannot check which NFRs of the
stakeholder are fulfilled completely or only partly. To enable substan-
tiated decisions on architectural alternatives, measurable NFRs are
needed.

� No end criterion for the elicitation and specification process: In the
state of the practice and the state of the art, it is not possible to
judge whether the NFR specification is complete, as no clear criterion
is given for when the set of NFR is complete, i.e., the target set for
NFR is not defined. Therefore, no formal end criterion can be defined
for the elicitation and specification of NFRs, and it is not possible to
formally determine when all NFRs are captured.

� Insufficient and non-systematic linkage between functional and non-
functional requirements (see Figure 22): In the state of the practice,
the non-functional chapters are mostly decoupled from the function-
al ones. In the state of the art, the strong focus on goal models or
separate specification of NFRs introduces incompatibilities with the
notations used in the functional world. Some of the state-of-the-art
approaches incorporate mechanisms to link NFRs to data items, oper-
ations, processes, or components. The metamodel in Section 2.2.2
incorporates all these types of functional requirements and differenti-
ates the quality attributes based on these functional conceptual ele-
ments and subsystems. None of the state-of-the-art approaches con-
tains a similar classification.

Summary
Integrated
Specifica-
tion

Specification of FRs and NFRs

64

In the NFR methodology in this thesis, the metamodel described in Sec-
tion 2.2.2 introduced a clear distinction between QAs and NFRs and
clear relationships between functional elements and quality elements.
Completeness is defined for the intended set of NFRs. These are im-
portant concepts to enable the elicitation and specification of a complete
set of NFRs.

State of the Practice

1. Introduction
2. Scenarios / Workflows /BPs
3. Use Cases
4. Functional Requirements
5. Non-Functional Requirements

4.1 Maintainability
4.2 Usability
4.3 Performance

…

Textual documents, with separated chapters,
e.g., acccording to IEEE 830, Volere, …

Stakeholder
Needs

Requirements Elicitation
& Specification Methods

State of the Art
Stakeholder
Needs

Elicitation
& Specification

Methods
for FR

Functional
specification in various
notations,
e.g., EPCs, UML, Use
Cases, Text, …

Elicitation
& Specification

Methods
for NFR

Non-Functional
specification in single
notations, e.g.,
Goal Models (i*, NFR
Framework), Misuse
Trees (MOQARE), …

Figure 22: Non-integrated specification of FR and NFR in state of the practice and state of the art

 65

3.2 Integrated FR and NFR Specification

As depicted in the metamodel (see Figure 12), functional and non-
functional requirements and subsystems are closely related. Therefore,
we argue for a joint specification of these product requirements rather
than a separated one, as often proposed by the state-of-the-practice and
state-of-the-art methods. [Ebe98] states that NFRs should not be sepa-
rated from functional requirements in different sections of a specifica-
tion: “While this is reasonable in few cases (development-oriented NFR),
it can lead to serious fragmentation which reduces readability, particular-
ly when functions and performance are split.” The RUP [JBR99] also sug-
gests specifying NFRs as close to UCs as possible. In contrast to the ap-
proach used in [CL01a], [CL01b], [CL01c], the concrete NFRs are at-
tached to the functional conceptual elements and subsystems, but based
on their classification and integrated with the functional specification,
not in a goal tree (e.g., NFRs for user tasks in the user task specification,
NFRs for system functions in the system function description). The joint
specification in this NFR methodology shall be compatible with state-of-
the-art specifications of functional requirements as well as with state-of-
the-practice specifications of functional requirements like Volere or IEEE
1362. As the Task- and Object-oriented requirements engineering (TORE)
approach [PK04b], [ADE+09] reflects a state-of-the-art requirements en-
gineering approach for specifying functional requirements for interactive
systems and, furthermore, TORE is compatible with state-of-the-practice
requirements templates like Volere or IEEE 1362, it is a good candidate
for serving as a basis to be extended with NFR information, from a state-
of-the-art as well as from a state-of-the-practice point of view. There-
fore, it will be introduced in the next section.

3.2.1 Relationship of Functional Elements to NFRs

Concerning the functional elements, the NFR methodology will base its
concepts on the TORE approach [PK04b]. TORE provides a decision mod-
el for modeling interactive systems and is mainly based on a functional
point of view, adding some usability aspects. Usablity aspects are the
implementation of the paradigm of task orientation plus usability-specific
decision points for decisions in the GUI design. The task orientation fits
well with the task-driven nature of some NFRs and is therefore consistent
with the task-driven elements of the metamodel. A mapping of general
NFR types to a previous version of TORE can also be found in [Hae05]. In
the following, an explanation of the mapping of the functional concep-
tual elements of the metamodel to the current TORE decision model
[ADE+09] will be presented. Figure 23 gives an overview of this map-
ping.

66

Goal and Task Level: As can be seen, the user tasks appear in TORE al-
ready at the task level. But this is just a naming of the user tasks without
the task description. Additional elements on the task level are the stake-
holders who will be supported by the SUD and their goals with the SUD.

Domain Level: The way the user tasks are performed today is described
in the As-Is Activity descriptions. Therefore, these descriptions are not di-
rect requirements for the system but background information. The way
user tasks shall be performed in the future is described in the To-Be Ac-
tivities. They describe the workflow of the user to perform his or her user
task without determining which activities are performed by the user or
the system. Typical notations used to record these decisions are business
process modeling notations like EPCs [Sch99] or also UML Activity Dia-
grams [RJB99]. In the To-Be Activities, it is not clearly determined which
activities are performed by the system or the user. Therefore, no links
from system task and user task are drawn to the As-Is Activities. The Sys-
tem Responsibilities determine exactly which of the single activities with-
in the To-Be Activity descriptions should be

� completely automated by the system (system functions): For these,
system function descriptions are necessary. They correspond to the
system tasks in the NFR metamodel.

Figure 23: Mapping of functional metamodel elements to the TORE decision model

Task

User Task System Task

1
*

refined into

Data

Functional Conceptual
Element

 67

� completely performed by a human (human functions): No product
requirements originate from these activities.

� supported by the system (human-system functions): for these, inter-
action descriptions are necessary. They correspond to the user tasks
in the NFR metamodel.

This decision is often recorded as semantically enhanced UC Diagrams or
with stereotypes in the to-be activity descriptions.

Data requirements are already captured in the domain data and will be
further refined on the interaction level. Typical notations used are glossa-
ries, UML class and object diagrams, or ER diagrams. Domain and inter-
action data correspond to the data items in the NFR metamodel.

Interaction Level: For all system-supported activities, the human-system
interaction has to be determined. An interaction description is typically
recorded as a textual UC or as a sequence diagram with swim-lanes. The
data used in the interaction is recorded as interaction data, usually as a
refinement of the domain data. The decisions about the UI-Structure are
for Usability purposes and out of scope for the mapping to the function-
al elements.

System Level: This level is not depicted in Figure 23, as all decisions on
the System level are not related to the mapping to the functional ele-
ments of the metamodel. Further information can be obtained in
[PK04b].

In order to describe the applicability of the NFR methodology for settings
of various scale, we will start with a minimum set of sections for docu-
menting requirements that is compatible with TORE, and then discuss
how the template would change in case elements for workflow specifi-
cations should also be specified (for example if using for large business
information systems). We describe template items that are directly relat-
ed to elements of the metamodel to show the direct implications for the
NFR methodology (cf. Table 3). Templates for requirements documents
can comprise a lot more sections than the ones depicted below, see for
example the section descriptions in [IEEE98a] or [RR99].

Specification of FRs and NFRs

68

Thus, a minimal functional specification template that can serve as an
appropriate basis for the NFR methodology needs to comprise the fol-
lowing chapters:

1. System Overview

2. Overview of Operational Scenarios

3. Operational Scenarios/Interaction Descriptions

4. Feature Lists/System Function Descriptions/Functional Requirements

5. Data Requirements/Data Model

6. Quality Requirements/Non-Functional Requirements

7. First Solution Ideas

This minimal specification template is usually used for single-user interac-
tive systems like mobile phones, office products, graphics editors, etc. In
contrast to that, for the specification of multi-user interactive systems

Conceptual Ele-
ment from TORE

Conceptual Ele-
ment from NFR
Metamodel

Typical Section in
Specification
Template

Typical Notation
used for Specifi-
cation

Potential NFR
Attachment

 Subsystem
information

System Overview Block diagrams,
textual descrip-
tions

NFRs for System
QAs

User Tasks, System
Responsibilities

User Tasks, System
Tasks

Overview of opera-
tional scenarios

UC diagrams NFRs of User Task
QAs; NFRs of
System Task QAs

Interactions User Tasks, System
Tasks

Operational sce-
narios; interaction
descriptions

Textual UCs,
sequence dia-
grams, flow
diagrams

NFR of User Task
QAs, NFRs of
System Task QAs

System Functions System Tasks Feature lists,
system function
descriptions;
functional
requirements

Textual Function
descriptions

NFRs of System
Task QAs

Domain Data,
Interaction Data

Data Objects Data requirements;
data model

Class diagrams,
object diagrams,
ER diagrams

NFRs of Data QAs

 Non-functional
Requirements

Quality require-
ments; non-
functional
requirements

Textual description NFRs for System
QAs; over span-
ning NFRs

 Means First solution ideas Textual description -

Table 3: Minimal set of conceptual elements required in templates

Single User
vs. Multi-
User

 69

like large business information systems where many users use a system
to cooperatively achieve an organizational goal (e.g., billing systems),
workflow descriptions are often used as an additional specification ele-
ment on a higher levels of abstraction to model the business processes.
These workflow specifications can also be used for NFR elicitation.

In contrast to the user task descriptions, workflow descriptions are usual-
ly on a higher level of abstraction, often involving activities of more than
one stakeholder or organizational role. The interface between workflow
descriptions and user tasks according to TORE are then the tasks that
one person will carry out. So in an ideal case, the workflow descriptions
are detailed to the level where each activity in the workflow description
is carried out by one role or is completely automated by the system.
Then the user task descriptions would detail the user tasks for each role.
As a logical consequence, eliciting NFRs in the workflow descriptions
means that the NFRs for the User Task QAs can be elicited for all human-
system functions carried out by one user (see beginning of this section
for the classification). If a workflow activity is completely automated (Sys-
tem Functions), System Task QAs can also be elicited for this workflow
activity. If workflows are documented with extended EPCs or other busi-
ness process modeling notations, data objects are often allocated to the
activities in the workflow. Then NFRs of Data QAs can also be elicited
from the workflow descriptions. Table 4 visualizes this addition. The con-
ceptual elements from the NFR methodology are introduced with the
addition “indirectly”, as they can only be mapped there if the workflow
descriptions are enhanced with information from other decision points,
i.e., the classifications resulting from the system responsibilities or the
usage of data items from the domain data.

As a consequence, a typical specification template for addressing large-
scale interactive systems would also have the workflow descriptions (but
also many other sections not related to the metamodel, like business
process hierarchies, organizational role descriptions, etc.) as part of the
template. The variety of possibilities for documenting functional re-
quirements for the functional conceptual elements can be seen as a en-
abler for NFR elicitation, but also imposes a major challenge for the inte-

Conceptual
Element from
TORE

Conceptual
Element from
NFR Metamodel

Typical Sec-
tion in Specifi-
cation Tem-
plate

Typical Nota-
tion used for
Specification

Potential NFR
Attachment

As-Is Activities,
To-Be Activities

Indirectly:
User Tasks, Sys-
tem Tasks, Data
Items

Business Pro-
cesses

EPCs, Activity
Diagrams

NFRs of User
Task QAs, NFRs
of System Task
QAs, NFRs of
Data QAs

Table 4: Extension of set of conceptual elements in templates

Specification of FRs and NFRs

70

grated specification of FRs and NFRs. One example template that com-
prises all sections for a multi-user requirements specification with inte-
grated NFRs can be found in Appendix B.

3.2.2 The Challenge of Integrated Specification

Standards like IEEE830 or IEEE1362 suggest having a separate or more
than one separate chapter for NFRs. This strict separation of the non-
functional requirements from the functional requirements is not appro-
priate for all types of NFRs. This way of separate documentation is ap-
propriate for the NFRs affecting the system or subsystems, as they de-
scribe characteristics of the system itself or of subsystems, and it would
be counterproductive to repeat these NFRs at each and every functional
conceptual element. But NFRs that directly constrain a functional con-
ceptual element like a user task, system task, or data item should be di-
rectly annotated at the corresponding user task, system task, or data
item they are related to. Otherwise, readers of the document who are
searching for information that is specific to one functional conceptual el-
ement will probably not realize the NFR that constrains the functional
conceptual element. For example, the NFR affects the designer as the so-
lution space for designing an implementation of the functional concep-
tual element is restricted. A tester might forget to write a test case for
this specific quality characteristic of this functional conceptual element.
There is one exception: If the same NFR holds for all instances of the
functional conceptual element (like a default NFR for all UCs), we call
these NFRs “over spanning NFRs” and we also put these NFRs into the
separate chapter on non-functional requirements.

The annotation of NFRs to user tasks, system tasks, and data items im-
poses a major problem: How to deal with the situation that the same da-
ta items, user tasks, and especially system tasks can appear at different
places in a requirements document? Figure 24 illustrates the problem
based on a typical TORE specification example:

� The dashed lines illustrate where the same data object appears in dif-
ferent sections of a requirements specification. They appear in the
EPC workflow description, the data model, the textual UC descrip-
tions, and the textual system function descriptions.

� The solid lines illustrate where the same user task appears: in EPC
workflow descriptions, in the UC diagram, and in the textual UC de-
scription.

� The dotted lines illustrate where the same system tasks appear: in the
EPC workflow description, in the UC diagram, in the textual UC de-
scriptions, and in the textual system function description.

The reason why these elements can appear more than once is often the
fact that different views (e.g., structural vs. behavioral views in object

 71

oriented specification of systems) and refinement steps are used to de-
scribe these system elements. For example in Figure 24, the name of a
system task Y may first appear in the workflow description, reappears as
a name in the UC diagram (within the system border), and is then de-
scribed in detail in the textural system function specification.

One might think that in an ideal case, the NFRs are available at any oc-
currence of the functional element. But the disadvantage of this would
be that NFRs would be overemphasized. Typically, each view in object
oriented analysis should reveal specific information and not repeat in-
formation. Furthermore, replication of information usually makes the re-
quirements management a difficult task, as in case of a change, infor-
mation in many locations needs to be changed.

As the information included in the requirements specification is intended
to be input for the subsequent development phases, the potential audi-
ences and their preferences should determine where to finally document
the NFRs. The potential users of the NFR information are:

� The requirements analyst, who checks the NFR information for con-
flicts (see Section 5.7). This person would need the information anno-
tated at the joint functional object that is affected by the possibly
conflicting NFRs.

� The architect, who uses the NFR information to make architectural
trade-offs and decisions. In an ideal case, this person needs the in-
formation in different views.

� The developer, who uses the NFR information to develop a specific
function, component, or service. This person would prefer the infor-
mation to be annotated to the system function or component he or
she has to implement.

� The tester, who will use the NFR information to derive test plans and
cases for the product. This person would prefer the information to be
annotated in the interaction descriptions.

� The reviewers, who want to see whether the integrated specification
is acceptable with regard to quality characteristics like completeness.
As with the architect, this person would need the information in dif-
ferent views.

Specification of FRs and NFRs

72

A
<<human/
system>>

B
C <<system>>

Y E

F G

L

F G

Workflow description in EPC

Data Model in UML Class Diagram

System

B

Y
L

Use Case Diagram

Textual Use Case Description

Textual System Function Description

Figure 24: Illustration of the problem of Primary and Secondary Information Place

 73

As can be seen from the list, the information need is different for the
various roles and therefore, there is no ideal solution: The need differs
from NFRs to be specified in every view to specification solely at the sub-
systems or interaction descriptions. If current tool support had a feature
to enable and disable the NFR-information in the various views, this
would definitely be a great help to address this challenge. But the devel-
opment of such tool support is not the topic of this thesis.

The solution used in the NFR methodology is to introduce the concepts
of primary and secondary documentation location:

� Primary documentation location: the location in the requirements
specification where the main-information for a functional conceptual
element is specified.

� Secondary documentation location: the location in the require-
ments specification where additional information for a functional
conceptual element (like usage of the specified conceptual element)
is specified.

In Figure 24, the filled circles at the end of the dotted, dashed, or solid
lines represent the primary documentation location. The location where
the main information for a functional conceptual element must be speci-
fied is therefore defined:

� For data objects, the data model is the primary information location.

� For user tasks, the UC diagram is the primary information location.

� For system tasks, the textual system function description is the prima-
ry information location.

The primary information location for all objects of interest should be well
known by all readers of the document. This is a good practice that dif-
ferentiates good from bad templates. If a reader is looking for a specific
type of information, he or she must directly know in which section(s) to
find this information.

The NFR methodology foresees that the NFRs for a certain functional
conceptual element are at least specified at the primary information lo-
cation.

If the NFRs are also specified at other locations, this can be beneficial
and supportive for certain readers of the requirements specification. This
should not be achieved by replicating the information. Alternative means
are building corresponding views or linking the information to the sec-
ondary information locations.

UCs and UC descriptions are often used as a central element of specifi-
cations (see [JBR99]). [Gli07] also states that the RUP proposes docu-
menting NFRs as close to UCs as possible and only put the general ones

Specification of FRs and NFRs

74

into separate chapters. UCs connect the other pieces of information in
the specification. In Figure 24, one can also see that the UCs are, besides
the EPCs, the only specification element that integrates red, blue, and
green lines. The EPCs also have this characteristic, but as they are on a
higher level of abstraction, they connect fewer items than the UCs.
Therefore, the UCs play an important role in connecting the other speci-
fication items. This is also the reason why they are intensively used for
the elicitation of NFRs (see Chapter 4). If one decides to also visualize
NFR information at a secondary information location, the textual UC de-
scriptions are a good candidate.

Therefore, for the remainder of this thesis, the primary information loca-
tion is set as depicted in Figure 24. When choosing a different require-
ments specification template or deleting sections in the template, the
primary information location might change.

3.2.3 Resulting Locations for NFR Specification

With regard to the NFR attachment, the following types of NFRs are
specified in different locations in the document:

� NFRs constraining User Task QAs are attached to the overview on us-
er tasks, typically in the UC diagrams, and are, therefore, document-
ed in a UC diagram section. The NFRs are either specified as notes in
the UC diagram itself (see Figure 25) or as natural language state-
ments directly below the UC diagram. If the NFR constraining the us-
er task is identical for all user tasks, it is moved to the general chapter
on non-functional Requirements.

� NFRs constraining Data QAs are annotated in the data models. If the
data models are documented as UML class or object diagrams, one
can also use the notes in the diagram or write the NFR below the di-
agram. If the data model is documented as a glossary, we propose
attaching the NFR to the glossary item.

� NFRs constraining System QAs are specified in the chapter on the
general non-functional requirements. The structure of this corre-
sponds to the structure of the quality models, i.e., there is a hierar-
chical list of all System QAs. Below each System QA, there is a list of
all subsystems.

� NFRs constraining System Task QAs are directly attached to the sys-
tem function descriptions, e.g., in a separate field of the textual sys-
tem function descriptions (see also textual system function descrip-
tion in Figure 24). If the NFR constraining the system task is identical
for all system tasks, it is moved to the general chapter on non-
functional requirements.

� Additional specification: As already depicted in the last section, it can
be beneficial to additionally specify specific NFR information in the
textual UC description as well. Of course, it is beneficial to specify the

 75

user task NFR that relate to the complete UC. But it is also beneficial
to replicate the NFRs on system task QAs in the UC descriptions if the
system function is used in the UC (see System Functions X and Z of
UC B in Figure 24). This is especially true if the NFRs that are related
to these system functions were created by a refinement of NFRs on
User Task QAs (see Chapter 4 for details), as then the complete in-
formation for the UC is gathered in this one UC and can easily be an-
alyzed for consistency. Therefore, the textual UC template is en-
hanced with a separate field for NFR specification.

A minimal template for specifying NFRs can be found in 3.2.1 and Ap-
pendix B. We want to emphasize that this is not a full-fledged require-
ments template but the minimal set that is needed for the NFR method-
ology, and that this set must be extended to meet the specific needs of
each project. Work on specifying non-functional requirements with a fo-
cus on the workflow level can be found in [AD07a], [AD07b], and
[ARD09].

For those cases, where the software model is completely based on UML
models, also the UML QoS profile [OMG05] can be an option to anno-
tate the various types of NFRs to the various types of UML models. An
example on how NFRs and quality models can be specified with the help
of the UML QoS Profile can be found in [RW07].

Figure 25: Example of annotation of User Task NFRs in a UC diagram

Elicitation of NFRs

76

4 Elicitation of NFRs

In Chapter 2 and Chapter 3, the basis for the actual NFR elicitation has
been created. The conceptual functional and non-functional elements
were clarified by means of a requirements taxonomy, a metamodel, and
definitions. Furthermore, the role of quality attributes, organized into
quality models was explained. This chapter describes the main difference
of this elicitation approach to existing approaches from the state of the
practice and the state of the art. In order to avoid redundancy, a detailed
survey of state-of-the-practice and state-of-the-art approaches will not
be provided, as the relevant concepts of the approaches have already
been described in Section 3.1. Furthermore, those approaches do not
provide elicitation support similar to the one in this thesis. After explain-
ing the difference to existing approaches, the necessary NFR elicitation
algorithm will be explained. Furthermore, additional elicitation aids such
as elicitation checklists will be introduced.

4.1 Main Difference to Existing Approaches

Before going into the details of the elicitation process, we want to em-
phasize the main difference of this elicitation approach to state-of-the-
practice or state-of-the-art approaches that were described in Section
3.1.

Existing state-of-the-practice approaches are typically based on brain-
storming, i.e., the requirements analyst brainstorms with a customer
about potential NFRs for their product. The template sections for NFR or
quality models like the ISO 9126 are taken as a means for triggering
certain NFRs. This process usually ends when no further NFRs come up.
The problem of this kind of elicitation is that there cannot be confidence
that all relevant NFRs were captured, as there is no objective end cri-
terion for the elicitation process. This is mainly due to the fact that
the target set of NFRs is not precisely defined. Furthermore, the func-
tional requirements are not taken as a systematic input for NFR elicita-
tion.

Existing state-of-the-art approaches like [MCY+92] or [HP08] aim at a
structured breakdown from high-level goals to more detailed goals that
are comparable to NFRs, and eventually to countermeasures and opera-
tionalizations. The benefit of these approaches is that one has a much
better overview to judge whether a breakdown makes sense and wheth-
er important segments are missing. But this elicitation process also has
major drawbacks: First, as this elicitation process is decoupled from the

Difference
to State of
the Practice

Difference
to State of
the Art

 77

functional requirements2, again the end criterion is when the experts
think that the graph is complete, i.e., there is no objective end crite-
rion for the elicitation process. This is again due to the fact that the
target set of NFRs is not precisely defined. Regarding completeness,
[Yue87] states that goals “provide a precise criterion for sufficient com-
pleteness of a requirements specification; The specification is complete
with respect to a set of goals if all the goals can be proven to be
achieved from the specification and the properties known about the
domain considered.” But for a real-life project this proof cannot be pro-
vided. One reason for this is that complete traceability and ranking of
the contribution power (completely fulfills a goal, contributes to a goal)
of lower-level system requirements to the goal graphs is not feasible.
Therefore, there cannot be confidence that the set of NFRs has been elic-
ited completely. Second, the goal graphs are documented separately
from the functional requirements, which is

� not viewed as a pragmatic solution in practice and therefore often
not implemented. The NFR specification is then viewed as an addi-
tional specification rather than an inherently necessary part of the re-
quirements specification.

� not a good basis for further development, as the NFRs in the goal
graphs are dislocated from the related functional elements (see Sec-
tion 3.2).

Therefore, the NFR methodology described in this thesis makes use of
the relationship of NFRs to functional conceptual elements and subsys-
tems. The functional conceptual elements and the subsystems are taken
as input for the NFR elicitation. This information together with the in-
formation about the relevant quality attributes is used to algorithmically
process the functional requirements in order to elicit a complete set of
non-functional requirements. This algorithm has a defined end criterion
as long as the input set of functional requirements and quality attributes
is finite, which is a realistic assumption.

The algorithmic nature also leads to higher repeatability of the elicitation
and specification process. Everybody can judge which functional concep-
tual elements and subsystems were checked against which quality char-
acteristics, leading to a degree of controllability that cannot be found in
any state-of-the-art approach. This kind of controllability can also be
used to focus the effort for the NFR elicitation (see Section 6.1).

2 Current state-of-the-art methods like [MYK+92] integrate functional requirements into
the goal graphs once it comes to the operationalizations, but often they do not include
the functional requirements for the primary functionality of the SUD.

Repeatabil-
ity and
Controlla-
bility

Elicitation of NFRs

78

4.2 The Elicitation Algorithm

As the elicitation algorithm is crucial for this method, it is explained in
the following. The basic procedure for this algorithm is as follows: We
have the information about relevant qualities on the one side
(QA_InScope) and functional conceptual elements (FR_E) and infor-
mation on subsystems (SYS) that are characterized by the qualities on
the other side. The basic idea is to have a complete pair-wise comparison
between the elements in the quality dimension with the elements in the
functional and subsystem dimension, asking whether NFRs exist for the
quality - function/subsystem pair. The algorithm ends when the pair-wise
comparison is complete. We know from the metamodel (see Section
2.2.2) that one quality attribute does not characterize all types of func-
tional conceptual elements or subsystems; rather, each quality attribute
has one specific object (user task, system task, data or system) it charac-
terizes. Therefore, it is unnecessary to compare quality attributes of a
certain type with elements of another type (like asking for Usage Time
NFRs for a component). Figure 26 shows the comparison matrix that il-
lustrates this situation. The gray areas are the ones that do not need to
be covered by the algorithm as the quality attributes do not relate to the
type of functional conceptual element.

Thus, the simplest version of the algorithm (compare Figure 27) would
ask for NFRs in the linear way depicted in Figure 26.

QA1 … Qan QAn+1 … QAm QAm+1 … QAp QAp+1 … QAt

User Task 1
…
User Task 2
System Task 1
…
System Task n
System 1
…
System n
Data Item 1
…
Data Item n

Data QAsItems to be
compared

User Task QAs System Task QAs System QAs

Figure 26: Items to be compared in elicitation algorithm, illustrated in a comparison matrix

 Ask for NFRs

 79

The simplified algorithm depicted in Figure 27 compares one by one the
quality elements of a specific type with the related functional or subsys-
tem elements. The algorithm has to be designed in a way that takes into
account the specifics of the refine-relationship between user tasks and
system tasks (see Section 2.2.2.1). As user tasks are often refined into
system tasks, and so are quality attributes, the elicitation algorithm
needs to address this fact. The assumption is that the probability for a
customer to identify and state a corresponding NFR is higher if he or she
thinks in refinements rather than being asked for a new NFR.

Figure 28 sketches the complete algorithm in a pseudo-code like fashion.

The three tasks in the algorithm are:

� asking for NFRs: The stakeholders decide and specify whether an NFR
exists or not.

� refining an NFR: If a higher level NFR exists, the stakeholders decide
and specify whether lower level NFRs exist or not.

� marking pairs as done: Pairs of functional conceptual ele-
ments/subsystems and elementary quality attributes get marked as
done. This is done in order to allow an incremental approach: We
know exactly which pairs have already been compared, so if the func-
tional range is extended (e.g., due to changing requirements) or new
qualities should be checked, the algorithm does not require the re-
quirements analyst to repeat already performed comparisons.

For each EQASq � :
For each zescharacterif)(q, |SYSFRf ��� :

 Ask for NFR: IF (NFR=necessary) THEN please specify the NFR
 Else: specify that no NFR exists

 mark qxf as done

Figure 27: Simplified version of the elicitation algorithm

Elicitation of NFRs

80

For each HLQAhq � :
 For each QAUTutq � :
 For each UT_Eut � :

Ask for NFR: IF (NFR=necessary) THEN specify NFR,
ELSE specify that no NFR exists
Mark utxutq as done

 For each refines)utq,stq(|QASTstq �� :

 For each refines)ut,st(|ST_Est �� :
 Refine NFR: IF (NFR=necessary) THEN specify NFR,
 ELSE specify that no NFR exists

Mark stxstq as done
 For each refines)ut,st(|ST_Est �� :

Ask for NFR: IF (NFR=necessary) THEN specify NFR,
ELSE specify that no NFR exists
Mark stxstq as done

 For each refines)utq,stq(|QASTstq �� :

 For each E_STst � :
Ask for NFR: IF (NFR=necessary) THEN specify NFR,
ELSE specify that no NFR exists
Mark stxstq as done

 For each QASYSsq � :
 For each SYSss � :

Ask for NFR: IF (NFR=necessary) THEN specify NFR,
ELSE specify that no NFR exists
Mark ssxsq as done

 For each QADIdq � :
 For each DI_Edq � :

Ask for NFR: IF (NFR=necessary) THEN specify NFR,
ELSE specify that no NFR exists
Mark dixdq as done

Figure 28: The elicitation algorithm

 81

In order to illustrate the algorithm, based on Figure 26, we assume the
following situation:

refines)QA,QA(:nin,QA

;refines)ut,st(:ni,st

;pis},QA{QASYS;tip},QA{QADI

;min},QA{QAST;ni},QA{QAUT

ni},sys{SYS

;ni},di{DI_E;mi},st{ST_E;ni},ut{UT_E

nii

ii

ii

ii

i

iii

������
����

��������
�������

���
���������

21

1

11

11

1

111

1

Figure 29 shows the comparison matrix including the processing steps of
the algorithm:

1. In step 1, the algorithm asks for new User Task NFRs: It iterates for
each User Task QA QA1 to QAn on all User Tasks ut1 to utn.

2. In step 2, the algorithm asks to refine the User Task NFRs for User
Task ut1 for the child System Task QAn+1 for each refined System Task
(System Tasks st1 to stn).

3. In step 3, the algorithm asks for new NFRs of the type System Task
QA QAn+1 for the remaining system tasks stn+1 to stm.

4. In step 4. the algorithm asks to refine the User Task NFRs for User
Task ut1 for the child System Task QAn+2 for each refined System Task
(System Tasks st1 to stn).

5. In step 5, the algorithm asks for new NFRs of the type System Task
QA QAn+2 for the remaining system tasks stn+1 to stm.

6. In step 6, the algorithm asks for new System Task NFRs. It iterates for
each remaining System Task QA QAn+3 to QAm on all System Tasks st1
to stm.

