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Abstract— The advances of technologies for mobile robotics
enable the application of robots to increasingly complex tasks.
Cleaning office buildings on a daily basis is a problem that
could be partially automatized with a cleaning robot that assists
the cleaning professional yielding a higher cleaning capacity. A
typical task in this domain is the selective cleaning, that is
a focused cleaning effort to dirty spots, which speeds up the
overall cleaning procedure significantly. To enable a robotic
cleaner to accomplish this task, it is first necessary to distinguish
dirty areas from the clean remainder. This paper discusses a
vision-based dirt detection system for mobile cleaning robots
that can be applied to any surface and dirt without previous
training, that is fast enough to be executed on a mobile robot
and which achieves high dirt recognition rates of 90% at an
acceptable false positive rate of 45%. The paper also introduces
a large database of real scenes which was used for the evaluation
and is publicly available.

I. INTRODUCTION

Cleaning of office buildings is a highly competitive market
with high efforts regarding time and personnel costs. To
lower efforts in this application case there are autonomous
industrial cleaning machines available on the market. These
machines are rather limited in their use in office environ-
ments because they need very structured environments with
large free spaces to operate in, e.g. gymnasiums, airports
and train stations. For the office market where a more
unstructured environment is typical there is only limited use
of such machines today.

To enable the use of autonomous cleaning machines in
unstructured office environments a collaboration between the
robot and human cleaning experts is needed. The robot can
inspect and clean wherever it is able to clean by itself and no-
tifies the human expert to do a focused cleaning if required.
One core capability for the shared autonomy concept is that
the robot is able to perceive dirt in its environment and use
that information for planning the cleaning task. Within this
paper an approach for a dirt detection algorithm is presented
which can be used to locate spots in an office environment
which need cleaning during an autonomous inspection by
a robot. These spots become furthermore recorded in a dirt
map that marks dirt which the robot can clean itself or that
needs to be handled by a human cleaning professional.

As such a robotic system must be manageable by technical
laypersons the requirements for the dirt detection algorithm
are the simple transferability to places with new ground
materials and the applicability to any kind of dirt. Especially,
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Fig. 1. Care-O-bot is localizing dirt at the ground.

laborious teaching tasks on new kinds of dirt or floor materi-
als should be avoided. Besides these practical considerations
the algorithm needs to be fast enough to be computed on an
autonomous mobile robot and should achieve high detection
rates of dirt with a low number of false alarms. The dirt
detection system that is presented in this paper fulfills many
of these requirements as it has no need for a learning stage
for neither dirt nor floor materials, works with any quite
regularly structured floor and achieves a high dirt detection
rate of 90% at a yet slightly too high false alarm rate of
45%. However, the last requirement is the least severe as
cleaning a little bit more than necessary is acceptable for a
robotic worker. In order to prove the function of the dirt
detection system in real environments, we have recorded
a large database consisting of 50 scenes which contain 65
different kinds of dirt. This database as well as a ready-to-use
testing framework and the dirt detection system are publicly
available at http://www.ros.org/wiki/autopnp_
dirt_detection.
In summary, the main contributions of this work are

1) a large, publicly available database of dirty ground
floors which is the first of its kind to the best of the
authors knowledge,

2) a testing framework which facilitates the simple usage
of this database,
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3) an improved algorithm for dirt detection that employs
a camera perspective normalization and collects the
detected dirt in a map and

4) a comprehensive analysis of the proposed dirt recog-
nition system.

The remainder of this paper is structured as follows. After
a brief discussion of relevant work in Section II the novel
dirt database is introduced in Section III. Following the dirt
detection algorithm is explain in Section IV and evaluated
in Section V. The paper concludes with a summary and an
outlook for the next research steps in Section VI.

