
 

Requirements Specification Survey 
Adaptive Services Grid Deliverable D6.I-1 

Authors: 
Michael Eisenbarth 
Tom Koenig 
Thomas Olsson 
 
 
 
Funded and supported by the European 
Union Project ASG (FP6-IST-004617).  

IESE-Report No. 133.05/E 
Version 1.0 
February 28, 2005 

 
A publication by Fraunhofer IESE 



 



 

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft. 
The institute transfers innovative software 
development techniques, methods and 
tools into industrial practice, assists compa-
nies in building software competencies 
customized to their needs, and helps them 
to establish a competitive market position. 

Fraunhofer IESE is directed by 
Prof. Dr. Dieter Rombach (Executive Director) 
Prof. Dr. Peter Liggesmeyer (Director) 
Fraunhofer-Platz 1 
67663 Kaiserslautern 





 

Copyright © Fraunhofer IESE 2005 v

Executive Summary 

The goal of Adaptive Services Grid (ASG) is to develop a proof-of-concept pro-
totype of an open development platform for adaptive services discovery, crea-
tion, composition, and enactment. To achieve its goal, ASG addresses scientific 
and technological issues especially related to the field of software engineering.  

Requirements engineering is one of the key areas in successful software engi-
neering and software development. Requirements engineering deals with sys-
tem requirements that are specifications of the services a system should pro-
vide, the constraints on the system and additional background information, 
which is required to develop the system. Requirements engineering is the sys-
tematic process concerned with the elicitation, understanding, analysis and 
documentation of the system requirements. Requirements engineering itself is 
called an “engineering” process as the process itself is used in practical and sys-
tematic way where trade-offs have to be made to find the best solution. An 
important aspect of requirement trade-off that must be addressed within the 
ASG development methodology is the relationship between service customers 
and service providers. Based on semantic specifications of requested services by 
service customers and the semantic specifications of the registered services by 
service providers, ASG has to discover appropriate services, composes complex 
processes and – if required – generates software to create new application ser-
vices on demand. Consequently, application services will be provided through 
the underlying computational grid infrastructure based on adaptive process en-
actment technology. 

Requirements seem to be prominent especially on three different levels of the 
ASG platform. The first level is the service customer level that represents the 
level of the ASG platform at which service requests are raised. The users of the 
Adaptive Services Grid thus request a desired functionality based on needs for 
fulfilling a customer related business process. The second level is the service 
grid level, which represents the level of the ASG platform at which the service 
discovery and composition takes place based on the raised service request by a 
customer. On this level, the ASG platform determines which existing services 
can fulfil the customer requests or if new services have to be generated. The 
third level that has to be addressed is the service provider level that represents 
the level of the ASG platform at which service providers semantically specify 
their provided services and register them to the service registry of the ASG plat-
form so that a service can be discovered and executed to fulfil a customer re-
quest. The service specification must also include quality of service specifica-
tions to express constraints on the execution of services and to identify services 
that are capable of fulfilling a customer request within resource boundaries.   



 

Copyright © Fraunhofer IESE 2005 vi 

This report describes the current state-of-the-art and state-of-the practice of 
requirements specification techniques and a framework on how these tech-
niques can be applied for system requirements engineering in a service-oriented 
environment. The survey is thereby focussed on the relationship between use 
case based specification techniques, services, and business processes that aim 
at understanding how services can be used to determine processes and use 
cases (i.e., service-based application specification) and how these techniques 
can be applied to the three different levels of requirements mentioned above.  

The survey describes specifications methods and notations used for functional 
and non-functional (QoS) service requirements. Another important aspect ad-
dressed in this report will be the introduction of ontology-based information 
modeling. Ontologies are formal models of a specific domain that support the 
communication between human and computer based actors. This facilitates ex-
change and sharing of knowledge within an organization. Especially in a dis-
tributed service-oriented environment as the ASG platform, various partners or 
organizations would like to provide and share data or other resources to cus-
tomers, for example service specifications or code components. This survey will 
be used as a basis to develop a requirements engineering method for the ASG 
development method (ASG project deliverable D6.I-2). 

Keywords: Service-oriented requirements engineering, service-based application specifica-
tions, Quality of services, Ontology-based information modeling, ASG 

  

 



 

Copyright © Fraunhofer IESE 2005 vii

Table of Contents 

1 Introduction 1 
1.1 Purpose of this document 1 
1.2 ASG specific service terminology 2 
1.3 ASG vision and Requirements engineering for a distributed 

service-oriented environment 4 
1.3.1 Service customer level requirements 5 
1.3.2 Service grid level requirements 6 
1.3.3 Service provider level requirements 7 
1.4 Structure of this document 8 

2 Elicitation and Specification Technique for Quality of 
Services 11 

2.1 Motivation 11 
2.2 Introduction to NFRs 11 
2.2.1 Challenges for Quality of Services 12 
2.3 Specification Techniques for Quality of Services 14 
2.3.1 The EMPRESS Method 14 
2.3.2 The soft-goal notation 16 
2.3.3 Specialized methods 17 
2.4 Quality of Services and ASG 17 

3 Specifications for functional Requirements 18 
3.1 Motivation 18 
3.2 Specification Techniques for Functional Requirements 18 
3.2.1 Use cases and scenarios 19 
3.2.2 State-based notations 21 
3.2.3 Sequenced-based notations 22 
3.2.4 Unified Modelling Language (UML) 23 
3.3 Functional Specifications for ASG 24 
3.3.1 Actor 24 
3.3.2 System 24 
3.3.3 Description 25 
3.3.4 Scenario 25 
3.3.5 Interface requirements 25 
3.3.6 Non-functional requirements 25 
3.3.7 Includes 25 
3.3.8 Frequency of Use 25 
3.3.9 Assumptions, constraints 26 
3.3.10 Extensions 26 



 

Copyright © Fraunhofer IESE 2005 viii 

3.3.11 Detailed Functions 26 
3.3.12 Notes and Issues 26 

4 Customer oriented Business Process Modelling 27 
4.1 Motivation 27 
4.2 Business process modelling notations 27 
4.2.1 EPC 28 
4.2.2 Activity Diagrams 30 
4.2.3 BPEL 31 
4.2.4 BPML 36 
4.3 Comparison and usage of BPEL and EPC for ASG 36 
4.3.1 Usage of BPEL to specify functional requirements 37 

5 Specifications for Ontology-based modelling 38 
5.1 Motivation 38 
5.1.1 Specifying relationships between models 38 
5.2 Introduction to Ontologies 39 
5.3 Specifications Techniques for logical relationships 40 
5.3.1 Topic Maps 41 
5.3.2 FLogic 43 
5.3.3 KIF 45 
5.3.4 RDF(S) 47 
5.3.5 DAML+OIL 49 
5.3.6 OWL 51 
5.3.7 WSMO 52 
5.4 Ontologies and ASG 54 

6 Conclusion 55 

References 57 
 

 

 



Introduction 

Copyright © Fraunhofer IESE 2005 1

1 Introduction 

This report describes the current state-of-the-art and state-of-the practice of 
requirements specification techniques and a framework on how these tech-
niques can be applied for system requirements engineering in a service-oriented 
environment. The survey is thereby focussed on the relationship between use 
case based specification techniques, services, and business processes that aim 
how to understand how services can be used to determine processes and use 
cases (i.e., service-based application specification). The survey also describes 
specification methods and notations used for functional and non-functional 
(QoS) service requirements. Another important aspect addressed in this report 
will be the introduction of ontology-based information modelling. Ontologies 
are formal models of a specific domain that support the communication be-
tween human and computer based actors. This facilitates exchange and sharing 
of knowledge within an organization. Especially in a distributed service-oriented 
environment as the ASG platform, various partners or organizations would like 
to provide and share data or other resources to customers, for example service 
specifications or code components. This survey will be used as a basis to de-
velop a requirements engineering method for the ASG development method. 

1.1 Purpose of this document 

The goal of Adaptive Services Grid (ASG) is to develop a proof-of-concept pro-
totype of an open development platform for adaptive services discovery, crea-
tion, composition, and enactment. To achieve its goal, ASG addresses scientific 
and technological issues especially related to the field of software engineering.  

Requirements engineering is one of the key areas in successful software engi-
neering and software development. Requirements engineering deals with sys-
tem requirements that are specifications of the services a system should pro-
vide, the constraints on the system and additional background information, 
which is required to develop the system. Requirements engineering is the sys-
tematic process concerned with the elicitation, understanding, analysis and 
documentation of the system requirements. Requirements engineering itself is 
called an “engineering” process as the process itself is used in practical and sys-
tematic way where trade-offs have to be made to find the best solution [1]. 

One kind of requirement trade-off that must be addressed within the ASG de-
velopment methodology is the relationship between service customers and ser-
vice providers. Based on semantic specifications of requested services by service 
customers and the semantic specifications of the registered services by service 



Introduction 

Copyright © Fraunhofer IESE 2005 2 

providers, ASG has to discover appropriate services, composes complex proc-
esses and – if required – generates software to create new application services 
on demand. Subsequently, application services will be provided through the 
underlying computational grid infrastructure based on adaptive process enact-
ment technology. 

In the remainder of this section, we will introduce the ASG specific terminology 
for services and provide the furthermore used definition for this document. In 
addition, we will shortly illustrate the vision for the ASG platform and stress the 
need for requirements engineering techniques in the ASG development meth-
odology. 

1.2 ASG specific service terminology 

Before we will introduce the requirements engineering related concepts and 
the various requirements engineering specification techniques in the following 
chapters of the document, we will explain the ASG specific terminology of ser-
vice and illustrate the need for requirements engineering in the overall ASG vi-
sion. 

The term service in the context of ASG subsumes specific types of services, in-
cluding Web Services, Grid Services as well as legacy services, i.e., pieces of 
software that are already existing and that are provided with interfaces so that 
they can be used in the context of the ASG platform. Typically, differentiation 
between these types of services is not required in the context of ASG. Services 
in ASG have a semantic specification including functional and non-functional 
parameters [2]. 

The furthermore used definition of the term service in the rest of the document 
is as follows: “A service is some functionality that can be invoked using a stan-
dard interface. It can be anything from simple requests to complex business 
processes.” The interface of a service is specified by a standard description lan-
guage that supports the description of service functionality and the service call 
mechanism. Especially for service grids the language should provide the descrip-
tion of certain properties to support service comparison and negotiation. Due 
to the specification of a standard interface, services could be easily discovered 
and concurrently reused or rather integrated in other services/applications.  

Services determine the capabilities of the platform by describing possible usage 
scenarios of the platform. Therefore, different stakeholders should collect pos-
sible grid services for the ASG platform development process. Typical examples 
for services, especially web-services are “Rent a car”, “Reserve a hotel room”, 
“phone book”. 



Introduction 

Copyright © Fraunhofer IESE 2005 3

A requirements engineering development process for grid services should not 
only address single service development but also the development of service 
types. Although this issue will not be addressed by the ASG project itself, we 
would like to mention this aspect here, as it will have some impact on the later 
developed requirements engineering method. In addition to a concrete service 
that is provided, discovered, and executed by a customer request, we can also 
identify service types within the ASG development process. Service types en-
compass a number of similar services abstracting from their differences. The 
idea is to exploit the commonality and to deal with all services of a type in one 
way. The abstraction from service differences can be on different levels (seman-
tic, locality, functional). This idea of exploiting commonalities and proactive us-
age of reusable components is the main development issue of Product Line de-
velopment. Product Line Engineering [3, 4, 5] is an approach that aims at ex-
ploiting reuse potential between products developed in an organization by 
identifying the commonalities between the products and systematizing the 
variabilities.  

In the following, some example service types are listed. The types consist of the 
elements’ request (i.e., the initiation of a service), response (i.e., the return of 
the service result), as well as interaction (i.e., the information exchange be-
tween client and service in addition to the request and response information): 

• Respond: Services which response without any request, e.g. receive an 
email. 

• Request: Services which perform the request without any response e.g. send 
an email. 

• Request – Response: Services which perform the request and response the 
result, e.g. lookup a phone book entry. 

• Request - Interaction – Response: Services which perform the request by in-
teracting with the client and response the final result at the end, e.g. the 
current “amazon.de” service. 

These service types are used in the platform development process to simplify 
the reasoning about the services the ASG platform provides. 

We will not go further into detail of Product Line Engineering and Require-
ments Engineering for Product Lines in the remainder of this document, but it 
will be an area of further research within the ongoing work for the develop-
ment of the ASG requirements engineering methodology. 

 

 
 



Introduction 

Copyright © Fraunhofer IESE 2005 4 

1.3 ASG vision and Requirements engineering for a distributed service-oriented envi-
ronment 

We will now illustrate the project vision of the ASG platform and describe the 
relation of requirements engineering to the ASG context. Requirements seem 
to be prominent especially on three different levels of the ASG platform: 

• Service customer level 
The service customer level represents the level of the ASG platform at which 
service requests are raised by service customers. The users of the Adaptive 
Services Grid thus request a desired functionality based on his needs for ful-
filling a customer related business process. 

• Service grid level 
The service grid level represents the level of the ASG platform at which the 
service discovery and composition takes place based on the raised service re-
quest by a customer. On this level, the ASG platform determines which exist-
ing services can fulfill the customer requests or if new services have to be 
generated. 