7. In step 7, the algorithm asks for new System NFRs. It iterates for each
System QA QAs+1 to QAp on all Systems sys1 to sysn.

8. In step 8, the algorithm asks for new Data NFRs. It iterates for each
Data QA QAp+1 to QAt on all Data Items di1 to din.

The algorithm is finished when each entry in this matrix is marked as
done. To better understand the algorithm and its results, we refer to the
example description of process activity P2.1 (see Section 5.6), which vis-
ualizes all comparisons done as well as the output of the algorithm.

Elicitation of NFRs

82

In the NFR methodology, the elicitation algorithm is “implemented” in
two different ways:

� In the tool-supported version, it is implemented into the tool: The
tool asks the user to either specify NFRs or to specify that no NFR ex-
ists (see Section 6.2).

� In the non-tool-supported version, it is incorporated into the check-
lists that guide the elicitation (see next section).

In both ways, the actual algorithm is executed in process activity P2.1
(see Section 5.6).

The major goal of this algorithm is to achieve a complete set of NFRs.
Completeness was defined in Section 2.2.4 as: the set NFR_E is complete
if there is a non-functional requirement expressed for each pair of elicit-
ed functional conceptual element or subsystem and corresponding ele-
mentary quality attribute, or there is no stakeholder request for it. The
algorithm performs a pair-wise comparison between each functional
conceptual element and subsystem and each corresponding elementary
quality attribute. Therefore, the elicitation algorithm is designed in a way
to guarantee a complete set of NFRs in the sense of the completeness
definition under the assumptions stated in Section 2.2.4.

4.3 The Role of Checklists as an Elicitation Aid

The actual algorithm is either implemented in the tool support (see
Chapter 6) or implemented in checklists that guide the manual elicitation
process. In the manual setting, the requirements analyst uses the check-
lists in the NFR elicitation workshop with the customers. Figure 31 gives
an example of such a checklist. The checklists are an additional means to

QA1 … QAn+3 … QAm QAs+1 … QAp QAp+1 … QAt

QAn+1 QAn+2

User Task 1
System Task 1
…
System Task n

User Task 2
User Task …
User Task n
System Task n+1
…
System Task m
System 1
…
System n
Data Item 1
…
Data Item n

Data QAs

Items to be compared Child System Task QAs
QAn

User Task QAs System Task QAs System QAs

1
2

3

4

5

6

8

7

Figure 29: The different steps of the algorithm visualized in the comparison matrix

Elicitation
Algorithm
and Com-
pleteness of
NFR_E

 83

foster efficient NFR elicitation and are intended to ensure that the re-
quirements analyst follows the algorithm and therefore achieves a com-
plete set of NFRs. Other approaches such as [SHR09] also use question-
naires to prepare and guide the NFR elicitation, but the questionnaires
do not incorporate a specific elicitation algorithm that guides the elicita-
tion with the goal of reaching complete NFR specification.

Figure 30 illustrates the role of the checklists: For each quality model
QM�QM_InScope, there exists one checklist that gives advice on how
to proceed in an elicitation workshop. This advice also determines the
corresponding functional conceptual element to iterate on. The concrete
patterns for creating a checklist are explained in the next section. Follow-
ing the advice results in NFRs issued by the customer, which are then
documented according to Section 3.2 in the requirements specification.
The dashed and dotted lines and boxes illustrate the connection be-
tween the elements in the three documents. For example, the QA Usage
Time in the quality model leads to an advice in the checklist to specify
Usage Time NFRs. Let’s assume, the customer states two Usage Time
NFRs for the two user tasks process bill and archive bill. As Usage Time is
a User Task QA, the two NFRs are documented in the chapter overview
on operational scenarios, which specify the user tasks in form of a Use
Case Diagram.

Elicitation of NFRs

84

4.4 The Role of Reference Checklists and Templates

In order to make the preparation steps for the NFR elicitation more effi-
cient, we suggest using reference checklists as well as a reference tem-
plate that correspond to the QM_Ref rather than creating a checklist and
template from the QM_InScope from scratch when a new project starts.
This means the reference checklist and templates are then adapted to
the changing quality models, i.e., changes from QM_Ref to QM_InScope
are used to change the reference checklists and reference template. This
means, for example, that if a QA�QA_Ref is deleted because it is not
needed for the current project, the corresponding checklist part and
template part are also deleted from the checklist and from the template
for the current project.

A publication of Fraunhofer IESE
Fraunhofer IESE Quality Model No. 010.04/E
Version 1.8
31st of January, 2005

EF/NFR/QM1.8/EFFICIENCY 1. Elicitation of Usage Time NFRs (Overview Operational Scenarios� UC
Diagram�NFRs�Efficiency�Time Behaviour�Usage Time)

For each Use Case, please specify the Usage Time NFRs

� Please use the available metrics: seconds

…

7. Elicitation of Boot / Start up Time NFRs
(NFRs�Efficiency�Subsystem�Boot / Start Time)

For each system part, please specify the Boot / Start Time

� Please use the available metrics: Seconds for cold start and
Seconds for warm start

…

Chapter 2: Overview on Operational Scenarios

Chapter 6: Non-Functional Requirements

6.1 Efficiency

Subsystem: Database Server 2:
Boot / Start Time: 60 sec. warm start; 180 sec. cold start
Capacity of Secondary Storage: >= 70 GB
Capacity of Memory: 2 GB for the server .

Chapter 2: Overview on Operational Scenarios

Chapter 6: Non-Functional Requirements

6.1 Efficiency

Subsystem: Database Server 2:
Boot / Start Time: 60 sec. warm start; 180 sec. cold start
Capacity of Secondary Storage: >= 70 GB
Capacity of Memory: 2 GB for the server .

ChecklistProject Specific Quality Model

Requirements Document

Figure 30: Checklists as mediator between quality models and NFRs

 85

The creation of the reference checklists is a straightforward, non-creative
task. As the checklists get the quality model as input and the algorithm
for elicitation is fixed, the checklist is generated by simple sentence pat-
terns. In Chapter 6, we will see that the checklists can be automatically
generated from the elements in QM_InScope. If the tool support for the
elicitation step is used as well, the sentence patterns look a bit different
(see right column in Table 5), as the tool has the capability of displaying
each related functional conceptual element and subsystem, respectively.
Of course, when using the Checklist Generation Tool, the reference
checklists are not needed anymore. Furthermore, when also using the
elicitation tool support, the checklist advices are built into the tool that
guides the elicitation.

Please note that the sentence patterns presented in Table 5 are using the
general terminology “user task”, “system task”, etc. from the meta-
model. For a concrete checklist, we recommend instantiating these ele-
ments with the elements used for documentation (e.g., UCs, textual sys-
tem function descriptions, etc.). An example of such instantiated sen-
tence patterns can be seen in Table 8.

The sentence patterns for Data, System, System Task, and User Task QAs
can furthermore be extended by adding a sentence inviting the user of
the system to specify the NFR in a measurable way:

Usage of
Sentence
Pattern and
Tool Sup-
port

Elicitation of NFRs

86

For each advice in the checklist, where the corresponding QA has one or
more metrics attached (lets assume Metric_1, …, Metric_n), the follow-
ing add-on can advise the requirements analyst to enforce the writing of
testable and measurable NFRs:

� Please use the available metrics: Metric_1, …,Metric n-1 and Met-
ric_n.

Figure 31 shows an example of such a checklist: the reference checklist
for the QM_RefEfficiency, using the instantiated sentence patterns for UC
descriptions and system functions.

Classification Sentence Pattern (Manual Process) Sentence Pattern (Tool-supported
Elicitation)

Structural QA No text, but a heading is introduced in
the checklist to organize the advices

No text

User Task QA For each user task, please specify the
QA-Name-NFRs

For this user task, please specify the
QA-Name-NFRs.

“Child” System Task
QA: The parent QA
of this System Task
QA is classified as
User Task QA

For all user tasks: check if this user task
has one or more NFRs of the type
Parent-QA-Name:
� If so, please refine these NFRs by spec-

ifying *QA-name*-NFRs at each sys-
tem task refined from this user task.

� Else: -
For all remaining system tasks: please
specify the *QA-Name*-NFRs.

� For each user task, where NFRs of
the type *Parent-QA-Name*
were specified: For the superior
user task, the following NFRs
were specified: *List of all NFRs
on this User Task of the type
*Parent-QA-Name**. For this sys-
tem task, please refine these NFRs
by specifying *QA-Name*-NFRs.

� For all other system tasks:
For this system task, please speci-
fy the *QA-Name*-NFRs.

“Stand alone” Sys-
tem Task QA: The
parent QA of this
System Task QA is
classified as Structur-
al QA

For each system task, please specify the
QA-Name-NFRs.

For this system task, please specify
the *QA-Name*-NFRs.

System QA For each system part, please specify the
QA-Name-NFRs.

For this system part, please specify
the *QA-Name*-NFRs.

Data QA For each data item, please specify the
QA-Name-NFRs.

For this data item, please specify the
QA-Name-NFRs.

Table 5: Sentence pattern for creating checklist advices

 87

Elicitation of Efficiency NFRs
1. Elicitation of Time Behavior NFRs

1.1. Elicitation of Usage Time NFRs
For each use case, please specify the usage time

� Please use the available metrics: seconds
1.1.1. Elicitation of Response Time NFRs

For all Use Cases: check if this Use Case has one or more NFRs of the type
Usage Time: If so, please refine these NFRs by specifying Response Time
NFRs for each system function that is used in this Use Case.
For all other system functions: please specify the Response Time

� Please use the available metrics: seconds
2. Elicitation of Accuracy NFRs

2.1. Elicitation of Precision of Calculation NFRs
For each system function, please specify the Precision of Calculation
� Please use the available metrics: % of Error in Rounding

3. Elicitation of Time Behavior NFRs
3.1. Elicitation of Workload NFRs

For each system part, please specify the Workload
� Please use the available metrics: #jobs / time unit and # of supported user

3.2. Elicitation of Boot / Start Time NFRs
For each system part, please specify the Boot / Start Time

� Please use the available metrics: seconds for cold start and seconds for
warm start

3.3. Elicitation of Shutdown Time NFRs
For each system part, please specify the Shutdown Time

� Please use the available metrics: seconds for shutdown
4. Elicitation of Resource Utilization NFRs

4.1. Elicitation of Workload Distribution NFRs
For each system part, please specify the Workload Distribution

� Please use the available metrics: % max
4.2. Elicitation of Capacity NFRs

4.2.1. Elicitation of Capacity of Memory NFRs
For each system part, please specify the Capacity of Memory

� Please use the available metrics: gigabyte, resource consumption of
memory, cost of memory

4.2.2. Elicitation of Capacity of Network NFRs
4.2.2.1. Elicitation of Throughput NFRs

For each system part, please specify the Throughput
� Please use the available metrics: #data units / time unit, jitter
and Mbit/s

4.2.3. Elicitation of Capacity of Processor NFRs
For each system part, please specify the Capacity of Processor

� Please use the available metrics: ghz, resource consumption of pro-
cessor, and cost of processor

5. Elicitation of Accuracy NFRs
5.1. Elicitation of Precision of Data Storage NFRs

For each data item, please specify the Precision of Data Storage
� Please use the available metrics: #digits after comma

Figure 31: Reference checklist for QM_RefEfficiency

Elicitation of NFRs

88

During the NFR elicitation, the stakeholder who is asked for NFRs some-
times needs support in order to understand how to phrase NFRs. If the
advice were merely phrased as: “For each system function, please specify
the precision of Calculation”, the stakeholder might not have an idea of
how to phrase the actual NFR. The metrics that are attached to the
checklist advices, such as “Please use the available metrics: % of Error in
Rounding” provide such support. If this support is not enough to create
a sufficient understanding for the stakeholder on how to phrase the
NFRs, the checklist can additionally be enriched with example NFRs such
as “A typical example for this kind of NFRs is: For this system function, a
maximum of 0.5% error in rounding is acceptable”.

Concerning the reference template, a standard template that minimally
satisfies the elements depicted in Section 3.2 is taken. As the NFRs relat-
ing to data, user task, and system task are directly specified at the corre-
sponding functional objects, the template must only foresee a possibility
to do this (see Section 3.2). The only change in the reference template is
with regard to the Structural QAs and System QAs that are in QM_Ref.
For each of these QAs, the following change in the reference template
should be incorporated:

� Structural QA: For each Structural QA, insert its own section into the
general NFR chapter according to the hierarchy of QAs. E.g., if Time
behavior is a structural QA below the Structural QA Efficiency, then
the general NFR chapter of the requirements document template will
have a section Efficiency with a subsection Time behavior.

� System QA: Insert a section with the name of the System QA below
the Structural QA it belongs to. If, for example, the System QA Preci-
sion of Data Storage is below the structural QA Accuracy, the tem-
plate will have a subsection Precision of Data Storage in the section
Accuracy.

Reference
Template

Enhancing
Under-
standability

 89

5 The NFR Elicitation and Specification Process

In Chapter 2, Chapter 3, and Chapter 4, the basis for the NFR elicitation
and specification process was created. The term non-functional require-
ment was clarified by means of a requirements taxonomy, a metamodel,
and a definition. The role of quality attributes organized into quality
models was explained, and the basis for specifying the NFRs integrated
with the functional requirements was created in Chapter 3. Chapter 4
described the elicitation algorithm and additional elicitation aids, such as
elicitation checklists and reference checklists, which are derived from the
quality models with the help of sentence patterns. Now that all neces-
sary artifacts and elicitation aids have been introduced, this chapter de-
scribes how the artifacts from the last chapters are organized into a co-
herent process that enables effective and efficient elicitation of a com-
plete set of NFRs. This process is typically run for each project where
NFRs should be elicited for a SUD. Earlier versions of the process have
been published, for example, in [DKK+05], [DOS04], [KDP+04].

5.1 Overview of the NFR Process

Figure 32 gives an overview of the NFR process. This process is divided
into two process phases:

� Phase 1: the preparation phase: All activities needed for making an
efficient NFR elicitation possible are carried out. First, the QAs rele-
vant for this project are selected; in other words, the set HLQA is pri-
oritized. Then, the reference quality models QM�QM_Ref are tailored
to the specific needs of the project, i.e., all QM�QM_InScope (P1.2)
are created. Once the quality models have been tailored, possible de-
pendencies between the QAs in the quality models in scope are de-
termined, i.e., one has to find all q1,q2�QA_InScope where
(q1,q2)�influence. This is done in P1.2. After the identification of pos-
sible dependencies, for the non-tool-supported version the checklists
that contain the elicitation algorithm are derived in P1.4: One check-
list is created for each QM�QM_InScope. Furthermore, in P1.4, the
template for documenting the NFRs is adapted to the necessities of
the new QA_InScope.

� Phase 2: the NFR elicitation and specification phase: In this phase, the
actual NFR elicitation takes place (see P2.1). Either with tool support
or by using the project-specific checklists, the requirements analyst
elicits the NFRs together with the customer and records the resulting
NFRs in the integrated specification (see Section 3.2). The ultimate

The NFR Elicitation and Specification Process

90

goal is to achieve NFR_E=NFR for the given qualities, subsystems, and
functional conceptual elements in scope. This phase ends with a con-
sistency check (P2.2) to ensure that the resulting set NFR_E is free of
conflicts, i.e.,� ni,nj�NFR_E: (ni,nj) �conflict.

� As depicted in the arrow at the bottom of Figure 32, there is a con-
solidation of the experience-based artifacts with the experience gath-
ered in the current project.

In the following, each process activity P1.1 to P2.2 is explained in detail,
describing the purpose of the process activity, the input to the activity,
the output from the activity, the detailed activity description, i.e., how to
perform the activity, and an example of its application.

P1.2:
Tailor Quality

Models

P1.1:
Prioritize QAs

P1.3:
Identify Possible Conflicts

Between QAs

P1.4:
Derive Checklists

and Templates

Questionnaire
(incl. list of HLQA)

Questionnaire
(incl. list of HLQA)

P2.1:
Elicit & Specify

NFRs

P2.2:
Identify NFR
Dependencies

Reference Quality
Models QM_Ref

(incl. dep.)

Reference Quality
Models QM_Ref

(incl. dep.)

Reference
Template

Reference
Template

Reference
Checklists

Reference
Checklists

Prioritized Set
HLQA

Prioritized Set
HLQA

Project-Specific
Quality Models
QM_InScope

Project-Specific
Quality Models
QM_InScope

Project-Specific
Template

Project-Specific
Template

Project-Specific
Checklists

Project-Specific
Checklists

Functional Req. Spec:
FR_E + SYS

Functional Req. Spec:
FR_E + SYS

Integrated Spec:
FR_E+SYS+NFR_E

Integrated Spec:
FR_E+SYS+NFR_E

Experience-Based Artifacts Project-Specific Artifacts

Learning from Project Experience

Figure 32: The NFR process

 91

5.2 Process Activity P1.1: Prioritize QAs

Purpose: In large projects, it is not always desirable to elicit and specify
the NFRs for all elements of HLQA, mainly due to effort restrictions.
Therefore, the method foresees a possibility to focus elicitation and spec-
ification in the first activity of the methodology. This prioritization helps
to focus the effort spent on NFR elicitation on the most important ele-
ments of HLQA. The goal is to reduce the number of NFRs that are the
target of elicitation based on the QAs that are most important. In indus-
trial projects (see also Chapter 7), it turned out that typically a maximum
of 2 or 3 elements of HLQA were selected as the target of the NFR speci-
fication.

Input: The set HLQA expressing the set of QA that can be of interest to
start the prioritization may vary, but it is usually similar to the following
list of QAs that was already introduced in Section 2.2.3:

� Security

� Reliability

� Usability

� Efficiency

� Maintainability

� Portability

Depending on the procedure selected for carrying out this activity, a
predefined prioritization questionnaire can also serve as input for this ac-
tivity.

Activity description: Basically, there are three possibilities for prioritiz-
ing HLQA:

1. Determination by using a prioritization questionnaire: Either a prede-
fined prioritization questionnaire is used, or a new one is created for
the list of QA�HLQA. Creating a new one means that for each
QA�HLQA, derived statements that address sub-aspects of the corre-
sponding QA are included in the questionnaire3. Representative cus-
tomers receive this prioritization questionnaire and are asked to fill
out the questionnaire. The filled-out questionnaires are then collected
and evaluated to determine the order of the QAs. An example of a
prioritization questionnaire and such an evaluation procedure can be
found in [DKK+03].

3 In order to obtain valid prioritization results, such a prioritization questionnaire should
be standardized, i.e., the validity of the questionnaire must be statistically proven.

The NFR Elicitation and Specification Process

92

2. Determination by means of a stakeholder workshop using a common
prioritization/voting technique: Representative customers are invited
to a joint workshop. They are confronted with HLQA and are asked
to prioritize the QA�HLQA by using a standard prioritization tech-
nique like the ones proposed in [Poh08].

3. Determination by deriving QAs from business goals: Another way to
determine the priority of the QAs is to link the input list of QA�HLQA
to business goals of the company that wants to develop the product
the NFRs should be elicited for. In this case, the business goals need
to be refined to the level of the HLQA input list. A method that uses
such an approach is the MOQARE method [HP08].

The default case for the method developed in this thesis is the usage of a
stakeholder workshop using a common prioritization technique.

Output: The output is a list of prioritized QAs from HLQA.

Example: For the X project, the requirements analysts used the standard
HLQA list. They invited stakeholders (decision makers) from the customer
organization to a joint prioritization session. They explained the meaning
of each QA�HLQA by means of the ISO 9126 definition and some ex-
amples. Then each stakeholder was given 3 sticky points and was asked
to stick the points on the highest-priority QAs from HLQA. The following
result was achieved:

1. Efficiency

2. Security

3. Reliability

4. Usability

5. Maintainability

6. Portability

The requirements analysts for the X project therefore decided to first
elicit the efficiency requirements for the SUD.

5.3 Process Activity P1.2: Tailor Quality Models

Purpose: For the most important QAs, the corresponding QM�QM_Ref
is tailored to the project specificities. This includes deleting obsolete child
QAs but also adding new child QAs that are relevant to this project, but

 93

were not included in the reference quality models. In this tailoring activi-
ty, domain experts from the customer and from the development com-
pany tailor each quality model to the needs of the project. As the com-
pleteness of the quality models is an important prerequisite for the later
NFR elicitation (P2.1), this process activity is an important step in the NFR
process.

Input: The list of prioritized QAs from P1.1 is taken as first input. How
many highest prioritized QA are taken for this activity depends on the ef-
fort and time available for NFR elicitation (see also Chapter 6). The list of
quality models that is selected for further processing is QM_InScope. Fur-
thermore, the reference quality models (see Section 2.2.3) are taken as
input for tailoring.

Activity description: Depending on the effort available for NFR elicita-
tion, a number of high-priority QAs are taken from the list of prioritized
QAs. Typically, this number corresponds to two or three QAs. For these
QAs, the reference quality models are tailored to the specific project con-
text. The most valid way to tailor the reference quality models is by per-
forming a tailoring workshop with a moderator (expert in the NFR meth-
odology) and various product stakeholders (including roles of the cus-
tomer organization and of the development organizations). The follow-
ing roles are good candidates to be invited to such a workshop:

1. Product Managers

2. Helpdesk Personnel

3. Support Personnel

4. Product Trainers

5. Architects

6. Testers

7. Product Customers

8. Product End Users

Typically, there will be one workshop for one QA. There are basically two
ways to perform the tailoring in the workshop:

1. Alternative 1: Tailoring from scratch: For the tailoring, the moderator
starts with the QA�HLQA (e.g., efficiency) as a trigger word and
starts a free brainstorming on what this term means to the workshop
participants. Using this procedure, the participants are to refine the
term efficiency until they reach a measurable level. The moderator
has two tasks: First, he or she collects and visualizes the quality model

The NFR Elicitation and Specification Process

94

resulting from the participants’ discussion. Second, he or she contin-
uously compares the current quality model with the reference quality
model for the QA under discussion and suggests missing child QAs
from the reference quality model to the group if the group does not
raise new items during the discussion. The advantage of this alterna-
tive is that the group understands the created quality model as their
quality model and the free discussion allows for new child QAs (that
are not part of the reference quality models) to be discovered by the
group. The disadvantage of this alternative is the long time that is
needed for the free brainstorming.

2. Alternative 2: Tailoring by directly using the reference quality model:
In this alternative, the moderator directly displays the reference quali-
ty model QM_RefQA and asks the group to comment on the model
regarding obsolete and/or missing child QAs. The advantage of this
alternative is that it is usually fast and the role of the moderator is
less demanding compared to alternative 1. The disadvantage is the
risk of forgetting important child QAs as the group trusts too much in
the completeness of the reference quality model.

In recent industrial applications, we have made good experiences with
alternative 1 and would recommend this unless it is not possible due to
time restrictions or there is high confidence that the reference quality
models contain all possible child QAs.

As an effort estimate for this activity, one high-level QA can typically be
dealt with in a half-day to full-day workshop. The effort needed depends
mainly on

� the number of people in the tailoring workshop,

� the alternative chosen for tailoring,

� the resulting size of the quality model,

� the ability of the moderator to focus the discussion on the quality
model.

After creating these quality models, the method expert classifies the
newly added QAs in the quality model according to the classification
scheme depicted in Table 6 that corresponds to the metamodel (see Sec-
tion 2.2.2):

 95

Output: After performing this activity, the workshop(s) produces the
project-specific quality models (QM_InScope), meaning that for each QA
in scope for the project, exactly one quality model is created. In each
quality model, every QA is classified according to the defined classifica-
tion scheme (see Table 6).

Example: The requirements analyst in the X project invites the product
managers and helpdesk personnel from the customer’s organization as
well as architects and testers from his or her own (development) organi-
zation to a tailoring workshop. The subject of this workshop is the tailor-
ing of the highest prioritized element of HLQA, i.e., efficiency. The re-
quirements analyst chooses alternative 2, the more efficient alternative,
as the time for NFR elicitation is very restricted. Therefore, he or she
starts the workshop by displaying Figure 14, which is his or her reference
quality model for efficiency QM_RefEfficiency.

The group makes the following modifications to the reference model:

� There is no need to talk about means at the moment: All means are
removed from the model.

� The following QAs are irrelevant for the X project: Shutdown Time,
Workload Distribution, Capacity of Network (Throughput and Net-
work Topology), Precision of Calculation. Those QAs are removed
from the model.

� The following QAs are missing: Capacity of Secondary Storage. This
QA is added. The metric GigaByte is also added to phrase measurable
NFR.

After the workshop, the requirements analyst classified the newly added
QA “Capacity of Secondary Storage” as a System QA, as it directly af-
fects the complete subsystem that is responsible for data storage. The
resulting quality model is illustrated in Figure 33.

Type of QA QA Explanation
Structural QA These QAs are just a means to structure the quality model.

No metrics or means should be attached to this kind of QA.

User Task QA These QAs are qualities that restrict tasks a user performs
together with the system.

System Task QA These QAs are qualities that restrict tasks a system performs
without any further interaction with a human. The System
Task QAs therefore restrict system functions.

System QA These QAs are qualities that restrict complete systems or sub-
systems.

Data QA These QAs are qualities that restrict data objects.

Table 6: Classification of QAs

The NFR Elicitation and Specification Process

96

Figure 33: Tailored efficiency model: QM_InScopeEfficiency

 97

5.4 Process Activity P1.3: Identify Possible Dependencies

Purpose: This activity is only needed if P2.2 is also scheduled to be car-
ried out in the project. After the tailoring of the quality models, this ac-
tivity looks for possible dependencies that might exist between the QAs
in the quality models within the scope of the project, i.e., it detects all
q1,q2�QA_InScope | (q1,q2)� influence.

Input: This activity takes the project-specific quality models and the ex-
isting dependencies from the reference quality models as input.

Activity description: In this activity, the method expert performs two
sub-activities:

1. Include existing dependencies in quality models: The method expert
looks for influence dependencies in the reference quality models
QM_Ref where the source and destination QAs for a dependency are
also present in the project-specific quality models. For each such in-
fluence dependency, he or she includes this influence dependency in
the project-specific quality models. In other terms:
� q1,q2�QA_InScope,q1’,q2’�QA_Ref:q1=q1’
 q2=q2’

(q1’, q2’) � influence� (q1,q2) � influence.

2. Check for new dependencies: The method experts evaluates whether
QAs that have been newly introduced into the project-specific quality
models in P1.1 might have dependencies on other QAs in
QA_InScope. If so, the influence dependencies are included in the
project-specific quality model. Depending on the know-how of the
method expert, experts in the domain of the QA (e.g., security or per-
formance experts) can or even should be involved in this activity. In
other terms: �q1 ,q2�QA_InScope, q1�QA_Ref, Check if
(q1,q2) � influence.

Output: The output of this activity are the project-specific quality mod-
els QM_InScope including all possible dependencies between the
QA�QA_InScope.

Example: The requirements analyst takes the following input:

� The output of P1.2, i.e., the current status of QM_InScopeEfficiency (see

Figure 33) and

� the dependency matrix from the efficiency reference quality model
QM_RefEfficiency (see Figure 15).

The NFR Elicitation and Specification Process

98

As QM_RefEfficiency and QM_InScopeEfficiency are very similar, the require-
ments analyst decides to rather edit the QM_RefEfficiency than to start from
scratch. Following sub-activity 1, he or she deletes those QAs that were
deleted from the out-tree from the rows and columns of the dependen-
cy matrix as well (Shutdown Time, Workload Distribution, Throughput,
Precision of Calculation). Following sub-activity 2, he or she adds a row
and column for the newly added QA “Capacity of Secondary Storage”.

The resulting intermediate matrix can be seen in Figure 34.

The requirements analyst now has to check the new quality attribute
“Capacity of Secondary Storage” and judge whether it might be in con-
flict with the other QA�QA_InScopeEfficiency. The cells where comparisons
are needed are depicted with the black background color in Figure 34.
Therefore, he or she has to do seven comparisons to fill out the seven
undetermined fields. In case other QA�HLQA were also elements of
QM_InScope (like maintainability, etc), the requirements engineering
would also have to check for conflicts with all other QAs from the other
models.

U
sa

ge
 T

im
e

R
es

po
ns

e
Ti

m
e

W
or

kl
oa

d

B
oo

t /
 S

ta
rt

 T
im

e

C
ap

ac
ity

 o
f M

em
or

y

C
ap

ac
ity

 o
f P

ro
ce

ss
or

C
ap

ac
ity

 o
f S

ec
on

da
ry

 S
to

ra
ge

Pr
ec

is
io

n
of

 D
at

a
St

or
ag

e

Usage Time � � �
Response Time � � �
Workload � �
Boot / Start Time � �
Capacity of Memory �
Capacity of Processor

Capacity of Secondary Storage

Precision of Data Storage

Figure 34: Intermediate result of P1.3

 99

As the requirements analyst is not an expert for efficiency, he or she asks
the architect in his or her development team to assist in making this de-
cision. The result of the comparison can be seen in Figure 35. Two new
potential sources of conflicts were introduced: The higher the workload,
the more secondary storage might be needed and the more precisely the
data is stored, the more secondary storage might be needed.

5.5 Process Activity P1.4: Derive Checklist and Template

Purpose: Based on the project-specific quality models QM_InScope, the
reference checklists and templates are tailored to the specific project
context. The checklist are then used to guide the NFR elicitation and
specification process P2.1. Therefore, in the non-tool-supported version
of this methodology, the algorithm for the NFR elicitation is incorporated
into the checklist.

Input: This activity takes the project-specific quality models, the refer-
ence template for specifying the NFRs, and those reference checklists
that correspond to the prioritized QAs in scope for this project as input.

U
sa

ge
 T

im
e

R
es

po
ns

e
Ti

m
e

W
or

kl
oa

d

B
oo

t /
 S

ta
rt

 T
im

e

C
ap

ac
ity

 o
f M

em
or

y

C
ap

ac
ity

 o
f P

ro
ce

ss
or

C
ap

ac
ity

 o
f S

ec
on

da
ry

 S
to

ra
ge

Pr
ec

is
io

n
of

 D
at

a
St

or
ag

e

Usage Time � � �
Response Time � � �
Workload � � �
Boot / Start Time � �
Capacity of Memory �
Capacity of Processor

Capacity of Secondary Storage �
Precision of Data Storage

Figure 35: Final dependency matrix for QM_InScopeEfficiency

The NFR Elicitation and Specification Process

100

Activity description: The method expert has two sub-activities:

1. Derive template:

a. In this sub-activity, the method expert takes the reference tem-
plate and deletes the sections for QAs that are not in QA_InScope.

b. Furthermore, for each q�QA_InScope, q �QA_Ref, he or she
creates new sections for the newly identified child QA q in the tem-
plate. Depending on the classification of the newly added QA q, the
method expert performs the steps depicted in Table 7.