II. RELATED WORK

The problem of visual dirt recognition for multifunctional
service robots is a completely new field of research that
has been introduced with a preliminary detection system
by Bormann et al. [1]. The idea of having robots clean
the household is quite old and has been realized in several
commercially available robotic vacuum cleaners like the
iRobot Roomba or the LG Hom-Bot. This kind of cleaning
robots is meant to clean the whole floor at once for one or
several times a week in personal household environments.
Because of the size of those robots available dirt sensing is
quite restricted. Usually, piezo-acoustic sensors are employed
to inform the robot about the degree of dirt so that it can
increase the cleaning efforts where necessary. Professional
cleaning, however, has quite different demands for an au-
tomatic cleaning system: the application environments are
usually large office buildings which have to be cleaned on a
daily basis. While there exist large human-operated machines
for vacuum cleaning and wiping broad corridors, cleaning in
more unstructured and diverse offices is a completely manual
job today. Moreover, the style of cleaning inside offices
can be characterized as an ”only clean where necessary”
approach. In order to cope with the amount of scheduled
work the cleaning professional has to judge the degree of dirt
and clean only at the polluted areas. With today’s maturity
of basic robot technologies like navigation, manipulation and
perception, a mobile platform like Care-O-bot (see Figure 1)
has the right size and equipment to automatize such kinds
of cleaning tasks.

The first part of this selective cleaning approach is the
detection of dirt spots. While other tasks like shopping [2] or
cooking [3] have been demonstrated on human-size service
robots, cleaning has only been tackled by a service robot at
the Robocup@Home challenge by the team of robot Eraser
in form of tidying up larger objects. The discovery of small
particles of dirt is nevertheless a quite different problem.
The search for undesired artifacts in movies has led to
approaches that segment the image and remove segments
with a different lifetime than their neighbors. However, as
dirt does not disappear from the ground by itself in our
case temporal filtering is not a viable solution. Moreover,
segmentation or edge-based approaches are likely to fail on
textured surfaces like carpets. Another idea would be to apply
object detection algorithms like [4], [5], [6], [7] that have to
learn the appearance of either the different types of dirt or the

pattern of the clean floor. The first option has the drawback
that a large variety of possible dirt has to be introduced to the
system without having the guarantee that any new kind of
dirt might be recognized as such. Vice versa, the drawback
of the second variant is that each new floor must be input to
the system. Although the latter option would allow to detect
any dirt on known surfaces it has to overcome the problem of
correct alignment of the clean pattern with the measurements.

The approach for the present dirt detection system is
inspired by work on modeling the visual attention of humans.
Typically, the regions attended first by humans are salient
areas in the image that stand out by their color, shape,
brightness or movement. Itti et al. [8] introduced a popular
saliency detection system which works by means of the
first three of these cues. Frintrop [9] extended this system
with a top-down component which intensifies or weakens
each salient region based on previously gathered object
knowledge. A simpler attention algorithm was introduced by
Hou and Zhang [10] who found that most images roughly
share the piecewise linear shape of their log amplitude
spectra. They associate this common shape with the image
background whereas deviations from it are said to belong to
exceptional foreground objects.

The dirt detection algorithm at hand utilizes a variant
of the latter approach to filter the input color image for
dirt region candidates. This approach has the advantages of
working online on video streams, of being completely free
of any learning and therefore working for unseen surfaces
and kinds of dirt as well.

III. DIRT DATABASE

In order to conduct a proper evaluation of the dirt detection
algorithm that is presented in Section IV, a novel dirt
database has been recorded and labeled with ground truth.
The database provides 65 different kinds of dirt recorded at
5 floor materials. This section introduces the dirt database
by explaining the recording conditions and the contents.

A. Setup for Recording

The whole database has been recorded with the service
robot Care-O-bot 3 under realistic conditions. The Care-O-
bot 3 platform is equipped with a mobile base, an arm for
manipulation and a sensor head for perception as depicted
in Figure 2(a). The integrated laser scanners are utilized
to localize the robot within the environment during the
recordings. This allows the detection software to relate dirt
detections to real locations at the floor and furthermore
enables the software to integrate detections in a map. In order
to increase the reusability of the dirt detection algorithm the
data was recorded with the general purpose RGB-D camera
Microsoft Kinect mounted inside the robot’s head. For the
recordings, the flexible torso of Care-O-bot was bowed to
the front to maximize the visible ground area close to the
robot. This way the recorded data can be retained with the
highest possible resolution and the robot is more likely being
able to record every part of the ground surface. The camera
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(a) Recording setup (b) Black carpet with street dirt