• Service provider level 
The service provider level represents the level of the ASG platform at which 
service providers semantically specify their provided services and register 
them to the service registry of the ASG platform so that a service can be dis-
covered and executed to fulfill a customer request. The service specification 
must also include quality of service specifications to express constraints on 
the execution of services and to identify services that are capable of fulfilling 
a customer request within resource boundaries.   

The following picture illustrates the three different levels of requirements of the 
ASG platform mentioned above. 



Introduction 

Copyright © Fraunhofer IESE 2005 5

 
Figure 1  ASG Requirements Levels 

As this survey is focused on different requirements specification techniques, the 
picture above illustrates the need for specific requirements specification tech-
niques at the individual service levels. The service customer level for example 
requires an explicit modeling of the ongoing customer business processes and 
customer constraints that affect the type and outcome of the requested ser-
vices. At the service grid level the need for an information model describing 
semantic information about the registered services is prominent. This semantic 
model can then be used to identify appropriate services for the specified service 
request. Finally, the service providers are required to provide service specifica-
tions of their services, describing functional and non-functional aspects as well 
as semantic usage knowledge. In the following section, we will explain the im-
pact of specific requirements engineering techniques on these three levels and 
their possible usage within a holistic requirements engineering approach in 
more detail. 

1.3.1 Service customer level requirements 

The overall vision of the ASG platform is the integrated support of a service 
provisioning grid that supports service customers in discovering and executing 
of services provided by third parties. The users of the Adaptive Services Grid 
thus request a desired functionality. This functionality or service has to be speci-
fied on a semantic level, for example by means of semantic web technology. 
Semantic web technology provides concepts, languages and tools to specify the 
semantics of Web services based on ontologies. During this early phase of the 
ASG platform usage scenario, one of the most prominent needs for require-



Introduction 

Copyright © Fraunhofer IESE 2005 6 

ments engineering is raised by the user request of a desired functionality. Re-
quirements engineering is strongly related to the elicitation of the needs of a 
system stakeholders. Therefore, requirements engineering techniques seems to 
provide suitable techniques for describing whether a service might be capable 
of fulfilling a specific user request or if additional modifications of services are 
needed. 

The first requirements engineering related issue that has to be addressed during 
the specification of a user request is the customer related business process or 
goal of the service customer. The modeling of business processes primarily fo-
cuses on representing the activities that are conducted to achieve a certain 
business goal. These activities, which are required to achieve the business goal, 
are often only implicitly known by the user or customer. An explicit description 
of the required functionality or IT-support is not available. The goal of the busi-
ness process analysis is to identify these required activities and to identify the IT-
based support during the process enactment. 

The requirements engineering related support of the service customer level is 
thus the detailed analysis and modeling of the customer’s business process in 
order to identify the functionalities needed. With the help of a holistic mapping 
approach, starting from the analyzed business process and the identified ser-
vices needed, a semantically specification of the service request and discovery 
of appropriate services seems to be possible. A holistic mapping approach re-
quires the integrated usage of a unique representation form for requirements 
on all levels or at least the capability to map the requirements in a homogenous 
manner to a target representation form. 

In addition to the customers’ business processes and their goals, quality of ser-
vice constraints raised by the customer must also be kept in consideration at 
this level. A typical quality of service requested by a customer for example is the 
response time of the service. Usually, customers are not willing to wait for a 
long period of time for the outcome of the requested service. The service plan-
ner of the ASG platform has to ensure these non-functional restrictions when 
composing services. 

1.3.2 Service grid level requirements 

After specifying the user service request and the identification of the intended 
service results, the ASG receives the semantically specified request and deter-
mines which existing services can fulfill these requests. Either there is a service 
in the ASG registry that can be used to fulfill the request. In this case, the ser-
vice provision agreement is negotiated with the service provider and the service 
is executed by ASG, after the user accepts the contract (including non-
functional parameters like response time and cost). If there is no service avail-
able to fulfill that request, the following options exist:  



Introduction 

Copyright © Fraunhofer IESE 2005 7

(1) A similar service is offered and a negotiation with the user starts;  
(2) A new service is composed from existing services;  
(3) A new service is generated by means of software generation methods, or  
(4) the ASG platform decides that the request cannot be granted. 

The two main prominent requirements related issues of this requirements level 
are the identification of a service capable of fulfilling the functional require-
ments of the user request and on the other hand, the capability to fulfill the 
functionality within the non-functional constraints. Ontologies seem to be a 
practical and suitable mean for the identification of appropriate services pro-
vided by various service providers. 

Ontologies are formal models of a specific domain that support the communi-
cation between human and computer based actors. In the case of the ASG 
platform, that would correspond to the service customers and providers and to 
the ASG service registry. This facilitates exchange and sharing of knowledge 
within the ASG usage community. But it requires a negotiation and an agree-
ment between the group of customers and providers on a socio-cultural level 
regarding the terminology and relationships used to describe the services. To be 
of any practical use, a well-defined notation is required for ontologies. A gen-
eral accepted and well-defined language for ontologies is especially important 
for integrating various data sources and resources and therefore services pro-
vided by various partners. 

Functional service requirements usually describe what the service will do, but 
how the service will do it, for example, service performance requirements, ser-
vice external interface requirements, service design constraints, and service 
quality attributes must be modeled additionally. In order to identify a suitable 
set of services that can be composed many decisions must be made with re-
spect to the environment of the requested services. On the one hand, the cus-
tomer environment and his business processes are of importance and on the 
other hand the provider execution environments and the service development 
process must be considered. It is very important for the requirements engineer-
ing activities that these expectations and interests are elicited thoroughly. 
Therefore, non-functional requirements have to be also addressed at this level. 

1.3.3 Service provider level requirements 

The functional requirements of services are one of the most important types of 
requirements that must be specified on the service provider level. Functional re-
quirements describe the functions that the service is to execute; for example, 
formatting some text or modulating a signal. A service requirements specifica-
tion establishes the basis for agreement between customers and contractors or 
suppliers on what the product “service” is expected to do, as well as what it is 
not expected to do. Functional requirements are often written in natural lan-



Introduction 

Copyright © Fraunhofer IESE 2005 8 

guage, but, in requirements specification, this must be supplemented by formal 
or semi-formal descriptions in order to ensure the discovery of appropriate ser-
vices. The selection of appropriate notations permits particular requirements 
and aspects of the software architecture to be described more precisely and 
concisely than natural language. As a general rule, notations should be used 
which allow the requirements to be described as precisely as possible. This is 
particularly crucial for safety-critical and certain other types of dependable 
software. However, the choice of notation is often constrained by the training, 
skills and preferences of the document’s authors and readers. 

Another important type of requirements of the service provider level are non-
functional requirements or quality of services. Non-functional requirements as 
they are prominent in software system development also apply to services. Dur-
ing development, there are many decisions to be made with respect to the en-
vironment of the services, the services itself, and the service development proc-
ess. These decisions not only depend on the customers’ expectations, but also 
on the interests of other stakeholders such as developers or procurers. Thus, it 
is very important for the requirements engineering activities that these expecta-
tions and interests are elicited thoroughly.  

An explicit usage of a common representation form for functional and for non-
functional requirements throughout the requirements engineering process 
would enable us to create an integrated mapping of the customer related busi-
ness process and thus specific “service need” to the provided services regis-
tered within the ASG registry. 

1.4 Structure of this document 

This survey on requirements specification techniques and the possible usage of 
these techniques for a service-oriented requirements engineering is structured 
as follows. Based on the above introduced several types of requirements and 
requirements levels we identified different kinds of techniques which will be 
explained in detail in the rest of this document. The relationship of the different 
requirements specification techniques and requirements levels is illustrated in 
the following picture: 



Introduction 

Copyright © Fraunhofer IESE 2005 9

 
Figure 2  Requirements specification relationship 

As the above picture shows, qualities of services are a central type of require-
ments that have to be addressed at all three levels of requirements. In chapter 
2, we therefore introduce several approaches for elicitation and documentation 
of non-functional requirements. One specific approach [6] has been initially de-
veloped for embedded systems but shows great adaptation potential for the 
ASG platform and service-oriented application development. 

The service providers are required to provide service specifications of their ser-
vices, describing functional and non-functional aspects as well as semantic us-
age knowledge. Chapter 3 introduces traditional functional requirement speci-
fication techniques that can be used to express the requirements on the service 
provider and thus development level. 

The service customer level requires an explicit modelling of the ongoing cus-
tomer business processes and customer constraints that affect the type and 
outcome of the requested services. Therefore, business process modelling tech-
niques will be introduced in chapter 4 of this document. The customer-related 
business processes and their analysis is required to identify the customer need 
of specific functionality and to semantically specify a service request so that ap-
propriate services can be identified and executed. 

Finally, the need for an information model describing semantic information 
about the registered services is prominent at the service grid level. This semantic 
model can then be used to identify appropriate services for the specified service 
request. In chapter 5 we will describe the theoretical background of semantic 
integration i.e. semantic models and ontologies, which are used for integrating 
various data sources and resources and therefore enable the discovery of ser-
vices provided by various partners. 



Introduction 

Copyright © Fraunhofer IESE 2005 10 

Finally, in chapter 6 we will conclude and give an outlook to the further devel-
opment of a service-oriented requirements engineering process for distributed 
environments based on the formerly introduced requirements levels. 



Elicitation and Specification 
Technique for Quality of Services 

Copyright © Fraunhofer IESE 2005 11

2 Elicitation and Specification Technique for Quality of Services  

This chapter describes how non-functional requirements (NFR) or quality of ser-
vice (QoS) can be elicited and documented in the context of service-oriented 
applications. In the following, we will use the term “non-functional require-
ment” to describe “quality of service” as non-functional requirements do not 
only apply to quality of services but also to the overall development process and 
thus the requirements engineering method for ASG. 

2.1 Motivation 

Non-functional requirements as they are prominent in software system devel-
opment also apply to services. In the context of grid services or in general, of a 
service oriented environment, they are often called quality of services. During 
development, there are many decisions to be made with respect to the envi-
ronment of the software, the software itself, and the software development 
process. These decisions not only depend on the users’ expectations, but also 
on the interests of other stakeholders such as developers or procurers. Thus, it 
is very important for the requirements engineering activities that these expecta-
tions and interests are elicited thoroughly. This aspect fully applies also to the 
ASG vision. Many decisions must be made with respect to the environment of 
the requested services, on the one hand of the customer environment and his 
business processes and on the other hand of the provider execution environ-
ments and the service development process. Therefore, the decisions have to 
deal with interests of three major stakeholder groups i.e. the service customers, 
the platform providers, and the individual service providers. 

2.2 Introduction to NFRs 

In this chapter, we discuss issues in the elicitation and documentation of so 
called Non-functional Requirements (NFR), which essentially cover all constraints 
on how a system should achieve its functionality [7, 8].  

The ISO Standard 9126 (2001) proposes the following taxonomy for NFRs, 
which can be fully applied for quality of service attributes:  

• Efficiency: The capability of the software product to provide appropriate per-
formance, relative to the amount of resources used, under stated conditions. 

• Portability: The capability of the software product to be transferred from one 
environment to another. 



Elicitation and Specification 
Technique for Quality of Services 

Copyright © Fraunhofer IESE 2005 12 

• Maintainability: The capability of the software product to be modified. 
Modifications may include corrections, improvements or adaptations of the 
software products to changes in environment and in functional specifica-
tions.   

• Functionality: The capability of a software product to provide functions that 
meet stated and implied needs when the software is used under specified 
conditions.  

• Usability: The capability of the software product to be understood, learned, 
used, and to be attractive to the user, when used under specified conditions. 

• Reliability: The capability of the software product to maintain a specified 
level of performance when used under specified conditions.  

In literature and research communities several different definitions for NFR can 
be found. In [9] a NFR is defined as: “...in  software system engineering, a 
software requirement that describes not what the software will do, but how 
the software will do it, for example, software performance requirements, soft-
ware external interface requirements, software design constraints, and software 
quality attributes. NFR are difficult to test; therefore, they are usually evaluated 
subjectively”. This definition is quite fuzzy. It mainly gives examples of types of 
NFR, but fails to classify of them. Loucopoulos & Karakostas [10] present one 
possible classification of NFR. They distinguish between process, product, and 
external requirements. Product requirements specify the desired characteristics 
in terms of quality attributes such as performance and security. Process re-
quirements are constraints on the development process. External requirements 
are requirements that arise from external sources either within the company or 
outside. While working with various kinds of NFR, we experienced that this 
classification is not sufficient, in particular for products requirements. The ISO 
Standard 9126 (2001) gives a detailed classification on product requirements 
(see above). However, it does not give specific guidelines on how to specify or 
elicit the different NFR. 

2.2.1 Challenges for Quality of Services 

Besides the customer of a service, there are more stakeholders like suppliers, 
developers, and marketing. Requirements elicited from different sources are of-
ten in conflicts with each other. For example domain experts for various types 
of NFR frequently identify problems in the realization of requirements phrased 
by a naïve user. [11] particularly support the customer with their method to re-
late business goals to architecture.  