2. Derive checklists:

a. Include existing advices in project-specific checklist:

In this sub-activity, the method expert takes the reference checklist
for each prioritized QA that is in scope for this project and deletes the
advices for child QAs that are not in the project-specific quality mod-
els. After this sub-activity, all relevant advices from the reference
checklists are included in the checklist version.

QA Type Change in the requirements document template

Structural QA For each Structural QA, insert its own section into the general NFR
chapter according to the hierarchy of QAs. For example, if Time
behavior is a structural QA below the Structural QA Efficiency, then
the general NFR chapter of the requirements document template will
have a section Efficiency with a subsection Time Behavior

User Task QA No change to the template.

System Task QA No change to the template.

System QA Insert a section with the name of the System QA below the Structural
QA it belongs to. If, for example, the System QA Capacity of Memory
is below the Structural QA Capacity, the template will have a subsec-
tion Capacity of Memory in the section Capacity.

Data QA No change to the template.

Table 7: Change of requirements document template based on QAs

 101

b. Create new advices:

In this sub-activity the method expert takes the checklist version from
sub-activity 2.a and adds a new advice for each newly added child
QA in the project-specific quality model. The creation of an advice is
straightforward. It is dependent on the classification of the QA and is
based on the sentence patterns depicted in Table 8.

Please note that the sentence patterns presented in this table make
use of an instantiation of the generic sentence patterns in Table 5.
The instantiation refers to the usage of textual UC description as
documentation means for the element “User Tasks” and the usage
of system functions as documentation means for “System Tasks” (see
Section 2.2.2.1).

The checklist now contains all advices for the NFR elicitation step.
Please note that in the tool-supported version of this methodology,
the sub-steps 2.a and 2.b of this process step are automated by the
Checklist Generation tool, see Section 6.2.1.

c. Revise order of checklist advices:

The checklist contains all necessary advices for the NFR elicitation, but
the order is not optimized. Therefore, this NFR methodology recom-
mends asking advices in the following order, according to the general
elicitation algorithm depicted in Figure 28:

� Give advices for one high-level QA after another.

Classification Sentence Pattern (Manual Process)

Structural QA No text, but a new heading is introduced in the checklist to
organize the advices

User Task QA For each Use Case, please specify the *QA-Name*-NFRs

“Child” System Task QA: The parent QA
of this System Task QA is classified as
User Task QA

For all Use Cases: look if this Use Case has one or more NFRs of
the type *Parent-QA-Name*:
� If so, please refine these NFRs by specifying *QA-name*-

NFRs at each system function that appears in the flow of
events.

� Else: -
For all remaining system functions: please specify the *QA-
Name*-NFRs.

“Stand alone” System Task QA: The
parent QA of this System Task QA is
classified as Structural QA

For each system function, please specify the *QA-Name*-NFRs.

System QA For each system part, please specify the *QA-Name*-NFRs.

Data QA For each data item, please specify the *QA-Name*-NFRs.

Table 8: Instantiated sentence pattern for checklist advices

The NFR Elicitation and Specification Process

102

� Then start with User Task QAs: give advices for User Task QAs,
� Continue with child System Task QAs
� Continue with remaining System Task QAs
� Continue with System QAs
� Continue with Data QAs

Output: First, one output of this activity is the complete project-specific
template for the requirements specification for the functional and non-
functional requirements. Second, for the non-tool-supported version of
the methodology, this activity outputs the project-specific checklists that
guide the NFR elicitation and specification process P2.1.

Example: The requirements analyst takes the reference checklist for effi-
ciency (see Figure 31) and the tailored quality model for efficiency
QM_InScopeEfficiency (see Figure 33) as input. Following subactivity 2.a, he
or she takes all advices from the reference checklist except the advices
for the deleted QAs Shutdown Time, Workload Distribution, Through-
put, and Precision of Calculation. He or she adds a new advice for the
newly added QA “Capacity of Secondary Storage”, which is a System
QA: “For each system part, please specify the Capacity of Secondary
Storage-NFRs.” As the metric Gigabyte is in the QM_InScopeEfficiency, he or
she adds the phrase “Please use the available metric: Gigabyte”. As it is
a System QA, it should be asked before the Data QA. Therefore, the re-
quirements analyst moves the new advice up to position 2.1.3 on the
checklist. The resulting checklist can be seen in Figure 36. In the tem-
plate, the requirements analyst deletes the predefined sections on Shut-
down Time, Workload Distribution, Throughput, and Precision of Calcu-
lation in the chapter on the general NFRs and adds a new section on Ca-
pacity of Secondary Storage in the chapter on the general NFRs, below
the subsection on Capacity NFRs.

 103

Elicitation of Efficiency NFRs
1. Elicitation of Time Behavior NFRs

 1.1 Elicitation of Usage Time NFRs
For each use case, please specify the Usage Time

� Please use the available metrics: seconds
 1.1.1 Elicitation of Response Time NFRs

For all Use Cases: check if this Use Case has one or more NFRs of
the type Usage Time: If so, please refine these NFRs by specifying
Response Time NFRs for each system function that is used in this
Use Case.
For all other system functions: please specify the Response Time
� Please use the available metrics: seconds

 1.2 Elicitation of Workload NFRs
For each system part, please specify the Workload

� Please use the available metrics: #jobs / time unit and # of support-
ed users

 1.3 Elicitation of Boot / Start Time NFRs
For each system part, please specify the Boot / Start Time

� Please use the available metrics: seconds for cold start, and seconds
for warm start

2. Elicitation of Resource Utilization NFRs
 2.1 Elicitation of Capacity NFRs

 2.1.1 Elicitation of Capacity of Memory NFRs
For each system part, please specify the Capacity of Memory
� Please use the available metrics: Gigabyte, resource consump-

tion of memory, and cost of memory
 2.1.2 Elicitation of Capacity of Processor NFRs

For each system part, please specify the Capacity of Processor
� Please use the available metrics: ghz, resource consumption of

processor, and cost of processor
 2.1.3 Elicitation of Capacity of Secondary Storage NFRs

For each system part, please specify the Capacity of Secondary
storage
� Please use the available metrics: Gigabyte

3. Elicitation of Accuracy NFRs
 3.1 Elicitation of Precision of Data Storage NFRs

For each data item, please specify the Precision of Data Storage
� Please use the available metrics: #digits after comma

Figure 36: Project-specific checklist for QM_InScopeEfficiency

The NFR Elicitation and Specification Process

104

5.6 Process Activity P2.1: Elicit and Specify NFRs

Purpose: After determining the functional requirements that are in
scope for the NFR elicitation from the complete set of functional re-
quirements (FR_E) and subsystems (SYS), the set of NFR_E is elicited with
the help of the project-specific checklist (or the elicitation tool) and doc-
umented in the integrated specification according to the project-specific
template. Through pair-wise comparison of the functional requirements
with the QAs, NFR_E = NFR shall be achieved for all QAs and functional
requirements that are in scope for the NFR elicitation.

Input: For the non-tool-supported version, this step takes the project-
specific checklist, the project-specific template, and the functional re-
quirements specification (including FR_E and SYS) as input. For the tool-
supported version, the tool takes the functional requirements specifica-
tion according to the project-specific template as input.

Activity description: This process step contains four sub-activities:

1. Set the functional scope:

The first sub-activity of this process step is used to focus the effort for
NFR elicitation. In the first step, the method expert sets the functional
scope. This can be done in three ways:

a. Vertical scope selection: In this case, the scope is set by the level
of abstraction that is the target of the NFR elicitation. The most
common way to set the abstraction level is, for example, to set the
UT_E as a target, but to not select the ST_E (which corresponds to
the set of system functions) or the DI_E as target for the NFR elicita-
tion. We recommend always selecting SYS as a target.

b. Horizontal scope selection: In this case, some functionalities
and/or components are more important than others. The require-
ments analyst selects specific user tasks from UT_E and system com-
ponents from SYS to be the target of the NFR elicitation.

c. Combination of vertical and horizontal scope selection: In this
case, specific user tasks and components are in scope for the NFR
elicitation, but only on a specific abstraction level.

2. Apply project-specific template to functional requirements specifica-
tion:

Basically, we assume for this method that the functional requirements
specification is already compatible with the functional elements of the
project-specific template. Then, the method expert compares the pro-

 105

ject-specific template and adds missing sections (these are usually the
ones that concern the QAs in scope) to the functional requirements
specification.

3. Elicit NFRs using the checklist/tool:

Concerning the non-tool-supported version of this activity, the require-
ments analyst invites representatives of the customer organization to an
elicitation workshop. Adequate roles to be invited are the same as the
customer roles already mentioned in P1.2. The requirements analyst who
acts as moderator takes the checklist. His or her job is to stick to the
checklist advices and navigate through the requirements document. As
the checklist advices implement the algorithm for NFR elicitation in the
non-tool-supported version, the elicitation process is straightforward.
The moderator should carefully ensure the following points during the
process:

� Stick to the process: Do not let the process drift based on new ideas
emerging during the meeting. If NFRs for other QAs are issued by the
workshop participants, note them as preliminary NFRs in the corre-
sponding location of the integrated requirements specification (see
sub-activity 4). Continue with the advices on the checklist.

� Use metrics: The workshop participants sometimes tend to neglect to
use the metrics specified in the checklist and specify NFRs in a vague
way. Enforce the usage of the metrics on the checklist or other
measurable ones4.

� Specify rationale: Especially during the first usages of this methodol-
ogy, workshop participants tend to “overspecify” NFRs. This means
they will raise NFRs that are not well motivated because they feel
forced to give NFRs according to the checklist advices. This effect can
be eliminated by always requesting a justification (rationale) for the
NFR. Typical rationales in the context of NFRs are:

– Several end users request the NFR.

– This NFR is the result of several complaints on the hotline.

– Our competitors offer similar qualities.

– We want to surpass our competitors in this quality dimension.

� Watch out for over spanning NFRs: If the same NFR appears again,
but restricts another functional conceptual element or system com-
ponent, ask the customer whether this NFR holds for all elements of
the same type of the functional conceptual element (e.g., for all user
tasks or all system components). If so, mark the NFR as over spanning
NFR.

4 In case new metrics are suggested at the NFR workshop, these should be added to the
project-specific quality models, the reference quality models, and to the checklist later on.

The NFR Elicitation and Specification Process

106

If this sub-activity is performed as described above, every functional con-
ceptual element in scope is compared with every QA in scope that can
be related to this functional conceptual element. The same holds for the
system components. Under the assumption that the customers do not
intentionally hide NFRs, the resulting set NFR_E will therefore be com-
plete.

4. Specify NFRs in integrated requirements specification.

The NFRs elicited and validated in sub-activity 3 are then documented in
the integrated requirements specification. This means that the NFRs are
integrated into the extended functional requirements specification (see
sub-activity 2). The actions described in Table 9 are performed during the
workshop.

5 “Corresponding“ here refers to the fact that for the System QAs, separate sections
were already created in activity P1.3.

NFR of Type Action for specifying the NFR

User Task QA Specify the elicited NFR at the user task it belongs to. This can be done in the sim-
plest way by annotating the UC diagram with a note that includes the NFR. Another
possibility is to specify the User Task NFRs directly below the UC diagram structured
according to the UC they belong to. Please note that over spanning NFRs are docu-
mented in the general NFR chapter of the document.

System Task QA Specify the elicited NFR at the system task it belongs to. This can be done in the
simplest way by directly writing the NFR into a specific field in the system function
description (see system function template in Figure 24). If the system tasks are re-
finements of user tasks, i.e., if they also appear in the user task specification, we
recommend to also specify (or link) the NFRs related to the system function in the
corresponding user task. E.g., if UCs are used, one could specify the NFR in a sepa-
rate NFR section of the UC (see UC in Figure 24). Please note that over spanning
NFRs are documented in the general NFR chapter of the document.

System QA Specify the elicited NFR in the corresponding5 section of the integrated requirements
document.

Data QA Specify the elicited NFR at the data item it relates to. If the data items are described
in a graphical manner (UML class/object diagrams or ER diagrams), the NFRs can be
annotated similarly to the User Task QAs with notes in the diagram or placed directly
below the diagram. Please note that over spanning NFRs are documented in the
general NFR chapter of the document.

Table 9: Specifying NFRs in an integrated requirements specification

 107

For specifying the NFRs, the method expert should use a unique identifi-
er for the NFR. The following scheme should be used to tag the NFRs:

If the QA is at the following location in the quality model hierarchy:

A�B�C�*QA-name*

the NFR will be tagged:

A-acronym.B-acronym*.*C-acronym*.*QA-name*.Number:*NFR-
text*

As example: The first NFR for the QA Response Time (which is allocated
in the quality model at Efficiency�TimeBehavior�Usage Time) would be
tagged with

Eff.TB.UT.RT.1: …

The effort that is needed for the NFR elicitation depends on

� the number of functional items selected in sub-activity 1,

� the number of people involved in the elicitation workshop and their
ability to agree on NFRs

� the experience of the participants and the moderator with the meth-
od (this mainly refers to sticking to the process and not opening up
side discussions).

With the tool-supported version, the project-specific checklist in step 2 is
not needed. The algorithm for NFR elicitation is built into the Elicitation
Guide Tool, see Section 6.2.2.

Output: The output of this process step is the integrated requirements
specification including functional (FR_E and SYS) and a complete set of
non-functional requirements (NFR_E).

The NFR Elicitation and Specification Process

108

Example: The requirements analyst for the X project invites the custom-
er to a workshop. He or she takes the project-specific checklist (see Fig-
ure 36) and the functional requirements specification as input. As the
time with the customer is limited to two hours, in a first step he or she
sets the functional scope for the NFR elicitation. He sets the horizontal
scope to all non-network elements of SYS, which are the primary data-
base, the secondary database, and the PDAs (cf. Figure 37).

Furthermore, he or she selects the UC Handle Alarm and its included
UCs as target of the elicitation, as this is the most crucial user task in the
system (cf. Figure 38). In the vertical scope selection, the requirements
analyst chooses UT_E, ST_E and SYS as the target of the elicitation.

Figure 37: Physical components in the X project

Figure 38: Target UCs for NFR elicitation in the X project

 109

In the second step, the analyst extends the functional requirements spec-
ification with the missing elements for the NFR specification, i.e., he or
she adds

� notes objects to the UC diagram (cf. Figure 38) for capturing the
NFRs that constrain the user tasks in scope.

� a new template section “NFR” to the UC template (cf. Figure 39) to
capture the NFRs that constrain the system tasks in scope.

� a new chapter “General NFR” to the functional requirements specifi-
cation (cf. Figure 40) capturing the NFR for the subsystems in scope.

In the third step, the requirements analyst uses the checklist in the work-
shop to ask the customer for NFRs. He or she starts with eliciting the Us-
age Time NFR for the UCs. The customer states three NFRs for the UC
Handle Alarm and its included UCs (see notes objects in Figure 38). Af-
terwards, the analyst asks the customer to refine the usage time NFRs in-
to response time NFRs by using the textual UC definition. The customer
refines the usage time NFR by stating two response time NFRs on the UC
steps that are performed by the system (see Figure 39). The next check-
list questions trigger the analyst to ask the customer for workload, boot-
time, and capacity requirements for all system components that are in

UseCase Handle alarm
Actors Controller

Goal Actor removes a warning sent by a certain machine
Preconditions …

Flow of Events 1. System regularly requests alarm messages from the first database
2. System shows alarm and where the alarm was produced.

[Exception: Multiple alarms]
3. Actor acknowledges alarm to let other controllers know he/she is going

to take care of it.
[Exception: Another actor has acknowledged the alarm]

4. Actor moves to the machine following the path displayed by the system.
5. During the walk, the actor monitors the status of this machine with the

help of the system (for details on the monitoring, see Use Case “Moni-
tor Machine”).

6. Actor removes the problem by controlling the machine (for details on
controlling, see Use Case “Control Machine”).

7. System sends control data to first database.
Exceptions …

Rules …
NFRs Eff.TB.UT.RT.1: The response time for step 2 shall be < 5 sec.

Eff.TB.UT.RT.2: The response time for step 7 shall be < 5 sec.
Postconditions …

Figure 39: Use Case “Handle Alarm” in the X project

The NFR Elicitation and Specification Process

110

scope. The customer states several NFRs for the system components
which are also documented according to the fourth step in the integrat-
ed requirements specification (see Figure 40). The checklist part on accu-
racy NFR is skipped, as the data items were not included in the horizon-
tal scope selection. The requirements analyst now has an integrated re-
quirements specification for the X project.

5.7 Process Activity P2.2: Identify NFR Dependencies

Purpose: After NFR_E has been specified completely, this activity checks
whether the set NFR_E is consistent or whether a set of NFRs in NFR_E is
conflicting.

Input: The integrated requirements specification and the project-specific
quality models (including the dependency matrices) serve as input for
this step.

Activity description: This activity is divided into three sub-activities:

Chapter 4: General NFR
4.1: Efficiency
4.1.1: Time Behavior
4.1.1.1: Workload
 Eff.TB.Wo.1: The processor of the first database must be capable of

handling the data of 10 machines, which means aggregating the complete
data of all ten machines every second (about 200 Kbyte of data per second).
Eff.TB.Wo.2: The PDA must be capable of having 5 programs open at the same
time (rationale: assumed maximal number of programs that will be used by the
user).

4.1.1.2: Boot / Start Time
Eff.TB.BT.1: The boot time for the primary database, the secondary database,
and the PDA shall be <60 seconds.

4.1.2: Resource Utilization
4.1.2.1: Capacity
4.1.2.1.1: Capacity of Memory
 Eff.RU.Ca.CaMem.1: The memory of the primary database should have 20%
 spare resources in a worst-case scenario (rationale: these are required for

additions in the future) and it shall be <=512MB for the server (rationale: low
cost for Hardware shall be achieved).

Figure 40: Added chapter for general NFR

 111

1. Check for intra-QA dependencies6:

In this sub-activity, one checks whether the set of NFRs specified for one
and the same QA is consistent. This can be done by building a view on
all NFRs for one QA and then do a pair-wise comparison for each pair of
NFRs in this view. Experience shows that dependencies usually exist if the
same functional object is affected. Therefore, it is reasonable to only
compare NFRs of the same QA that are related to the same functional
object or system component, respectively. For System Task NFRs, this can
be achieved, for example, by navigating to the corresponding system
function descriptions and comparing all NFRs of the same QA that are
documented there.

2. Check for inter-QA dependencies:

Basically, all NFRs that are type of two QAs that are influencing each
other (see Process Activity P1.3) should be checked for dependencies.
This limits the scope of dependency checking from having to do a pair-
wise comparison between all elicited NFRs to those where the QAs, the
NFRs are type of, stay in conflict. So let

QA_NFRexpressed={QAi�QA_InScope|	 nj�NFR_E,
(nj,QAi) � isOfType}

be the set of QAs where the elicited NFRs in the set NFR_E are type of.
Then the algorithm for comparing NFRs would be:

For each QAa�QA_NFRexpressed:

 For each QAb�QA_NFRexpressed | (QAa, QAb)� influence

For each pair of NFR NFRi, NFRj�NFR_E | (NFRi, QAa) �
isOfType
 (NFRj, QAb) � isOfType:

Compare and check whether a conflict de-
pendency exists.

If a dependency is detected, this pair is marked as conflicting and must
be resolved in step 3.

6 Please note the use of terminology: We distinguish between intra-QA dependencies
(i.e., dependencies between NFRs that are of the type of the same QA) and inter-QA
dependencies (i.e., dependencies between NFRs that are of the type of different QAs).
The dependencies between QAs of different quality models are called inter-quality model
dependencies; the dependencies between QAs in the same quality model are called intra-
quality model dependencies.

The NFR Elicitation and Specification Process

112

One could now ask the question whether a pair-wise comparison is suf-
ficient for identifying possible dependencies. Maybe a set of NFRs of a
size > 2 stays in conflict, but no pairs of NFRs inside the set. Then the
procedure proposed here would not be able to detect this kind of con-
flict. There are two reasons why this method does not provide a mecha-
nism for identifying such conflicts:

� It is not yet proven that such a situation may occur in practice. In all
applications of the method and industrial settings we found a situa-
tion where when a set of NFRs with more than 2 elements was in
conflict, this was always detectable by finding conflicts in the pair-
wise comparison.

� Extending the already time-consuming pair-wise comparison to a
check where all combinations have to be checked (see also Section
6.1.3) would increase the effort needed to a completely impractical
amount.

Experience has shown that checking for inter-QA dependencies is a non-
trivial task. This is due to the large number of comparisons that are
needed to completely check all possible NFRs that might be in conflict,
even though the number of comparisons is reduced by focusing on
those NFRs where the corresponding QAs stay in conflict. Therefore, for
this activity, tool support would be needed, but this is beyond the scope
of this thesis. This tool support could bring the candidate pairs of possi-
bly conflicting NFRs to the attention of the requirements analyst and ask
whether the two NFRs really stay in conflict. This would take the burden
of searching for the candidate pairs off the requirements analyst.

3. Resolve dependencies: Basically, there are two ways for resolving
conflicts:

a. One NFR dominates the other: The less important NFR is deleted
or made less restrictive so that both NFRs can coexist and a solution
can be constructed that will fulfill both NFRs.

b. A compromise is made: Both NFRs are kept and both are made
less restrictive so that they can coexist and a solution can be con-
structed that will fulfill both NFRs.

Variant a is often chosen if the elements of HLQA of the two QAs, of
which the NFRs are a type of, have a significantly different priority (e.g.,
one NFR constrains the QA Analyzability, which belongs to the low-
priority element of HLQA “Maintainability”, and the other NFR con-
strains the QA Usage Time of the high-priority element of HLQA “Usabil-
ity”).

Output: After this activity, the integrated requirements specification
contains a conflict-free set NFR_E, i.e., � ni,nj�NFR_E: (ni,nj) �conflict.

 113

Example: The requirements analyst takes the integrated requirements
specification and performs step 1 of this activity: The intra-QA depend-
ency check. For this activity, he or she checks whether the three Usage
Time NFRs are in conflict, which is not the case. Then he checks the set
of two Response Time NFRs and afterwards the set of three workload
NFRs, which are also conflict-free. In the second step of the P2.2 activity,
the analyst checks for inter-QA dependencies: As only efficiency NFRs
were in scope for the elicitation, he or she can focus on intra-QM de-
pendencies. He or she refers to the project-specific dependency matrix
(see Figure 35) and has to perform the following checks:

� Usage Time NFRs vs. Workload NFRs

� Usage Time NFRs vs. Boot Time NFRs

� Response Time NFRs vs. Workload NFRs

� Response Time NFRs vs. Capacity of Memory NFRs

� Workload NFR vs. Capacity of Memory NFRs

� Boot Time NFRs vs. Capacity of Memory NFRs

The analyst does not have to check Usage Time NFRs vs. Response Time
NFRs, as this is already assured in the constructive refinement of Re-
sponse Time NFRs from Usage Time NFRs. Since the analyst wants to
make sure that the memory is sufficient for handling the amount of da-
ta, he or she only investigates the following pair of requirements in more
detail:

� “Eff.TB.Wo.1: The processor of the first database must be capable of
handling the data of 10 machines which means aggregating the
complete data of all 10 machines every second (about 200 Kbyte of
data per second).” and

� “Eff.RU.Ca.CaMem.2: The memory of the primary database shall be
<=512MB for the server”.

He or she asks one of the architects to make sure that the primary
memory suffices for the corresponding workload requirements. After the
okay by the architect, the analyst declares the set of NFRs in the inte-
grated requirements specification as conflict-free.

5.8 Learning from Project Experience

In such a young discipline as software engineering, learning from project
experience is crucial in order to optimize engineering in future projects.
Concepts like the experience factory [BCR94b] ensure that for a specific
project context, the optimal set of inputs (e.g., processes, techniques,
methods, models and tools) is used. Our NFR methodology already uses
experience-based artifacts, even though they are not organized in such a

The NFR Elicitation and Specification Process

114

formal way as an experience factory. In the future, quality attributes in
quality models could be enhanced with a context vector that describes
for which kinds of products and projects in a company the quality attrib-
ute seems to be suitable. With this information, the tailoring of the qual-
ity models (P1.2) could be supported and partially automated. This might
make sense if very large quality models would be in scope for the pro-
jects.

We know from approaches like QIP [BR88] and the experience factory
that analytical activities in the late phases of the project, i.e., learning
from project experience, is essential for keeping the experience base up
to date. Therefore, the NFR methodology also makes use of a learning
activity:

After phase 2 of the NFR process, there may be important information in
the project-specific artifact that should be incorporated into the experi-
ence-based artifacts. Besides general know-how that one wants to cap-
ture, the following information is of specific importance:

� New information emerged during phase 1: If there is new infor-
mation in QM_InScope that is not in QM_Ref, the responsible re-
quirements analyst should carefully think about whether the new in-
formation should be added to QM_Ref. This can, of course, also ef-
fect the reference checklists or the reference template. This infor-
mation might be:

– A new QA that is inserted into QA_InScope during P1.2

– A new dependency that is captured in the dependency matrix during
P1.3

� New information that has emerged during phase 2:

– New types of NFRs: During P2.1, the customer comes up with NFRs
that do not constrain any QA�QA_InScope, but the NFR would con-
strain a new QA. This new QA would then be added to the
QA_InScope.

– New dependencies: During the dependency analysis (P2.2) a depend-
ency is found between two NFRs n1,n2

�NFR_E, but it holds for
q1,q2

�QA_InScope | (n1,q1)� isOfType and (n2,q2) � isOfType that
(q1,q2)� influence. This means that a dependency was found at the
NFR level that is not reflected in the current dependency matrices. In
this case, (q1,q2)� influence would be added to the QM_InScope.

One would therefore check whether the newly introduced QA or de-
pendency is project-specific or whether it should be incorporated into
QM_Ref. However, new information that emerged in phase 2 should not
only be used for improving the experience-based artifacts, but should al-
so impact the current NFR process. New NFRs make an additional itera-
tion of P2.1 necessary, as the new QA was not in scope at the beginning

 115

of P2.1 (see Section 6.1 on how to use the NFR process iteratively). New
dependencies found in P2.2 make a new iteration of P2.2 necessary.

Increasing the Method’s Efficiency

116

6 Increasing the Method’s Efficiency

Having an effective method for eliciting and specifying a complete set of
NFRs is important. Mechanisms for increasing the efficiency of the meth-
od can be a key enabler for its practical applicability. As can be seen
from the description in Chapter 4, many parts in the NFR methodology
are intentionally constructed in an algorithmic or pattern-based way so
that they can be easily automated. [Ebe98] already stated the need for
tool support: “We identified a big need for tools for management of
NFRs.” Furthermore, the NFR methodology foresees several places where
focusing can be used in order to trade off results and effort. Both the
tool support and the focusing shall make the NFR methodology more
pragmatic and applicable to real-life projects. The first section in this
chapter deals with the possibilities of focusing the effort, the second sec-
tion with the tool support developed for this NFR methodology.

6.1 Focusing the Effort

[Boe81] already stated that the more detailed a guideline document is,
the less the guidelines will be used. Therefore, if the NFR methodology
uses a checklist or checklist questions incorporated into the tool-
supported version, it is essential that one can set focus in order to reduce
the number of questions. Focusing the effort has two goals: First, any ef-
fort that is less beneficial shall not be spent on the NFR methodology.
Second, the NFR methodology shall enable the requirements engineer to
trade off between spending additional effort to find more NFRs and sav-
ing the effort because the NFRs might not be that relevant. Comparing
requirements engineering with risk management, the possibility of focus-
ing the effort for elicitation is a means for adjusting the risk of missing
critical NFRs. With regard to these two goals, the NFR methodology ena-
bles focusing in four areas:

� Focus by setting the quality scope: The QA�HLQA are prioritized and
the set of QAs that shall be subject to elicitation is determined. The
focus is set in P1.1 (prioritization of QAs) and P1.2 (selection of QAs).
The effect of this focus is on all subsequent process activities.

� Focus by setting the functional scope: Horizontal and vertical scope
selection is performed in P2.1. By this activity, only the most im-
portant functional items are the focus of elicitation or the NFRs are
only elicited up to a certain level of abstraction. The effect of this
kind of focusing is on P2.1.

 117

� Focus by restricting the dependencies to be checked: By evaluating
the possibly conflicting pairs in P1.3 and by restricting the check of
NFRs to those that affect the same functional item/system compo-
nent in P2.2, less effort is needed for the dependency checking. The
decisions have an effect on P2.2.

� Implicit focusing by using the relationships between quality elements
and functional conceptual elements / system components: This focus
is inherent to the entire NFR methodology, as it is anchored in the
metamodel for the methodology. It has an effect on almost all pro-
cess activities, with the strongest one being on P2.1.

Some of the focusing can be steered by the requirements engineer dur-
ing the process, while other focusing is inherently built into the method.
Table 10 gives an overview of which focus areas are used for which goal.

As can be seen from the table, the requirements engineer can focus on
three of the four focus areas. In the following, more details of these
trade-off decisions are presented. Furthermore, details will be presented
on how the NFR methodology can be performed in an iterative way by
addressing certain quality attributes or functional elements in different
iterations.

6.1.1 Trading off the Quality Scope

In this trade-off decision, the requirements analyst together with the cus-
tomer determines which quality attributes are in scope. The quality scope
can be affected in four areas:

1. Prioritizing the set HLQA: The customer determines the order of im-
portance for all elements in HLQA. The quality focus is already influ-
enced by the set of QA�HLQA that are chosen for prioritization. Fur-
thermore, the order has an effect on the quality models that will be
in scope later (QM_InScope).

Focus Area:
Goal: inherently cut less bene-
ficial effort

Goal: enable trade-off be-
tween effort & completeness

Quality Scope � �

Functional Scope �

Restriction of
Dependencies � �

Relationship FR/SYS/NFR �

Table 10: Goals of the focus areas

Increasing the Method’s Efficiency

118

2. Selecting the QA�HLQA that are in scope for the project: Usually the
customer decides on the number of QA�HLQA that will be in scope.
A typical number is two to three QAs. Another option would be to
not determine the number of QAs in scope, but rather to take an it-
erative NFR elicitation approach, i.e., to start with the first one (high-
est priority QA), finish the NFR elicitation, and see whether there is
enough time and effort left for the second QA, and so on.