(c) Corridor with food (d) Kitchen with stones

(e) Linoleum with leaves (f) Office with office dirt

Fig. 2. Types of floors recorded for the database. The images are directly
taken from the database and show the robot’s perspective. Some exemplary
dirt is displayed at each scene.

is mounted at a height of 1.26 m above the ground and is
tilted downwards by 30◦.

For capturing the dirt database various kinds of dirt
have been distributed at the floor with a minimum distance
of ca. 20 cm between the samples. Then the robot was
manually driven through the room imitating the behavior
of exploring the scene. This means that the robot was
usually driven forwards into the dirty area and then back-
wards in conjunction with several turns. The data stream
of the sensors has been recorded into ROS bag-files that
contain the /tf topic, which allows for the conversion from
camera to fixed world coordinates, /cam3d/rgb/points,
which is basically the colored point cloud of the Microsoft
Kinect sensor at a resolution of 640x480 pixels, and the
/cam3d/rgb/image color topic, which represents the
color image of the Kinect sensor at a resolution of 1024x768
pixels. Given this selection of data, dirt recognition algo-
rithms are enabled to segment the ground plane, to choose
between the lower or higher color image resolution for
dirt recognition, and to transform the respective coordinates
between the camera and the fixed world coordinate systems.
The next section details which kind of data has been recorded
under the described conditions.

(a) Food (apple sticks,
potato chips, peanuts,
juice, coffee)

(b) Fuzz (yellow and
white rope, yellow and
white fuzz, hair)

(c) Leaves (green and
brown leaves, fir nee-
dles, hazelnuts)

(d) Office (aluminum
balls, styrofoam, laces,
paper clips)

(e) Paper1 (puncher
snippets, paper balls)

(f) Paper2 (white
snippets of different
shapes)

(g) Paper3 (colored
paper triangles and
rectangles)

(h) Stones (bright and
dark pebble stones,
grit)

(i) Street dirt (soc-
cer shoe dirt, cement,
sand)

Fig. 3. Types of dirt contained in the database. Each image contains a
ruler for size comparison.

B. Database

The dirt database contains 5 different floor materials
that were recorded with 9 groups of dirt and under clean
conditions each, resulting in a total of 50 bag-files. The
ground surfaces are depicted in Figure 2 and the 9 groups of
dirt can be found in Figure 3. Each of these groups contains
6 to 10 different items totaling in 65 distinct kinds of dirt for
the whole database. The captured sequences have a length
of 12 s to 55 s and contain between 100 and 300 frames
of point cloud and image data. The file sizes range between
1.18 GB and 4.86 GB. Every data sequence is accompanied
by a ground truth file that labels the position and extent of
the present dirt by means of a rotated rectangle as well as the
type of dirt. The coordinates of the ground truth labels are
provided in the fixed world frame which is possible because
of the localization of the mobile robot. This proceeding has
the advantage that each piece of dirt has to be labeled only
once per bag-file and not for every frame. More specific
directions for downloading and using the dirt database are
available at http://www.ros.org/wiki/autopnp_
dirt_detection.

IV. DETECTION ALGORITHM

The dirt detection algorithm bases on a spectral residual
filtering approach that has been introduced by Hou and
Zhang [10] for the computation of visual saliency. By
applying several pre- and post-processing steps this approach
can be transferred to the problem of dirt detection on surfaces
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Fig. 4. Processing pipeline of the dirt detection algorithm.

with a more or less regularly structured pattern. An outline
of the involved steps of the data processing pipeline is shown
in Figure 4 and illustrated in the accompanying video. The
individual stages are explained in the following subsections.