The intertwined nature of NFR is what makes them special. Considering the im-
pact of NFR on FR and Architectural decisions (AD) as early as possible without 
forcing early design decisions, and finding the right point in time and a suitable 



Elicitation and Specification 
Technique for Quality of Services 

Copyright © Fraunhofer IESE 2005 13

way to treat all three of them together, is an important issue. [12, 13, 14, 15] 
discuss various approaches to coping with architectural issues in detail. Ap-
proaches exist that consider the dependencies between NFR and FR [16, 17, 18, 
19, 20] and between FR and architecture [21, 22, 23, 24] respectively. [25] de-
scribes an approach that combines NFR and use cases [26]. Use cases and NFR 
are elicited separately and are then combined to make sure that the use cases 
satisfy the NFR.  

Methods such as the Software Architecture Analysis Method (SAAM) [15, 21] 
and the Architecture Trade-off Analysis Method (ATAM) [27] combine NFR with 
AD. Both are scenario-based methods for architecture analysis. The goal of 
SAAM is to identify whether a software architecture satisfies its modifiability 
requirements expressed through scenarios. The outcome of ATAM is the risk 
that results from conflicting requirements and from requirements that have not 
been addressed in the architecture. Experiences with SAAM in case studies are 
presented in [28, 29]. Both methods do not help to elicit measurable NFR in an 
early phase, but are based on a set of scenarios. However, in practice, the elici-
tation of NFR, FR and AD has to be intertwined [30, 31, 32]. 

NFR are not only related to AD and FR, they also have internal dependencies 
(e.g., performance and maintainability) that have to be detected and handled. It 
is a challenging issue to find all these dependencies as well as solutions to over-
come conflicts. 

NFR are very project-specific and hardly reusable as such. Thus, specific meas-
ures are needed to support experience transfer between different projects. This 
becomes even harder due to the fact that NFR are often expressed vaguely and 
not in a quantitative way. This often gives rise to misunderstandings. For the 
importance of experience management, consult [33, 34, 35] provide a frame-
work for organizing the existing knowledge about quality attributes and about 
the effects of architectural design decisions on the quality attributes of a soft-
ware system. 

Similar to the approaches above and to many other approaches [22, 11], the 
following approach uses goal graphs for dependencies and refinement. How-
ever, goal graphs are only used for capturing the relationships between catego-
ries of NFR such as efficiency, maintainability, but not for the actual NFR. The 
actual NFR are captured as part of requirements documents intertwined with FR 
and AD. This avoids the need to develop complicated dependencies in each 
project anew. Furthermore, it supports coherent documentation of NFR, FR and 
AD. 

In general, one can say that current approaches for dealing with NFR provide a 
framework for thinking about NFR, but they are no help for many practical 
problems emerging during software development.  In the following, we elabo-
rate on these practical issues and show how to alleviate these problems 



Elicitation and Specification 
Technique for Quality of Services 

Copyright © Fraunhofer IESE 2005 14 

through general principles such as checklists and templates or iterative devel-
opment. 

2.3 Specification Techniques for Quality of Services 

In this section, we introduce several approaches for elicitation and documenta-
tion of non-functional requirements. 

2.3.1 The EMPRESS Method 

In this section we present the EMPRESS Method [6]. It is a comprehensive 
method for eliciting, analysing, documenting and managing NFRs. The main 
features are: 

• a process for common treatment of the various high level QAs (ISO 9126) 
e.g., maintainability, efficiency, portability, usability, security, and reliability 

• experience-based quality models that capture experience with general char-
acteristics of quality attributes (QAs), metrics to measure these QAs, and 
means to achieve them  

• detailed elicitation guidance in terms of checklists and a prioritization ques-
tionnaire. The former are derived from the quality model and the types of 
QAs and help to elicit efficiency NFR in concert with use cases and a high-
level architecture. The latter helps to focus the effort spent on NFR elicitation 
on the most important Qas. 

• documentation guidance by providing document structure and templates 

• treatment of NFR together with functional requirements and the system ar-
chitecture 

• requirements management support including a dependencies-analysis on the 
elicited set of requirements. 

The EMPRESS method uses a notation based on goal graphs for dependencies 
and refinement. We use this notation for capturing the relationships between 
categories of NFR such as efficiency and maintainability in reference quality 
models. The actual NFR are captured as part of requirements documents inter-
twined with functional requirements (FR) and architectural decisions. This 
avoids having to develop complicated dependencies in each project from 
scratch by capturing the experience with dependencies in reference quality 
models. Furthermore, it supports coherent documentation of NFR, FR and archi-
tecture. 

The method distinguishes between quality attributes (QAs) which are captured 
in quality models (using goal graphs), and non-functional requirements (NFR) 



Elicitation and Specification 
Technique for Quality of Services 

Copyright © Fraunhofer IESE 2005 15

that are captured in documents based on templates. A QA is a non-functional 
characteristic of a system, user task, system task, or organization. QAs of the 
organization include development process specific aspects. A NFR describes a 
certain value (or value domain) of a QA that should be achieved in a specific 
project. The NFR constrains a QA by determining a value for a metric associated 
with the QA. For example, the NFR “The database of our new system shall 
handle 1000 queries per second” constrains the QA “workload of database”. 
The value is determined based on an associated metric “Number of jobs per 
time unit”.  

Quality
model

Identify
dependencies

Reference 
model

Checklist

Derive
checklists/ 
template

Tailor
Quality
Model

Template

Question-
naire

Reference 
template

Reference 
checklists

Tailored, project-specific artifacts

Experience-based artifacts

Prioritized
QAs

Prioritize
QAs&
Select
QMs

Elicit&
Document

NFR

pr
oj

ec
t e

xp
er

ie
nc

e

NFR

Initial
FR

 
Figure 3  The EMPRESS Method process and artefacts 

Figure 3 shows the main artefacts used and produced in our method. In a first 
step, the prioritisation questionnaire is used to focus the elicitation and docu-
mentation process. This is performed to prioritize the high-level QAs (i.e., main-
tainability, efficiency, reliability, usability). For the highest ranked QAs, the ref-
erence quality models get tailored in a workshop. In this tailoring process, ex-
perts from the company tailor each quality model to the needs of the project. 
Based on the tailored quality models, the reference checklists and templates are 
tailored to specific project contexts. The tailored checklists and templates are 
then used in a second workshop for the actual NFR elicitation.  

The experience-based artefacts were initially developed from literature. In each 
project, the experience during the tailoring was incorporated into the reference 
quality models. Therefore, each application in a project resulted and will result 
in more mature reference quality models. 



Elicitation and Specification 
Technique for Quality of Services 

Copyright © Fraunhofer IESE 2005 16 

2.3.2 The soft-goal notation 

Another comprehensive approach for dealing with non-functional requirements 
is presented by [9].This NFR framework, provides detailed guidance on how to 
refine NFR and how to denote relationships between the NFR. The focus is on 
refinement and relationships between different NFRs. The major step steps 
when applying the soft-goal notation are: 

• Acquiring knowledge about domain system, as well the functional aspects 

• Identifying the important NFRs 

• Refinement and decomposition of the NFRs 

• Identifying and selecting operationalization 

In Figure 4, an example is given of the soft-goal notation. With the help of soft-
goals, the non-functional aspects of the system can be modelled and analysed.  

 
Figure 4 Example of the soft-goal notation 

The soft-goal notation is more formal, in the sense that the there is a semantic 
in the arrows and how the decomposition of soft-goals are performed. It is pos-
sible to express several types of relationships, e.g. decomposition, and, or, posi-
tive or negative influence, etc.  

As mentioned, the focus is on how to refine and operationalize the require-
ments. However, the method offers little support for how to elicit and docu-
ment the requirements. The soft-goals, therefore, needs to be complemented 
with a process and documentation support around the notation.  



Elicitation and Specification 
Technique for Quality of Services 

Copyright © Fraunhofer IESE 2005 17

2.3.3 Specialized methods 

Besides the two general methods mentioned in Section 2.3.1 and Section 2.3.2, 
there exist many specialized methods, dealing with one specific quality aspects, 
e.g. security or usability. Sometimes if there is a particular focus on one particu-
lar quality of the system, the general methods are not enough. Even though 
they provide a comprehensive and integrated approach for working with the 
requirements, having a specialized method will be more appropriate for the im-
portant aspect. However, the challenge then is to integrate, for example, safety 
issues into the normal requirements process. This is not done without effort. As 
this report is focused on requirements methods, the specialized methods are 
not further elaborated on here. 

2.4 Quality of Services and ASG 

The approach described in section 2.3.1 has been initially developed for em-
bedded systems but shows great adaptation potential for the ASG platform and 
service-oriented application development. The approach introduced here [6] is 
based on the explicit usage of use cases for describing requirements and on 
quality models derived from the ISO 9126 standard, as well as general problems 
and challenges when working with NFR. Requirements in general and NFR in 
particular are subjective, have many stakeholders and are often conflicting. The 
approach presented includes processes for prioritizing quality attributes that are 
important to a specific context, eliciting NFR and identification and analysis of 
dependencies among the NFR. The aim is to provide an experience-based ap-
proach that facilitates efficient and effective elicitation and documentation of 
NFR. Having a structured method that aims at providing measurable, traceable 
and focused requirements, rather than having ad-hoc and ambiguous ones 
achieves this. The approach uses use cases as main technique, though the gen-
eral principle of having a structured and experience-based process is applicable 
to other techniques as well. The usage of use cases makes it easier to develop 
an integrated requirements engineering process, as use cases are a prominent 
specification technique for functional behaviour of software products and can 
also be used for describing business processes of service customers. 



Specifications for functional 
Requirements 

Copyright © Fraunhofer IESE 2005 18 

3 Specifications for functional Requirements 

Functional requirements can be specified using a wide range of notations, with 
different levels of formality. The selection of notation depends on many factors, 
such as target audience, domain and type of process. For example, it the target 
audience do not have a technical background, choosing a natural language 
based notation is probably better than using UML or Petri nets. On the other 
hand, if you are developing safety-critical systems, it might be necessary to en-
sure the quality at an early stage to be able to live up to the required quality 
standard.  

3.1 Motivation 

The functional requirements of services are one of the most important types of 
requirements that must be specified on the service provider level. Functional re-
quirements describe the functions that the service is to execute; for example, 
formatting some text or modulating a signal. A service requirements specifica-
tion establishes the basis for agreement between customers and contractors or 
suppliers on what the product “service” is expected to do, as well as what it is 
not expected to do. Functional requirements are often written in natural lan-
guage, but, in requirements specification, this must be supplemented by formal 
or semi-formal descriptions in order to ensure the discovery of appropriate ser-
vices. The selection of appropriate notations permits particular requirements 
and aspects of the software architecture to be described more precisely and 
concisely than natural language. As a general rule, notations should be used 
which allow the requirements to be described as precisely as possible. This is 
particularly crucial for safety-critical and certain other types of dependable 
software. However, the choice of notation is often constrained by the training, 
skills and preferences of the document’s authors and readers. 

3.2 Specification Techniques for Functional Requirements 

This section presents an overview of some requirements specification notations. 
In Section 3.2.1, use cases and scenarios are discussed. State-based notations 
are discussed in Section 3.2.2. Section 3.2.3 elaborates on sequence-based no-
tations. Finally, in Section 3.2.4, an overview of UML is presented. 



Specifications for functional 
Requirements 

Copyright © Fraunhofer IESE 2005 19

3.2.1 Use cases and scenarios 

A use case is a description of how end-users will use the system. It describes a 
task or a series of tasks that users will accomplish using the software, and in-
cludes the responses of the software to user actions. Use cases may be included 
in the Software Requirements Document (SRD) as a way of specifying the end-
users' expected use of the software. 

Examples for use cases of the ASG platform are: 

• Managing the workload of the grid  

• (Un-) mounting devices  

• Resource monitoring 

• Service (un-)registration 

In addition to these use case for the ASG platform, the functional behavior of 
service specific use cases must be modeled. 

• Service-specific “use case”-oriented functional specifications 

The purpose of use cases is to elicit all possible uses of the ASG platform. 

A scenario is a set of one or more typical interaction dialogs between the users 
of a system (people or other systems) and a proposed system that is about to 
be developed. Scenarios are developed to assist in understanding business 
events, objects and interactions. Scenarios document specific transaction se-
quences, transformations, interfaces and information exchange. Use case sce-
narios facilitate communication between the people who request a system, 
analysts, developers and testers. They are used to validate understanding, and 
to identify normal and special use situations. Scenarios clarify an evolving 
agreement between requesters and development teams. 

For the example use case service registration, the scenario would be as follows: 
The grid administrator manages the registration process and announces the 
new service to the service pool, accessible by all grid users. 

Since scenarios describe activities that the future system is involved in, they also 
postulate architectural requirements and constraints. In regard to the ASG plat-
form, they support the development process for the architecture by revealing 
requirements for all kinds of interaction with the platform. 

Unfortunately, due to the wide range of applications and usage situations, the 
terminology is anything but standardized. The following definition is used here: 



Specifications for functional 
Requirements 

Copyright © Fraunhofer IESE 2005 20 

• A use case is an abstract task performed by an actor. For example “Set seat” 
by “internet user”. This is typically visualized using UML use case diagrams, 
see Section 0. 