3. Tailoring of the QM: In this activity, a focus is set by determining the
relevant child QAs for the high-level QA�HLQA. If a QA is consid-
ered not important, it is simply left out of the quality model. In case
one is unsure whether a QA is important or not, we recommend in-
cluding it in the quality model. We want to emphasize that the tailor-
ing of the quality model could theoretically be used to set the focus
for the next iteration by making a very small quality model, but this is
not the intention of this step and may lead to the dangerous situa-
tion that some QA are forgotten for elicitation, i.e., NFR_E will be-
come incomplete. This kind of adjustment (to take a subset of QAs
from the quality model) can be performed in the next activity.

4. Selecting the QA�HLQA for the next iteration. If the NFR methodol-
ogy is performed in an iterative way (see also area 2: Selecting the
QA�HLQA that are in scope for the project), one can select at the
beginning of P2.1 those quality attributes that shall be in scope for
the current iteration. This gives the requirements engineer the chance
to complete the NFR elicitation for one quality attribute rather than
having a scattered set of NFRs for various quality attributes because
the time is not sufficient for a complete elicitation.

We want to emphasize again that only the areas 1, 2, and 4 should be
used intentionally to set the quality scope.

6.1.2 Trading off the Functional Scope

The main goal of this NFR methodology is to achieve a complete set of
NFR_E. As the methodology is built on the relationship between quality
attributes and functional conceptual elements and system components,
respectively, it is dangerous to limit the functional scope for the elicita-
tion. But there may be settings where a reduction of the functional
scope may make sense, such as:

� There is not enough time to perform a complete NFR elicitation;

� Requirements are scheduled for various releases and the NFR for re-
quirements of the first release should be elicited first;

� Some functional requirements are in a document where the compo-
nents are already built. Therefore, the NFR elicitation shall only be
performed for the new requirements;

 119

� Some functional requirements are in a preliminary state and are
therefore not mature enough to be input to the NFR process.

Therefore, the NFR methodology foresees the possibility to set the func-
tional scope for the elicitation:

� Vertical scope selection: In this case, the scope is set by the level of
abstraction that is the target of the NFR elicitation. The most com-
mon way to set the abstraction level is, for example, to set the UT_E
as the target, but not to select the ST_E (which corresponds to the
set of system functions) or the DI_E as a target for the NFR elicitation.
We recommend always selecting SYS as the target.

� Horizontal scope selection: In this case, some functionalities and/or
components are more important than others. The requirements ana-
lyst selects specific user tasks from UT_E and system components
from SYS to be the target of the NFR elicitation.

A combination of horizontal and vertical scope selection is also possible.
This functional scope selection can also be used when the NFR method-
ology is used iteratively. Then some functionalities or abstraction levels
are the subject of the first iteration, whereas other functionalities or ab-
straction levels can be scheduled for future iterations.

6.1.3 Trading off the Dependencies

When focusing the effort with regard to the dependency checking, we
distinguish two areas of focusing:

� Focus the dependency checks by only comparing NFRs where the
QAs, the NFRs are type of, are marked as influencing each other in
P1.3.

� Focusing dependencies on NFRs that constrain the same functional
conceptual element/system component.

By reducing the number of comparisons to those where only the related
QAs that influence each other are checked, the NFR methodology signif-
icantly reduces the number of comparisons:

Let

QA_NFRexpressed={QAi�QA_InScope|	 nj�NFR_E,
(nj,QAi) � isOfType }

n=#elements of NFR_E

q=|QA_NFRexpressed|=number of QAs for which at least one
elicited NFR is type of

Increasing the Method’s Efficiency

120

r=number of relationships between elements of
 QA_NFRexpressed in dependency matrix

c=n/q = average number of NFR per QA

Then the number of comparisons (including intra-QA and inter-QA de-
pendencies) NCall needed to find dependencies without restriction to the
ones where QAs are marked as influencing each other amounts to

�
�

�
1-n

1i
all iNC =

22
)1(* 2 nnnn �
�

�

since a pair-wise comparison of all NFRs is needed. If we follow the algo-
rithm that only compares NFRs where the QAs are related (see Section
5.7), the number of comparisons for intra-QA dependencies NCrel-intra
amounts to:

22
)1(***NC

21

1
intra-rel

qcqcccqiq
c

i

�
�

�
�� �

�

�

as a pair-wise comparison for all NFRs expressed for each
QAi�QA_NFRexpressed needs to be performed. The number of compar-
isons for inter-QA dependencies NCrel-inter amounts to:

2
-interrel *NC cr�

as for each relationship, each NFR of the two influencing QAs need to be
compared. So the total number of comparisons NCrel is

2
2

inter-relintra-relrel *
2

 NC NC NC crqcqc
�

�
���

If all QAs in QA_NFRexpressed were related, then

2
)1(*1

1

�
�� �

�

�

qqir
q

i

and the total number of comparisons would be

relNC �
�

�
�

��
�

�
2

)1(**
2

*
2

2
2

2
2 qqcqcqccrqcqc

 121

all

222

NC
22

�
�

�
� nncqqc

But usually the number r of related QAs in QA_NFRexpressed is smaller
resulting in NCrel<NCall. Let us take, for example, the quite full dependen-
cy matrix (r=13, q=8) in Figure 35 and assume that c=3, i.e., on average
3 NFRs constrain one QA, which amounts to a total of 24 NFRs. Then in-
stead of

276
2

8*38)*(3 NC
2

all �
�

�

comparisons only

 1419*13
2

3*89*8 NCrel ��
�

�

comparisons need to be performed. If we consider that a set of 24 NFRs
is not very large, but still 141 comparisons would be needed, we see that
we either need good tool support that brings the candidate pairs to the
attention of the requirements analyst, or we need to further restrict the
dependency checking. This can be done as already announced by focus-
ing the dependency checking only on those NFRs that restrict the same
functional object or system component. In the current example, let’s as-
sume that for the inter-QA dependencies always exactly one NFR of each
QAi�QA_NFRexpressed relates to the same functional conceptual ele-
ment or system component. This means that for each relationship r be-
tween QAs, we need to make 3 comparisons (each pair of NFRs that re-
late to the same object).

For the intra-QA dependencies, we assume that two out of the three
NFRs relate to the same functional conceptual element or system com-
ponent. This means we have to make one comparison for each
QA �QA_NFRexpressed. Thus, the number of comparisons would
amount to

4783*13NC restricted-rel ��� .

comparisons. This would be a realistic number to be checked. In one of
the case studies, where we created complete dependency matrices for
real-life systems for a big company, we had a set of q=59 QAs in the
models and about 564 relationships captured in the dependency matri-
ces. If we assume that we have on average 10 NFRs per QA and for eve-
ry QA one NFR was expressed (i.e., QA_NFRexpressed=QA_InScope),
then we see the huge number of comparisons that would be needed to
check the 590 NFRs:

Increasing the Method’s Efficiency

122

59055NC ;173755NC relall �� .

If we assume a situation where for the inter-QA dependencies from the
10 NFRs per QA, always one NFR relates to the same functional or sys-
tem object (see previous example) and for the intra-QA dependencies an
average of two pairs of NFRs relate to the same object, the number of
comparisons would amount to

5758NC restricted-rel � .

These figures show that there is an urgent need for research in the area
of handling NFR dependencies by future work.

6.1.4 Performing the NFR Methodology Iteratively

As was already mentioned above, the NFR methodology is designed in
such a way that especially the processes P2.1 and P2.2 can be used in an
iterative way. This means that one can focus on certain quality attributes
and functional conceptual elements or system components in a first iter-
ation and add further elements in future iterations. The algorithm was
created in a way that supports this iteration. One aspect is the marking
of objects as compared or “done” in the comparison matrix. This is an
essential feature in order to allow an efficient iterative approach, as one
does not want to ask for an NFR again if the customer already thought
about it. Figure 41 shows a comparison matrix after a first iteration of an
example project. We see that:

� The elicitation of Data QAs was out of focus for the complete project
(black marker). This was an implicit decision when creating the quali-

QA1 … QAn+3 … QAm QAs+1 … QAp QAp+1 … QAt

QAn+1 QAn+2

User Task 1 done done
System Task 1 done done
… done done
System Task n done done

User Task 2
User Task … done done
User Task n done done
System Task n+1 done done
… done done
System Task m
System 1 done done done
… done done done
System n done done done
Data Item 1
…
Data Item n

Data QAs

Items to be compared Child System Task QAs
QAn

User Task QAs System Task QAs System QAs

Figure 41: Comparison matrix after first iteration

 123

ty models: No QAs of the type Data were included in the model.

� During P2.1, the quality scope was set. The following QAs were ex-
cluded for the first iteration:

– User Task QA QAn and corresponding child QAs QAn+1 and QAn+2
were not selected for the first iteration.

– System Task QA QAm was not selected for the first iteration.

� During P2.1, the functional scope was set. All system components
were selected for the first iteration. The following functional ele-
ments were excluded for the first iteration:

– User Task ut2 was not selected for the first iteration.

– System Task stm was not selected for the first iteration.

Thus, in Figure 41, the cells with the dotted background represent the
items that were out of scope for the first iteration.

So if one were to select all remaining QAs and functional elements for
the second iteration of P2.1, the instance of the algorithm for the se-
cond iteration would look as illustrated in Figure 42. After this second it-
eration, all open elements in the comparison matrix are marked as done.
The NFR elicitation is complete. Checking for dependencies (P2.2) can
and should also be restricted to the newly found NFRs.

Increasing the Method’s Efficiency

124

6.1.5 Change Management View

The capability of the NFR process to deal with iterations can also be used
for another important aspect in requirements engineering. In this sec-
tion, we discuss the change management view on focusing the activities.
As Bob Dylan already said, “there is nothing so stable as change”. This is
especially true in requirements engineering [VDG08]. Therefore, if func-
tional requirements or the system’s physical architecture change, the NFR
methodology must be capable efficiently handling this change: A change
is usually:

� an addition of an element,

For each User Task QA utq� {QA1,…,QAn-1}:
 For ut2:

Ask for NFR: IF (NFR=necessary) THEN specify NFR,
ELSE -
Mark ut2xutq as done

For QAn:
 For each ut� {ut1,…,utn}:

Ask for NFR: IF (NFR=necessary) THEN specify NFR,
ELSE -
Mark utxQAn as done

 For each stq� {QAn+1, QAn+2}:
 For each st� {st1,…,stn}:
 Refine NFR: IF (NFR=necessary) THEN specify NFR,
 ELSE -

Mark stxstq as done
 For each st� {stn+1,…,stm}::

Ask for NFR: IF (NFR=necessary) THEN specify NFR,
ELSE -
Mark stxstq as done

For each System Task QA stq� {QAn+3,…,QAm-1}:
For System Task stm:

Ask for NFR: IF (NFR=necessary) THEN specify NFR,
ELSE -
Mark stmxstq as done

For System Task QA QAm:
 For each st� {st1,…,stm}:

Ask for NFR: IF (NFR=necessary) THEN specify NFR,
ELSE -
Mark stxQAm as done

Figure 42: Exemplified instance of NFR algorithm for second iteration

 125

� a modification of an element, or

� a deletion of an element.

An addition of an element leads to a new row being added in the com-
parison matrix. A modification of an element leads to the row of ele-
ments in the matrix belonging to the changed element being emptied
and to all NFRs that relate to this element being marked as “suspect” in
the integrated requirements specification. A deletion of an element leads
to a deletion of the row in the comparison matrix and all NFRs that relate
to this element are marked as “deletion candidates” in the integrated
requirements specification. Then, the NFR methodology can be applied
again and will act very similar to just having a new iteration. The only
change is that the NFRs in the integrated requirements specifications
that are marked as “suspect” or “deletion candidate” must be checked
for validity. For the NFRs marked “suspect”, a good time to check the
validity is when the algorithm arrives at the corresponding advice to state
QAs for the functional object or system component. Then, besides think-
ing about the necessity of new NFRs, one should check whether the
“suspect” NFR is still needed or needs to be modified. We recommend
doing the validity check for the “deletion candidate” NFRs after P2.1.
Most likely, the NFRs will also be deleted, as the functional conceptual
element or system component they belong to was deleted. But this is
not always the case, since an NFR can also be related to a deleted object,
but as it was classified as over spanning NFR, it must remain in the inte-
grated requirements specification.

6.2 Tool Support

Only few requirements engineering tools exist that specialize on NFRs.
[BSD+07] published work on their tool ElicitO which claims to support
NFR elicitation by making use of a functional and quality ontology. But
the tool has two major drawbacks: neither is there an elicitation guid-
ance in the sense of an elicitation algorithm as in this NFR methodology,
nor is the tool adequate for complete functional modeling, unless the
functional requirements should be stored in an ontology like fashion.
This is due to the fact that the tool does not differentiate or support
functional objects besides functional domain activities. The IVENA tool
from Sophist Group in Germany is basically a large, structured database
of NFRs that were specified in previous projects. The NFRs are structured
according to a quality attribute hierarchy similar to the one in the quality
models of this NFR methodology. The problem with this kind of tool is
twofold. First, the database soon becomes to large to find relevant NFRs.
Second, there is the risk that NFRs that did not appear in previous pro-
jects are missed during NFR elicitation.

Existing
NFR Tools

Increasing the Method’s Efficiency

126

Some parts in the NFR methodology are intentionally constructed in an
algorithmic or pattern-based way so that they can be easily automated.
Figure 43 gives an overview of the process activities for which prototypi-
cal tool support is available as part of the NFR methodology. First, there
is a Checklist Generation Tool to automate the checklist part of process
activity P1.4. This tool was developed as a Visual Basic for Application
Plugin in Microsoft Office Viso. It takes as input a quality model that is
element of QM_InScope (for example the one in Figure 33) created in
Microsoft Visio and produces the checklist for elicitation as a Microsoft
Word document. We decided to implement the Checklist Generation
Tool based on Microsoft Office products, as the Checklist Generation
Tool shall support manual elicitation and the Microsoft Office tool suite
is commonly used. So the Checklist Generation Tool can be used by al-
most everybody. The second tool support aims at the elicitation and
specification activity (process activity P2.1). This Elicitation Guide Tool is
an extension of IBM Telelogic Doors using the Doors extension language
(DXL).

Tool-
support in
the NFR-
methodol-
ogy

P1.2:
Tailor Quality

Models

P1.1:
Prioritize QAs

P1.3:
Identify Possible Conflicts

Between QAs

P1.4:
Derive Checklists

and templates

Questionnaire
(incl. list of HLQA)

Questionnaire
(incl. list of HLQA)

P2.1:
Elicit & Specify

NFRs

P2.2:
Identify NFR
Dependencies

Reference Quality
Models QM_Ref

(incl. dep.)

Reference Quality
Models QM_Ref

(incl. dep.)

Reference
Template

Reference
Template

Reference
Checklists

Reference
Checklists

Prioritized Set
HLQA

Prioritized Set
HLQA

Project-Specific
Quality Models
QM_InScope

Project-Specific
Quality Models
QM_InScope

Project-Specific
Template

Project-Specific
Template

Project-Specific
Checklists

Project-Specific
Checklists

Functional Req. Spec:
FR_E + SYS

Functional Req. Spec:
FR_E + SYS

Integrated Spec:
FR_E+SYS+NFR_E

Integrated Spec:
FR_E+SYS+NFR_E

Experience-Based Artifacts Project-Specific Artifacts

Learning from Project Experience

Checklist Generator

Elicitation
Guide

Figure 43: Tool support for the NFR process

 127

The tool has the elicitation algorithm built in and asks directly for NFRs,
showing the related functional conceptual element or system compo-
nent, respectively. The tool has the comparison matrix (see Figure 29)
built in and therefore knows which comparisons have already been exe-
cuted. This prototype was developed as a DXL Plugin, since Doors is a
widespread requirements management tool. Both tools interact via a de-
fined interface. The output of the Checklist Generation Tool can be used
as input for the Elicitation Guide Tool.

6.2.1 The Checklist Generation Tool

The Checklist Generation Tool automatically generates the checklists that
are used for the NFR elicitation in process activity P2.1. Figure 44 illus-
trates the basic design of the tool showing the input and output of the
tool as well as the logical internal components.

The Checklist Generation Tool takes the quality model QM_InScopex as
input. Figure 45 shows the startup screen of the Checklist Generation
Tool.

One has to first select the root of the out-tree. This is done by choosing
the parent QA. Then the model is checked to see whether it satisfies the
constraints for being an out-tree.

Using the
Tool

VBA Script

QM_InScopeX

MS Visio

Checklist Generator

QA Classification &
Sentence Pattern

XML File

Elicitation
Checklist for QA X

MS Word

Output QA X for
Elicitation Guide

TXT Files

QA Classifier

Sentence
Editor

Checklist
Generator

Sentence
Storage

XML File

Dependency
Matrices

MS Excel File

Figure 44: Basic design of the Checklist Generation Tool

Increasing the Method’s Efficiency

128

If this is done, one can select from the next three possibilities:

� Classify quality attributes: This is a support functionality for process
activity P1.2. If the QAs in QM_InScopeX are not yet classified accord-
ing to the scheme User Task, System Task, System, Data and Struc-
tural QA, the requirements analyst can now classify the attributes by
choosing this menu item. This functionality is provided by the internal
component “QA Classifier”.

� Change text for the quality attributes: This is support functionality for
process activity P1.4. Based on the sentence patterns stored in the
XML File “QA Classification & Sentence Pattern”, the internal com-
ponent “sentence editor” will generate the advice for the checklist by
applying the sentence patterns to all quality attributes in
QM_InScopeX. In some cases, one wants to edit the sentences for the
checklist in order to make the advice more precise or meaningful.
E.g., based on the sentence pattern for System QA, the Checklist
Generator would transform the System QA “Throughput” into the
sentence: “For each system part, please specify the throughput
NFRs.” One might want to edit this sentence to “For each system
part that is a network, please specify the throughput NFRs.” The sen-
tence editor stores this information in the XML File “Sentence Stor-
age”. This means the edited sentences are automatically kept for the
future. If one changes the QM_InScopeX at a later point in time, but
leaves the QA “Throughput” unchanged, the internal Component
Checklist Generator will use the changed sentence from the file
“Sentence Storage”.

� Write elicitation document: This is the actual core of the checklist
generator, which creates the elicitation checklist as a Word file and as
text files for the Elicitation Guide Tool. The checklist generator takes

Figure 45: Main-Screen of Checklist Generation Tool

 129

the QM_InScopeX and inserts an advice for each QA into the Word
document. It therefore makes use of the sentences stored in the sen-
tence storage file.

The tool has two additional features with regard to the place for specify-
ing the elicited NFRs and the dependency checks between the NFRs:

� Specification of the documentation path for NFRs: The sentence edi-
tor allows for specifying the documentation path for an NFR. As the
place to document the NFR is given by the requirements template
and the classification of the QA the NFR is type of, one can add the
documentation path to the elicitation checklist. This is support for the
requirements analyst, as it tells him or her where to document the
elicited NFR.

� Integration of dependency check during elicitation: The internal com-
ponent “checklist generator” has an additional feature: One can se-
lect whether one wants to incorporate the information on possible
dependencies into the checklist. If one selects to use this feature, the
checklist generator takes the information from the dependency ma-
trices (xls files) and generates this information into the Word file. For
this, it uses the following sentence pattern:

– Typical intra-quality model dependencies. Please keep in mind the fol-
lowing relationship(s):

� The *Name of QA* NFR typically influences *Name of con-
flicting QA* quality attribute(s), and viceversa.

� The *Name of QA* NFR is identical to *Name of identical
QA*quality attribute(s).

� The *Name of QA* NFR typically influences *Name of con-
flicting QA*quality attribute(s).

– Typical inter-quality model dependencies. Please keep in mind the fol-
lowing relationship(s):

� The *Name of QA* NFR typically influences *Name of con-
flicting QA*, and viceversa.

� The *Name of QA* NFR typically is identical to *Name of
identical QA*.

� The *Name of QA* NFR typically influences *Name of con-
flicting QA*.

Each bullet is only introduced if dependencies of that type exist in the xls
files to make the elicitation checklist as small as possible. The bullets are
directly inserted behind the text of the advice (which can include the in-
formation on available metrics).

We recommend to carefully trade off whether this feature should be
used for a project. On the one hand, it integrates P2.1 and P2.2. into a
joint activity. On the other hand, it makes the checklist larger. Further-
more, the dependencies are checked directly after elicitation of that

Additional
Features

Increasing the Method’s Efficiency

130

type. For a bigger project, it might be more reasonable to wait until
NFR_E has been completely elicited. Therefore, we consider this feature
more useful for smaller projects.

To provide an idea of the resulting checklist, Figure 46 shows an excerpt
of a checklist that was created by using these two additional features.
One can see behind the captions for each advice the documentation
places in italics. Furthermore, for the QA “Precision of Data Storage”,
the dependencies according to Figure 35 were inserted.

Elicitation of Efficiency NFRs
…
1. Elicitation of Time Behavior NFRs

1.1 Elicitation of Usage Time NFRs (UC-Diagram�@Use Case: Usage Time)
For each use case, please specify the Usage Time

� Please use the available metrics: seconds
1.1.1 Elicitation of Response Time NFRs (System Function Descrip-

tion�@System Function:Response Time)
For all Use Cases: check if this Use Case has one or more NFRs of
the type Usage Time: If so, please refine these NFRs by specifying
Response Time NFRs for each system function that is used in this
Use Case.
For all other system functions: please specify the Response Time
� Please use the available metrics: seconds

2 Elicitation of Accuracy NFRs
2.1 Elicitation of Precision of Calculation NFRs (General NFR � Efficien-
cy�Accuracy�Precision of Calculation)

For each system function, please specify the Precision of Calculation
� Please use the available metrics: % of Error in Rounding

2.2 Elicitation of Precision of Data Storage NFRs (Data Model�@Data Item: Pre-
cision of Data Storage)

For each data item, please specify the Precision of Data Storage
� Please use the available metrics: #digits after comma

� Typical intra-quality model dependencies. Please keep in mind
the following relationship(s):

o The Precision of Data Storage NFRs typically influ-
ences Capacity of Memory, Capacity of Secondary
Storage quality attribute(s), and viceversa.

…

Figure 46: Excerpt of reference checklist for QM_RefEfficiency generated with additional features

 131

Even though the tool already provides good support for checklist genera-
tion, it also has some limitations:

� The concept of means is not supported in the current version of the
VBA Plugin.

� The order of advices is not correct according to the algorithm; it is
aligned according to the structure of the quality model.

Those limitations could be addressed in future work.

6.2.2 The Elicitation Guide Tool

If the Elicitation Guide Tool is used, no checklist needs to be created or
generated. As depicted in Figure 43, the Elicitation Guide Tool supports
P2.1. More specifically, the Elicitation Guide Tool automates asking the
user the elicitation questions and automatically documents the NFRs in
the correct place. Therefore, in theory, no requirements analyst needs to
participate in the NFR elicitation session. For practical reasons (ac-
ceptance of the customer), it might be more appropriate at the begin-
ning that a requirements analyst uses the tool together with the custom-
er or end user who has the domain expertise to issue the NFRs. Figure 47
illustrates the basic design of the Elicitation Guide Tool.

Limitations

IBM Telelogic Doors DXL Script

Elicitation Guide Tool

Integrated
Specification

IBM Telelogic Doors
Output QA X for
Elicitation Guide

TXT Files

QA Scope
Selector

Horizontal &
Vertical Scope

Selector

Elicitation
Guide

Comparison
Matrices

Csv Files

Functional
Specification

IBM Telelogic Doors

Figure 47: Basic design of the Elicitation Guide Tool

Increasing the Method’s Efficiency

132

The Elicitation Guide Tool is integrated as DXL-Script in Telelogic Doors.
For all graphical elements such as UC diagrams, class diagrams, or com-
ponent diagrams, the Doors Analyst extension is used to integrate
graphics in Doors. The Elicitation Guide Tool is typically run after the
functional requirements have been entered in Doors. The tool can deal
with the following structure of the functional requirements:

� User tasks: UCs in UC diagrams

� System functions: steps in UC descriptions in tabular UCs

� Data objects: classes in class diagrams

� Subsystems: components in component diagrams

In addition to the functional requirements, the tool takes the “Output
QA X for Elicitation Guide” txt file, which is the output of the checklist
generator (see Figure 44), as input.

The tool starts with the start screen depicted in Figure 48. When using
the tool for the first time in a project, typically the quality and the hori-
zontal and vertical scope must be selected. Scope selection is performed
as described in Section 6.1. Figure 49 shows the windows for the scope
selection.

After the scope selection, the tool starts the elicitation algorithm by ask-
ing the user the elicitation questions while bringing the corresponding
functional conceptual element or subsystem to the attention of the user.
In this sense, the tool is much more concrete than the generated check-
list. For example, the checklist questions typically ask “For all UCs: check
if this UC has one or more NFRs of the type Usage Time”. The Elicitation
Guide Tool asks, “For this Use Case, please specify the Usage Time
NFRs”, showing the current UC. Figure 50 shows a screenshot for the

Using the
Tool

Figure 48: Start screen of the Elicitation Guide Tool

 133

elicitation. In this case, the system asks for refined System Task NFRs.
Therefore, it automatically presents the User Task NFR that is to be re-
fined (third row). This feature speeds up the elicitation process, as one
does not have to look in the specification for the corresponding func-
tional conceptual elements, subsystems, or related NFRs. The user can
now select whether he or she wants to

� skip this question (using the “Next” button),

� state an NFR for this functional conceptual element or (sub-) system
(using the text field and pressing the “Save NFR” button),

� state that no NFR exists for this question (using the “No NFR” but-
ton).

The tool stores all this information. NFRs are directly stored in the Doors
database integrated with the functional requirements. The information
that no NFR exists or that the question was skipped is stored in the com-
parison matrices as CSV files. Therefore, if the tool is run again, ques-
tions are only asked for skipped questions or items that are new in
scope. This is beneficial for the iterative NFR elicitation and specification
(see Section 6.1.4).

An overview of how complete the NFR elicitation was can be obtained
by looking at the comparison matrices where the comparisons were
stored.

Furthermore, the tool automatically links related NFRs as well as NFRs to
related functional conceptual elements or subsystems. This is done by us-
ing the link technology provided by Doors.

The tool has some limitations:

� All system function invocations must be located in the UCs. The tool
currently does not support stand-alone system function definitions.
Therefore, the NFRs for system functions can only be documented in
the UC description.

Figure 49: Horizontal scope selection in the Elicitation Guide Tool

Additional
Features

Limitations

Increasing the Method’s Efficiency

134

� The tool cannot distinguish between system and user actions in the
UC flow of events. Therefore, the user must manually skip these
steps by pressing the “Next” button.

� The functional requirements must be documented in the structure as
presented above. The identification of the functional conceputal ele-
ments and subsystems is hard coded and cannot be changed without
editing the DXL source code.

For full support of the NFR methodology, the tool needs to be extended
to deal with system function descriptions apart from the UC descriptions.

Figure 50: Elicitation support in the Elicitation Guide Tool

 135

7 Validation

This chapter describes empirical results [Rom08] of the successful appli-
cation and introduction of the NFR methodology in eight different main-
ly industrial project contexts. In each of the eight projects, different as-
pects of the NFR methodology were introduced, applied, and evaluated.
The NFR methodology was evaluated according to the three hypotheses
H1 – Feasibility, H2 – Completeness, and H3 – Effort.

In general, the case studies revealed very positive results. The collected
data strongly support hypothesis H1 – Feasibility: “The elements of the
NFR methodology are feasible, i.e., the artifacts can be created for real-
life examples and the process activities can be applied by averagely
trained personnel.” The results of the feasibility evaluation are very posi-
tive: Except for process activity P2.2, which was rated as too time-
consuming for large projects, all parts of the NFR methodology are abso-
lutely feasible from the viewpoint of the evaluated results produced as
well as from the viewpoint of subjective opinions that were collected.

The collected data strongly support hypothesis H2 – Completeness: “The
method results in a (more) complete set of NFRs. About 20% more criti-
cal NFRs are identified compared to the state of the practice.” The per-
centage of newly identified NFRs in the case studies range from over
100% to over 600%. The case studies show that after application of the
NFR method, no new NFRs emerged in the subsequent software devel-
opment phases.

The collected data support hypothesis H3 – Effort: “The estimated re-
work effort in the subsequent project or platform development phases is
reduced: The estimated saved rework effort for found NFRs is at least
twice the effort spent on systematically eliciting the NFRs.” The effort
that needs to be spent on performing the NFR methodology is complete-
ly justifiable, especially if compared to the effort that can be saved in the
subsequent phases by knowing the NFRs in advance. ROI values of 2 and
17 were achieved.

As a positive side effect, we observed that the NFR methodology can
produce a set of NFRs that is completely measurable, and we learned
that the method can reveal conflicts in the set of elicited NFRs.

In Section 7.1, we introduce the setup of the validation. In Section 7.2,
we present an overview of the case study contexts. In Section 7.3. the
hypotheses from Section 1.2 are refined by using the GQM approach. In
Section 7.4, we present the data and results from the case studies that
are eventually summarized and discussed in Section 7.5.

Summary
of Results

Remainder
of this
Chapter

Validation

136

7.1 Introduction

When selecting the appropriate means for validating the NFR methodol-
ogy, we traded off the benefits and drawbacks of performing industrial
case studies vs. controlled experiments. There were two main reasons
why we chose industrial case studies as a means of validation rather than
performing a controlled experiment:

1. In order to judge the impact of NFRs on the architecture, one needs
reasonably large systems. Therefore, real-life case studies are more
suitable, as it is not feasible to create such a specification and archi-
tecture for a controlled experiment.

2. In a controlled experiment, where one group uses this NFR method-
ology and another group uses another state-of-the-practice or state-
of-the-art methodology, one has to ensure that the persons who are
interviewed during the NFR elicitation process have exactly the same
NFR know-how about the system. It is not possible to replicate this
know-how for all persons without bringing the NFRs to the direct at-
tention of the interviewed person. This means the person would ei-
ther remember all NFRs that were recently injected, or they would
have forgotten essential NFRs, if you injected them with a time delay
of, for example, six months to avoid the remembering effect. So one
would not be able to get reliable results on the differences of the
methods.