A. Ground Plane Extraction

The first step recognizes the ground plane within the point
cloud delivered by the RGB-D sensor. This is facilitated
by the application of RANSAC-based plane estimation as
implemented in the PCL library [11]. The resulting plane
equation is tested for two conditions: (i) the plane normal
is supposed to direct parallel to the height axis of the world
with a maximum deviation from that direction of 30◦ and
(ii) the points of the plane are expected to appear at heights
not larger than 50 cm above the ground modeled in the
map. Although possible with the transformation tree of the
robot model, we do not work with a pre-defined fixed ground
plane because this would exclude slanted surfaces like ramps,
would not allow to compensate for sensor noise and would
eventually request more input from the operator than neces-
sary. If the first estimate of the RANSAC algorithm delivers
a different plane of the scene, those points are removed from
the point cloud and another plane is estimated. This iteration
is either stopped after a fixed number of trials or if the
remaining points become too few. With the knowledge of

the ground plane it is straightforward to mask all pixels that
do not belong to the ground plane with black color in the
color image of the scene.

B. Perspective Normalization

As the camera might not always operate in the same
position above the ground, which happens at movements of
Care-O-bot’s torso or when the system is used on a different
robot model, it is necessary to normalize the color image
with respect to these degrees of freedom. Neglecting different
camera poses would result in images with different spatial
resolution of the ground dependent on the mounting height of
the camera and distorted perspectives as a result of changing
tilt angles of the camera. In order to make this variability
of appearance transparent to the algorithm a homography
H is estimated which transforms the ground plane as seen
in the camera image into a plane seen from a bird’s eye
view. Before we can estimate this homography it is necessary
to define proper coordinates for the normalized perspective.
First, we construct a coordinate frame P whose xP - and yP -
axis span the ground plane and whose zP -axis is represented
by the plane normal. The axes can be computed by sampling
two points p1,C and p2,C from the plane equation

axC + byC + czC + d = 0 . (1)

The index C at those coordinates refers to the coordinate
system of the RGB-D camera, whose origin lies inside the
camera and whose zC axis points into the scene. The sampled
points are used to construct coordinate frame P in the
following way:

nC = (a, b, c)T

d1,C = p2,C − p1,C

d2,C = nC × d1,C

(xP)C =
d1,C

‖d1,C‖
(2)

(yP)C =
d2,C

‖d2,C‖
(3)

(zP)C =
nC
‖nC‖

(4)

where the coordinates for the xP -, yP , and zP axes are
measured in the camera coordinate system C. Using plane
point p1,C as the origin of frame P the conversion between
camera frame C and plane frame P can be written as

pC = R · pP + t (5)

pP = RT · pC −RT · t (6)

R =

 (xP)C,x (yP)C,x (zP)C,x
(xP)C,y (yP)C,y (zP)C,y
(xP)C,z (yP)C,z (zP)C,z

 (7)

t = p1,C (8)

With the xP - and yP -axes of the plane coordinate frame
we can now define the coordinate system B for the virtual
camera at the bird’s eye perspective. Out of the visible
ground plane in the original view, only the points with a
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maximal distance dmax to camera C are transformed to the
bird’s eye perspective to retain a minimum quality of image
resolution for all pixels. Camera B is placed above the center
mP of this point set which is determined by

mP =

 (min pP,x +max pP,x)/2
(min pP,x +max pP,x)/2

0

 . (9)

Furthermore, the plane coordinates, which are measured in
meters, have to be transformed into pixels for the projection
into the virtual camera system B. We define a fixed resolution
of % pixels per meter with which the plane shall be repre-
sented within the image plane of the normalized image. In
summary, the projection from frame P into the image plane
of the virtual camera B can be expressed in homogeneous
coordinates as

PB = %

 pP,x −mP,x
pP,y −mP,y

1/%

 . (10)

As each point of the estimated plane P is measured by
the RGB-D camera in image coordinates PC as well as
metric coordinates pC , which can be associated with image
coordinates PB of virtual camera B, we can estimate the
homography connecting both plane representations from the
point correspondences

PB,i = H ·PC,i , ∀i ∈ P . (11)