• A scenario is a detailed description of the interaction between the system 
and the actor(s), describing one possibility of many. It is important to re-
member that the scenarios are not complete in the sense that they cover all 
variations or requirements, see table below.  Also, in the flow of events, the 
sequence is usually not mandatory, in the sense that things have to happen 
exactly in that order.  

Table 1  Example of scenario 

Scenario Set saved seat position according to internal identification 
Actors Driver  
Intent Actor sets saved seat position 

Pre conditions None 
Flow of events 1. Actor enters identification over internal identification input 

2. System moves driver seat in the seat position saved under the 
entered identification  
[Exception: no seat position saved] 
[Exception: speed is too high] 
[Exception: actor activates identification input] 
[Exception: actor activates direct seat position input] 
[Exception: technical problem] 

Exceptions • No seat position saved: system doesn’t react 
• Speed is too high: system doesn’t react 
• Actor activates identification input: at internal identification 

input:  UC „Set seat position according to internal identifica-
tion input“, at external identification input:  UC „set seat posi-
tion according to external identification input“ 

• Actor activates direct seat positioning:  UC „Set seat position 
according to direct seat position input“ 

 Technical problem: system sets at least one movement direction 
not as wished 

Rules • Speed too high, if > 5 km/h 
• At set saved seat position: first the relaxing movements, then 

the opposed movements. Relaxing movements are increasing 
the distance between seat and steering-wheel, increasing the 
back angle, lowering the seat area, increasing of the casing size 

• At a particular time, the seat is only allowed to move in two 
directions. The order is: distance between seat and steering-
wheel, back angle, casing size, seat area front, seat area back 

Quality constraints None 
Monitored environ-

mental variables 
• Internal identification input 
• Actual speed 
• Saved seat position 

Controlled environ-
mental variables 

• New seat position 

Post conditions Seat position changed 

 



Specifications for functional 
Requirements 

Copyright © Fraunhofer IESE 2005 21

There exist several different templates and standards for how to write the sce-
narios. One of the most used is the one from Cockburn [26]. The example in 
Table 1 is an extension of the Cockburn templates, in an attempt to adapt the 
scenario description to the automotive industry [37]. Lauesen also presents sev-
eral variations of scenarios in [38].  

There is also a concept of misuse cases [39]. A misuse case is a use case with an 
actor that wants to misuse the system one way or another. Misuse cases are 
particularly good when eliciting security and safety requirements, as the threat 
or risk are explicitly dealt with.  

The main benefits of natural-language based notations are that they are ex-
pressive and compact, making them appropriate for communication with non-
technical stakeholders. The drawbacks are that they can be ambiguous and is 
difficult to perform any kind of automatic analysis. 

3.2.2 State-based notations 

There exists a range of state-based notations, e.g. Harel’s state chart [40], SCR 
[41] and UML state charts [42]. The basic building blocks in the state notations 
are states and transitions between the states, see Figure 13.  

inactive

active

evDeActicateProtectionevActicateProtection

 
Figure 5  Example of State chart 

 



Specifications for functional 
Requirements 

Copyright © Fraunhofer IESE 2005 22 

A state-based notation is of a more formal nature than use cases. That means 
that it is possible to perform automatic checks directly on the state charts, as 
well as generating design, code or even test specification. On the other hand, a 
state model is often not understandable to a non-technical user and is there-
fore not as appropriate when communicating with customers.  

SCR is essentially a state-based notation, though it looks quite different from 
other state-based notations and has a somewhat different semantic [41]. The 
core in SCR is transition table, see Table 2, where mode means the same as 
state. A special feature in SCR is that the mode transition tables (and event ta-
bles) can be arranged hierarchically, making SCR more scalable. 

Table 2  SCR example 

Old Mode Event New Mode 

TooLow @T(mPres ≥ Low) Permitted 
Permitted @T(mPres ≥ Permit) High 
Permitted @T(mPres < Low) TooLow 
High @T(mPres < Permit) Permitted 

 
The UML state charts [42] is basically an extension of the Harel state charts [40]. 

3.2.3 Sequenced-based notations 

Sequence-based notations can be seen as a formalization of scenarios, see Sec-
tion 3.1. As with scenarios, the focus is on the interaction between the system 
and the actors. Examples of sequence-based notations are Message Sequence 
Charts [43], Sequence Charts in UML [42] and sequence-based software speci-
fication [44].  

The benefits of sequence-based notations over scenarios are that they are less 
ambiguous and have some possibility for automatic analysis. The drawback is 
that the expressiveness is limited to the events and their sequence.  

A sequence consists of one or more events (arrows in Figure 14) being sent be-
tween one or more actors or system components (vertical lines in Figure14). 
Sequence-based notations can be used at different levels of abstraction. They 
can be useful to as a formalization of scenarios, to get to a less ambiguous 
model. They can also be used, as in UML, to specify communication sequence 
between components. Normally, sequence-based notations are used to specify 
sequences between system components, i.e. a relative detailed level of abstrac-
tion.  



Specifications for functional 
Requirements 

Copyright © Fraunhofer IESE 2005 23

Env N d1 Nd2 Nd3

 
Figure 6 MSC example 

In the formalized version of sequence-based notations by Prowell and Poore, a 
lot of automatic analysis is possible sequence-based software specification [44]. 
They do however lack a graphical notation. In principle, the ideas from Prowell 
and Poore are similar to those of SCR, see Section 3.2.2.3. 

3.2.4 Unified Modelling Language (UML) 

The Unified Modelling language (UML) is basically a collection of several nota-
tions and models [42]. It originated from the object-oriented community, but 
has developed beyond this and is a generally applicable framework. UML con-
tains a number of different diagrams: 

• Use case 

• Class 

• Object 

• Component 

• Deployment 

• Sequence 

• Collaboration 

• State charts 

• Activity 

Several of these have already been mentioned in previous sections. The main 
type of diagram not mentioned is those used for the static structure, namely 
class, object and component diagrams. However, from a requirements point of 
view, they are usually not of any interest.  



Specifications for functional 
Requirements 

Copyright © Fraunhofer IESE 2005 24 

Even though UML is usually used for design, there are benefits of using UML to 
specify requirements as well. Having a unified modelling framework makes it 
easier to integrate different issues in the development process. Also, there are a 
lot of tools for UML. The drawback is that UML is mainly a design framework. 
Hence, it can be used for detailed requirements specification, but is not appro-
priate for customer-specific issues. Also, for a non-technical reader, UML is 
more difficult to understand than scenarios. 

Especially the existence and usage of use cases within the UML enables an inte-
grated and holistic usage of use cases in the requirements engineering ap-
proach for business processes, functional and non-functional requirements. 

As the UML is currently widely known and used in industrial practice we will 
not further introduce the UML notation here but refer to literature [42]. 

3.3 Functional Specifications for ASG 

The usage of an integrated and holistic usage of a uniform and consistent rep-
resentation form for the various requirements on the three levels seems to be 
necessary to develop a requirements engineering process for the ASG platform. 
Use cases are a prominent specification technique for functional behaviour of 
software products and can also be used for describing business processes of 
service customers.  

Within the ASG development, the following existing template for use cases is 
used by the various partners to specify their use cases: 

3.3.1 Actor  

Enter the main actor of the interaction that has an interest in performing the 
functionality described in the interaction. An actor can be either human (e.g., 
an external human service consumer) or not (e.g., an external service provider). 
Also, an actor can be external to the ASG platform or internal (e.g., an ASG 
platform subsystem that interacts with another internal subsystem).  

3.3.2 System 

Enter the system involved in the interaction with the actor. In the case of the 
ASG project, this can be either an the ASG platform accessed by an external ac-
tor or a subsystem of the platform accessed by another subsystem (in this case, 
the accessing subsystem plays the role of the actor) or by an external actor. 



Specifications for functional 
Requirements 

Copyright © Fraunhofer IESE 2005 25

3.3.3 Description  

Provide a brief description of the reason for this interaction or a high-level de-
scription of the action that implicates this interaction.  

3.3.4 Scenario  

Explain the actor/system interaction (functionality) in form of a structured flow 
of events. This also includes a description of the information and the type(s) of 
data that are involved in this interaction.  

3.3.5 Interface requirements  

Specify what kind of interface is needed for this interaction. interfaces that 
have been identified, for example, for the Registry are e.g. query interface, in-
terface for data management (service registration,…). The type of interface de-
pends on the kind of communication between the actor and the system. 

3.3.6 Non-functional requirements  

Identify any non-functional requirement that may need to be addressed during 
design or implementation. These may include performance, reliability, security 
issues or any additional quality attributes. Please, define the requirements as 
(measurable) attributes referred to single steps of the flow of events described 
in the scenario (e.g., step 3 must not take longer than 3 ms, or data sent during 
step 5 must not be visible to any party other than the system). 

3.3.7 Includes  

List any other interactions, work components or modules that have some kind 
of relationship or dependence to this interaction.  

3.3.8 Frequency of Use  

Estimate the number of times this interaction will be performed or the point in 
time (where during platform execution) when this interaction takes place. For 
recurring interactions the time interval between communications or events that 
trigger this interaction may be specified.  



Specifications for functional 
Requirements 

Copyright © Fraunhofer IESE 2005 26 

3.3.9 Assumptions, constraints  

Assumptions or constraints that were made in the analysis that led to this inter-
action description should be specified as preconditions, post-conditions, or 
minimal guarantee. 

• Preconditions  

Enter the system state that must be achieved before the interaction can be 
started. 

• Postconditions  

Enter the condition that holds after the interaction was performed successfully.  

• Minimal Guarantee 

Enter the minimal system state that must be achieved after the interaction even 
if the interaction does not perform successfully. 

3.3.10 Extensions  

Extensions define variations or exceptions that can happen during the main 
success scenario. Please, specify the type of the extension. Three alternatives are 
differentiated: Option (i.e., a further interaction that may take place), Alterna-
tive (i.e., a set of different interactions from which one must take place), Excep-
tion (i.e., a further interaction that takes place in the case of an exception). 

3.3.11 Detailed Functions  

Enter a list of all detailed functions that are relevant for performing the interac-
tion functionality. 

3.3.12 Notes and Issues  

List any additional comments about this interaction or any remaining open is-
sues or TBDs (To Be Determined) that must be resolved. Identify who will re-
solve each issue, the due date, and what the resolution ultimately is. 

This explicit usage of such a kind of use case template throughout the require-
ments engineering process enables us to create an integrated mapping of the 
customer related business process and thus specific “service need” to the pro-
vided services registered within the ASG registry. 



Customer oriented Business 
Process Modelling 

Copyright © Fraunhofer IESE 2005 27

4 Customer oriented Business Process Modelling 

Two modelling notations commonly used to describe requirements from a cus-
tomer's point of view are business processes and Use Cases. The following sec-
tion will focus on an in-depth introduction to business process notations. Re-
garding a detailed description of the Use Case notation please refer to Section 
3.2. 

Commonly business processes are used to specify requirements on a higher, 
abstract level while Use Cases are used to refine the business processes and de-
tail the described requirements.  

4.1 Motivation 

Business processes can be used to document requirements from a customer's 
point of view. A business process represents a sequence of activities performed 
to achieve a certain goal. Modelling of business processes primarily focuses on 
representing these activities.  

A business model increases common understanding of requirements, as the 
model can serve as a basis for communication for all stakeholder groups. As 
such a business process model is usually easily understandable it does not re-
quire any previous experience with the notation.  

In requirements engineering business processes are used in several different 
ways. On the one hand they are sometimes seen as being only surrounding in-
formation to the requirements process that has to be kept in mind while writ-
ing the requirements. On the other hand business processes are used to actu-
ally specify requirements on an abstract level describing process activities. Busi-
ness process can be a starting point w.r.t specifying functional requirements on 
a more abstract level, thus being an appropriate mean to describe customer 
oriented requirements. 

4.2 Business process modelling notations 

The following section introduces several notations that can be used to docu-
ment, model a business processes: 

• EPC  

• BPEL 



Customer oriented Business 
Process Modelling 

Copyright © Fraunhofer IESE 2005 28 

• Activity Diagrams 

• BPML 

4.2.1 EPC  

EPC or Event-Driven Process Chains are used to represent business processes 
and are one of the key concepts of the ARIS product from IDS Scheer [45]. The 
primary incentive of EPCs and the representation of business processes through 
EPCs was to increase the efficiency of the represented business activities 
through introducing a systematic flow and increasing the parallel execution of 
these activities.  

The following section introduces the different concepts of EPCs used to docu-
ment business processes. 

4.2.1.1 Function 

 

A function represents an activity that has to be performed by a certain organ-
izational unit to reach a given goal. Examples of functions are: 

• Place order 

• Chose article 

• Chose payment method 

4.2.1.2 Event 

 

An event formally represents a condition that relates to a certain function. An 
event may represent a pre-condition or a post-condition to a certain event.  
Examples of events are: 

• Login successful 

• Payment method chosen and accepted 



Customer oriented Business 
Process Modelling 

Copyright © Fraunhofer IESE 2005 29

4.2.1.3 Logical operators 

 

EPC offers three logical operations that can be used to relate events and func-
tions: 

• XOR : one and only one of the alternatives may be chosen 

• OR: one or more alternatives may be chosen 

• AND: all alternatives have to be executed 

4.2.1.4 Process path 

 

A process path is used to represent a process part (an activity) that is further re-
fined/described through a second EPC diagram. 