We had the opportunity to validate different aspects of this NFR meth-
odology in eight real-life case studies. As most of the case studies were
performed in the context of industrial projects, we were not completely
free to set up perfect case studies and control all parameters. Rather
than that, the project constraints of our project partners imposed some
limitations, e.g., with regard to data collection possibilities. Furthermore,
it was not possible to use two state-of-the-art NFR methodologies one
after another (e.g., MOQARE or a goal based approach first and then
this NFR methodology to show that more significant NFR are found) due
to time and effort restrictions on the part of the project partners. There-
fore, the focus of the eight case studies was on evaluating feasibility,
characterizing the effort, and comparing this NFR methodology to state-
of-the-practice NFR elicitation and specification procedures with regard
to completeness. We will discuss the implications of this situation in Sec-
tion 7.5.3.

 137

7.2 Case Study Contexts

The NFR methodology was applied in eight different contexts. Table 11
gives an overview of the case studies. We characterize the differences
between the case studies by describing:

� The type of project: The type of project influences the possibilities for
carrying out specific parts of the method.

� The size of the project: The size of the project gives an insight into
the applicability of the method for systems of various scales.

� NFRs were already part of the existing system specification: When
NFRs were already part of the specification and the NFR elicitation
part of this NFR methodology was carried out, it was possible to
evaluate whether new NFRs were found (i.e., applying the NFR meth-
odology results in a more complete set of NFRs).

� The type of system: The NFR methodology is primarily designed for
interactive systems. Therefore, it is interesting to observe whether it
can also be applied to reactive embedded systems.

� Typical IS specification: If the existing functional specification is a typ-
ical interactive system specification, the NFR methodology should be

Project name
ITEA Empress
project Ricoh

Geographical
information
system

Large
information
system in
financial
domain MBTech Group

Large information
system solution
provider

EU project
"Emerge"

Large
embedded
system provider

Project
abbreviation Empress Ricoh GIS FIN MBTech SOL EMERGE ES

Project type
industry in
public project industry industry industry industry industry

organizations in
public project industrial

Project size medium medium small large small large medium-large large

NFRs were part
of the existing
specification yes yes no yes N/A yes no yes

Type of system
Interactive
System

Interactive
System

Interactive
System

Interactive
System

Embedded
System Interactive System

Interactive
System

Embedded
System

Typical IS
specification yes yes yes yes no yes yes partially

Quality models
in scope

reliability,
efficiency,
maintainability efficiency security

efficiency,
maintainability,
reliability

efficiency,
portability,
reliability

efficiency, reliability,
security

efficiency,
usability,
reliability,
safety, security

reliability,
maintainability,
usability,
robustness

NFRs were
elicited for
project yes yes

yes (but
resulting NFRs
not accessible
for author) yes

yes (but resulting
NFRs not
accessible for
author) no yes no

Person applying
method

author together
with other
Fraunhofer staff

author together
with other
Fraunhofer staff

other
Fraunhofer
staff

author together
with other
Fraunhofer staff

other Fraunhofer
staff and
industrial partner

author together with
other Fraunhofer
staff and industry
partner

other
Fraunhofer staff

author together
with other
Fraunhofer staff

Case study
specificities and
method
deviations

early version of
method: no data
objects

early version of
method: no data
objects

early version
of method: no
data objects

early version of
method: no
data objects

method was used
for HW/SW
system

technology transfer;
method adaptation
for business
processes

technology
transfer

More Information
on case study
available [DKK+05] [DKK+05] [DKK+05] confidential [ADB+08] confidential confidential confidential

Table 11: Overview of the eight case studies

Validation

138

easily applicable.

� Quality models in scope: The case studies had different quality attrib-
utes in scope.

� NFRs were elicited for project: This information classifies the case
studies into those where we had an insight into the actual NFR elici-
tation and those where we had no possibility to evaluate the NFR
elicitation performance.

� Person applying method: The person steering the NFR methodology
can influence the validity of the case studies (see also threats to valid-
ity).

� Case study specificities and method deviations: The eight case studies
were performed over time with slightly different versions of the
method.

� More information on case studies available: Due to space and confi-
dentiality reasons, the eight case studies cannot be explained in detail
in this thesis. This row shows whether and where interested readers
can obtain more information.

Six out of the eight projects were industrial projects where the industrial
partners asked Fraunhofer IESE to either apply the method for an indus-
trial product or to transfer the technology to their company. Two pro-
jects were public projects where companies or public organizations
served as stakeholders interested in a product to be built. In Empress, the
product to be built was a fictive one (which was built as a prototype). In
EMERGE, the project intends to built a prototype for a new, commerical-
ly available product. Therefore, in all case studies, industrial partners
were involved as stakeholders who were asked for the quality attributes
and non-functional requirements.

The eight case studies varied in system size and therefore also in the size
of the functional specification that was taken as input. Two systems (GIS
and MBTech) can be characterized as rather small systems offering little
functionality. Three case studies dealt with specifications of large systems
(FIN, SOL and ES). EMERGE, as a medium to large system, had about 20
UCs, 40 system functions, and one system components as the system
was treated as a black box. Empress elicited NFRs for 13 UCs and 5 sys-
tem components. In the Ricoh case study, 27 UCs and 17 system func-
tions were input to the method. In the FIN case study, there were more
than 35 system functions with strong dependencies and complex data
structures.

In five out of the eight case studies, NFRs were part of the existing speci-
fication. In the MBTech case study, we have no information. In GIS and
EMERGE, the specification was created from scratch using the NFR
methodology as the first mechanism for eliciting NFRs. Therefore, no
baseline data is available to compare whether the NFR methodology
revealed NFRs that would have not been found without the method.

Project
Type

Project Size

NFRs were
Part of Ex-
isting Speci-
fications

 139

Six out of the eight case studies were typical information systems exhibit-
ing a typical textual representation of functionality similar to the one
described in Section 3.1.1. MBTech was the first case study from the
Embedded Systems domain that was a totally different kind of system.
The system is a generator that contains not only software, but also
hardware and mechanical elements. This implies the question of the
feasibility of the NFR methodology for such kinds of systems.

Due to the differences in product and project objectives, the eight case
studies had different quality attributes in scope. Figure 51 shows the
relevance of quality attributes that appeared more than once in the case
studies. This should not be interpreted as a statement of relevance for
projects in general. This distribution shows that the NFR methodology is
capable of dealing with these five different qualities. Additionally, the ES
project dealt with the quality robustness, EMERGE with safety, and
MBTech with portability. In FIN, the quality attribute maintainability was
only treated with respect to the sub-attribute analyzability and the quali-
ty attribute reliability was only treated with respect to the sub-attribute
recoverability.

As already mentioned, the different case studies had different objectives:
The SOL and ES case studies had the goal of creating quality models and
doing a technology transfer. Therefore, no NFR elicitation (carrying out
process activity P2.1, see Figure 32) was performed for these projects. In

Type of
System and
Typical IS
Specifica-
tion

Quality
Models in
Scope

0 1 2 3 4 5 6 7

Efficiency

Reliability

Maintainability

Security

Usability

Number of Case Studies

Figure 51: Quality attribute occurrence in case studies

NFRs were
Elicited for
Project

Validation

140

the case of the SOL case study, the NFR elicitation process was per-
formed in the form of role playing for a typical product to investigate the
feasibility of the approach for the company. In all other six case studies,
the actual NFR elicitation was applied for a concrete product.

As the NFR methodology expert as a human being is part of the (at least
non-tool-supported version of the) NFR methodology, this person can
have a strong influence on the method’s performance. The author of this
thesis participated as an NFR methodology expert in four of the eight
case studies to get direct feedback on the methodology’s benefits and
shortcomings. In these applications, other Fraunhofer staff always partic-
ipated in order to get a more unbiased reflection on the method’s per-
formance. In three case studies (EMERGE, GIS, and MBTech), the case
study was performed completely without the participation of the author,
but by other Fraunhofer staff who were experienced in using the meth-
od. In the case of the MBTech case study, industrial persons did the NFR
elicitation (process activity 2.1) by themselves.

Each case study has its own specificities with regard to the domain of
the system as well as with regard to the way the NFR methodology was
performed. In Section 1.3 we outlined that there were early and late
case studies. The early case studies FIN, GIS, Ricoh, and Empress used an
earlier version of the method where “data NFRs” were not included in
the metamodel, but organizational NFRs were (that do not affect the
product itself, see Section 2.2.1). The corresponding metamodel that
was the basis for these case studies can be found in [DKvK+03a]. In the
SOL and ES case studies, the goal of the project was to transfer the
complete NFR methodology to the respective company. The EMERGE
case study was the only case study that used the automatic checklist
generation, as the tool support was stable and mature enough to sup-
port this activity. Unfortunately, no case study could use the Elicitation
Guide Tool, as they were performed before the Elicitation Guide Tool
was stable and mature enough. With regard to the system domains, in
the MBTech context the method was applied for the first time in an em-
bedded context for a system that involves software and hardware parts.
This case study was unique, as we were not sure whether quality models
could be created as easily as for the pure software systems. It turned out
that the concepts in the quality models worked well and the NFR meth-
odology was also applicable in this kind of context. In contrast to this
embedded domain, in the SOL case study, the method was tailored to be
used with systems described mainly with business processes as the doc-
umentation entity representing the user tasks. In the other case studies,
UCs were normally used for documenting the user tasks.

Person Ap-
plying the
Method

Case Study
Specificities
and Meth-
od Devia-
tions

 141

7.3 Validation Goals

This chapter refines the validation goals already stated in Section 1.2.
The following hypothesis should be evaluated:

H1 - Feasibility: The elements of the NFR methodology are feasible, i.e.,
the artifacts can be created for real-life examples and the process activi-
ties can be applied by averagely trained personnel.

H2 -Completeness: The method results in a (more) complete set of NFRs.
About 20% more critical NFRs are identified compared to the state of
the practice. This is expected because the NFRs are elicited using experi-
ence-based quality models in a repeatable process.

H3 – Effort: The estimated rework effort in the subsequent project or
platform development phases is reduced: The estimated saved rework
effort for found NFRs is at least twice the effort spent on systematically
eliciting the NFRs.

By using the GQM methodolgy [BCR94a], [BDR97], [vSB99] the goals are
refined to the level of measures to evaluate the goals.

Analyze the NFR methodology

for the purpose of evaluation

with respect to feasibility

from the viewpoint of the method user

in the context of a series of 8 case studies.

Refining the goal into relevant questions that need to be answered ena-
bles the systematic definition of metrics to be calculated.

Q1.1: Is it possible to prioritize the set of HLQA?

Q1.2: Is it possible to build a quality model for more than one QA?

Q1.3: Is it possible to classify all QAs in the quality models according to
the metamodel?

Q1.4: Is it possible to identify possible conflicts between QAs?

Q1.5: Is it possible to generate (manually or automatically) the checklists
for the quality models?

Goal 1:
Feasibility

Questions
and
Measures

Validation

142

Q1.6: Is it possible for the customers to answer the elicitation questions?

Q1.7: Is it possible to identify conflicts between the elicited NFRs?

Q1.8: Do the method users state that the method is usable?

Analyze the set of NFRs resulting from the NFR methodology

for the purpose of evaluation

with respect to the desired completeness

from the viewpoint of the requirements engineer

in the context of a series of 8 case studies.

Q2.1: Can NFRs be identified by using the NFR methodology?

Measure M2.1: Number of NFRs elicited with the NFR methodology (en-
tity evaluated: artifact)

Q2.2: Are more NFRs identified by using the NFR methodology?

Measure M2.2: Percentage of newly identified NFRs = M2.1*100% /
Number of already existing NFRs (entity evaluated: artifact)

Q2.3: Do the elicited NFRs have a significant impact on the subsequent
development phases (architecture)?

Measure M2.3: Expert criticality rating for each NFR for architecture rele-
vance (entity evaluated: artifact)

Q2.4: Do the experience-based quality models help to make project-
specific quality models more complete?

Measure M2.4: Were new QAs inserted into the project-specific quality
models based on trigger questions from the experience-based QMs?
(yes/no) (entity evaluated: artifact)

Q2.5: Were additional NFRs identified in the subsequent software devel-
opment phases?

Measure M2.5: Number of additionally identified NFRs in the software
development phases after the application of the NFR methodology (enti-
ty evaluated: artifact)

Goal 2:
Complete-
ness

Questions
and
Measures

 143

Analyze the NFR methodology

for the purpose of characterization and evaluation

with respect to effort

from the viewpoint of the method user

in the context of a series of 8 case studies.

Q3.1: How much effort is needed to perform the NFR methodology
(total / per process activity)?

Measure M3.1: Effort in hours/days for the application of the NFR meth-
odology (entity evaluated: process)

Measure M3.2: Effort in hours/days for the application of the NFR meth-
odology spent by the domain expert, i.e., the person issuing the NFRs
(activities P1.1, P1.2, P2.1) (entity evaluated: process)

Q3.2: How much rework effort is saved (in the architecture phase) by
knowing the NFRs?

Measure M3.3: Estimated sum of effort in hours/days for rework if NFRs
need to be incorporated into a product version without the NFRs (entity
evaluated: process)

Q3.3: What is the ROI of the NFR elicitation?

Measure M3.4: M3.1/M3.3 (entity evaluated: process)

Question Q3.1 is used to characterize the NFR methodology; questions
Q3.2 and Q3.3 are used to evaluate the NFR methodology.

7.4 Case Study Data and Results

Overall, the NFR methodology produced positive results. In the next sec-
tions, an analysis of the NFR methodology with regard to the feasibility
of the method, the completeness of the set of NFRs, and the effort to
perform the methodology is presented. This is followed by a summary of
further qualitative or quantitative observations when performing the
case studies.

Goal 3:
Effort

Questions
and
Measures

Validation

144

7.4.1 Feasibility

The results of the feasibility analysis are summarized in Table 12.

The first step of the methodology is the prioritization of the set of high-
level quality attributes HLQA. Prioritization of quality attributes was per-
formed in all case studies except the ES case study. In these seven case
studies, it was possible to prioritize the set of HLQA by performing a
stakeholder workshop using a common prioritization technique (six case
studies) or by using a prioritization questionnaire (one case study). There-
fore, step P1.1 of the methodology can be regarded as feasible.

One important goal of the NFR methodology was that it can be used for
more than just one quality attribute. Therefore, an important aspect that
needs to be demonstrated in order to show that this NFR methodology is
feasible is that it is possible to build quality models for more than just
one quality attribute. In all case studies except the Ricoh and GIS case
studies, the NFR methodology was used for more than one quality at-
tribute. In case of the Ricoh case study, the QA efficiency was the only
relevant QA in scope for the NFR elicitation. In case of the GIS case
study, security was the only QA in scope. With the NFR methodology, it
was possible to build quality models for all QAs that were in scope for
the NFR elicitation (see also Table 11 for a list of QAs in scope per case
study), Figure 51 shows the distribution of the QAs. Therefore, building
quality models for more than one QA in the NFR methodology can be
regarded as feasible.

After quality models have been created, an essential next step is the
classification of each quality attribute according to the metamodel (see

Project Empress Ricoh GIS FIN MBTech SOL EMERGE ES
1. Feasibility
Q1.1: Is it possible to prioritize
the set of HLQA? yes yes yes yes yes yes yes N/A
Q1.2: Is it possible to build a
quality model for more than one
QA? yes N/A yes yes yes yes yes yes
Q1.3: Is it possible to classify all
QAs in the quality models
according to the metamodel? yes yes yes yes N/A yes yes yes
Q1.4: Is it possible to identify
possible conflicts between QAs? N/A N/A N/A N/A N/A yes N/A N/A
Q1.5: Is it possible to generate
the checklists for the quality
models? yes yes

yes, with
manual
adjustment yes

yes, with
manual
adjustment yes

yes, first
automatic
generation N/A

Q1.6: Is it possible for the
customers to answer the
elicitation questions? yes yes yes yes yes N/A yes N/A
Q1.7: Is it possible to identify
conflicts between the elicited
NFRs?

yes, for a
limited set N/A N/A N/A N/A

theoretically
yes, but in
practice no N/A N/A

Q1.8: Do the method users state
that the method is usable? yes yes yes yes yes

yes, except
NFR
conflicts yes N/A

Table 12: Summary of results for the feasibility goal

Q1.1: Prior-
itizing
HLQA

Q1.2: Build-
ing Quality
Models

Q1.3: Clas-
sifying QAs

 145

Section 2.2.2). Therefore, it is important to know whether it is possible
to classify all quality attributes. In all case studies except the MBTech
case study, the quality attributes were classified. In the MBTech case
study, the system had only one system function and was treated as one
system component. Therefore, a classification of the quality attributes
was not needed, as all elicitation questions were asked for the same ob-
ject. The case studies FIN, GIS, Ricoh, and Empress used an earlier version
of the metamodel where “data NFRs” were not included. Therefore,
there were difficulties in classifying quality attributes such as accuracy (of
data). With the new metamodel, all quality attributes in the quality mod-
els can be classified. Therefore, the classification of quality attributes in
the NFR methodology can be regarded as feasible.

In process activity P1.3, one checks for possible conflicts between QAs.
There were three case studies, namely the EMRPESS, GIS, and SOL case
studies, where the check for conflicting NFRs (P2.2) was in scope. In the
SOL case study, NFRs were only elicited with examples, but not for a real
project. The SOL case study was the only where process activity P1.3 was
performed to prepare P2.2. In Empress and GIS, this effort was not in
scope for the projects. For the SOL case study, quality attribute experts
created complete dependency matrices. For the set of 59 quality attrib-
utes that were included in the quality models of the HLQA attributes ef-
ficiency, reliability, and security, 564 relationships were captured in these
dependency matrices. It took a large amount of effort (about two per-
son-days of effort per comparison between two HLQA attributes) to
compare all quality attributes in the quality models. Therefore, one can
say from this limited experience in one case study that the identification
of QA conflicts is feasible, but that at least initially, high effort has to be
invested.

In process activity P1.4, the checklists for the NFR elicitation are generat-
ed either manually or with the help of the Checklist Generation Tool. In
all case studies except the ES case study, checklists were generated. In
the EMERGE project, the Checklist Generation Tool was used for a pro-
ject for the first time. The checklist derivation process was manual in the
other six case studies. In the MBTech case study, the checklists were first
created according to the algorithm and sentence patterns, but later on
adjusted manually by the domain experts to better reflect domain-
specific knowledge. For example, they added domain-specific example
NFRs to the questions. In the GIS case study, too, examples were added
to the checklist after the first creation according to the algorithm. In all
other case studies, the checklist derivation process was straightforward
and the checklists were easy to derive from the quality models. In some
case studies, the metric information was added as additional information
that makes the elicitation process easier and more accurate. As checklist
generation was straightforward in most of the case studies, the checklist
generation process can be regarded as feasible.

Q1.4: Iden-
tifying QA
Conflicts

Q1.5: Gen-
erating
Checklists

Validation

146

The actual NFR elicitation process activity P2.1 was performed for a con-
crete product in all case studies except the SOL and ES case studies. In
these six case studies, the interviewed persons stated that it was possible
to answer the questions asked by the checklists. In some of the case
studies, it was necessary to explain the meaning of the quality attribute
to the interviewed person. This was usually done by reading the defini-
tion of the QA from the quality model documentation. Therefore, the
process of answering the questions can be regarded as feasible.

As already stated in Q1.4, the process of NFR conflict identification was a
subject in the Empress, GIS, and SOL case studies, but the structured
process as depicted in process activity P2.2 was only used in the SOL
case study. In Empress and GIS, the project could not follow this struc-
tured process in P2.2, as process activity P1.3 was not performed due to
project effort limitations. In these two case studies, the process of NFR
conflict identification was performed ad hoc on the set of elicited NFRs,
which was quite small compared to the other case studies. In both case
studies, conflicts were identified:

� In Empress, an intra-QA dependency conflict was detected, as two
conflicting NFRs on the same QA (network throughput) were speci-
fied.

� In GIS, inter-QA dependencies were detected. When it came to mak-
ing architectural decisions the elicited security NFRs were in competi-
tion with elicited usability and performance NFRs that were elicited
later on.

In the SOL case study, process activity P2.2 was used, not for a concrete
project, but for example material. As mentioned before, 564 relation-
ships were captured in the dependency matrices. The calculations in Sec-
tion 6.1.3 already show that a huge number of comparisons would have
to be performed in order to systematically check all NFRs for conflicts.
Therefore, the rating of the method users on the customer side was that
for a large set of NFRs, the process could be applied, theoretically, but
for effort reasons they do not think that this process activity is applicable
in practice. Therefore, the identification of conflicts between NFRs can
be regarded as feasible only for a small set of elicited NFRs or if a project
has a small set of QA�QAInScope. For other cases, the identification of con-
flicts between NFRs is regarded as not feasible.

In all case studies except the ES case study, which was interrupted due to
project pressure, we asked the future method users whether they think
the overall method is usable or not usable, or which limitations they see.
All case studies except SOL and MBTech regarded the method as feasible
as is. In the MBTech case study, the future method users suggested do-
ing some workshop work as offline work (homework) first (see [ADB+08]
for more details). Otherwise, they also confirmed the feasibility of the
NFR methodology. In the SOL case study, the future method users stated
that the method is feasible except for the identification of NFR conflicts.

Q1.6: An-
swering the
Questions

Q1.7: Iden-
tifying NFR
Conflicts

Q1.8:
Overall Fea-
sibility

 147

The company that was the application partner in the SOL company dealt
with this situation in the following way: The check of conflicts (P2.2) was
taken out of the process for the company. A check of conflicts between
NFRs was incorporated as an additional quality perspective into their per-
spective-based reading [BGL+96] inspection process. Some time after our
technology transfer of the NFR methodology, our cooperation partners
received a company award for the introduction of the NFR methodology
in their company. To summarize, except for process activity P2.2, we can
regard the NFR methdology as feasible.

To conclude this section, the last paragraph already summarizes the
results of the feasibility evaluation very well: Except for P2.2, all parts of
the NFR methodology are feasible from the viewpoint of the evaluated
produced results as well as from the viewpoint of subjective opinions
that were collected. The question of Q1.7 showed that P2.2 seems to be
not feasible for larger sets of NFRs or large numbers of QAs. Therefore,
future work is needed on this issue. Furthermore, one should take into
account that as far as Q1.4 and Q1.7 are concerned, the evidence is very
limited as they were only evaluated in few case studies.

7.4.2 Completeness

The results of the completeness analysis are summarized in Table 13.

The first question to answer in order to analyze the completeness of the
resulting set of NFRs is whether the application of the NFR methodology
leads to an elicitation of new NFRs. Therefore, the absolute number of
new NFRs was determined for all six case studies where NFRs were elicit-
ed. In four of them, the author had access to the resulting set of NFRs. In
all of these four case studies, new relevant NFRs were identified by using
the NFR methodology. The resulting sets of NFRs were always confiden-
tial to the project partners or to the consortium. Maybe at a later point
in time, the deliverable of the EMERGE project containing the NFRs
[GSJ+09] will be made publically available via the project website
[EME09]. To give an impression of the distribution accross the various
high-level quality attributes, the number of NFRs per quality attribute is
provided where possible. In the MBTech and GIS case studies, we know
that NFRs were identified, but not exactly how many. In the Empress
case study, 56 new NFRs were identified. 12 of them were organization-
al NFRs, 5 were maintainability NFRs, 23 were efficiency NFRs, and 16
were reliability NFRs. In Ricoh, 16 new efficiency NFRs were elicited. In
FIN, 44 new NFRs were identified, of which 21 were efficiency NFRs. Ad-
ditionally, 7 reliability and 16 maintainability NFRs were elicited. In
EMERGE, 104 new NFRs were elicited. 49 NFRs were UC or system func-
tion specific. Of these 49 NFRs, 21 were efficiency NFRs, 3 were reliablil-
ity NFRs and 25 were usability NFRs. 58 NFRs were requirements on the
overall system, i.e., not specific for a system function or UC. Of these, 3
were efficiency NFRs, one was a reliability NFR, 45 were usability NFRs, 4

Summary
of Feasibil-
ity

Q2.1 Identi-
fication of
NFRs

Validation

148

were security NFRs, and 2 were safety NFRs. So one can see that the NFR
methodology is capable of identifying new NFRs for various quality at-
tributes. In the conducted case studies, mostly efficiency and reliability
NFRs were elicited.

A second step is to judge whether the application of the NFR methodol-
ogy leads not only to the identification of NFRs, but also to additional
NFRs that were not elicited before. Therefore, the percentage of newly
identified NFRs is calculated. This was, of course, only possible for those
case studies that had NFRs as part of the existing requirements specifica-
tion, i.e., the Empress, Ricoh, and FIN case studies. In Empress, the re-
quirements specification contained 9 NFRs prior to the systematic NFR
elicitation. This corresponds to an increase of 622%. In the Ricoh case
study, 13 NFRs existed before, which corresponds to an increase of
123%. In the FIN case study, 10 NFRs existed before, which corresponds
to an increase of 440%. In the EMERGE case study, no NFRs were elicit-
ed before. One can conclude from these numbers that a significant
number of additional NFRs were elicited by applying the NFR methodol-
ogy.

Having additional NFRs with low impact on the subsequent development
phases would not be very beneficial. Therefore, an important question is
whether these additionally elicited NFRs have a significant impact on the
subsequent development phases such as the architecture phase. This
was measured by asking for an expert criticality rating for each NFR re-
garding architecture relevance. In the Empress case study, the architects
who developed the system prototype gave a rating for each elicited NFR
on the importance for architecture. 23 of the elicited NFRs were rated as
important for the current architecture; 9 of them were rated as critical
for the current architecture, which means they would lead to an inevita-

Project Empress Ricoh GIS FIN MBTech SOL EMERGE ES
2. Completeness

Q2.1: Can NFRs be identified by
using the NFR methodology?

yes, 56 new
ones

yes, 16 new
NFR

yes,
number
unknown

yes, 44 new
NFR

yes,
number
unknown N/A

yes, 104
NFR N/A

Q2.2: Are more NFRs identified
by using the NFR methodology?

56 new / 9
existing:
+622%

16 new / 13
existing:
+123% N/A

44 new / 10
existing:
+440%

yes,
number
unknown N/A N/A N/A

Q2.3: Do the elicited NFRs have
significant impact on the
subsequent development phases
(architecture)? yes N/A yes yes N/A N/A yes N/A
Q2.4: Do the experience-based
quality models help in getting
project specific quality models
more complete? yes yes yes yes yes N/A

used exp.
model as
starting
point N/A

Q2.5: Were additional NFRs
identified in the subsequent
software development phases? no N/A no N/A N/A N/A no N/A

Table 13: Summary of results for the completeness goal

Q2.2: Iden-
tification of
Additional
NFRs

Q2.3: Im-
pact of
NFRs

 149

ble change to the architecture. In the GIS case study, there was no sys-
tematic rating, but some of the elicited security NFRs had a strong im-
pact on the architecture. In [DKK+05], it is stated: “An important obser-
vation that was made … was that the slightest changes to any of the
NFR could have an important impact on the former architectural deci-
sions (e.g., a decision was no longer a possible alternative as it no longer
supports all of the requirements) thus requiring a new assessment of all
possible alternatives.” In the FIN case study, the elicited NFRs led to a
major discussion between the product managers who issued the NFRs
and the architects. In case these (especially efficiency) NFRs needed to be
incorporated into the product, the complete architectural framework the
product is based on would be obsolete and would need to be changed.
Therefore, the trade-off analysis came to the conclusion that the NFRs
will not be fulfilled in order to stay with the current architectural frame-
work. In EMERGE, only a part of the elicited NFRs were incorporated into
the research prototype as the incorporation of all NFRs would have re-
quired too much effort. The dimension of the effort to incorporate these
NFRs for the EMERGE case study can also be seen in the data for Q3.2.
All these case studies show that many of the elicited NFRs have a strong
impact on the subsequent phases, leading either to architectural chang-
es, new functionalities, or even completely new architectures.

A further question to answer is whether the experience-based quality
models help to make the project-specific quality models more complete.
Therefore, we determined whether new QAs were inserted into the
project-specific quality models based on the trigger questions that came
from the experience-based quality models. In other words, this also de-
termines whether the project-specific quality models would have been
incomplete if no experience-based quality models existed. In Empress
and FIN, the experience-based quality models were used intensively to
ask trigger questions. In Ricoh, the experience-based quality models
were useful, but many domain-specific quality attributes were elicited
that were not available in the experience-based quality models. In the
MBTech case study, the experience-based quality models were useful,
but the hardware-related quality attributes were elicited newly. In
EMERGE, the experience-based quality models were not used to ask
trigger questions, but directly as a starting point and discussion basis.
Therefore, it is not possible to determine their usefulness compared to
an approach where the project-specific quality models are created from
scratch. To summarize, the case studies show that the experience-based
quality models are an essential asset to make the project-specific quality
models complete. On the other side, each project showed that process
activity P1.2 revealed new domain-specific quality attributes that must be
incorporated into the experience-based quality models. So process activi-
ty P1.2 should not be skipped.

Q2.4: Help
of Experi-
ence-based
Quality
Models

Validation

150

A final question that serves as an indicator for the analysis of complete-
ness is whether NFRs were identified after the application of the NFR
methodology. This would either mean that, due to a change in the do-
main experts’ expectation, a new NFR became necessary, or that the NFR
existed before, but was not identified during the NFR methodology.
Therefore, we measure the number of NFRs that were identified after
the application of the NFR methodology with M2.5. This data is only
available for the Empress, GIS, and EMERGE case studies. In Empress and
GIS, the software development for the product is finished. In EMERGE, a
first running version of the research prototype is available. In all other
case studies, we had no access to data on the subsequent software de-
velopment processes, or the products are still in an early development
phase. In all three case studies, no new NFRs emerged during the subse-
quent software development phases.

To summarize this section, the case studies showed that the NFR meth-
odology is capable of identifying NFRs. Furthermore, the NFR methodol-
ogy is capable of identifying additional NFRs for projects where NFRs
were already elicited with state-of-the-practice requirements engineering
methods. The percentage of newly identified NFRs ranges from over
100% to over 600%. The case studies also showed that the elicited NFRs
have a strong impact on the subsequent development phases, leading ei-
ther to architectural changes, new functionalities, or even completely
new architectures. This shows the relevance of the newly elicited NFRs.
Additionally, the case studies showed that the experience-based quality
models are an essential asset to make the project-specific quality models
complete. One can assume that without experience-based quality mod-
els the project-specific quality models would not be complete. Of course,
the case studies cannot show that the NFR methodology elicits a set of
NFRs that is 100% complete. This proof is not possible, as for a real-life
project, it is impossible to identify the 100% baseline. However, no new
NFRs emerged during the subsequent software development phases in
the three case studies where we had access to this information. Also, the
NFR methodology shows that it elicits a far more complete set of NFRs
than state-of-the-practice approaches. Whether it elicits a more com-
plete set of NFRs than state-of-the-art approaches is probable but not
yet proven. This analysis is subject to future work. As already stated in
Section 7.1, this future work is not easy to perform, as one would either
need to perform an experiment with a large real-life system or find an
industrial partner that is willing to perform two state-of-the-art ap-
proaches for the same purpose.