The transformation into the bird’s eye perspective using
homography H has the advantage that all present dirt appears
with the same extent and shape independent of its location
in the image and that parallel lines are displayed parallel in
the image. The first effect ensures that dirt at a far distance
is displayed at the same size as it would have at a close
distance so that all dirt detections occur at a rate that does
not depend on the perceived size as a result of camera
distance. The second effect helps the algorithm to recognize
the regular surface pattern on tiled floors, which would be
displayed with perspective distortion without normalization.
Moreover, the conversion to a fixed resolution enables the
algorithm to always perceive the same object with the same
size independent of camera mounting position, resolution,
object location and the type of ground surface.

C. Saliency Computation

After the determination of a normalized perspective onto
the floor the dirt detection can be begun with. The first step in
doing so is the computation of a spectral residual response
that has been described in [10] for saliency calculation as
well as in [1] where it was already used for a precursor of the
current dirt detection system. Since the detailed procedure
and the math can be reviewed in [1] we are only providing
a brief intuition for the algorithm at this place.

The original RGB color image I is split into its three
channels c1, c2, c3 and each channel is processed with the
spectral residual filter. The spectral residual filter computes
the Fourier transform for each channel ci, i = 1, . . . , 3, and

subtracts the smoothed logarithmized amplitude image from
the original logarithmized amplitude image. The residual is
supposed to encode the outstanding parts of the image, which
are in our case the dirt spots. The residual is transformed
back into the image domain, yielding a response di, i =
1, . . . , 3, for each channel. Finally, all squared responses
are added up to the spectral residual image D. In short, the
computations are the following:

Li = log (<{F[ci]}) , i = 1, . . . , 3, (12)
di = F−1[exp(Li − h ∗ Li) + Pi] , i = 1, . . . , 3, (13)

D = d21 + d22 + d33 . (14)

The spectral residual image D is finally smoothed with a
Gaussian filter to suppress high frequency noise. Neverthe-
less, the spectral residual filter cannot distinguish between
images with and without outstanding parts and therefore
strongly amplifies noise as visible in the fourth row in Figure
4 for the clean floor.

D. Saliency Normalization

Hence, the spectral residual image needs to be scaled
accordingly for a correct interpretation with respect to dirt
detection. Again, the normalization procedure is described
in detail in [1] so that a summary shall be sufficient here.
As selecting the local maxima as dirt does not work because
of occurring noise and fixed thresholds do not work for the
case of a clean floor or for different floor types, the goal of
the normalization is to rescale the filter response so that the
presence of dirt can be simply judged by a fixed threshold.
The rescaling approach therefore calibrates the filter response
D against another filter response Da to the same image
which contains artificially added dirt. This dirt is represented
by two black and two white dots of size 7x7 pixels for a
640x480 image. The rescaled filter response Ds is computed
as

Ds(x, y) = min {s(D(x, y)−minD), r} , (15)

s =
r

maxDa −minDa
, (16)

r = min

{
maxDa

M
, 1

}
. (17)

As a result the values of Ds are bound to the range [0, r] so
that the application of a fixed threshold is now feasible. The
calibration against standardized dirt ensures that the response
for each part of the image is similar independent of the
presence of dirt. This outcome is visible in the fifth row
of Figure 4. The ratio r expresses to relation of the maximal
filter response in Da against a maximally expected filter
response over all scenes M . The rescaled response Ds is
limited to r in order to put the dirt responses from different
floor types on a common scale. Consequently, a fixed dirt
threshold is not only applicable to clean and dirty surfaces
of the same floor material but also to other surfaces.

E. Dirt Thresholding

By virtue of the normalization of the filter response the
dirt detection is limited to a thresholding of the rescaled
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response Ds with a fixed dirt threshold Td. Detected dirt
is indicated by green ellipses in the images of the sixth
row in Figure 4. As we have found that transitions between
bright and dark surfaces generate numerous false detections
an option was integrated to the system to exclude the pixels
that belong to strong lines from the thresholding operation.
For line detection a probabilistic Hough transform [12] is
applied. Although the algorithm as described so far delivers
quite accurate dirt detection results it is reasonable to exploit
the localization information available on a mobile robot to
increase the certainty of the detections. The accumulation of
detected dirt is therefore discussed in the next subsection.