4.2.1.5 Organizational unit 

 

An organizational unit represents a role, usually a group of persons from the 
company related to the business process. Examples are: 

• Customer 

• Financial department 

• Marketing 

4.2.1.6  Information unit 

 



Customer oriented Business 
Process Modelling 

Copyright © Fraunhofer IESE 2005 30 

An information unit represents a certain object that is needed as input or pro-
duced as output during a certain activity or a set of activities. Examples are: 

• Document 

• Products 

4.2.1.7 Example of a business process modelled with EPCs 

The following broadly sketches a business process using EPCs. The process re-
flected is a basic order process. A customer logs into the system and chooses 
one or more articles that he wants to order. After selection and acceptance of a 
payment method the order is placed. Figure 15 shows this process. 

 
Figure 7  Order process 

4.2.2 Activity Diagrams 

Activity Diagrams are a subset of the Unified Modelling Language used to rep-
resent a flow of activities. Using notational elements like activities, split-
ting/synchronization, decisions and responsibilities Activity Diagrams can also be 
used to model business processes. As compared to Event-Driven Process 
Chains, an Activity Diagram does not contain an event element, thus represent-
ing events implicitly through begin/end of an activity. The following figure 
represents an example of a business process using Activity Diagrams.  

 
Figure 8  Excerpt of Order process using Activity Diagrams 

Activity Diagrams, as a part of the UML standard, are widespread. The notation 
is easy to learn and understand, thus very appropriate to the context of cus-
tomer oriented requirements engineering.  



Customer oriented Business 
Process Modelling 

Copyright © Fraunhofer IESE 2005 31

4.2.3 BPEL 

BPEL, the Business Process Execution Language for Web Services (BPEL4WS) 
[46] is an XML-based notation that is used to represent business processes or-
chestrating web services. Historically BPEL combines IBM's Web Services Flow 
Language (WSFL) [47] and Microsoft's XLANG [48] specification. 

BPEL is used to combine several services (usually Web Services) to form a busi-
ness process as depicted in Figure 16. Based on a WSDL-specification [49] that 
represents the functionality offered by a web service, the service is integrated, 
as an activity into a more general flow of activities representing a business 
process.  

 
Figure 9  BPEL process 

The following section introduced the structure of a BPEL document and ex-
plains the different elements forming the structure. 

4.2.3.1 Process 

A BPEL document consists of a general element process. This XML-tag repre-
sents the business process that is modelled and adheres to the following struc-
ture: 

 

 



Customer oriented Business 
Process Modelling 

Copyright © Fraunhofer IESE 2005 32 

<process…> 

    <partnerLinks>…</partnerLinks> 

<variables>...</variables> 

    <correlationSets>…</correlationSets> 

<faultHandlers>…</faultHandlers> 

<compensationHandlers>…</compensationHandlers> 

<eventHandlers>…</eventHandlers> 

 Complex or basic activities 

</process> 

4.2.3.2 partnerLinks 

The interaction of the described business process with external web services is 
represented via the tags partnerLinks and partnerLinkTypes.  

A partnerLinkType element represents the interaction between two entities on 
a more abstract level, defining a relationship by indicating the different roles 
participating to the relationship. 

<partnerLinkType name ="XXX" …> 

 <role name =""> …</role> 

 <role name ="">…</role> 

<partnerLinkType> 

The partnerLink element can then be used in a business process to describe that 
a speciric relationship with a web service exists, indicating the role of the busi-
ness process and the one of the Web Service: 

<partnerLinks> 

<partnerLink name="" partnerLinkType="*reference*" my-
Role="role of business process"? partnerRole="role of web ser-
vice partner"> 

</partnerLink> 

</partnerLinks> 

Example: 

<partnerLinkType name ="ValidationCC" …> 

 <role name ="OrderShop"> …</role> 

 <role name ="CreditCardValidation">…</role> 

<partnerLinkType> 



Customer oriented Business 
Process Modelling 

Copyright © Fraunhofer IESE 2005 33

<partnerLinks> 

<partnerLink name="VCC" partnerLinkType="ValidationCC" my-
Role="OrderShop"? partnerRole="role CreditCardValidation"> 

</partnerLink> 

</partnerLinks> 

4.2.3.3 Scope 

A scope is an abstract element enabling a context specific execution of one or 
more activities. The process element implicitly also forms a scope. As compared 
to a process a scope can provide faultHandlers, eventHandlers, compensation-
Handlers as well as variable definitions. These different elements only apply to 
the scope, they are not visible to the overall process or other scopes.  

<scope ...> 

<variables>...</variables> 

    <correlationSets>…</correlationSets> 

<faultHandlers>…</faultHandlers> 

<compensationHandlers>…</compensationHandlers> 

<eventHandlers>…</eventHandlers> 

 Complex or basic activities 

</scope> 

4.2.3.4 Variables 

Variables enable a business process to store (and process) specific data values 
for example in order to handle internal or global process states.  

<variable name ="" messageType="" type ="" element=""> 

4.2.3.5 FaultHandlers, EventHandlers, CompensationsHandlers 

BPEL provides several handlers to react to different events providing the means 
to execute the necessary actions in reaction to these events. 

CompensationHandler 

A compensationHandler provides the necessary steps that are to be executed in 
order to reverse certain actions. 

<compensationHandler> 

Complex or basic activity 

</compensationHandler> 



Customer oriented Business 
Process Modelling 

Copyright © Fraunhofer IESE 2005 34 

FaultHandlers 

A fault handler is equivalent to the try catch elements in Java.  An activity or a 
scope is delineated by a faultHandler providing the ability to react to faults oc-
curring during the execution of the respective scope or activity. 

<faultHandlers> 

<catch faultName=""> 

Complex or basic activity 

<catch> 

... 

</faultHandlers> 

EventHandlers 

EventHandlers can be associated with scopes or the process itself and provide a 
means to react to different sorts of events as for example: 

• Alarms 

• MessageEvents 

If an Alarm (timeout) occurs or a specific message arrives, the EventHandler 
element allows to react to these situations by indicating a set of complex or ba-
sic activities that are to be executed. 

<eventHandlers> 

 <onMessage ...> 

 Complex or basic activity 

 </onMessage> 

 <onAlarm ...> 

 Complex or basic activity 

 </onAlarm> 

</eventHandlers> 

4.2.3.6 Activities 

The most important and central part of BPEL are activities. BPEL distinguishes 
structured and basic activities. Structured activities determine the flow of activi-
ties and thus contain basic activities as sub elements.  
Structured activities are: 

• Sequence 

• Switch 



Customer oriented Business 
Process Modelling 

Copyright © Fraunhofer IESE 2005 35

• While 

• Pick 

• Flow 

Sequence 

A sequence executes two activities one after each other determining the order 
of execution. 

<sequence> 

 <invoke …> 

 <invoke…> 

</sequence> 

Switch 

The switch element is used to introduce conditional flow of activities. 

<switch> 

<case condition="booleanexpression"> 

 Structured or basic activity 

</case> 

<otherwise> 

Structured or basic activity 

</otherwise> 

</switch> 

While 

The while activity enables a looped, repeated execution of several activities. 

<while condition="Boolean-expression"> 

 Structured or basic activity 

</while> 

Flow 

As opposed to sequence, flow provides the ability to execute activities concur-
rently providing a means to synchronize these. 

<flow> 

  Structured or basic activity 

</flow> 

 

 

 



Customer oriented Business 
Process Modelling 

Copyright © Fraunhofer IESE 2005 36 

Basic activities are: 

• Invoke 
Invokes an operation of a partner. 

• Receive 
Message from a partner is received and processed. 

• Reply 
Reaction to a reply element. 

• Assign 
Assigns or copies values to variables. 

• Terminate 
Terminates the whole process 

• Throw 
If a certain state (error) is reached the throw activity can initiate the neces-
sary steps to be taken by signalling the state through the throw activity. 

• Wait 
Execution is stopped for a certain time period. 

• Empty 
Does nothing. 

4.2.4 BPML 

BPML, the Business Process Modelling Language is an XML-based notation, pre-
sented by the Business Process Management Initiative (BPMI) [50], used to rep-
resent business processes. BPML is similar to BPEL4WS, but, as compared to 
BPEL does not focus on the orchestration of web services. Using elements like 
process, action, sequence, while, switch, fault handler, exception handler 
among others, it can be used to represent business processes. Due the fact that 
these business processes are represented as XML documents, they are hard to 
understand. The notation is not easy to learn and usually requires expert 
knowledge. Using the Business Process Modelling Notation (BPMN) [51], a 
graphical representation of a BPML document, this disadvantage can be weak-
ened considerably.  

4.3 Comparison and usage of BPEL and EPC for ASG 

EPCs do not require a high experience to make use of them. The notation is 
quite simple and straightforward. It provides an excellent basis to document 
customer requirements as the customer can easily understand the provided 
models. BPEL on the other hand requires in depth knowledge of its structures 
to make reasonable use of it. The training curve is especially high in the begin-



Customer oriented Business 
Process Modelling 

Copyright © Fraunhofer IESE 2005 37

ning as BPEL is not a very easy to learn specification notation. In addition cus-
tomers may experience difficulties to document their requirements within a 
BPEL document or to understand the requirements documented within the 
XML document. To weaken this disadvantage the Business Process Manage-
ment Initiative (BPMI) [50] provides the Business Process Modelling Notation 
(BPMN) Concept [51], a graphical notation to model a business process (inte-
grating several web services) that can be transformed into a BPEL document. 
This notation was released in a first version and still experiences several difficul-
ties but can nevertheless be used to clarify a BPEL XML document. 

BPEL can be used to address specific services while specifying the requirements. 
If the customer explicitly requires a specific service that he wants to use and in-
tegrate, BPEL provides an excellent basis to address this requirement. 

BPEL is a very formal representation of a business process that does not leave 
much flexibility in its description thus being much more unambiguous as EPCs 
for example. EPC represents a semi-formal notation that can usually be inter-
preted in several different ways making it hard to predict the intended specifi-
cation. 

Based on this formal character BPEL provides another advantage that can be 
crucial especially in the domain of adaptive service grids. BPEL is an executable 
specification, the XML code can be executed by a dedicated server as for exam-
ple Intalio n3 [52] not requiring much effort regarding implementation [53]. 

4.3.1 Usage of BPEL to specify functional requirements 

BPEL can be used by service providers to provide new services that are based on 
existing web-services. With the help of BPEL the interaction of different services 
can be described forming a business process that represents a new service that 
may be published and invoked. 



Specifications for Ontology-
based modelling 

Copyright © Fraunhofer IESE 2005 38 

5 Specifications for Ontology-based modelling 

In this chapter, we will describe the theoretical background of semantic integra-
tion i.e. semantic models and ontologies. Later on, we will introduce state-of-
the-art notations and specification techniques for ontologies as the focus of this 
document is on specifications for service-oriented requirements. At the end of 
this chapter, we will discuss the impact of ontologies for a distributed service-
oriented environment in more detail. 

5.1 Motivation 

Heterogeneity is the major challenge for integrating various data sources and 
resources of different partners. Especially in a distributed service-oriented envi-
ronment as the ASG platform, various partners or organizations would like to 
provide and share data or other resources to customers, for example service 
specifications or code components. Many state-of-the-art information integra-
tion techniques exist today, but none of them has prevailed in industry so far. 
Today, information integration is mostly done on a syntactical level, but seman-
tics for information preservation and transformation is missing. 

5.1.1 Specifying relationships between models 

The underlying idea of semantic models is the ability to associate a unique 
meaning with every information element. By doing this, information is trans-
formed into knowledge, which is a fundamental precondition for automatic in-
formation processing. Based on this goal, semantic models should feature the 
following three characteristics: 

5.1.1.1 Shared terminology 

The meaning of information can only be explicitly distinguished if every involved 
partner has the same language. This is typically realized by assigning a specific 
and unique identifier to every element. Knowledge manipulation can then be 
achieved by sheer symbolical transformation. This approach can only be suc-
cessful if the application domain is well-defined and every domain element can 
be identified. This can be achieved by developing a domain-specific terminology 
for each domain. To combine the individual domains matching elements be-
tween different domains must be made explicit.  



Specifications for Ontology-
based modelling 

Copyright © Fraunhofer IESE 2005 39

5.1.1.2 Relationships between elements 

In general, it is not sufficient to assign a unique identifier to an element. 
Knowledge is principally gained not until the relationship between elements is 
understood. For that reason, semantic models provide modelling primitives to 
express the role of the identifiers. Typically, modelling primitives are object-
oriented i.e. it is possible to express that an identifier refers to a specific term. 
This means that an identifier can be treated as an abstract element that de-
scribes the characteristics of a concrete domain element. 

5.1.1.3 Mathematically based semantic 

As semantic models provide the capability to combine modelling primitives, it is 
important to define the semantic of these primitives in distinct and mathemati-
cally correct expression. This is realized by a well-defined interpretation of every 
construct. 