Q2.5: Addi-
tional NFRs
after NFR
Elicitation

Summary
of Com-
pleteness

 151

7.4.3 Effort

The results of the effort analysis are summarized in Table 14.

For judging the effort for the application of the NFR methodology, two
measures were introduced. M3.1 measures the overall effort spent on
the application. This is the effort that results from summing up

– the effort spent by the method experts on offline (preparation) activi-
ties and participation of the method expert in the process activities
with the customer (P1.1, P1.2 and P2.1)

– the effort spent in the application by the domain expert (i.e., the per-
son capable of issuing the NFRs), measured by M3.2.

In each case study, the data was recorded or estimated afterwards by
the person applying the NFR methodology. The complete and detailed
list of effort data for the case studies can be found in Appendix C.

In Table 15, more information on the spent effort is given. The overall ef-
fort required for the method application ranges from 6 person-days
(Ricoh and EMERGE case studies) to 31 person-days (FIN case study). The
average effort for applying the NFR methodology amounts to 14 person-
days. When analyzing the effort spent by the domain experts, we can
see that the case studies FIN (24 person-days) and MBTech (12 person-
days) required most effort. This was due to the fact that many stake-
holders from the customer organization attended the tailoring and elici-
tation workshops, respectively. Furthermore, in FIN the tailoring and elici-
tation activities P1.2 and P2.1 had a long duration. In EMERGE, the least
effort was spent by the domain experts (1 day), as the tailoring and elici-
tation workshops were carried out in a very straightforward and concise
manner. On average, the effort spent by all domain experts per case
study amounts to 9 person-days.

Project Empress Ricoh GIS FIN MBTech SOL EMERGE ES
3. Effort
Q3.1: How much effort is needed
to perform the NFR
methodology?

7 person-
days

6 person-
days N/A

31 person-
days

18 person-
days N/A

6 person-
days

8 person-
days

Q3.2: How much rework effort is
saved (in the architecture phase)
by knowing the NFRs?

15 person-
days N/A N/A N/A N/A N/A

103 person-
days N/A

Q3.3: What is the ROI of NFR
elicitation? ROI > 2 N/A N/A N/A N/A N/A ROI > 17 N/A

Table 14: Summary of results for the effort goal

Q3.1: Effort
for Applica-
tion

Validation

152

When looking at the effort that is required per domain expert, we see
that the effort spent ranges from 0.2 person-days to 3 person-days, be-
ing 1 person-day on average. This should be a reasonable amount of ef-
fort to require from a domain expert for P1.2 and P2.1. These are en-
couraging data, as the domain experts are usually not available that
much for the elicitation of requirements in general.

With regard to the effort of the method expert, we see that between 2
person-days (Empress) and 7 person-days (FIN) have been spent. This dif-
ference in effort is mainly due to the significantly different length of the
activities P1.2 and P2.1. On average, 5 person-days of effort were spent
by method experts in the case studies. The method experts’ effort is the
one that can be saved by using the tool support. One can see from Table
15 that the automation potential for the Elicitation Guide Tool is usually
higher than the one for the Checklist Generation Tool. This is due to the
fact that the time needed for creating the checklist is lower than that for
the elicitation workshop. Overall, in the case studies between 3% and
43% of the overall effort spent, and 25% on average, can be saved by
using the tool support.

In order to get an ROI estimation, we need to estimate the impact of the
NFRs on the subsequent software development phases. For this purpose,
the measure M3.3 is used. It is an expert estimate on the sum of effort in
hours/days that is needed for rework if the newly elicited NFRs need to
be incorporated into a product version that does not conform to the
newly specified NFRs. There are two case studies where these values
were provided by domain experts: Empress and EMERGE. The reason
why it was possible to get this effort estimate in these case studies was
the special design of the case studies: In EMPRESS, based on the re-
quirements specification with the 9 existing NFRs, architects built a pro-
totype of the system. In parallel, the NFR methodology was used to elicit
the 56 new NFRs. After completion of the prototype, the architects were
confronted with the newly elicited NFRs and asked for an estimate on

Project Empress Ricoh GIS FIN MBTech SOL EMERGE ES Average*
Overall Effort (person-days) 7 6 N/A 31 18 N/A 6 8 14
Effort for Domain Experts
(person-days) 5 3 N/A 24 12 N/A 1 5 9
Effort for Method Experts
(person-days) 2 3 N/A 7 6 N/A 5 3 5
Effort for each Domain Expert
(person-days) 1.5 1.5 N/A 3 3 N/A 0.2 1 1
Automation potential for
Checklist Generator (person-
days) 2 0.1 N/A 0.25 0.3 N/A N/A N/A 1
Automation potential for
Elicitation Guide (person-days) 1 2 N/A 4 6 N/A 0.2 N/A 3
Sum of automation potential 3 2 N/A 4 6 N/A 0.2 N/A 3
Automation potential in % 43% 33% N/A 13% 33% N/A 3% N/A 25%

*for the calculation of the average values, ES was not taken into account, as only P1.1 and P1.2 were performed, not P2.1

Table 15: Effort spent and automation potential

Q3.2:
Saved Re-
work Effort

 153

how much effort it would take them to fulfill the NFRs. They estimated
this effort to three weeks of work (15 person-days). This was the effort
estimate that holds for changing the prototype. We can assume that an
effort estimate for a fully designed system would have been much high-
er. In EMERGE, NFRs were elicited, but due to time and resource con-
straints, there was a decision that only part of the NFRs would be incor-
porated into the research prototype. After creation of this research pro-
totype, the domain expert responsible for architecture was asked to give
an estimate on how much effort would be needed to completely incor-
porate the NFRs. The domain expert rated the overall effort needed to
change the research prototype to reflect the remaining NFRs in the areas
of Usability, Reliability, Security, and Safety at 102.5 person-days. The
detailed effort estimates of the architect per quality attribute can be
found in Appendix D. In all other case studies, the setup of the case
studies unfortunately prevented a collection of this metric. Either no NFR
elicitation was performed (SOL and ES), or no baseline system existed
(GIS), or the method experts had no access to domain experts who could
have provided effort estimates (Ricoh, FIN, MBTech). The data collected
for Q2.3 shows that NFRs have a strong impact on the subsequent phas-
es. This is another indicator that one can expect a significant reduction in
rework effort for future case studies as well if NFRs are elicited systemat-
ically with the NFR methodology.

From M3.3 and M3.1 we can calculate the Return on Investment from
the application of the NFR methodology (M3.4). These values are only
available for the Empress and EMERGE case studies. The calculation of
M3.4 for Empress amounts to ROI = 15 days / 7 days = 2.14. We should
keep in mind that this ROI is based on the value M3.3 for changing the
prototype. Therefore, a higher ROI can be expected if the change had
been estimated for a fully designed system. The calculation of M3.4 for
EMERGE amounts to ROI = 103 days / 6 days = 17.17. The two case
studies, especially EMERGE, show that the ROI value is promising. Never-
theless, one should keep in mind that the data is limited to the results of
two case studies.

To summarize the evaluation of the NFR methodology with regard to the
effort goal, we can say that sufficient data is available for characterizing
the effort needed to perform the NFR methodology. The effort required
for a single domain expert is one person-day on average. The effort for
domain experts is 9 person-days on average, depending on the number
of domain experts who are involved in the tailoring and elicitation work-
shops. This is a realistic effort to be expected from a customer. The effort
for the overall application of the NFR methodology ranges from 6 to 31
days, being 14 person-days on average. Putting this into relation to typi-
cal efforts for requirements elicitation and specification in general, but
also to the effort spent on functional requirements elicitation shows that
these are realistic efforts to be spent. On average, 25% of the overall ef-
fort can be saved by using the existing tool support.

Q3.3 ROI of
NFR Elicita-
tion

Summary
of Effort

Validation

154

Limited, but positive experience exists with regard to the saved rework
effort and ROI. Data was only collectable for two case studies. Therefore,
the current result of ROI >2 and ROI > 17 is of low validity, but neverthe-
less encouraging. It seems that the efforts for eliciting the NFRs pay off,
i.e., more effort can be saved in the subsequent software development
phases.

7.4.4 Further Qualitative or Quantitative Observations

This section will describe additional interesting qualitative and quantita-
tive findings that were observed during the case studies. A major quanti-
tative observation here are the differences in measurability of the result-
ing NFRs in the case studies. A major qualitative observation are the con-
flicts that were found between NFRs in the case studies.

As already mentioned in 1.2, as a positive side-effect of the application
of the NFR methodology, we expect the elicited NFRs to be measurable.
In the case studies, we observed varying percentages of NFRs being
measurable in the elicited sets of NFRs. The differences between the case
studies and the reasons for these deviations will be demonstrated by the
three case studies FIN, EMERGE, and Empress.

In the FIN case study, the statistics of NFRs were recorded as shown in
Table 16.

The percentage of measurable NFRs amounts to 95.5%. The two reliabil-
ity NFRs that were stated as not being measurable refer to information
that is collected at another place in the requirements specification (quan-
tity structure of this software) and the value is subject to being calculat-
ed from this information. Once this information is present (this is to hap-
pen during the requirements engineering phase), the percentage of
measurable NFRs amounts to 100%. One can see that this case study
shows that the application of the NFR methodology can lead to a set of
completely measurable NFRs.

In Empress, which is one of the early case studies, we see a slightly dif-
ferent analysis (see Table 17). 92.6% of the elicited NFRs are measura-

Measurabil-
ity of NFRs

 Overall NFRs Measurable NFRs

Efficiency 21 21

Reliability 7 5

Maintainability 16 16

SUM 44 42

Table 16: Measurable NFRs in FIN

 155

ble. An analysis of the reasons for the 7.4% non-measurable NFRs re-
vealed that the moderators deviated from the elicitation process, i.e., the
moderators did not ask the domain experts to state the NFRs by using
the metric. Still, 92.6% is a very high value compared to the analysis of
NFRs in other requirements specifications.

The last case study for which the analysis results are presented is the
EMERGE case study. Table 18 shows the results for this case study.

In total, of the 104 stated NFRs, 72 were measurable, and 3 were partly
measurable, i.e., one metric used for expressing the NFR was measura-
ble, the other was not. This amounts to a percentage of 69.2 % meas-
urable NFRs. An analysis of the reasons for the 30.8% not or partly
measurable NFRs revealed the following reasons:

1. Not all elementary quality attributes had metrics attached: In the pro-
ject-specific quality models that were used for the automatic checklist
derivation, some elementary quality attributes had no metric at-
tached. This is a clear deviation from the intended usage of the NFR
methodology. As a result, the method expert asked the domain ex-
perts for NFRs and recorded their statements in a non-measurable
way.

2. Method expert with domain knowledge: For the method expert, the
sentence that phrased the NFR was measurable due to the domain
knowledge that the method expert had acquired. But for the quality
assurance person who checked the NFR for measurability, this do-
main knowledge was not present and therefore, the NFR was rated
as not measurable. An example is the phrase “necessary infor-
mation” that was specified as part of an NFR. The domain experts
know that this is the information that is explicitly specified in the UC,
but other persons might not know this.

3. Time pressure at the workshop: The elicitation workshops were per-
formed with high time pressure. In this situation, it was not easy for

 Overall NFRs Measurable NFRs

Organizational NFRs 12 10

Efficiency 23 22

Reliability 16 15

Maintainability 5 5

SUM 56 52

Table 17: Measurable NFRs in Empress

Validation

156

the moderator to stick to the process. Therefore, some NFRs were
recorded without enforcing the use of a metric for this NFR.

These examples show that the percentage of measurable NFRs that will
be achieved by the NFR methodology is dependent on two factors. First,
the input for the parts that are tool-supported must be complete. If, for
example, metrics are missing in the quality models that are input for the
checklist derivation, this can have a strong impact on the resulting set of
NFRs. Second, the parts that are moderated by a person can be influ-
enced by the moderator’s method as well as by domain knowledge and
external factors such as time pressure. Therefore, these factors should al-
so be systematically be taken into account and controlled when perform-
ing the NFR methodology with the goal of achieving measurable NFRs.

As already mentioned in 1.2, as a positive side-effect of the application
of the NFR methodology, we expect the set of elicited NFRs to be free of
conflicts. In Section 7.4.1, some information was already presented for
answering questions Q1.4 and Q1.7. For all eight case studies, we do
not have any knowledge about whether conflicts between NFR have
been detected in later software development phases. In SOL we experi-
enced that a huge set of potential conflicts (>500) were elicited by sys-
tematically performing P1.3. (see Section 7.4.1, Q1.4). In the GIS and
Empress case studies, we experienced the situation that elicited NFRs
were detected as having a conflict in process activity P2.2. To give an ex-
ample of such a conflict and the resulting solution, we refer to the Em-
press case study. There, an intra-QA dependency (see also Section 5.7)
was detected. One NFR stated that the throughput for the wireless LAN
should be limited to 11 MBit/sec. The rationale was to use inexpensive
11Mbit/sec standard hardware components. Another NFR stated for the
throughput for the wireless LAN component that “In worst case 8 peo-
ple shall be able to download 1 document per person within 5-10 secs.”.
When analyzing these two NFRs, the moderator asked for the typical size
of such a document and found out that a typical document size of 3

 UC and System Function
Specific NFRs

(Overall / Measurable)

Non-UC and System Function
Specific NFRs (Overall / Meas-

urable / Partly Measurable)

Efficiency 21 / 21 3 / 3

Reliability 3 / 3 1 / 0

Usability 25 / 20 45 / 23 / 3

Security - 4 / 2

Safety - 2 / 0

SUM 49 / 44 55 / 28 / 3

Table 18: Measurable NFRs in EMERGE

Conflicts
between
NFRs

 157

MByte would amount to 8x3MByte=24MByte in 10 seconds. This means
a necessary throughput of 2.4MByte/sec=19.2 MBit/sec, which is larger
than the 11MBit/sec requested in the other NFR. As a solution, the max-
imum file size of the documents was restricted.

The fact that over 500 relationships showing possible conflicts were elic-
ited in SOL and the necessary handling of conflicting NFRs in GIS and
Empress show that conflicts between NFRs can appear quickly once the
NFR elicitation is performed systematically and a more complete set of
NFRs is specified.

7.5 Summary of Validation Results and Discussion

7.5.1 Summary of Results

The goal of the validation of the NFR methodology in eight case studies
was to evaluate the method’s feasibility, the completeness of the result-
ing set of NFRs, and the effort needed for the method’s application. The
validation setup would not allow determining statistically significant val-
ues for accepting or rejecting the corresponding null-hypothesis for the
three evaluation goals. Rather than that, we give a qualitative statement
on whether the data “support” or “strongly support” each hypothesis.

The results of the feasibility evaluation are very positive: Except for pro-
cess activity P2.2, all parts of the NFR methodology are absolutely feasi-
ble from the viewpoint of the evaluated produced results as well as from
the viewpoint of subjective opinions that were collected. Q1.7 showed
that there seem to be some limitations regarding the feasibility of P2.2.
This activity seems to be theoretically feasible, but not feasible in practice
for larger sets of NFRs or large numbers of quality attributes due to the
high amount of effort required. Furthermore, one should take into ac-
count that as far as Q1.4 and Q1.7 are concerned, the evidence is very
limited, as these questions were only evaluated in few case studies.

In general, the data collected for Q1.1 to Q1.8 strongly support hy-
pothesis H1 – Feasibility: The elements of the NFR methodology are
feasible, i.e., the artifacts can be created for real-life examples and the
process activities can be applied by averagely trained personnel.

The result of the completeness evaluation is also very positive: The case
studies showed that the NFR methodology is capable of identifying addi-
tional NFRs with a strong impact on the subsequent software develop-
ment phases. This holds for projects where NFRs were already elicited
with state-of-the-practice requirements engineering methods. The per-
centages of newly identified NFRs range from over 100% to over 600%.
The case studies show that after the NFR methodology was applied, no

Validation

158

new NFRs emerged in the subsequent software development phases.
One should take into account that the data collected for Q2.3 and Q2.5
are limited.

The data collected for Q2.1 to Q2.5 strongly support hypothesis
H2 – Completeness: The method results in a (more) complete set of
NFRs. The data definitively supports the statement that 20% more criti-
cal NFRs are identified compared to the state of the practice.

The result with regard to the effort needed to perform the NFR method-
ology is encouraging. The effort required for the domain experts is low
(9 person-days on average), with an average of 1 person-day per domain
expert. Also, the overall effort needed to perform the NFR methodology
is low (14 days on average) and can be further decreased by using the
existing tool support (25% on average). This effort is completely justifia-
ble, especially if compared to the effort that can be saved in the subse-
quent phases by knowing the NFRs in advance: One case study showed
that with the 7 days of effort invested, 15 days of rework effort could
have been saved. This amounts to an ROI > 2. Another case study re-
vealed that with 6 days of effort invested, 103 days of rework could
have been saved, which amounts to an ROI > 17. One should take into
account that sufficient data is available for evaluating the effort needed
to perform the NFR methodology, but the experience with regard to the
saved rework effort and ROI is very limited.

The data collected for Q3.1 to Q3.3 support hypothesis H3 – Ef-
fort: The estimated rework effort in the subsequent project or platform
development phases is reduced: The estimated saved rework effort for
found NFRs is at least twice the effort spent on systematically eliciting
the NFRs.

As a positive side effect, we observed that the NFR methodology can
produce a set of NFRs that is completely measurable. Important prereq-
uisites to achieving this are the process discipline of the moderator and
complete inputs in terms of quality models. As a further positive side ef-
fect, we experienced that the method can reveal conflicts in the set of
elicited NFRs.

7.5.2 Threats to Validity

The NFR methodology was evaluated in eight case studies. Data was col-
lected to evaluate the NFR methodology. Even though no controlled ex-
periment was performed and no statistics were used to formally reject or
accept the hypotheses, in this section, the possible threats to validity
shall be discussed according to the four types of possible threats report-
ed by [WRH+00].

 159

Based on the few data points collected in the eight case studies, a statis-
tical analysis of the data was not appropriate. Furthermore, the data
collected was collected “only” by performing eight case studies. We do
not have any data from controlled experiments (see Section 7.1 for the
reason). Therefore, a low statistical power is inherent.

Concerning the reliability of the measurements, most of the data collect-
ed is objective, i.e., two persons would interpret the results in the same
way. Only for Q1.8 and Q3.2 were subjective measures used to get an
expert judgement. For Q3.1, we have a special situation. Some effort da-
ta was recorded; other effort data was estimated by the person conduct-
ing the activity post mortem. The reliability of the estimations is lower
than the recorded effort data. Large deviations from the estimated effort
and the actual effort are unlikely. Slight deviations do not impact the
conclusions we draw, as for the Empress example with the lower ROI
value, the actual effort was recorded; for EMERGE, the ROI value is such
high that a slight deviation would not impact our conclusion. The threats
in these case studies are the estimates of the saved effort. For the other
case studies, the effort data of Q3.1 is used not for ROI calculation but
for characterizing the effort needed. Slight deviations in the post mor-
tem estimations do not change the magnitudes that are of interest for
the characterization.

Threats to internal validity are influences that may affect the case studies
with respect to causality and threaten the conclusion about possible
causal relationships. We did not use statistics to prove causal relation-
ships; rather the data collected support the hypotheses. Nevertheless, we
want to discuss some possible threats to internal validity. The case stud-
ies might have been influenced by project circumstances that were not
recorded. Such project circumstances might have been time pressure for
the elicitation workshop as already reported for the EMERGE case study.
We tried to observe this in each workshop. Other project circumstances
that are much harder to observe could be reasons to not state NFRs due
to group dynamics. We did not recognize such effects. Most likely, those
NFRs would have been identified in the subsequent software develop-
ment phases, which was not the case in the case studies.

Another possible threat is the new combination of experts in the elicita-
tion workshops. Maybe NFRs would have come up without the NFR
methodology, just by having exactly this group of experts together in
one workshop. Due to the design as case studies, we cannot judge this
effect. But since the same or similar experts recorded the NFRs in the
state-of-the-practice approaches used in the projects before the applica-
tion of the NFR methodology, we assume that this threat has a low
probability.

A last threat to internal validity is the fact that the author of the NFR
methodology performed some of the case studies himself (see Section
7.1 for the list of the case studies). This was part of the research method

Conclusion
Validity

Internal
Validity

Validation

160

to obtain feedback especially from the early case studies for the con-
struction of the NFR methodology. Nevertheless, the author never ap-
plied the method alone, but always in a joint setting with another
Fraunhofer employee. Later case studies were performed by persons
other than the author in order to further eliminate this threat. One im-
pact of the circumstance that the author was performing the methodol-
ogy by himself might have been on the result of measurability of the set
of elicited NFRs. If we compare the results of the case studies in Section
7.4.4, we see that the measurability of NFRs in EMERGE was obviously
lower than in FIN or Empress. In EMERGE, the author was not part ot the
method expert team. We know from asking the method expert in
EMERGE that the reasons for lower measurability were less process disci-
pline due to time pressure, incorrect process input (quality models with-
out metrics), and domain knowledge of the method expert. It might be
that the author has a tendency to stick more to the process, as it was
developed by the author himself, and to compensate incorrect process
input in the workshop. Even though the measurability of the resulting
NFRs were only a positive side effect of the NFR method, it would be in-
teresting to study these effects in future work to optimize the NFR
methodology with regard to measurability.

Threats to construct validity are conditions that limit the ability to draw
conclusions from the case study results to the theory behind it. Here the
question is whether the material used in the case studies is typical of the
constructs used in the theory of the NFR methodology. The early case
studies used material (quality models and checklists) that deviated from
the final metamodel of the NFR methodology (see Section 7.2). The ef-
fects of this are very local: In the outcome, they only affect the organiza-
tional and data items and do not threaten the validity for all other types
of functional conceptual elements. Further input material, such as the
functional specification, originated from real-life systems, but conformed
with the assumptions that the NFR methodology had for functional spec-
ifications. When comparing the outcome in theory with the observed
outcome, we have the inherent problem that in theory we have the
100% complete set of NFRs, which we cannot determine as a baseline
for the observed outcome. We used the indirect measure M2.5, the
number of additionally identified NFRs in the software development
phases after the application of the NFR methodology, in order to be able
to determine missed NFRs. Although no NFRs emerged in the subse-
quent phases, we still do not know whether no NFRs existed in theory or
whether they were missed throughout the software development. As
this is rather improbable, we assume that the threat of judging com-
pleteness without knowing what is 100% is also quite low.

Threats to external validity are conditions that limit the ability to general-
ize the results to practice. For the NFR methodology, the eight case case
studies were performed in intentionally different settings: Two case stud-
ies were performed for small systems, two for medium systems, one for
a medium to large system, and three case studies for large systems. Two

Construct
Validity

External
Validity

 161

case studies were performed in the embedded domain, the other six
were performed for interactive information systems. Different quality at-
tributes were in scope for the method application. Overall, eight differ-
ent quality attributes were treated in the eight case studies. Still, eight
data points is very limited experience for generalizing the results into
overall software development practice. In particular, the quality attrib-
utes robustness, portability, and safety were only treated in one case
study. Also, only two case studies were conducted for the embedded
domain.

7.5.3 Open Questions and Implications

The eight case studies were a good starting point for analyzing and sup-
porting the hypotheses for feasibility, completeness, and effort. Still,
some open questions remain, implying that future empirical work is
needed.

With regard to ROI and influence on subsequent software development
phases, first encouraging, but still very limited data was provided by the
case studies. More empirical research is needed to obtain significant
quantitative results. This can be achieved by performing more case stud-
ies where data on the subsequent software development phases is avail-
able. Another option would be to perform an experiment where two
groups start developing from different sets of NFRs: One group gets al-
most no NFRs, another group gets a full-fledged set of NFRs. After de-
signing a solution for these requirements, the group with almost no
NFRs will receive a change request to incorporate the missing NFRs and
the effort for this change will be measured. Such an experiment could
reveal solid data, but unfortunately, it is quite effort-consuming to built
such a system, as the size of such systems must be reasonably large (see
also Section 7.1).

The case studies pointed out that checking for NFR conflicts (process ac-
tivity P2.2) is theoretically possible, but might be a task that requires lots
of effort in practice. NFR conflicts were only identified for a medium-
sized system (Empress). For the large system in SOL, the rating came
from an expert judgment based on example material. Therefore, a case
study that uses a large, real-life example with elicited NFRs would be a
good starting point for gathering quantitative data on how many com-
parisons are needed for a real-life, large project.

The data from the eight case studies support the statement that the ap-
plication of the NFR methodology results in a much more complete set
of NFRs than state-of-the-practice approaches. Comparisons to other
state-of-the-art approaches still need to be evaluated. One comparison
of this NFR metholdolgy to the MOQARE approach can be found in a
paper [HKD07]. However, more empirical research would be needed to
allow a comparison with other state-of-the-art approaches. Designing a

Validation

162

controlled experiment to compare two or more approaches would again
encounter the same obstacles as already described in Section 7.1. There-
fore, one could design case studies where, for the same system, domain
experts perform first one state-of-the-art approach for eliciting NFRs, and
then the NFR methodology. This should also be performed the other way
round. One would evaluate whether one method finds NFRs that were
not elicited with the other method. Unfortunately, it is hard to find do-
main experts who are willing to perform process activities with the same
purpose (eliciting NFRs for their system) twice.

The eight case studies definitively showed that the NFR methodology is
applicable for more than one quality attribute. Some quality attributes
such as efficiency and reliability were often addressed in the case studies
(see Section 7.1). Others like safety, portability, or robustness were only
treated once. The applicability of the NFR methodology for these quality
attributes and maybe others that were not the subject of any of the
eight case studies would be an issue for future case studies.

Another open question for future empirical research is where the differ-
ences in measurability of the elicited NFRs originate from and how to
eliminate these differences. Here controlled experiments could be per-
formed. One could vary the quality of the input artifacts or train the
moderator in different ways to achieve differences in process discipline.
Even though a deeper understanding of the effect of process discipline
on the measurability of NFRs would be interesting, the problem can par-
tially be solved with the existing tool support, as the amount of human
activity is already reduced by automating process activity P2.1 with the
Elicitation Guide Tool.

 163

8 Summary

In this chapter, we will summarize and discuss the major results and con-
tributions of this thesis and provide some ideas for potential future work
based on existing method limitations.

8.1 Results and Contribution

Requirements engineering is the first activity in engineering a software-
based product. Making mistakes in such an early phase has a strong
impact on the subsequent software development phases. Besides the
functional requirements, non-functional requirements play an important
role for the success of a project or product. In today’s practice, essential
information on the system’s non-functional requirements has often not
been elicited properly and is thus incomplete. As a result, architectures
have to change in late development phases, which leads to increased
project or platform development costs and increased time to market. Al-
ternatively, missing NFRs are not incorporated into the product in later
phases, leading to low product quality.

This thesis addresses the topic of complete non-functional requirements
elicitation. It focuses on NFR elicitation and specification for software-
based, interactive systems. The scope is to provide support for as many
quality attributes as possible, i.e., without restriction to one specific qual-
ity attribute (such as efficiency or usability).

Current state-of-the-practice approaches are mainly based on free brain-
storming on chapters of requirements specifications. Also, current state-
of-the-art approaches treat NFRs in parallel to functional specifications.
Neither the state-of-the-practice nor the state-of-the-art approaches of-
fer a possibility to judge the completeness of the NFR elicitation. This is
due to the fact that no objective end criterion is defined for the NFR elici-
tation process.

The key idea of this thesis is the systematic elicitation of NFRs taking
specific elements of the functional specification as input and algorithmi-
cally processing the functional specification elements. By systematically
processing the elements of the functional specification, the process be-
comes repeatable and controllable, which is the main driver for increas-
ing the confidence that all important NFRs have been identified. Fur-
thermore, the experience-based quality models provide a classified hier-
archy of quality aspects. In the systematic NFR elicitation, the functional

Complete-
ness of
NFRs

Scope

Current
Approaches

Idea of this
Thesis

Summary

164

conceptual elements and subsystems are checked against these quality
aspects.

The NFR methodology described in this thesis provides a systematic ap-
proach for the elicitation, analysis, and specification of a complete set of
NFRs. As a positive side effect, the set of NFRs is conflict-free and each
NFR is measurable. To achieve this, the NFR methodology contributes the
following components:

� A requirements taxonomy and metamodel (see Sections 2.2.1 and
2.2.2) incorporating functional, non-functional, and architectural
concepts and the relationships between these concepts: The meta-
model lays the foundation for the specification of NFRs as well as for
the elicitation algorithm.

� A representation for quality models (see Section 2.2.3): This represen-
tation captures hierarchical, classified quality attributes and their de-
pendencies.

� A guideline for the integrated specification of functional and non-
functional requirements (see Section 3.2.3): A recommendation is
given as to where to specify the different kinds of NFRs that can
emerge during the elicitation process.

� An algorithm for eliciting NFRs based on functional specification ele-
ments and quality attributes (see Section 4.2): The elicitation algo-
rithm takes into account the various relationships between elemen-
tary quality attributes and functional conceptual elements and sub-
systems, respectively. It provides the basis for the effective and effi-
cient manual and tool-supported NFR elicitation.

� Complete and detailed process guidance (see Sections 5.1-5.8): De-
tailed process guidance is given on how to use the elicitation algo-
rithm, all involved artifacts, and the tool support for NFR elicitation
and specification.

� Checklists and tool support (see Sections 4.3 and 6.2): The checklists
provide support for the manual application of the elicitation algo-
rithm. The tool support partially automates the NFR methodology.
The Checklist Generation Tool generates checklists automatically
from the quality models with the help of sentence patterns. The
method expert’s part of elicitation activity P2.1 can be automated
with the help of the Elicitation Guide Tool.

� Means to check the resulting set of NFRs for conflicts (see Sections
2.2.3.3 and 5.7): The NFR methodology makes use of influence rela-
tionships between QAs to later on check the resulting set of NFRs for
conflicts. Intra-QA and inter-QA dependency checks are performed to
identify conflicting NFRs.