F. Dirt Mapping

The localization of the mobile robot suggests the collection
of dirt detections within the same map. The advantages of
this are threefold: first, the fusion of multiple observations
of dirt from different perspectives strengthens the certainty
of these detections. Second, the inspection and dirt removal
tasks can be temporally separated which might be desirable.
Third, the cleaning results can be directly verified and exter-
nal help can be informed about the locations of persistent dirt
where necessary. All these properties increase the autonomy
and robustness of the cleaning robot. To put detected dirt into
a common map the detection ellipses need to be transformed
back from the bird’s eye view B into image plane coordinates
measured in camera frame C. By applying transformation
(10) in the opposite direction and afterwards transformation
(5), each image point PB of a detection is associated with a
metric plane point pC . Using the transformation WTC from
the transformation tree, which converts coordinates of the
camera frame into the fixed /map frame, the points pC can
be expressed in world coordinates

pW = WTC · pC . (18)

The dirt map is divided into cells of fixed size. Typically
the side length of the cells is 5 cm which is approximately
the uncertainty range of the localization in most cases. The
transformed detections are matched with all grid cells they
touch and each touched grid cell is incremented by one hit
independent of the number of pixels that map into it from
the same dirt spot. Besides the dirt detections we maintain a
second grid which counts how often each cell was visible
to the robot. This information is crucial to interpret the
absolute numbers of dirt detections per cell correctly as will
be detailed in the next section.

V. EVALUATION

Together with the database and dirt detection software we
provide the test framework at http://www.ros.org/
wiki/autopnp_dirt_detection which was utilized
for the following evaluation. Algorithms written by other
developers can be easily integrated into the test framework
enabling contributors to conduct the same experiments as
will be discussed in this section.

The output of the test framework provides some freedom
for the choice of evaluation measure. We define a grid cell

as occupied by dirt if the number of dirt detections within
that cell divided by the number of observations of the cell
lies above a fixed threshold Tc. This choice has the advantage
that dirt is not only judged by absolute numbers of detections
but relative to the number of observations. Consequently, dirt
detections are independent of observation time by the robot
and false detections are not triggered while the robot is not
moving as it would be the case if the choice was purely
based on the number of detections.

The evaluation of the presented dirt detection algorithm
has been conducted over the whole 50 bag-files of the dirt
database. First, we tested the algorithm with activated line
removal option which is supposed to remove some outliers
at strong lines in the image. The recall-precision curves for
detecting dirt at different dirt thresholds Td are displayed in
Figure 5(a). Parameter of variation is the detection threshold
Tc that decides which of the mapped detections should be
judged as dirt. The dirt threshold Td instead defines the
minimum strength of the normalized filter response that is
considered as a dirt spot and is applied on each image. As
to expect, recall decreases if the threshold for finding dirt
increases, the precision of the estimates instead becomes
better. However, this pattern does not apply to the lowest
part of the diagram yielding a quite uncommon behavior.
Nevertheless, this observation can easily be explained with
the fact that the true positive set decreases faster than the
false positive set with increasing Tc. Since we are more
interested in finding as much dirt as possible than in a
very high precision of the predictions (attempting to clean
a tidy spot is acceptable) dirt threshold Td = 0.15 appears
to be a reasonable choice. With this setting the algorithm
can detect over 90% of present dirt at a precision of 55%.
Detecting the missing 10% of dirt comes at a high price of
only 15% precision. This result is not surprising, however, as
the database contains several hard cases like dark dirt on dark
ground or tiny paper clips that are hard to detect even for
human observers of the image stream. Several dirt detection
sequences are contained in the accompanying video.