5.2 Introduction to Ontologies 

Models that hold the above mentioned three characteristics are generally called 
ontologies. Many modelling paradigms feature only the first two characteristics, 
i.e. the ability to uniquely identify elements and to specific relationships be-
tween model elements.  In contrast, the third characteristic, i.e. the model-
based semantic, is typically found only in semantic models.  

Ontologies are formal models of a specific domain that support the communi-
cation between human and computer based actors. This facilitates exchange 
and sharing of knowledge within an organization. But it requires a negotiation 
and an agreement between a group of users on a socio-cultural level regarding 
the terminology and relationships. Object-oriented modelling approaches are 
advancing by becoming a part of a knowledge management system and 
therewith can be used at runtime. These aspects are formalized in the following 
definition of the term ontology: [54] 

"An ontology is an explicit specification of a shared conceptualization." 

To be of any practical use, a well-defined notation is required for ontologies. A 
general accepted and well-defined language for ontologies is especially impor-
tant for integrating various data sources and resources and therefore services 
provided by various partners. During the last decades many different notations 
for ontologies have been developed but none of them has prevailed. In the fol-
lowing sections of this document we will introduce the most prevalent repre-
sentatives of existing notations for ontologies. After that, we will discuss the 



Specifications for Ontology-
based modelling 

Copyright © Fraunhofer IESE 2005 40 

impact of ontologies for a distributed service-oriented environment in more de-
tail. 

Ontologies are a key enabling technology for the semantic web. They inter-
weave human understanding of symbols with their machine-processability. On-
tologies were developed in Artificial Intelligence to facilitate knowledge sharing 
and reuse. Since the early nineties, Ontologies have become a popular research 
topic. They have been studied by several Artificial Intelligence research commu-
nities, including Knowledge Engineering, Natural Language Processing and 
Knowledge Representation. More recently, the concept of Ontology is also be-
coming widespread in fields, such as intelligent information integration, coop-
erative information systems, information retrieval, electronic commerce, and 
knowledge management. The reason ontologies are becoming so popular is 
largely due to what they promise: a shared and common understanding of a 
domain that can be communicated between people and application systems. In 
a nutshell, Ontologies are formal and consensual specifications of conceptuali-
zations that provide a shared and common understanding of a domain, an un-
derstanding that can be communicated across people and application systems. 
Thus, Ontologies glue together two essential aspects that help to bring the web 
to its full potential: 

• Ontologies define formal semantics for information, consequently allowing 
information processing by a computer. 

• Ontologies define real-world semantics, which make it possible to link ma-
chine processable content with meaning for humans based on consensual 
terminologies. 

5.3 Specifications Techniques for logical relationships 

With ideas and interests in semantic web technologies, ontologies have realized 
a boom during the last years. Unfortunately, this has not contributed to the 
definition of the term ontology. In many cases, ontology-based structures are 
just controlled glossaries or dictionaries like classifications or thesauri. The abil-
ity of relating relationships (in RDF called „Reification“) and applying rules is 
seldom used due to its complexity. Although this is one of the main unique 
characteristics of ontologies compared to other system of concepts.  

An ontology can be compared to a database: It consists of two complementary 
parts, the structure (database schema) and the content (data). 

Typical languages for ontolgies are for example RDF, DAML+OIL, KIF, F-Logic, 
OWL or WSMO. Thereby, RDF and OWL are semantic web languages and are 
characterized as „W3C Recommendation” by the World Wide Web Consortium 
(W3C). Thus, they are classified as industrial standards. OWL is the successor of 



Specifications for Ontology-
based modelling 

Copyright © Fraunhofer IESE 2005 41

DAML+OIL, which originated from the union of DAML (USA) and OIL (EU) on 
his part.  

In the following we will introduce notations and languages for ontologies with 
respect to their “Reasoning-ability” and the capability to express requirements. 
The languages introduced in the sections below range from Topic Maps, which 
are mostly useful for navigation-based approaches, over logic-based notations 
like KIF and OWL to case-based approaches. 

5.3.1 Topic Maps 

The intended goal of Topic Maps [55] is the management of unstructured in-
formation. Actually, it can be seen as the implementation of an index cata-
logue. They store and model meta-data about the knowledge to be managed. 
Due to their structured management of knowledge, it is possible to implement 
efficient full-text search algorithms and they provide an easy navigation 
through the modelled knowledge. Topic Maps are often compared in analogy 
to books in literature. The content of the book is equivalent to the knowledge 
to be structured whereas the index catalogue at the end of the book enables 
an easy navigation through the book by providing information about the con-
tent and the relationships between sections. Topic Maps contain building 
blocks similar to an index catalogue of a book, which contains basically entries 
(topics) and page numbers (occurrences) at which the topics can be found: (see 
figure 17): 

• Subjects 
Subjects represent the concepts, terms or information of the knowledge to 
be modelled.  A more well-defined but more “general” definition is given by 
ISO/IEC 13250:2000: „In the most generic sense, a 'subject' is any thing 
whatsoever, regardless of whether if exists or has any other specific charac-
teristics, about which anything whatsoever may be asserted by any means 
whatsoever“. 

• Topics  
Whereas subjects represent information items of the world to be modelled, 
topics are the respective representatives in the “virtual world”. Besides its 
unique identifier a topic contains also a human readable name that is used 
for facilitating the communication between human actors. 

• Occurrences 
Occurrences of a topic describe the information items that contribute to the 
topic. In the book associated analogy, occurrences of a topic are the infor-
mation carrying elements like sentences, formulas, words, etc. 

• Associations 
Associations are used to ease the understanding of specific topics by provid-



Specifications for Ontology-
based modelling 

Copyright © Fraunhofer IESE 2005 42 

ing additional context information. An association can be associated with 
two or more topics as they contain a large variety of context information. 
For example, an association connected to a topic about the city of Paris 
could also be connected to a topic that describes the train connections to 
Paris. 

• Classes 
Topics, occurrances, or associations can be described by classes. A class de-
scribed at the afore mentioned example about the topic about the city of 
Paris could be the topic about capital cities, which may possess further in-
stances.  It is also possible to define an inheritance relationship between 
classes, for example a “capital city” could be the child of a parent class 
“city”.  

 
Figure 10  Topic Maps 

Topic maps have been at first described in detail in the beginning of the year 
2001 by the specification „XML Topic Maps (XTM) 1.0“, and the syntax was in-
tegrated into the ISO 13250 standard in October of 2001. Today, XTM is a 
widely used exchange format for topic map tools. In the following, a short ex-
ample of a typical XTM syntax is given. A more detailed description can be 
found at the above given reference. 

<topicMap xmlns="http://www.topicmaps.org/xtm/1.0/"  
          xmlns:xlink="http://www.w3.org/1999/xlink"> 
 
  <topic id="CapitatID"> 
    <baseName> 
      <baseNameString>Capital</baseNameString> 
    </baseName> 



Specifications for Ontology-
based modelling 

Copyright © Fraunhofer IESE 2005 43

  </topic> 
 
  <topic id="CityID"> 
    <baseName> 
      <baseNameString>City</baseNameString> 
    </baseName> 
  </topic> 
 
  <topic id="CountryID"> 
    <baseName> 
      <baseNameString>Country</baseNameString> 
    </baseName> 
  </topic> 
 
 <association> 
    <instanceOf> 
      <topicRef xlink:href="#CountryCityAssoziationID"/>     
    </instanceOf> 
 
    <member> 
      <roleSpec> 
        <topicRef xlink:href="#CountryOf"/> 
      </roleSpec> 
      <topicRef xlink:href="#CountryID"/> 
    </member> 
 
    <member> 
      <roleSpec> 
        <topicRef xlink:href="#CityOf“/> 
      </roleSpec> 
      <topicRef xlink:href="#CityID"/> 
    </member> 
  </association> 
  .. 
</topicMap> 
 

5.3.2 FLogic 

FLogic uses a different approach compared to the above introduced Topic 
Maps. FLogic is an ontology modelling language that stems from object ori-
ented deductive databases. The language provides traditional concepts of ob-
ject-oriented data structuring models like classes, instances and relationships. 
Therefore, a well-defined mathematical model theory can be applied to lan-
guage statements. It is also possible to model classes and instances of classes. 



Specifications for Ontology-
based modelling 

Copyright © Fraunhofer IESE 2005 44 

Every class and instance is positioned in a partial order. That’s why according to 
the definition of the logical theory, FLogic has a syntax of the second level but 
the semantics of the first level. It is possible to define logical inference rules as 
class methods in FLogic. Therewith, an ontology may not only contain structural 
information but also the logical information that controls the interaction 
among objects. Thus, FLogic has a greater power of expressiveness compared 
to topics maps for example. In the following example, an ontology will be de-
scribed in the FLogic syntax. 

%Definition of the class level 
person[name => string;  %Attribute name (single value) 
 age => int;   %age (single value) 
 friends =>> person;  %Set of friends of the class person (multi 
value) 
 son =>> person;  %Set of sons (multi value) 
 daughter =>> person; %Set of daughters  (multi value) 
 father =>man;  %Father (single value) 
 mother =>woman].  %Mother (single value) 
man::person.    %person is a generic class of man 
woman::person.   %person is a generic class of woman 
 

%Definition of the instance level 
mike:man[name->“Mike“; 
      age -> 42;] 
 
mary:woman[name -> „Mary“; 
           age -> 40; 
           friends ->> {bob, sally]};]. 
 
peter:man [name -> „Peter“; 
       age -> 15; 
       father -> mike; 
       mother -> mary;]. 
 
thomas:man [name -> „Thomas“; 
           age -> 11; 
           father -> mike; 
           mother -> mary;]. 
 

%Axioms 
FORALL X, Y X[son->>Y] <- Y:man[father -> X]. 
FORALL X, Y X[son->>Y] <- Y:man[mother -> Y]. 
FORALL X, Y X[daughter->>Y] <- Y:woman[father -> X]. 
FORALL X, Y X[daughter->>Y] <- Y:woman[mother -> Y]. 
... 



Specifications for Ontology-
based modelling 

Copyright © Fraunhofer IESE 2005 45

 

%Query 
FORALL X <- mary[son->>X]. 
... 

The above specified ontology consists of four sections. The first section specifies 
the hierarchy among the different terms. Double colons :: are used to denote 
inheritance relationships. The first expression defines the signature of the class 
person: person is a concept on the class level and contains a name (name), an 
age (age) and a set of friends (friends). The following two expressions define 
two subclasses of the class person. 

The second section of the ontology specifies instances, their relations to other 
classes and the relations among instances. A colon : is used to separate the in-
stance name and the class name. A major characteristic of FLogic is that the in-
stance level and the class level are not specified separately. This gives the ad-
vantage to specify and process instances and classes in a consistent and uni-
form language. Nevertheless, it is possible to separate relations on the concept 
level (=> single value, =>> multi value) and on the instance level (-> single 
value, ->> multi value). 

The FLogic syntax is also capable of specifying composite statements, e.g. 
mary:woman[name -> „Mary“; age -> 40; friends ->> {bob, sally]};]. The state-
ment simultaneously expresses that mary is an instance of the class woman and 
assigns the attribute values of the instance mary. 

The third section specifies the characteristics of the classes by using FLogic axi-
oms, similar to a first level logical syntax. These axioms can be used to define 
constraints on the class and on the instance level. For example, the axiom 
FORALL X, Y X[son->>Y] <- Y:man[father -> X] describes the meaning of the 
son-attribute.  

FLogic allows the statement of queries based on the specified models. FLogic 
uses its own language to specify queries and does not rely on other query lan-
guages like SQL. Axioms without a rule head are used to express queries, for 
example FORALL X <- mary[son->>X] provides all sons of mary (result: X = {pe-
ter, thomas}). 

5.3.3 KIF 

The KIF (Knowledge Interchange Format) is another language used to specify 
knowledge on information. Many different types of information exist and this 
poses diverse requirements on languages used to represent the knowledge on 
the information. For example, SQL and OQL are languages, which are especially 
useful to describe information stored in databases. Object-oriented languages 



Specifications for Ontology-
based modelling 

Copyright © Fraunhofer IESE 2005 46 

are often used for data and method centralized modelling. Therefore, it is diffi-
cult to develop one general applicable language that is capable of describing all 
potential information.  The approach used by KIF is, similar to the FLOgic, based 
on first level logic. Logic is regarded as a common denominator of information 
sources as it is especially useful to represent „objects“and their relations. The 
KIF specification describes the syntax of KIF in BNF and defines the semantics in 
detail. A basic concept of KIF is to describe simple data with arguments. For ex-
ample, the arguments define the unique identifier of the employee and the sal-
ary: 

(salary 234-234 34000) 

(salary 473-622 37000) 

Complex expressions can be described in KIF by combining statements. The fol-
lowing example defines that a specific house is larger than another one: 

 (> (* (width haus1) (length haus1))  

      (* (width haus2) (length haus2))) 

KIF contains many logical operators to associate information with logical rela-
tions like negation, aggregation, rules, quantified formulas, etc.. The following 
example describes a complex expression in KIF, e.g. the even power of a real 
number is positive: 

  (=> (and (real-number ?x)  

           (even-number ?n))  

      (> (expt ?x ?n) 0)) 

KIF can also be used to describe meta-knowledge about knowledge. The sym-
bol ' is used to denote the change to the meta-level. The following expression 
describes: John believes that the moon is made of stilton cheese:  

    (believes john '(material moon stilton)) 

The number of meta-levels is unlimited. Thus, it is possible to create any nesting 
of information required. Each level of information describes statements on in-
formation of the underlying meta-level. Furthermore, information on meta-
levels can be associated with information on other levels, as the following ex-
ample describes. Mary believes everything that john believes: 

    (=> (believes john ?p) (believes mary ?p)) 



Specifications for Ontology-
based modelling 

Copyright © Fraunhofer IESE 2005 47

The semantic of KIF is also similar to the first level logic. Besides some exten-
sions like the meta-levels, the KIF fundamentals are based on first level logic 
characteristics like compactness. 