� Means to focus the effort for NFR elicitation (see Section 6.1): Espe-
cially for large projects, an elicitation of a complete set of NFRs might
not be desirable due to effort restrictions. In such situations, it is es-
sential to ensure that the elicitation of NFRs does not reveal arbitrary

Contribu-
tion of the
NFR Meth-
odology

 165

NFRs but still focuses on a systematic process. Therefore, the NFR
methodology provides means for focusing on the critical qualities,
functionalities, and subsystems. This also includes the possibility to
perform the NFR methodology iteratively (see Section 6.1.4).

To validate some of the potential benefits, the NFR methodology was
deployed in a series of eight, mainly industrial case studies. The case
studies varied in many dimensions, including the domain of the product,
the size of the system, and the QAs in scope for NFR elicitation. The
validation was driven by the hypotheses stated in Section 1.2. The results
of the case studies strongly support the first two hypotheses:

� H1 – Feasibility: “The elements of the NFR methodology are feasible,
i.e., the artifacts can be created for real-life examples and the process
activities can be applied by averagely trained personnel.” The analysis
revealed that all elements of the NFR methodology are theoretically
feasible in the various case study contexts. The practical feasibility
was also given for all process activities, except for process activity
P2.2. There, domain experts judged that for large systems, this activi-
ty might consume an impractical amount of effort.

� H2 – Completeness: “The method results in a (more) complete set of
NFRs. About 20% more critical NFRs are identified compared to the
state of the practice.” In all case studies that performed activity P2.1,
new, important NFR were elicited that were not elicited with the
state-of-the-practice approaches. The ratio of newly identified NFR
range from over 100% to 622%.

Furthermore, the results of the case studies are encouraging with regard
to the last hypothesis:

� H3 – Effort: “The estimated rework effort in the subsequent project
or platform development phases is reduced: The estimated saved re-
work effort for found NFRs is at least twice the effort spent on sys-
tematically eliciting the NFRs.” The effort data shows that the effort
for NFR elicitation is reasonably low. Only limited, but encouraging
data (two case studies) exist for the ROI evaluation due to case study
restrictions. In these case studies, the NFR methodology application
resulted in an ROI > 2 and ROI > 17, respectively.

As a positive side effect, the case studies showed that the resulting set of
specified NFRs can be measurable. Rates of 95.5% and even up to
100% can be achieved by consequently using the NFR methodology.
Furthermore, the concepts of the NFR methodology revealed their poten-
tial to detect conflicts between NFRs in the resulting set of NFRs.

Some parts of the NFR methodology are intentionally constructed in an
algorithmic or pattern-based way so that they can be easily automated.
The NFR methodology is supported by two tools: the Checklist Genera-

Evaluation
of the NFR
Methodol-
ogy

Tool Sup-
port

Summary

166

tion Tool and the Elicitation Guide Tool. The Checklist Generation Tool
makes manual derivation of checklists obsolete. The Elicitation Guide
Tool automatically guides the domain expert by following the elicitation
algorithm and asking for NFRs, while showing the corresponding func-
tional conceptual elements and subsystems, respectively. This leads to
saved effort, as the part of the method expert is taken over by the tool,
but also to less sources for mistakes in performing the NFR methodology
and to high repeatability.

The case studies showed that the automation potential from using the
tool is high. On average, 25% of the overall effort could have been
saved by using the tool support. The tool support also enables and sup-
ports the iterative usage of the NFR methodology. The scope of the NFR
methodology with regard to qualities or functionalities can first be re-
duced and later on extended without unnecessarily repeating any previ-
ous elicitation activities.

8.2 Method Limitations and Future Work

In the case studies, the NFR methodology was used for the following
QAs: usability, reliability, maintainability, portability, efficiency; security,
robustness, and safety. Some QAs were treated more often than others.
For some QAs, it was easier to create the quality models than for others.
We faced most difficulties with safety. It is very hard to define suitable
elementary quality attributes and especially metrics for safety. This can
also be seen in the work by [BKL+95], where safety is treated differently
than the other QAs. Furthermore, safety is the only QA among the oth-
ers that ISO 9126 [ISO01] puts on the “quality in use” level. The working
group “Non-Functional Requirements” of the German Computer Society
(GI) [Doe09] has created quality models for many QAs, but did not suc-
ceed in building a model for safety that could be agreed upon. There-
fore, for safety-critical systems, we recommend addressing safety with
other methods to ensure complete coverage of this important topic.

For those QAs where we know that quality models can be produced, an
interesting question to pursue in the future is on which basis reference
quality models can be created for companies. Maybe some domain-
specific patterns exist that would allow fast creation of the reference
quality models. More research is needed to analyze whether this kind of
patterns exist.

As the NFR methodology incorporates generic mechanisms for treating
different kinds of tasks, data items, and subsystems, it can be applied to
small systems as well as to large-scale systems. In our case studies, we
experienced that the QAs that characterize items on an organizational
business-process level may be different from QAs that affect items on
the IT-system level (like, for example, the typical UC level). Therefore, fu-

Method
Limitations
and Future
Work

 167

ture work should investigate whether there are quality attributes in ref-
erence quality models that are more suitable for the business-process
level and others that are more suited for the IT-system level. Maybe an
additional classification of quality attributes could enable additional fo-
cusing in the elicitation process.

Experience has shown that checking for inter-QA dependencies is a non-
trivial task (see Sections 6.1.3, 7.4.1 and 7.5.3). This is due to the large
number of comparisons that is needed to completely check all possible
NFRs that might be in conflict, even though the number of comparisons
is reduced by focusing on those NFRs where the QAs, the NFRs are type
of, stay in conflict. Additional strategies are needed to make this activity
more feasible.

This NFR methodology was designed to systematically elicit NFRs. Parts of
the approach can be automated. Currently, automation is only possible
for the activities of the method expert. Domain experts are still needed
for the tailoring and the elicitation. Even though the effort is already
quite low, future work should aim at further reducing the effort required
by the domain experts, as they are usually the bottleneck for eliciting the
requirements. This could be done, for example, by inviting specific do-
main expert roles to the tailoring workshops depending on the part of
the quality model that is subject to tailoring instead of doing the tailor-
ing in a workshop with all domain experts. But then, one has to ensure
that this does not negatively influence the completeness of the project-
specific quality models.

The NFR methodology today foresees reuse on the level of QAs. We
know from our industrial case studies that some domain experts would
appreciate reuse also on the set of concrete NFRs stated for previously
built, similar products. Other work also incorporates such reuse ap-
proaches [CL01a], but approaches purely building upon NFR reuse are
typically not scalable. Therefore, future work could investigate the effect
of incorporating reusable examples of NFRs into the NFR methodology
and especially into the Elicitation Guide Tool. This could also reduce the
effort required by the domain experts.

The NFR methodology was evaluated in a series of eight case studies.
This analysis was a good starting point for analyzing and supporting the
hypotheses for feasibility, completeness, and effort. Still, some open
questions remain, implying that future empirical work is needed. More
empirical research is needed to get significant quantitative results for the
method’s ROI and the impact of NFRs on the subsequent software de-
velopment phases.

Furthermore, with regard to the feasibility of the NFR dependency check,
a case study that uses a large, real-life example with elicited NFRs would
be a good starting point for gathering quantitative data on how many

Limitations
in Empiri-
cism and
Future
Work

Summary

168

comparisons are needed for a real-life, large project to detect NFR con-
flicts.

To further evaluate the performance of the NFR methodology, more case
studies comparing the NFR methodology to other state-of-the-art ap-
proaches should be conducted. The eight case studies definitively
showed that the NFR methodology is applicable for more than one quali-
ty attribute. Some quality attributes such as efficiency and reliability were
often addressed in the case studies (see Section 7.1). Others like safety,
portability, or robustness were only treated once. The applicability of the
NFR methodology for these quality attributes and maybe others that
were not the subject of any of the eight case studies could be the sub-
ject of evaluation in future case studies.

Last but not least, there was high variance in the results on the measur-
ability of the set of NFRs. Here, controlled experiments could be per-
formed to get a deeper understanding of the effect of process discipline
on the measurability of NFRs.

This thesis uses primary and secondary information places for annotating
NFRs. This is due to the fact that information needs are different for the
various roles and, therefore, there is not one ideal solution: The need
differs from NFRs to be visualized in every view to visualization solely at
the subsystem or interaction descriptions. Future tool support should
have a feature to enable and disable the NFR information in the various
views. This would definitely be a great help in addressing this challenge
of view-based NFR documentation.

Furthermore, for checking NFR conflicts, tool support would be benefi-
cial. This tool support could bring the candidate pairs of possibly conflict-
ing NFRs to the attention of the requirements analyst and ask whether
the two NFRs really stay in conflict. This would take the burden of
searching for the candidate pairs off the method and domain experts.

The current Elicitation Guide Tool is based on IBM Telelogic Doors. Per-
forming business process modeling with Doors when modeling large-
scale information systems is possible with the Analyst Plug-in, but it is
not efficient. Typically, a business process or workflow-modeling tool
would be used. Therefore, it would be beneficial to port the existing
functionality from the Elicitation Guide Tool also to a workflow-modeling
tool.

8.3 Concluding Remarks

The research conducted as part of this thesis is a classical example of ap-
plied research: The motivation for the research originated from industrial
practice. In our industry projects, we encountered the situation that NFRs

Tool Limita-
tions and
Future
Work

 169

were insufficiently elicited and specified. We surveyed the state-of-the-
art approaches with regard to NFR elicitation, specification, and model-
ing and found no approach that enables systematic elicitation of NFRs to
obtain a complete set of NFRs. Most approaches were not feasible for
industrial application, or few statements about the effort required to
perform the approaches existed. Therefore, based on the existing state-
of-the-art approaches, we developed new ideas, including the key idea
of algorithmically processing certain types of functional elements. We
designed all the aforementioned components of the NFR methodology
including the tool support. Eventually, we validated the researched
methodology in eight, mainly industrial settings to provide insights into
the method’s feasibility, NFR completeness, and effort needed.

We know that dealing with NFRs is an important topic and the research
in this thesis contributed significantly to the challenge of getting com-
plete NFRs. We still see many research challenges to be addressed in the
future to enable our industry to deliver high-quality systems within a rea-
sonable amount of effort and time.

References

170

References

[AD07a] S. Adam and J. Doerr, On the Notion of Determining System Adequacy by

Analyzing the Traceability of Quality, 8th Workshop on Business Process
Modeling, Development, and Support (BPMDS'07) in conjunction with
Caise, 2007.

[AD07b] S. Adam and J. Doerr, Towards Early Consideration of Non-Functional Re-
quirements at the Business Process Level, IRMA Conference, 2007.

[ADB+08] S. Adam, J. Doerr, F. Blucha and A. Poth, High Quality in Elicitation and
Specification of Non-functional Requirements - Lessons Learned from Ap-
plying this Method to the Automotive Domain, CONQUEST - 11th Interna-
tional Conference on Quality Engineering in Software Technology, 2008,
pp. 123-132.

[ADE+09] S. Adam, J. Doerr, M. Eisenbarth and A. Gross, Using Task-oriented Re-
quirements Engineering in Different Domains - Experiences with Applica-
tion in Research and Industry, 17th IEEE International Requirements Engi-
neering Conference, 2009.

[Ant97] A. Antón, Goal Identification and Refinement in the Specification of Infor-
mation Systems, PhD Thesis, Georgia Institute of Technology, 1997.

[ARD09] S. Adam, N. Riegel and J. Doerr, The Role of Quality Aspects for the Ade-
quacy of Business Processes and Business Information Systems, Interna-
tional Journal of Business Process Integration and Management, vol. 4, no.
2, 2009, pp. 124-133.

[Bas93] V.R. Basili, The Experimental Paradigm in Software Engineering, Proceed-
ings of the International Workshop on Experimental Software Engineering
Issues: Critical Assessment and Future Directions, 1993.

[BB02] J.E. Burge and D.C. Brown, NFR's: Fact or Fiction?, Computer Science
Technical Report, WPI-CS-TR-02-01, Worcester Polytechnic Institute, 2002.

[BBF+01] P. Botella, X. Burgues, X. Franch, M. Huerta and G. Salazar, Modeling Non-
Functional Requirements, Jornadas de Ingenieria de Requisitos Aplicada (JI-
RA), 2001.

[BBK+78] B.W. Boehm, J.R. Brown, H. Kaspar, M. Lipow, G.J. Macleod and M.J. Mer-
rit, Characteristics of Software Quality, North-Holland, 1978.

[BBL76] B.W. Boehm, J.R. Brown and M. Lipow, Quantitative evaluation of soft-
ware quality, International Conference on Software Engineering, 1976.

[BCR94a] V. Basili, G. Caldiera and H.D. Rombach, The Goal Question Metric Ap-
proach, Encyclopedia of Software Engineering, John Wiley & Sons, 1994,
pp. 528–532.

 171

[BCR94b] V.R. Basili, C. Caldiera and H.D. Rombach, Experience Factory, Encyclope-
dia of Software Engineering, 1, J. J. Marciniak, ed., John Wiley & Sons,
1994, pp. 469-476.

[BDA04] V. Basili, P. Donzelli and S. Asgari, A Unified Model of Dependability: Cap-
turing Dependability in Context, IEEE Software, vol. 21, no. 6, 2004, pp.
19-25.

[BDK+99] J. Boegh, S. Depanfilis, B. Kitchenham and A. Pasquini, A Method for
Software Quality Planning, Control, and Evaluation, IEEE SW, vol. 23, no.
2, 1999, pp. 69-77.

[BDR97] L.C. Briand, C. Differding and H.D. Rombach, Practical guidelines for
measurement-based process improvement, Software Process: Improvement
and Practice Journal, vol. 2, no. 4, 1997.

[Beu00] L. Beus-Dukic, Non-functional requirements for COTS software compo-
nents, International Conference on Software Engineering, 2000.

[BGL+96] V.R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull and S.
Sørumgård, The Empirical Investigation of Perspective-Based Reading, Em-
pirical Software Engineering Journal, vol. 1, no. 2, 1996, pp. 133-164.

[BGR09] R.B. Svensson, T. Gorschek and B. Regnell, Quality Requirements in Prac-
tice: An Interview Study in Requirements Engineering for Embedded Sys-
tems, Requirements Engineering: Foundation for Software Quality (REFSQ):
15th International Working Conference, 2009, pp. 218-232.

[BH96] B. Boehm and H. In, Identifying Quality Requirement Conflicts, IEEE Soft-
ware, vol. 13, no. 2, 1996.

[BKL+95] M. Barbacci, M.H. Klein, T.A. Longstaff and C.B. Weinstock, Quality At-
tributes, CMU/SEI-95-TR-021, 1995.

[BL91] V. Berzins and Luqi, Software Engineering with Abstractions, Addison-
Wesley, 1991.

[BLF02] K.K. Breitman, J.C.S.d.P. Leite and A. Finkelstein, The world's a stage: a
survey on requirements engineering using a real-life case study, Pontificia
Universidade Catolica do Rio de Janeiro Departamento de Informatica,
2002.

[BMA02] I. Brito, A. Moreira and J. Araujo, A Requirements Model for Quality At-
tributes, Early Aspects: Aspect-Oriented Requirements Engineering and Ar-
chitecture Design, Workshop at 1st International Conference on Aspect-
Oriented Software Development, 2002.

[Boe08] J. Boegh, A New Standard for Quality Requirements, IEEE Software, vol.
25, no. 2, 2008, pp. 57 - 63.

[Boe81] B.W. Boehm, Software Engineering Economics, Prentice Hall, 1981.

[BR88] V.R. Basili and H.D. Rombach, The TAME project: towards improvement-
oriented software environments, IEEE Transactions on Software Engineer-
ing, vol. 14, no. 6, 1988, pp. 758-773.

References

172

[Bro87] F.P. Brooks, No silver bullet: essence and accidents of Software Engineer-
ing, IEEE Computer, vol. 20, no. 4, 1987, pp. 10-19.

[BSD+07] T.H.A. Balushi, P.R.F. Sampaio, D. Dabhi and P. Loucopoulos, ElicitO: A
Quality Ontology-Guided NFR Elicitation Tool, International Workshop on
Requirements Engineering: Foundation for Software Quality (REFSQ), 2007.

[Bus09] F. Buschmann, Learning from Failure, Part 1: Scoping and Requirements
Woes, IEEE Software, vol. 26, no. 6, 2009 pp. 68 - 69.

[CKM01] J. Castro, M. Kolp and J. Mylopoulos, Towards requirements-driven infor-
mation systems engineering: the Tropos project, Information Systems Jour-
nal, vol. 27, no. 6, 2001.

[CL01a] L.M. Cysneiros and J.C.S.d.P. Leite, Driving Non-Functional Requirements
to Use Cases and Scenarios, XV Brazilian Symposium on Software Engi-
neering, 2001.

[CL01b] L.M. Cysneiros and J.C.S.d.P. Leite, Using the Language Extended Lexicon
to Support Non-Functional Requirements Elicitation, Workshop em Engen-
haria de Requisitos, 2001, pp. 139-153.

[CL01c] L.M. Cysneiros and J.C.S.d.P. Leite, Using UML to reflect non-functional
requirements, Conference of the Centre for Advanced Studies on Collabo-
rative Research, 2001.

[CL99] L.M. Cysneiros and J.C.S.P. Leite, Integrating Non-Functional Requirements
into data modeling, Proc. 4th International Symposium on Requirements
Engineering, 1999.

[CM78] J.P. Cavano and J.A. McCall, A Framework for the Measurement of Soft-
ware Quality, Software Quality and Assurance Workshop, ACM Special In-
terest Group on Measurement and Evaluation, 1978.

[CMB08] J. Cleland-Huang, W. Marrero and B. Berenbach, Goal-Centric Traceability:
Using Virtual Plumblines to Maintain Critical Systemic Qualities, IEEE Trans-
actions on Software Engineering, vol. 34, no. 5, 2008, pp. 685-699.

[CNY95a] L. Chung, B. Nixon and E. Yu, Using Non-Functional Requirements to Sys-
tematically Select Among Alternatives in Architectural Design, 1st Interna-
tional Workshop on Architectures for Software Systems, 1995, pp. 31-43.

[CNY+99] L. Chung, B.A. Nixon, E. Yu and J. Mylopoulos, Non-Functional Require-
ments in Software Engineering, Kluwer Academic Publishers, 1999.

[Coc00] A. Cockburn, Writing Effective Use Cases, Pearson, 2000.

[CY98] L. Chung and E. Yu, Achieving System-Wide Architectural Qualities, OMG-
DARPA MCC Workshop on Compositional Software Architectures, 1998.

[Dav93] A. Davis, Software Requirements: Objects, Functions and States, Prentice
Hall, 1993.

 173

[DFvL91] R. Darimont, S. Fickas and A.v. Lamsweerde, Goal-Directed Concept Acqui-
sition in Requirements Elicitation, IWSSD-6, 6th International Workshop on
Software Specification and Design, 1991, pp. 14-21.

[DHK+07] J. Doerr, S. Hartkopf, D. Kerkow, D. Landmann and P. Amthor, Built-in Us-
er Satisfaction - Feature Appraisal and Prioritization with AMUSE, 15th IEEE
International Requirements Engineering Conference, 2007, pp. 101-110.

[DKK+03] J. Doerr, D. Kerkow, T. Koenig and T. Olsson, A Method for Eliciting, Doc-
umenting, and Analyzing Non-functional Requirements, Reportnr.
141.03/E, Fraunhofer IESE, 2003.

[DKK+05] J. Doerr, D. Kerkow, T. Koenig, T. Olsson and T. Suzuki, Non-Functional
Requirements in Industry - Three Case Studies Adopting an Experience-
based NFR Method, 13th IEEE International Requirements Engineering
Conference, 2005.

[DKK+06] J. Dörr, D. Kerkow, T. Koenig and T. Olsson, Qualität in Software & Syste-
men - Ein praxiserprobter Ansatz zur Erhebung und Spezifikation von
Nichtfunktionalen Anforderungen – und was kommt jetzt?, Softwaretech-
nik-Trends, vol. 26, no. 1, 2006.

[DKL+08] J. Doerr, D. Kerkow, D. Landmann, C. Graf, C. Denger and A. Hoffmann,
Supporting requirements engineering for medical products: early consider-
ation of user-perceived quality, 30th International Conference on Software
Engineering, 2008.

[DKvK+03a] J. Dörr, D. Kerkow, A. von Knethen and B. Paech, Eliciting Efficiency Re-
quirements with Use Cases, 9th International Workshop on Requirements
Engineering: Foundation for Software Quality (REFSQ), Workshop held at
CaiSE, 2003.

[DKvK+03b] J. Dörr, D. Kerkow, A. von Knethen and B. Paech, Auf dem Weg zu mess-
baren Wartungsanforderungen, Softwaretechnik-Trends, vol. 23 no. 1,
2003.

[Doe09] J. Doerr, Homepage of the GI working Group on NFRs, 2009,
http://www.re-wissen.de/Arbeitsgruppen/AK-NFR/, last accessed 2009-12-
28.

[DOS04] J. Doerr, T. Olsson and K. Schmid, Qualität im Automobil: Systematische
Definition nichtfunktionaler Anforderungen, Proc. Automotive - Safety &
Security, 2004.

[Ebe98] C. Ebert, Putting requirement management into praxis: dealing with non-
functional requirements, Information and Software Technology, vol. 40,
no. 3, 1998, pp. 175-185.

[EME09] Webpage of the EMERGE project, http://www.emerge-project.eu/, last ac-
cessed 2009-12-10.

[Eva95] Evaluation of natural language processing systems, 1995,
http://www.issco.unige.ch/ewg95, last accessed 2009-12-29.

References

174

[EYM06] N.A. Ernst, Y. Yu and J. Mylopulous, Visualizing non-functional require-
ments, Proc. First International Workshop on Requirements Engineering
Visualization, IEEE, 2006.

[FC03] X. Franch and J.P. Carvallo, Using quality models in software package se-
lection, IEEE Software, vol. 20, no. 1, 2003, pp. 34-41.

[FD96] A. Finkelstein and J. Dowell, A Comedy of Errors: The London Ambulance
Service Case Study, International Workshop on Software Specifications and
Design, 1996, pp. 2-5.

[Fra98] X. Franch, Systematic Formulation of Non-Functional Characteristics of
Software, International Conference on Requirements Engineering, 1998.

[Gar88] D.A. Garvin, Managing Quality: The Strategic and Competitive Edge, NY:
The Free Press, 1988.

[Gil05] T. Gilb, Competitive Engineering: A Handbook For Systems Engineering,
Requirements Engineering, and Software Engineering Using Planguage,
Butterworth-Heinemann, 2005.

[Gil07] K. Gilb, Evolutionary Project Management and Product Development, Book
Manuskript to be obtained at www.gilb.com, 2007.

[Gli05] M. Glinz, Rethinking the Notion of Non-Functional Requirements., Third
World Congress for Software Quality (3WCSQ 2005), 2005, pp. 55-64.

[Gli07] M. Glinz, On Non-Functional Requirements, 15th International Conference
on Requirements Engineering, 2007.

[Gra92] R.B. Grady, Practical Software Metrics for Project Management and Process
Control, Prentice Hall, 1992.

[GRL02a] GRL Tutorial, University of Toronto, 2002.

[GRL02b] GRL Syntax, University of Toronto, 2002.

[GS05] A. Gregoriades and A. Sutcliffe, Scenario-based assessment of nonfunc-
tional requirements, IEEE Transactions on Software Engineering, vol. 31,
no. 5, 2005, pp. 392- 409.

[GSJ+09] A. Gross, S. Steinbach-Nordmann, A. Jedlitschka, M. Becker, I. Steinke and
M. Bloice, D6.1.2 (System Requirements Specification), v2.0, EMERGE pro-
ject, internal report, 2009.

[Hae05] P. Haefele, Softwareentwicklung mit dem TRAIN-Prozess, Bachelor thesis,
Institut für Informatik, Lehrstuhl Software Systeme, Universität Heidelberg,
Heidelberg, 2005.

[HKD07] A. Herrmann, D. Kerkow and J. Doerr, Exploring the Characteristics of NFR
Methods – a Dialogue about two Approaches, International Workshop on
Requirements Engineering: Foundation for Software Quality (REFSQ), 2007.

 175

[HP08] A. Herrmann and B. Paech, MOQARE: misuse-oriented quality require-
ments engineering, Requirements Engineering Journal, vol. 13, no. 1,
2008, pp. 73-86.

[IBR+01] H. In, B. Boehm, T. Rodgers and M. Deutsch, Applying WinWin to quality
requirements: A case study, 23rd International Conference on Software
Engineering (ICSE), 2001, pp. 555-564.

[IEEE90] IEEE, Standard Glossary of Software Engineering, Terminology, IEEE Stand-
ard 610.12-1990, 1990.

[IEEE98a] IEEE, IEEE Recommended Practice for Software Requirements Specifica-
tions, IEEE Standard 830-1998, 1998.

[IEEE98b] IEEE, IEEE Guide for Information Technology - System Definition - Concept
of Operations (ConOps) Document, IEEE Standard 1362-1998, 1998.

[INC09] INCOSE, INCOSE Requirements Management Tools Survey,
http://www.incose.org/ProductsPubs/Products/rmsurvey.aspx, last accessed
2009-12-29.

[ISO01] ISO/IEC 9126-1:2001(E) : Software Engineering - Product Quality - Part 1:
Quality Model, International Organization for Standardization (ISO), 2001.

[ISO05] ISO 25000:2005, Software Engineering -- Software product Quality Re-
quirements and Evaluation (SQuaRE) -- Guide to SQuaRE, International Or-
ganization for Standardization (ISO), 2005.

[ISO06] ISO 9241-110:2006, Ergonomics of human-system interaction - Part 110:
Dialogue principles, International Organization for Standardization (ISO),
2006.

[ISO91] ISO/IEC 9126:1991, Quality Characteristics and Guidelines for Their Use, In-
ternational Organization for Standardization (ISO), 1991.

[Jac99] S. Jacobs, Introducing measurable quality requirements: a case study, IEEE
International Symposium on Requirements Engineering, 1999, pp. 172-
179.

[JBR99] I. Jacobson, G. Booch and J. Rumbaugh, The Unified Software Develop-
ment Process, Addison Wesley, 1999.

[JP93] M. Jarke and K. Pohl, Vision-Driven Requirements Engineering, IFIP WG8.1
Working Conference on Information System Development Process, 1993,
pp. 3-22.

[KBK+99] R. Kazman, M. Barbacci, M. Klein, S.J. Carriere and S.G. Woods, Experi-
ence with Performing Architecture Tradeoff Analysis, International Confer-
ence on Software Engineering, 1999.

[KD96] T.G. Kirner and A.M. Davis, Nonfunctional Requirements of Real-Time Sys-
tems, Advances in Computers, vol. 42, 1996, pp. 1-37.

References

176

[KDO07] M. Kassab, M. Daneva and O. Ormandjieva, Scope Management of Non-
Functional Requirements, Euromicro Conference on Software Engineering
and Advanced Applications, 2007.

[KDP+04] D. Kerkow, J. Dörr, B. Paech, T. Olsson and T. Koenig, Elicitation and Doc-
umentation of Non-functional Requirements for Sociotechnical Systems,
Requirements Engineering for Sociotechnical Systems, A. S. José Luis Maté,
ed., Idea Group, Inc., 2004.

[KHM+09] M. Klaes, J. Heidrich, J. Muench and A. Trendowicz, CQML Scheme: A
Classification Scheme for Comprehensive Quality Model Landscapes, Proc.
35th EUROMICRO Conference Software Engineering and Advanced Appli-
cations, IEEE Computer Society, 2009, pp. 243-250.

[KKC00] R. Kazman, M. Klein and P. Clements, ATAM: Method for Architecture
Evaluation, CMU/SEI-2000-TR-004, 2000.

[KKD03] D. Kerkow, K. Kohler and J. Doerr, Usability and Other Quality Aspects De-
rived from Use Cases, Performance by Design. Proceedings of forUSE 2003,
2003.

[KKP90] S.E. Keller, L.G. Kahn and R.B. Panara, Specifying Software Quality Re-
quirements with Metrics, in Tutorial: System and Software Requirements
Engineering, 1990, pp. 145-163.

[KOK04] H. Kaiya, A. Osada and K. Kaijiri, Identifying stakeholders and their prefer-
ences about NFR by comparing use case diagrams of several existing sys-
tems, 12th IEEE international Requirements Engineering Conference, 2004,
pp. 112–121.

[KS95] G. Kotonya and I. Sommerville, Integrationg Safety Analysis and Require-
ments Engineering, CSEG/9/1995, Lancaster University, Computing De-
partment, 1995.

[KS98] G. Kotonya and I. Sommerville, Requirements Engineering: Processes and
Techniques, John Wiley & Sons, 1998.

[LAG07] X. Liu, M. Azmoodeh and N. Georgalas, Specification of Non-Functional
Requirements for Contract Specification in the NGOSS Framework for
Quality Management and Product Evaluation, Workshop on Software
Quality, 2007.

[Lam01a] A.v. Lamsweerde, Goal-Oriented Requirements Engineering: A guided
Tour, 5th International Symposium on Requirements Engineering, 2001,
pp. 249-261.

[Lam01b] A.v. Lamsweerde, Building Formal Requirements Models for Reliable Soft-
ware, Lecture Notes in Computer Science No. 2043, Springer, 2001.

[LL98] A.v. Lamsweere and E. Letier, Integrating Obstacles in Goal-Driven Re-
quirements Engineering, ICSE-98, 20th International Conference on Soft-
ware Engineering, 1998.

 177

[Loo03] L. Loomanns, Essentials and Requisites for the Management of Evolution –
Requirements and Incremental Validation, Report No D1 part 3, ITEA EM-
PRESS Project, 2003.

[LWE01] B. Lawrence, K. Wiegers and C. Ebert, The Top Risks of Requirements En-
gineering, IEEE Software, vol. 18, no. 6, 2001.

[LX99] J. Lee and N.-L. Xue, Analyzing User Requirements by Use Cases: A Goal-
Driven Approach, IEEE Software, vol. 16, no. 4, 1999.

[McC94] J. McCall, Quality factors, Encyclopedia of Software Engineering, 2, J.
Marciniak, ed., John Wiley & Sons, 1994, pp. 958-969.

[MCY+92] J. Mylopulous, L. Chung, E. Yu and B. Nixon, Representing and Using Non-
Functional Requirements: A Process-Oriented Approach, IEEE Transactions
on Software Engineering, vol. 18, no. 6, 1992, pp. 483-497.

[Mil00] D. Miller, Choice and Application of a Software Quality Model, Interna-
tional Conference on Software Quality, 2000, pp. 243-252.