5.3.4 RDF(S) 

The Resource Description Framework (RDF) [56] and RDF-Schema (RDFS) is an 
established standard developed by the World Wide Web Consortium (W3C). 
RDF was developed to provide machine readable statements on web resources. 
Web resources are for example web pages or other objects with a uniform re-
source locator (URI). 

RDF provides basic and fundamental concepts for statement exchange, process-
ing (e.g. reasoning) and for the reuse of statements. Simple and unstructured 
meta-data can be specified and declared with the supplied syntax and seman-
tic. RDF uses three different objects that build up the RDF vocabulary:  

Statements are given about resources. Each resource can be uniquely identified 
by its uniform resource identifier (URI). 

Literals represent values (e.g. character string), which are used to specify the 
characteristics of resources.  

Properties are defined links between resources and literals. A property can refer 
to literals as well as resources.  

RDF itself is a application of the XML, i.e. it extends the standard XML model 
and syntax by specifications for web resources. In the following section, we will 
introduce the basic specification of meta-data with resources in RDF. 

5.3.4.1 RDF Syntax 

RDF [56] is based on the idea that every object has properties, which are de-
scribed by values. So, every resource can be specified with a statement. A RDF-
statement is a triple specified as RDF-statement := ( Subject , Predicate , Object), 
whereas a subject defines the resource based on the uniform resource identi-
fier, short URI. A predicate describes a specific property of the resource and the 
object defines a concrete value of the property. The identification of a resource 
in the web is done with the URI. It is an unique identifier and represents a more 
general type as a URL (Uniform Resource Locator). The advantage is that it can 
be automatically processed by a machine. 

We will introduce an example of a RDF-statement in the following. The infor-
mation to be described in RDF is as follows: 



Specifications for Ontology-
based modelling 

Copyright © Fraunhofer IESE 2005 48 

„The resource http://www.xyz.de has an author, whose value is‚ Herr 
Müller’ .“ 

This information can be represented by the following triple: 

Subject (Resource): http://www.xyz.de 

Predicate (property): author 

Object (value): Herr Müller  

The figure below illustrates this statement: 

 

Figure 11  RDF example 

Both the written statement and the picture above depict the same following is-
sue:  

<subject> has <predicate> <object> 

They describe the structure of the RDF document, which is written in XML. The 
example specified in XML/RDF, which is a XML version extended with RDF 
statements would be as follows: 

<?xml version ="1.0"?> 
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#” 
 xmlns:s=”http://description.org/schema/”> 
<rdf:Description about=”http://www.xyz.de”> 
<s:Author>Herr Müller</s:Author> 
</rdf:Description> 
</rdf:RDF> 

This description can be automatically processed and can be used for communi-
cations between machines.  

RDF also uses the XML concept namespace. A standard namespace in RDF is 
rdf, which refers to the RDF syntax resource:  

RDF <xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#”> 

author http://www.xyZ.de Herr Müller 



Specifications for Ontology-
based modelling 

Copyright © Fraunhofer IESE 2005 49

It is also possible to add additional namespaces, for example: 

<xmlns:s=”http://description.org/schema/”> 

RDF uses these namespaces in order to separate between RDF elements (stan-
dard namespace) and property elements of resources. 

Another important concept in RDF are containers. An element in RDF describes 
a resource that has several properties of the same type. Container objects are 
used to specify these elements. RDF provides 3 different types of containers: 

Bag: A "bag" describes a set of properties with an arbitrary order.  

Seq: A sequence is similar to a bag, with the exception that the order of the 
properties is of importance. 

Alt: Alternatives provide a set of properties of which only one can be chosen. 

5.3.4.2 RDF Schema 

RDF [57] itself is a completely graph based model and provides no means for 
structuring information. For this reason RDF Schema (RDFS) was designed as an 
abstract RDF language. RDFS provides the functionality to define classes, assign 
instances and define relations among classes. Modelling primitives are them-
selves defined as relationships with specific properties. For example, the state-
ment expressing the issue that a resource #person represents an abstract class 
for all persons is defined by the relation rdf:type between #person and 
rdfs:Class. The concept rdf:type itself is a relation that contains a specific se-
mantic, which is specified outside of the RDF model. 

5.3.5 DAML+OIL 

DAML+OIL [58] is an ontology language developed by DAML (Darpa Agent 
Markup Language) and the developers of OIL. DAML+OIL has been submitted 
to W3C as a basis for the W3C Web Ontology Language OWL. DAML+OIL is, 
unlike OIL, completely layered on top of RDF(S). To be more specifically, 
DAML+OIL is an extension of RDF(S) and XML that provides a set of constructs 
in order to make ontologies machine readable and machine comprehensible. 
Especially, objects and their relationships can be described and automatically 
analyzed. This can sometimes pose problems. Some restrictions in DAML+OIL 
can not be expressed in RDF(S), which means that in some cases decidability is 
lost (namely when cardinality constraints are applied to transitive properties). In 
addition, the standardized description enhances the exchange of ontologies. 

The DAML+OIL also integrates three major aspects: 



Specifications for Ontology-
based modelling 

Copyright © Fraunhofer IESE 2005 50 

• The language uses a formal semantic and provides reasoning support 

• The language makes also use of epistemological modelling primitives 

• The language contains a standard for XML and RDF based syntactical ex-
change  

 
Figure 12  OIL Aspects 

DAML+OIL describes an ontology as a three layered set of components:  

• An object layer, describing concrete instances of an ontology; 

• a meta-layer, describing the definition of the ontology; 

• and a second meta-layer or ontology container level , that describes concrete 
information about characteristics of the ontology.  

A major difference between OIL and DAML+OIL is the support for primitive and 
more complex data types in DAML+OIL, where in OIL only the string data type 
is supported. The data types used come directly from XML Schema and the 
domains of interpretation of classes and of data types are completely disjoint. 
An important reason given here is that adding a logical theory for each data 
type would lead to an immensely large and complex language. 

The differences between OIL and DAML+OIL are, from a language constructs 
point of view, relatively trivial. For most constructs there is a one-to-one map-
ping or a simple translation [58]. With respect to OIL, DAML+OIL adds true lay-
ering on top of RDF(S) and usage of XML Schema datatypes, making it more of 
a “true” Semantic Web language than OIL. Currently  a large number of 
DAML+OIL ontologies have been created and the language has been accepted 



Specifications for Ontology-
based modelling 

Copyright © Fraunhofer IESE 2005 51

as the de facto standard for ontologies for the Semantic Web until the arrival of 
the OWL language. Furthermore, DAML+OIL acts as the basis for the new Web 
Ontology Language OWL. 

5.3.6 OWL 

Using the DAML+OIL language as the basis, the W3C Web Ontology working 
group has created a new ontology language for the Semantic Web, which im-
plements true layering on top of RDF(S) in its current version and incorporates 
the wishes of many stakeholders, both academic and industrial. OWL [59] actu-
ally consists of a set of three dialects, namely OWL Lite, OWL DL, and OWL Full, 
in a layered approach. This means that OWL Lite is a subset of OWL DL and 
OWL DL is a subset of OWL Full. 

OWL is supposed to be an extension of RDF(S). There are, however, some prob-
lems when layering OWL on top of RDF(S). The relationship between RDF(S) 
and XML is simply syntactic; XML is used as to serialize RDF. However, the rela-
tion between OWL and RDF(S) has a big semantic component as well. Accord-
ing to RDF Semantics [56] RDF “sees” the syntactic definition of an ontology 
and it can draw conclusions that OWL can not; this is mainly because many 
more constraints and restrictions can be expressed in OWL that cannot be ex-
pressed in RDF. Therefore, not every model for an RDF representation is also a 
model for the OWL ontology. Because of this, OWL model theory cannot be de-
fined as an extension to RDF model theory. 

The basic elements of an OWL-ontology are classes, properties, instances of 
classes and relationships between instances. An instance of a class is also called 
“thing” or „individual“. Properties can be further specified as characteristics 
like transitive, symmetric, functional, inverseOf, InverseFunctionalProperty. Fur-
thermore, it is possible to define constraints on properties like allValuesFrom, 
someValuesFrom, Cardinality, hasValue. The following constructs can be used 
to create complex classes: intersectionOf, unionOf, complementOf; oneOf; dis-
jointWith.  Further details of the OWL can be found at [60]. 

The following example [60] describes the specification of a complex class as an 
intersection: Burgundy White wine as intersection of wine made of Burgundy 
and white wine.  

 

<owl:Class rdf:ID="WhiteBurgundy"> 
  <owl:intersectionOf rdf:parseType="Collection"> 
    <owl:Class rdf:about="#Burgundy" /> 
    <owl:Class rdf:about="#WhiteWine" /> 
  </owl:intersectionOf>  



Specifications for Ontology-
based modelling 

Copyright © Fraunhofer IESE 2005 52 

</owl:Class> 

In contrast to RDF-Schema, OWL is capable of describing complex relationships 
between different RDFS classes. Furthermore, precise constraints for classes and 
properties can be specified: 

• Constraints on type and amount-properties 

• Specification of 1:1, 1:n and n:m relationships 

• Construction of new classes with unions, intersections, or complements of 
classes 

The OWL exists in three different forms: OWL Lite, OWL DL, OWL Full. 

OWL Lite supports hierarchies of classifications and simple constraint-features. 
Especially thesauri and taxonomies can be easily converted in OWL. 

OWL DL supports maximal power of expressiveness combines with computa-
tional completeness and decidability of reasoning-systems. 

OWL Full supports maximal power of expressiveness without any guarantees on 
computations. 

Furthermore, the following rule applies to OWL:  A correct OWL Lite ontology is 
a correct OWL DL ontology. A correct OWL DL ontology is a correct OWL Full 
ontology. This rule does not apply for reverse direction. 

5.3.7 WSMO  

The Web Service Modeling Ontology [61] is a meta-ontology which describes 
relevant aspects for a dynamic composition of web services and how such on-
tology can be developed. It was initiated by the Digital Enterprise Research Insti-
tute (DERI). 

The ontology includes the discovery, selection, mediation and invocation of dif-
ferent web services to solve a special problem and is based on the four con-
cepts: web services, ontologies, goals and mediators. 



Specifications for Ontology-
based modelling 

Copyright © Fraunhofer IESE 2005 53

 
Figure 13  WSMO concepts 

In WSMO Ontologies are the key to linking conceptual real world semantics de-
fined and agreed upon by communities of users. An ontology is a formal ex-
plicit specification of a shared conceptualization. Ontologies define an agreed 
common terminology by providing concepts, and relationships between the set 
of concepts. In order to capture semantic properties of relations and concepts, 
an ontology generally also provides a set of axioms, which means expressions in 
some logical framework. The following example describes an example defini-
tion of a WSMO ontology: 

Class ontology 
      hasNonFunctionalProperties type nonFunctionalProperties 
      importsOntology type ontology 
      usesMediator type ooMediator 
      hasConcept type concept 
      hasRelation type relation 
      hasFunction type function 
      hasInstance type instance 
      hasAxiom type axiom 

The goal is the specification of the reason why the client wants to use the web 
service. It consists of pre-conditions and post-conditions. 

Mediators are responsible for the interaction between several web services 
which are necessary to achieve a special goal. There can be distinguished be-
tween different types of mediators: refiners and bridges. Refiners refine an ex-
isting component in order to define a new component. Bridges enable the in-
teraction between two components and therefore support reuse. 

The web service is a component which realizes functionality. It is responsible for 
the computation of results sent back to the client or intermediate results sent 
coordinated by mediators to further web services. WSMO provides service de-
scriptions for describing services that are requested by service requesters, pro-



Specifications for Ontology-
based modelling 

Copyright © Fraunhofer IESE 2005 54 

vided by service providers, and agreed between service providers and request-
ers. In the following, we describe the common elements of these descriptions 
as a general service description definition: 

Class service 
      hasNonFunctionalProperties type nonFunctionalProperties 
      importsOntology type ontology 
      usesMediator type {ooMediator, wwMediator} 
      hasCapability type capability multiplicity = single-valued 
      hasInterface type interface 

Further information or more detailed descriptions of WSMO can be found at 
[61]. 

5.4 Ontologies and ASG 

Ontologies are formal models of a specific domain that support the communi-
cation between human and computer based actors. In the case of the ASG 
platform, that would correspond to the service customers and providers and to 
the ASG service registry. This facilitates exchange and sharing of knowledge 
within the ASG usage community. But it requires a negotiation and an agree-
ment between the group of customers and providers on a socio-cultural level 
regarding the terminology and relationships used to describe the services. To be 
of any practical use, a well-defined notation is required for ontologies. A gen-
eral accepted and well-defined language for ontologies is especially important 
for integrating various data sources and resources and therefore services pro-
vided by various partners. Currently, WSMO [61] is used by the other work-
components to facilitate the discovery, selection, mediation and invocation of 
the different services provided by the ASG platform to solve a special customer 
problem. 