[MRS+07] S. Meier, T. Reinhard, R. Stoiber and M. Glinz, Modeling and Evolving
Crosscutting Concerns in ADORA, Early Aspects at ICSE: Workshop in As-
pect-Oriented Requirements Engineering and Architecture Design, 2007.

[MRS+09] C. Marhold, C. Rohleder, C. Salinesi and J. Doerr, Clarifying Non-Functional
Requirements to Improve User Acceptance - Experience at Siemens, Re-
quirements Engineering: Foundation for Software Quality (REFSQ): 15th In-
ternational Working Conference, 2009 pp. 139-146.

[MS95] D.N.J. Mostert and S.H.v. Solms, A Technique to Include Computer Securi-
ty, Safety, and Resilience Requirements as Part of the Requirements Speci-
fication, Journal of Systems Software, vol. 31, 1995, pp. 45-53.

[MYB+91] A. Maclean, R.M. Young, V.M.E. Belotti and T.P. Moran, Questions, Op-
tions and Criteria: Elements of design space analysis, Human Computer In-
teraction - Special Issue on Design Rationale, vol. 6, no. 3 & 4, 1991.

[Nix00] B. Nixon, Management of Performance Requirements for Information Sys-
tems, IEEE Transactions on Software Engineering, vol. 26, no. 12, 2000.

[OMG05] Object Management Group, UML Profile for Schedulability, Performance,
and Time Specification. Version 1.1, 2005.

[Pas03] T. Pasternak, Using Trade-Off Analysis to Uncover Links between Function-
al and Non-Functional Requirements in Use-Case Analysis, IEEE Interna-
tional Conference on Software - Science, Technology & Engineering, 2003.

[PK04a] B. Paech and D. Kerkow, Non-functional requirements engineering – quali-
ty is essential, 10th International Workshop on Requirements Engineering:
Foundation for Software Quality (REFSQ), 2004.

[PK04b] B. Paech and K. Kohler, Task-Driven Requirements in Object-Oriented De-
velopment, Perspectives on Software Requirements, The Kluwer Interna-

References

178

tional Series in Engineering and Computer Science SECS 753, J. C. S. d. P.
Leite and J. H. Doorn, eds., Kluwer Academic Publishers, 2004, pp. 45-67.

[Pls87] P.E. Plsek, Defining Quality at the Marketing/Development Interface, Proc.
Quality Progress, June 1987, pp. 28-36.

[Poh08] K. Pohl, Requirements Engineering: Grundlagen, Prinzipien, Techniken
Dpunkt.Verlag GmbH, 2008

[PvKD+03] B. Paech, A. von Knethen, J. Doerr, J. Bayer, D. Kerkow, R. Kolb, A.
Trendowicz, T. Punter and A. Dutoit, An experience based approach for in-
tegrating architecture and requirements engineering, From Software Re-
quirements to Architectures (STRAW), Workshop held at ICSE, 2003.

[Qua09] Quamoco Project Website, http://quamoco.in.tum.de/, last accessed 2009-
11-21.

[RJB99] J. Rumbaugh, I. Jacobson and G. Booch, The Unified Modeling Lanuage
Reference Manual, Addison-Wesley Professional, 1999.

[Rob89] W.N. Robinson, Integrating Multiple Specifications Using Domain Goals,
IWSSD-5, 5th International Workshop on Software Specification and De-
sign, 1989, pp. 219-225.

[Rom08] H.D. Rombach and F. Seelisch, Formalisms in Software Engineering: Myths
Versus Empirical Facts, Central and East European Conference on Software
Engineering Techniques CEE-SET 2007 - Revised Selected Papers, 2008.

[Rom09] D. Rombach, Lecture "Grundlagen des Software Engineering", Chapter 4,
2009, http://wwwagse.informatik.uni-kl.de/teaching/gse/ws2009, last ac-
cessed 2009-12-29.

[Rom85] G.-C. Roman, A Taxonomy of Current Issues in Requirements Engineering,
IEEE Computer, 1985, pp. 14-22.

[RR99] S. Robertson and J. Robertson, Mastering the Requirements Process, ACM
Press, 1999.

[Rup07] C. Rupp, Requirements-Engineering und -Management (4. Auflage),
Hanser Fachbuchverlag, 2007.

[RW07] T. Rinke and T. Weyer, Defining Reference Models for Modelling Qualities:
How Requirements Engineering Techniques Can Help, International Work-
shop on Requirements Engineering: Foundation for Software Quality
(REFSQ), 2007.

[Sch99] A.-W. Scheer, ARIS - Business Process Frameworks (3rd Edition), Springer,
1999.

[SHR09] X. Song, B. Hwong and J. Ros, Experiences in Developing Quantifiable
NFRs for the Service-Oriented Software Platform, 17th IEEE International
Requirements Engineering Conference, 2009.

 179

[SM98] A. Sutcliffe and S. Minocha, Scenario-based Analysis of Non-Functional
Requirements, Requirements Engineering: Foundation for Software Quality
(REFSQ), Workshop held at CAiSE, 1998.

[URW+08] O. Uenalan, N. Riegel, S. Weber and J. Doerr, Using Enhanced Wiki-based
Solutions for Managing Requirements, MARK '08: First International Work-
shop on Managing Requirements Knowledge, Workshop held at Interna-
tional Conference on Requirements Engineering, 2008, pp. 63-67.

[VDG08] K.B. Villela, J. Doerr and A. Groß, Proactively Managing the Evolution of
Embedded System Requirements IEEE Computer Society: 16th IEEE Interna-
tional Requirements Engineering Conference, 2008, pp. 13-22.

[vSB99] R.v. Solingen and E. Berghout, The Goal/Question/Metric Method: A prac-
tical guide for quality improvement of software development, McGraw-
Hill, 1999.

[WDW08] S. Wagner, F. Deissenboeck and S. Winter, Erfassung, Strukturierung und
Überprüfung von Qualitätsanforderungen durch aktivitätenbasierte Quali-
tätsmodelle, 2. Workshop zur Erhebung, Spezifikation und Analyse nicht-
funktionaler Anforderungen in der Systementwicklung, Workshop held at
Software Engineering, 2008.

[Wie03] K. Wiegers, Software Requirements, Microsoft Press, 2003.

[Wor07] J. Dörr and P. Liggesmeyer, Workshop zur Erhebung, Spezifikation und
Analyse nichtfunktionaler Anforderungen in der Systementwicklung, Proc.
Software Engineering 2007.

[Wor08] J. Dörr and P. Liggesmeyer, 2. Workshop zur Erhebung, Spezifikation und
Analyse nichtfunktionaler Anforderungen in der Systementwicklung, Proc.
Software Engineering, 2008.

[Wor10] J. Dörr and P. Liggesmeyer, 3. Workshop zur Erhebung, Spezifikation und
Analyse nichtfunktionaler Anforderungen in der Systementwicklung, Proc.
Software Engineering, 2010, to appear.

[WRH+00] C. Wohlin, P. Runeson, M. Höst, M.Ohlsson, B. Regnell and A. Wesslén,
Experimentation in Software Engineering – An Introduction, Kluwer Aca-
demic Publisher, 2000.

[Yu93] E.S.K. Yu, Modelling Organizations for Information Systems Requirements
Engineering, RE'93 - 1st International Symposium on Requirements Engi-
neering, 1993, pp. 34-41.

[Yu97] E.S.K. Yu, Towards Modeling and Reasoning Support for Early-Phase re-
quirements Engineering, 3rd IEEE Int. Symp. on Requirements Engineering
1997.

[Yue87] K. Yue, What does it mean to say that a specification is complete?, IWSSD-
4, Fourth International Workshop on Software Specification and Design,
1987.

References

180

[YZC+84] R. Yeh, P. Zave, A. Conn and G. Cole, Software Requirements: New Direc-
tions and Perspectives, Handbook of Software Engineering, 1984, pp. 519-
543.

[Zav97] P. Zave, Classification of Research Efforts in Requirements Engineering,
ACM Computing Surveys, vol. 29, no. 4, 1997, pp. 315-321.

 Example Quality Models

 181

Appendix A: Example Quality Models

In this section of the appendix, some excerpts from experience-based
reference quality models for the typical elements of HLQA, i.e., the QAs
reliability, efficiency, security, usability, portability, and maintainability
are presented. The purpose of these quality models is to give the reader
an illustration on how reference quality models can look like. None of
them claims to be a complete reference quality model. They shall be
viewed as simple examples that should be easy to understand. For this
purpose, most of the QAs in the following quality models should be self-
descriptive. A precise definition of the QAs and metrics is needed if the
models shall be used as reference quality models for an organization.
The terminology for the QAs must be agreed upon by the stakeholders
in the tailoring workshop (see process activity P1.2). For an initial termi-
nology of the QAs, the definitions of the QAs from standards such as ISO
9126, Part 1 [ISO01] and ISO 9241, Part 110 [ISO06] can be taken as
starting point (most of the QAs in the example models can be found
there).

Example Quality Models

182

A.1: Reliability

<<system>>
Availability

Failure
Recovery Time

<<struct>>
Ease of Recovery

Mean time
between
failures

<<struct>>
Integrity

<<struct>>
Fault Tolerance

<<struct>>
Reliability

<<struct>>
Maturity

<<struct>>
Recoverability

Relative
uptime

Number of Actions
that need to be

performed

Likelihood of
information loss in %

% internal faults
leading to failure

Number of interface
infringements

per UC

Maximum
downtime per

failure

Time in
operation

No of users

Interface state
recover

Execution state
recover

<<system>>
History

<<data>>
Data Integrity

<<system>>
Interface Integrity

Backup
frequency

Available data

Storage Time

Maximum time loss for
reentering data from last

saved status

<<system>>
Disaster Recovery

backup
systems

Distance from
main system (km)

<<system>>
State Integrity

<<system>>
System Recovery

<<utask>>
Task Recovery

<<ustask>>
Mis-Usability

<<system>>
Self-Tolerance

 Example Quality Models

 183

A.2: Efficiency

Example Quality Models

184

A.3: Security

 Example Quality Models

 185

A.4: Usability

Example Quality Models

186

A.5: Maintainability

<<struct>>
Installability

<<utask>>
Ease of Transfer

Time needed by user
group to perform task

Actions/steps to be
performed by user

group to perform task

Actions/steps to be
performed by user

group to perform task

Time needed by user
group to perform task

<<utask>>
Ease of

Configuring

Actions/steps to be
performed by user

group to perform task

Time needed by user
group to perform task

<<utask>>
Removeability

<<struct>>
Changeability

<<struct>>
Maintainabilty

<<struct>>
Stability

<<system>>
Modifiability

<<struct>>
Analyzability

<<system>>
Change Impact

Analyzability

<<system>>
Debug

Analyzability

<<utask>>
Change impact

of
unexpected

behaviour after
change

Time needed by
developer to
perform task

<<stask>>
Expressiveness

<<struct>>
Scaleability

supported
future users

<<stask>>
Extendability

Actions/steps needed
by developer to

perform task

Time needed by
developer to
perform task

Actions/steps needed
by developer to

perform task

Time needed by
developer to
perform task

Actions/steps needed
by developer to

perform task

Time needed to
localize defect based

on error message

Time needed to
incorporate a new
system function

supported
future data sets

% of data
increase per year

% of user
increase per year

<<data>>
Information
Scaleability

<<utask>>
Usage

Scaleability

 Example Quality Models

 187

A.6: Portability

<<struct>>
Adaptability

Adaptable to specified
hardware

<<struct>>
Co-Existence

<<struct>>
Replaceability

<<struct>>
Portability

<<system>>
Backward

Compatibility

Compatible to
specified version System co-exist with

other specified system

<<struct>>
Installability (see
Maintainability)

<<system>>
Hardware

Adaptability

<<utask>>
Organizational

Adaptivity

<<utask>>
System

Adaptivity

Adaptable to specified
organisational
circumstances

Adaptable to
surrounding software

(Operating SW)

<<system>>
Legacy

Interoperability

Interfaces of old
system to other

systems

<<system>>
Ressource

Usage

Maximum % of
Ressource Allocation

<<system>>
System Co-
Existence

Template for an Integrated Specification

188

Appendix B: Template for an Integrated Specifica-
tion

 Template for an Integrated Specification

 189

Requirements Specification for

<System name>
<System-ID>

Document-Version <Number>

Date<Date>

Distribution List
<Names>

Contact Person

Document history

Date Person Change Reason Review date

Template for an Integrated Specification

190

TOC
1. Introduction
 1.1 System Identification
 1.2 System Overview
 1.3 Document Overview
2. Business Processes
3. Operational Scenarios
 3.1 Overview on Operational Scenarios
 3.2 Description of Operational Scenarios
4. System Function Descriptions
5. Data Model
6. General Non-Functional Requirements
7. First Solution Ideas

Glossary

Term/Abbreviation Description

Reference documents

Reference ID Description and Link

 Template for an Integrated Specification

 191

1. Introduction

1.1 System Identification
Name, Number and Abbreviation for the SUD.

1.2 System Overview
Rough description of the system. Overview on physical architecture
(set of subsystems).

1.3 Document Overview

2. Business Processes

BP <number>
Name
Goal
Precondition
Trigger
Possibilities to take
influence

Priority
Input
Output
Postcondition
Execution Profile (Com-
plexity, Rate)

NFR
Ressources
To-Be Workflow (EPC)

Textual description of workflow

Template for an Integrated Specification

192

3. Operational Scenarios

3.1 Overview on Operational Scenarios

System

System-Task

Human/
System-Task

Human-Task

User Task QA1: NFR1
User Task QA2: NFR3

3.2 Description of Operational Scenarios

UC<number>
Name
Goal
Actor
Precondition
Flow of Events
Exceptions
Rules
NFR
Data
System Functions
Postcondition

 Template for an Integrated Specification

 193

4. System Function Descriptions

SF<number>
Name
Input
Precondition
Description
Exceptions
Rules
NFR
Output
Involved Components
Post Condition

5. Data Model

Data Item<number>
Name
Description
Quantity
Dependencies
NFR

Template for an Integrated Specification

194

6. General Non-Functional Requirements

6.1 HLQA1

6.1.1 Overall System
System-QA1:
Task-Overspanning-QA1:

6.1.2 Subsystem 1

6.1.3 Subsystem 2

6.1.4 …

6.2 HLQA2

6.3 …

7. First Solution Ideas
List of all means that are already determined.

 Effort Data for Case Studies

 195

Appendix C: Effort Data for Case Studies

 C
as

e
St

ud
y

/ A
ct

iv
ity

#M
et

ho
d

Ex
pe

rt
s

#D
om

ai
n

Ex
pe

rt
s

D
ur

at
io

n
(m

in
ut

es
)

SU
M

 a
ll

m
et

ho
d

ex
pe

rt
s

pe
r

ac
tiv

ity

(h
ou

rs
)

SU
M

 a
ll

do
m

ai
n

ex
pe

rt
s

pe
r

ac
tiv

ity

(h
ou

rs
)

SU
M

 a
ll

pe
rs

on
s

pe
r

ac
tiv

ity

(h
ou

rs
)

SU
M

 a
ll

m
et

ho
d

ex
pe

rt
s

al
l

ac
tiv

iti
es

(d

ay
s)

SU
M

 a
ll

do
m

ai
n

ex
pe

rt
s

al
l

ac
tiv

iti
es

(d

ay
s)

SU
M

 a
ll

pe
rs

on
s

al
l

ac
tiv

ity

(d
ay

s)

SU
M

 p
er

do

m
ai

n
ex

pe
rt

 a
ll

ac
tiv

iti
es

(d

ay
s)

Au
to

m
at

io
n

Po
te

nt
ia

l b
y

C
he

ck
lis

t
G

en
er

at
io

n
To

ol
 (d

ay
s)

Au
to

m
at

io
n

Po
te

nt
ia

l b
y

El
ic

ita
tio

n
G

ui
de

 T
oo

l
(d

ay
s)

Em
pr

es
s

Pr
io

rit
iz

at
io

n
2

1
30

1
0,

5
1,

5
Pr

ep
ar

at
io

n
E

ffi
ci

en
cy

2
0

24
0

8
0

8
Ef

f.-
Ta

ilo
rin

g
2

1
18

0
6

3
9

Ef
f.-

El
ic

ita
tio

n
2

1
12

0
4

2
6

Pr
ep

ar
at

io
n

M
ai

nt
.+

R
el

.
2

0
24

0
8

0
8

M
ai

nt
ai

na
bi

lit
y

-T
ai

lo
rin

g
2

2
60

2
2

4
M

ai
nt

ai
na

bi
lit

y
-E

lic
ita

tio
n

2
2

12
0

4
4

8
R

el
ia

bi
lit

y
- T

ai
lo

rin
g

2
2

60
2

2
4

R
el

ia
bi

lit
y

- E
lic

ita
tio

n
2

2
12

0
4

4
8

SU
M

 a
ll

ac
tiv

iti
es

39
17

,5
56

,5
5

2
7

1,
44

2
1

R
ic

oh
Pr

ep
ar

at
io

n
1

0
60

1
0

1
Ta

ilo
rin

g
2

2
24

0
8

8
16

El
ic

ita
tio

n
2

2
48

0
16

16
32

SU
M

 a
ll

ac
tiv

iti
es

25
24

49
3,

13
3

6
1,

5
0,

13
2

G
IS

N
o

da
ta

 a
va

ila
bl

e
FI

N
Pr

ep
ar

at
io

n
2

0
60

2
0

2
Ta

ilo
rin

g
2

8
48

0
16

64
80

C
he

ck
lis

t D
er

iv
at

io
n

1
0

12
0

2
0

2
El

ic
ita

tio
n

2
8

96
0

32
12

8
16

0

SU
M

 a
ll

ac
tiv

iti
es

52
19

2
24

4
6,

5
24

31
3

0,
25

4
M

B
Te

ch
C

he
ck

lis
t D

er
iv

at
io

n
1

0
14

5
2,

42
0

2,
42

Ta
ilo

rin
g

2
4

72
0

24
48

72
El

ic
ita

tio
n

2
4

72
0

24
48

72

SU
M

 a
ll

ac
tiv

iti
es

50
,4

2
96

14
6,

42
6,

3
12

18
,3

3
0,

3
6

SO
L

N
o

da
ta

 a
va

ila
bl

e
EM

ER
G

E
Pr

ep
ar

at
io

n
2

0
42

0
14

0
14

W
or

ks
ho

p
Pr

io
rit

iz
at

io
n

/ T
ai

lo
rin

g
1

1
7

30
0,

5
3,

5
4

W
or

ks
ho

p
Pr

io
rit

iz
at

io
n

/ T
ai

lo
rin

g
2

1
3

20
0,

33
1

1,
33

D
er

iv
e

Q
ua

lit
ym

od
el

s
&

ge
ne

ra
te

 c
he

ck
lis

ts
1

0
60

0
10

0
10

W
or

ks
ho

p
El

ic
ita

tio
n

1
1

3
45

0,
75

2,
25

3
W

or
ks

ho
p

El
ic

ita
tio

n
2

1
3

60
1

3
4

Sp
ec

ifi
ca

tio
n

of
 N

FR
s

in
to

 In
te

gr
at

ed
 S

pe
ci

fic
at

io
n

1
0

60
0

10
0

10

SU
M

 a
ll

ac
tiv

iti
es

36
,5

8
9,

75
46

,3
3

4,
57

1
6

0,
19

N
/ A

0,
22

ES Pr
ep

ar
at

io
n

2
0

24
0

8
0

8
Ta

ilo
rin

g
2

5
48

0
16

40
56

SU
M

 a
ll

ac
tiv

iti
es

24
40

64
3

5
8

1
N

/A
N

/A

Detailed Expert Estimate in EMERGE

196

Appendix D: Detailed Expert Estimate in EMERGE

Response Time
Transmission Time

Workload
Workload Distribution
Processing capacity

Information distribution

Usage Time Definition of approporiate time-
outs 34, 35, 36, 96, 100 yes

History
Failure resolution

Fault removal

Mean time between failures

Integrity

Ease of recovery

Last saved status

Risks Risk Handling 51 no 80h

Accidents Accident Handling 51 yes

Mobility
Avoid information overload
Avoid lack of information

Effectiveness

Localisation
Understandability

Appropriate feedback of system
activities

Comprehensible Icon Language

Traceability
Navigation support

Consistency
Appropriate wording for

 each target group

 Error Tolerance Undo, abort, feasability of
medical parameters 44, 46, 100 yes

Accessibility

Adaptability

Customizability

Experience
Availability of a help system

Relevant functionalities
Costs

Perceived usefulness
Unobtrusiveness of system

components
Satisfaction

Device form factor

Vulnerability 49 no 80h
Privacy 49 no 20h

Encryption 49 yes

Access /
Authorization 49 yes

SUM in hours: 820h
SUM in days: 102,5 d

1st Level QA 2nd Level QA

Resource UtilisationEfficiency

Time Behaviour

Security

 Suitability for the
task

Usability

 Controllability

Attractiveness

Acceptance

 Suitability for
Individualization

 Conformity with user
expectations

Reliability

Recoverability

 Suitability for
Learning

Safety

Self-Descriptiveness

Maturity 38, 39, 40 no 160h

120h

34, 35, 36, 93, 94,
96, 100, 107, 109,

118
yes

38, 39, 40, 96, 98,
107 no 120h

yes

46,48 no 160h

44, 46, 48, 96, 98,
107, 119, 120 yes

44, 46, 48

44, 46, 48, 96, 98,
107, 119, 120 yes

44, 46, 48 yes

no 80h

46 no

44, 46, 48, 96, 98,
107, 118, 120 yes

44, 46,48, 94, 99,
100, 109

3rd Level QA

34, 35, 36, 96, 98,
107 yes

Estimated Effort to
completely fulfill the
NFR on granularity 2nd
level (hours)

NFRs of this kind
completely fulfilled
in current system
(yes/no)

Reference to
NFRs in

document (page
number)

 List of Abbreviations

 197

Appendix E: List of Abbreviations

EPC Event-driven process chain

FR Set of all functional requirements including user task,

system task and data item requirements

HLQA Set of high-level quality attributes

ISO International Standardization Organization

NFR Non-functional requirement

QA Quality attribute

SUD System under development

SYS Set of all subsystems and the system itself.

TORE Task- and object-oriented requirements engineering

UC Use Case

 199

Lebenslauf

Persönliche Daten

 Name Jörg Dörr

 Anschrift Hainbuchenweg 12
 67661 Kaiserslautern

 Geburtsdatum und -ort 05.03.1976 in Kaiserslautern

 Familienstand Verheiratet, 2 Kinder

Werdegang

 1982 – 1984 Pestalozzi-Grundschule, Kaiserslautern
 1984 – 1986 Stresemann-Grundschule Kaiserslautern
 1986 – 1995 Hohenstaufen-Gymnasium, Kaiserslautern (Abitur)
 1995 – 1996 Zivildienst bei der Lebenshilfe e.V., Kaiserslautern
 1996 – 2002 Studium der Informatik, Universität Kaiserslautern

(Diplom)
 Seit 2002 Wissenschaftlicher Mitarbeiter am Fraunhofer-Institut

für Experimentelles Software Engineering (IESE),
Kaiserslautern

 2004 – 2005 Leiter des Geschäftsfelds „Telekommunikation und
Dienstanbieter“ am Fraunhofer IESE, Kaiserslautern

 2004 – 2006 Leiter der Abteilung „PR/Marketing“ am Fraunhofer
IESE, Kaiserslautern

 2005 – 2009 Leiter der Abteilung „Requirements and Usability Engi-
neering“ am Fraunhofer IESE, Kaiserslautern

 Seit 2010 Leiter der Abteilung „Information & Interactive Sys-
tems“ am Fraunhofer IESE, Kaiserslautern

 Seit Juni 2010 Leiter der Hauptabteilung „Information Systems“ am
Fraunhofer IESE, Kaiserslautern

Kaiserslautern, den 7.Mai 2011

�

PhD Theses in Experimental Software Engineering

Volume 1 Oliver Laitenberger (2000), Cost-Effective Detection of Software Defects
Through Perspective-based Inspections

Volume 2 Christian Bunse (2000), Pattern-Based Refinement and Translation of
Object-Oriented Models to Code

Volume 3 Andreas Birk (2000), A Knowledge Management Infrastructure for
Systematic Improvement in Software Engineering

Volume 4 Carsten Tautz (2000), Customizing Software Engineering Experience
Management Systems to Organizational Needs

Volume 5 Erik Kamsties (2001), Surfacing Ambiguity in Natural Language
Requirements

Volume 6 Christiane Differding (2001), Adaptive Measurement Plans for Software
Development

Volume 7 Isabella Wieczorek (2001), Improved Software Cost Estimation
A Robust and Interpretable Modeling Method and a Comprehensive
Empirical Investigation

Volume 8 Dietmar Pfahl (2001), An Integrated Approach to Simulation-Based
Learning in Support of Strategic and Project Management in Software
Organisations

Volume 9 Antje von Knethen (2001), Change-Oriented Requirements Traceability
Support for Evolution of Embedded Systems

Volume 10 Jürgen Münch (2001), Muster-basierte Erstellung von Software-
Projektplänen

Volume 11 Dirk Muthig (2002), A Light-weight Approach Facilitating an Evolutionary
Transition Towards Software Product Lines

Volume 12 Klaus Schmid (2003), Planning Software Reuse – A Disciplined Scoping
Approach for Software Product Lines

Volume 13 Jörg Zettel (2003), Anpassbare Methodenassistenz in CASE-Werkzeugen

Volume 14 Ulrike Becker-Kornstaedt (2004), Prospect: a Method for Systematic
Elicitation of Software Processes

Volume 15 Joachim Bayer (2004), View-Based Software Documentation

Volume 16 Markus Nick (2005), Experience Maintenance through Closed-Loop
Feedback

Volume 17 Jean-François Girard (2005), ADORE-AR: Software Architecture
Reconstruction with Partitioning and Clustering

Volume 18 Ramin Tavakoli Kolagari (2006), Requirements Engineering für Software-
Produktlinien eingebetteter, technischer Systeme

Volume 19 Dirk Hamann (2006), Towards an Integrated Approach for Software
Process Improvement: Combining Software Process Assessment and
Software Process Modeling

Volume 20 Bernd Freimut (2006), MAGIC: A Hybrid Modeling Approach for
Optimizing Inspection Cost-Effectiveness

Volume 21 Mark Müller (2006), Analyzing Software Quality Assurance Strategies
through Simulation. Development and Empirical Validation of a Simulation
Model in an Industrial Software Product Line Organization

Volume 22 Holger Diekmann (2008), Software Resource Consumption Engineering for
Mass Produced Embedded System Families

Volume 23 Adam Trendowicz (2008), Software Effort Estimation with Well-Founded
Causal Models

Volume 24 Jens Heidrich (2008), Goal-oriented Quantitative Software Project Control

Volume 25 Alexis Ocampo (2008), The REMIS Approach to Rationale-based Support
for Process Model Evolution

Volume 26 Marcus Trapp (2008), Generating User Interfaces for Ambient Intelligence
Systems; Introducing Client Types as Adaptation Factor

Volume 27 Christian Denger (2009), SafeSpection – A Framework for Systematization
and Customization of Software Hazard Identification by Applying Inspection
Concepts

Volume 28 Andreas Jedlitschka (2009), An Empirical Model of Software Managers’
Information Needs for Software Engineering Technology Selection
A Framework to Support Experimentally-based Software Engineering
Technology Selection

Volume 29 Eric Ras (2009), Learning Spaces: Automatic Context-Aware Enrichment of
Software Engineering Experience

Volume 30 Isabel John (2009), Pattern-based Documentation Analysis for Software
Product Lines

Volume 31 Martín Soto (2009), The DeltaProcess Approach to Systematic Software
Process Change Management

Volume 32 Ove Armbrust (2010), The SCOPE Approach for Scoping Software
Processes

Volume 33 Thorsten Keuler (2010), An Aspect-Oriented Approach for Improving
Architecture Design Efficiency

Volume 34 Jörg Dörr (2010), Elicitation of a Complete Set of Non-Functional
Requirements

�

#���$�������
����
����� ���������������������%������
�������&�����
#�
������� ������
��'�
 �� �������(�)�����"�����������*�
+��
�"����
'�
 �� �������, ����&�����#�
�������&����������	����������������
-� �
����� ���� �.&��
������� #���$���� ���
����
��� /-�#�0� ���	���� ��

 ����������� �� ��
�� ��������	�+���&�����������&��.� ���$�����&

&�
���
�� ��� �	�������
����
���&�
��
&�� ��1�
 ���2�
�� � " ������	�
&���� ���	�� ����������
������&��.
�"(������	 ���	������
2�� �
������ ��
���&��	������	�&���� �2���
�"(���	� �������������������

�	 �������	��
�����	�
�����
��� " ��������+
����1����	�� ���	�����
&�����
�����	��
�
���
�� ������� �����������
� (��.&��
���� ����	����
������	����	�����2����
���
+����	�2���
���
+���+�����
�����	�
�&��+�

������1�
 ��
������ ���$�������
����
����� �����(�$�
���
 ��� �	����
�����.&��
������� �
���
3��&���	
��(�
 ��������	����� �,�.&��
�������
#���$�������
����
��,��
-����
 � ��
� (�$��&���
 ��������� � ���������������������-� �
���������
�.&��
�������#���$�������
����
���/-�#�0���	����������#���$������

�
����
����� ������)���& �����������&�����#�
�������&�����������
����*�
+��
�"����'�
 �� ���������������� � ��������
�
������� �$�����
�������
����	�	(�
������&��	��"������	
���
�������	��

�	
���

�
��
���������������
������������
�.����
+���
���������������������-�#����	�4��	��������5)#��)���&�
����������&�����#�
�������&�������(�*�
+��
�"����'�
 �� �������

�	
���
�������	�6�����������������������!
��� ��"��
#�
���
3���
���������������������-�#����	�4��	��������5)���)���&�
����������&�����#�
�������&�������(�*�
+��
�"����'�
 �� �������

�	
���
�������	�6����������������������������
�
��&��"��
���������������������-�#����	������ ����������&�����#�

����� ��� ������&�������� ��� ���
����
��(�*�
+��
�"� ���5&&�
�	� #�

���� (�'�
 �� �������

�

��������
	���������� !"

�#
"
��
��
�
�
�	
$�
��

�
��
�

���
�
��
%

�
��
	�
�

�
��
�

�
�

ISBN 978-3-8396-0261-4

9 7 8 3 8 3 9 6 0 2 6 1 4