Conclusion 

Copyright © Fraunhofer IESE 2005 55

6 Conclusion 

This survey serves as a basis for the further development of a requirements en-
gineering method for the ASG development methodology. In this survey, we in-
troduced several different types of requirements engineering techniques, which 
address specific requirements engineering aspects related to the ASG platform. 
Especially three different levels of requirements became prominent during the 
analysis of requirements engineering tasks for the ASG platform. The first level 
is the service customer level that represents the level of the ASG platform at 
which service requests are raised by service customers. The second level is the 
service grid level, which represents the level of the ASG platform at which the 
service discovery and composition takes place based on the raised service re-
quest by a customer. And the third level is the service provider level that repre-
sents the level of the ASG platform at which service providers semantically 
specify their provided services and register them to the service registry of the 
ASG platform so that a service can be discovered and executed to fulfil a cus-
tomer request. 

The approach described in section 2.3.1 to describe Non-functional require-
ments has been initially developed for embedded systems but shows great ad-
aptation potential for the ASG platform and service-oriented application devel-
opment. The approach is based on the explicit usage of use cases for describing 
requirements and on quality models derived from the ISO 9126 standard, as 
well as general problems and challenges when working with NFR. Use cases are 
a prominent specification technique for functional behaviour of software prod-
ucts and can also be used for describing business processes of service custom-
ers. The approach for NFRs [6] introduced uses use cases as main technique, 
though the general principle of having a structured and experience-based proc-
ess is applicable to other techniques as well. Use cases are also already used for 
describing the usage of the ASG platform and to specify the user scenarios by 
the C-7 Workcomponent. The usage of an integrated and holistic usage of a 
uniform and consistent representation form for the various requirements on the 
three levels seems to be necessary to develop a requirements engineering proc-
ess for the ASG platform.  

BPEL can be used by service providers to provide new services that are based on 
existing web-services. With the help of BPEL the interaction of different services 
can be described forming a business process that represents a new service that 
may be published and invoked. 

WSMO [61] is already used by the other workcomponents to address the ser-
vice grid requirements level in order to facilitate the discovery, selection, media-



Conclusion 

Copyright © Fraunhofer IESE 2005 56 

tion and invocation of the different services provided by the ASG platform to 
solve a special customer problem. 

Further work will be based upon the introduced and selected techniques men-
tioned above to develop a requirements engineering approach that makes ex-
plicit usage of a common representation form for functional and for non-
functional requirements throughout the requirements engineering process. This 
enables us to create an integrated mapping of the customer related business 
process and thus specific “service need” to the provided services registered 
within the ASG registry. 



References 

Copyright © Fraunhofer IESE 2005 57

References  

[1] Kotonya, G.; Sommerville, I.: Requirements Engineering – Processes and 
Techniques. John Wiley & Sons, 1997. 

[2] Weske, M., et al.: Technical Annex 1 – Adaptive Service Grid, Description of 
Work. Proposal no. 004617, Integrated Project, Sixth Framework Pro-
gramme, 2004. 

[3] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen, 
and J.-M. DeBaud. PuLSE: A Methodology to Develop Software Product 
Lines. In Proceedings of the Fifth ACM SIGSOFT Symposium on Software 
Reusability (SSR’99), Los Angeles, CA, USA, May 1999. 

[4] P. Clements and L. Northrop. Software Product Lines: Practices and Pat-
terns. SEI Series in Software Engineering. Addison-Wesley, 2001. 

[5] D. M. Weiss and C. T. R. Lai. Software Product-Line Engineering: A Family-
Based Software Development Process. Addison-Wesley, 1999. 

[6] Kerkow, D.;Dörr, J.;Paech, B.;Olsson; T.;Koenig, T.; Requirements Engineer-
ing for Sociatechnical Systems; Fraunhofer IESE; Internal report; 2004. 

[7] Kitchenham B. & Pfleeger S. L. (1996) Software quality: the elusive target. 
IEEE Software, pp. 12-21. 

[8] Menasce, D. A. (2002) Software, Performance or Engineering. Workshop 
on Software and Performance, 239-242. 

[9] Chung, L., Nixon, B. A., Yu, E. & Mylopoulos, J. (2000) Non-Functional Re-
quirements in Software Engineering. Kluwer Academic Publishers. 

[10] Loucopoulos, P. & Karakostas, V. (1995) System Requirements Engineering, 
McGraw-Hill. 

[11] Gross, F. & Yu, E. (2001) Evolving system architecture to meet changing 
business goals: an agent and goal-oriented approach. International Confer-
ence on Software Engineering-Workshop STRAW. 

[12] Shaw, M., Garlan, D. (1996) Software Architecture – Perspectives on an 
emerging discipline. Prentice Hall. 



References 

Copyright © Fraunhofer IESE 2005 58 

[13] Abowd, G., Bass, L., Clements, P., Kazman, R., Northrop, L. & Zaremski, A. 
(1997). Recommended Best Industrial Practice for Software Architecture 
Evaluation. CMU/SEI-96-TR-025, Software Engineering Institute, Carnegie 
Mellon University. 

[14] Barbacci, M. R., Klein, M. H. & Weinstock,  C. B. (1997) Principles for 
Evaluating the Quality Attributes of a Software Architecture. CMU/SEI-96-
TR-036, Software Engineering Institute, Carnegie Mellon University. 

[15] Bass, L., Clements, P. & Kazman, R. (1998) Software Architecture in Prac-
tice. Addison-Wesley. 

[16] Sutcliffe, A. & Minocha, S. (1998) Scenario-based Analysis of Non-
Functional Requirements. Workshop on Requirements Engineering For 
Software Quality. 

[17] Sindre, G. & Opdahl, A. (2000) Eliciting Security Requirements by Misuse 
Cases, Proc. TOOLS Pacific 2000, pp. 120-131. 

[18] Alexander, I. (2001) Misuse Case Help To Elicit Nonfunctional Require-
ments. IEE CCEJ. 

[19] Petriu, D. & Woodside, M. (2002) Analysing Software Requirements Speci-
fications for Performance. Workshop on Software and Performance, pp. 1-
9. 

[20] Firesmith, D. (2003) Security Use Cases. Journal of Object Technology, 2 
(3), 53-64. 

[21] Clements, P., Bass, L., Kazman, R. & Abowd, G. (1995) Predicting Software 
Quality by Architecture-Level Evaluation. Proceeding of the Fifth Interna-
tional Conference on Software Quality. 

[22] Liu, L. & Yu, E. (2001) From requirements to architectural design – using 
goals and scenarios. International Conference on Software Engineering -
Workshop, STRAW. 

[23] Egyed, A., Grünbacher, P. & Medvidovic, N. (2001) Refinement and evolu-
tion issues in bridging requirements and architecture – the CBSP approach. 
International Conference on Software Engineering-Workshop STRAW 

[24] In, H., Kazman, R. & Olson, D. (2001) From requirements negotiation to 
software architectural decisions, International Conference on Software En-
gineering -Workshop STRAW. 



References 

Copyright © Fraunhofer IESE 2005 59

[25] Cysneiros, L. N. & Leite, J. C. S. P. (2001) Driving Non-Functional Require-
ments to Use Cases and Scenarios. XV Brazilian Symposium on Software 
Engineering. 

[26] Cockburn A. (2001) Writing Effective Use Cases. Addison Wesley. 

[27] Kazman, R., Klein, M. & Clements, P. (1999) ATAM: Method for Architec-
ture Evaluation. CMU/SEI-2000-TR-004, Software Engineering Institute, 
Carnegie Mellon University. 

[28] Kazman, R., Bass, L., Abowd, G. & Webb, M. (1994) SAAM: A Method for 
Analyzing the Properties of Software Architectures. Proceedings of the 
16th International Conference on Software Engineering, pp. 81-90. 

[29] Kazman, R., Abowd, G., Bass, L. & Clements, P. (1996) Scenario-Based 
Analysis of Software Architecture. IEEE Software. 

[30] Moreira, A., Brito, I. & Araújo, J. (2002) A Requirements Model for Quality 
Attributes, Early Aspects: Aspect-Oriented Requirements Engineering and 
Architecture Design, International Conference on Aspect-Oriented Software 
Development, University of Twente, Enschede, Holland. 

[31] Paech, B., Dutoit, A., Kerkow, D. & von Knethen, A. (2002) Functional re-
quirements, non-functional requirements and architecture specification 
cannot be separated – A position paper. International workshop on Re-
quirements Engineering for Software Quality. 

[32] Paech, B., von Knethen, A., Doerr, J., Bayer, J., Kerkow, D., Kolb, R., Tren-
dowicz, A., Punter, T. & Dutoit, A. (2003) An experience based approach 
for integrating architecture and requirements engineering. International 
Conference on Software Engineering -workshop STRAW. 

[33] Basili, V. R. & Rombach, H. D. (1988) The TAME project: Towards im-
provement-oriented software environments. IEEE Transactions on Software 
Engineering, vol. 14, no. 6, pp. 758-773. 

[34] Basili, V.R. (1992) Software Modeling and Measurement. The 
Goal/Question/Metric Paradigm. Computer Science Technical Report Series 
NR: CS-TR-2956 / NR: UMIACS-TR-92-96. 

[35] Klein, M. & Kazman, R. (1999) Attribute-based Architectural Styles. 
CMU/SEI-99-TR-022, Software Engineering Institute, Carnegie Mellon Uni-
versity. 

[36] IEEE Recommended Practice for Software Requirements Specifications, IEEE 
Std. 830-1998 



References 

Copyright © Fraunhofer IESE 2005 60 

[37] C. Denger, B. Paech, S. Benz, „Guidelines - Creating Use Cases for Embed-
ded Systems”,  IESE-Report 078.03/E, Kaiserslautern, 2003. 

[38] S. Lauesen, Software Requirements. Styles and Techniques. Addison-
Wesley, 2002. 

[39] I. Alexander, “Misuse cases: use cases with hostile intent”, IEEE Software, 
20(1), 58-66, 2003. 

[40] D. Harel, M. Politi, Modeling Reactive Systems with Statecharts. The State-
mate Approach, McGraw-Hill, 1998. 

[41] C. Heitmeyer, A. Bull, C. Gasarch, B. Labaw, “SCR: a toolset for specifying 
and analysing requirements”, Conference on Computer Assurance 
(COMPASS), 1995. 

[42] M. Fowler, UML Distilled. A Brief Guide to the Standard Object Modeling 
Language. Addison-Wesley, 2003. 

[43] Message Sequence Charts (MSC), ITU-T Standard Z.120.International Tele-
communication Union. 1996. 

[44] S.J. Prowell, J.H. Poore, “Foundations of sequence-based software specifi-
cation”, IEEE Transaction on Software Engineering, 29(5), 417-429, 2003. 

[45] IDS Scheer, http://www.ids-scheer.de/  

[46] Andrews T. et al; Business Process Execution Language for Web Services 
Version 1.1; 2003; http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/  

[47]  Leymann F.; Web Services Flow Language (WSFL); 2001; http://www-
306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf  

[48] Technology Report; XLANG; 2001; http://xml.coverpages.org/xlang.html  

[49] Chinicci et al; Web Services Description Language (WSDL) Version 1.2; 
2003; http://www.w3.org/TR/2003/WD-wsdl12-20030611/  

[50] Business Process Management Initiative; www.bpmi.org 

[51] Business Process Modeling Notation; http://www.bpmi.org/bpmn-spec.htm  

[52] Intalio n3 Server; http://www.intalio.com/products/server/index.xpg 



References 

Copyright © Fraunhofer IESE 2005 61

[53] Intalio ZeroCode Initiative; 
http://www.intalio.com/education/zerocode/index.xpg 

[54] T. Gruber: A Translation Approach to Portable Ontology Specifications. In: 
Knowledge Acquistion, Band 5, Seiten 199–220, 1993. 

[55] http://www.topicmaps.org/xtm/ 

[56] http://www.w3.org/TR/rdf-syntax-grammar/ 

[57] http://www.w3.org/TR/rdf-schema/ 

[58] http://www.daml.org/ 

[59] http://www.w3.org/2004/OWL/ 

[60] http://www.w3.org/TR/2004/REC-owl-guide-20040210/ 

[61] http://www.wsmo.org/TR/d2/v1.1/ 

 
 

 





 

 

Document Information 

Copyright 2005, Fraunhofer IESE. 
All rights reserved. No part of this publication may 
be reproduced, stored in a retrieval system, or 
transmitted, in any form or by any means including, 
without limitation, photocopying, recording, or 
otherwise, without the prior written permission of 
the publisher. Written permission is not needed if 
this publication is distributed for non-commercial 
purposes. 

Title: Requirements Specification 
Survey 
Adaptive Services Grid De-
liverable D6.I-1 

Date: February 28, 2005 
Report: IESE-133.05/E 
Status: Final 
Distribution: Public 