Although a false positive rate of 45% is acceptable in
the given application one might ask the question whether
the assumption that all visually outstanding parts on the
ground can be judged as dirt is too simplistic. The answer
is twofold: on the one hand, office environments usually
consist of rooms like offices, meeting rooms, corridors or
kitchens that expose a relatively regular visual appearance
and that are commonly rather tidy. Hence, small outstanding
pieces that lie on the ground are very likely to represent
dirt. On the other hand, yielding an unsupervised algorithm
that is readily available for any kind of floor or dirt was
one of the major design goals for the dirt detection system
so that it is necessary to settle with this kind of simple
assumptions. With respect to the high recall rates we see
that this assumption is viable. With respect to the obtained
precision we see some space for improvement. The current
system already incorporates some simple heuristics to lower
the false alarm rate, for example the exclusion of any
larger 3D object or structure from saliency analysis or the
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Fig. 5. (a) Recall-precision curves of the present dirt detection system with
active line removal on the database at different values for Td. (b) Recall-
precision curves for dirt detections with the current system with line removal
(wl), the current system without line removal (w) and the old system (o).
All curves were generated with fixed dirt threshold Td = 0.15 as well as
with optimized thresholds for each surface (best).

exclusion of longer straight lines. Experiences gained with
the system recently propose to extend these measures in
future work in two ways that mostly retain the unsupervised
character of the algorithm. First, the response of common
structures like wires or covers for power plugs in the floor
that are frequently misinterpreted as dirt should be filtered
by detecting them with additional simple heuristics on their
appearance. Second, harder misclassifications that occur in-
frequently shall be learned through user interaction, i.e. the
cleaning expert indicates false alarms in the map and the
algorithm adaptively learns their appearance and optionally
their typical location.

The current dirt detection system operates at a rate of
approximately 3 Hz when running at one core of a mobile
I7 M640 with 2.8 GHz and 6 GB RAM. The most time
consuming step is the segmentation that typically needs
around 160 ms of computation time depending whether the
ground plane can be fitted to the data with the first or a later
attempt. The whole dirt detection algorithm itself only needs
180 ms to compute. The overall computation time of 340 ms
is smooth enough for a successful online application of the
method on a mobile robot.

The next experiment demonstrates the significant superi-
ority of the presented approach over the preliminary version
of the dirt detection system [1]. The performance of the
old version, which does not normalize the perspective into a
bird’s eye view, is displayed as the yellow curve in Figure
5(b) whereas the current system is associated with the purple
curve. The turquoise curve represents the performance of
the current system without line removal. All curves were
computed with a dirt threshold of Td = 0.15. However, the
margin between the systems with normalized perspective and
the old variant remain considerable when other thresholds are
applied. Indeed can the old detection system obtain recall
rates comparable to the new system but at much worse
precision rates.

To provide the reader with a better impression of the
variance in the results over different types of floor materials,
Figure 6(a) presents the recall-precision curves attained with
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Fig. 6. Recall-precision curves for (a) individual floor types and (b)
individual dirt types obtained with the current dirt detection system with
activated line removal and Td = 0.15.

the system with line removal and Td = 0.15 for each kind
of floor individually. It shows that precision is significantly
lower at the region of high recall rates for carpet and corridor
compared to the other floor types. This effect is caused by the
great amount of similarly dark colored dirt particles in the
first case and by some additional false positives that originate
from light reflections at small metal bars put into the ground
in the latter case. Figure 6(b) details the detection results
with respect to the kind of dirt. It can be observed that
almost all kinds of dirt can be recognized at a similar level of
confidence with the exception of food that is recognized with
lower precision at constant recall rates. The best detection
performance can be observed with white paper which is
visually most outstanding in general.

Although the design goal of the algorithm to perform
equally well on many kinds of floors can be achieved quite
well, it is possible to compute optimal dirt thresholds for
each floor type to improve the overall performance further
as shown by the blue curve in Figure 5(b). The optimal
threshold is defined as this one which lets the recall-precision
curve pass closest to the ideal point (1,1). In this case, it
shows that the current system is still significantly better than
the old one but that the gain at the important high-recall area
is not so large for the current system compared to using a
fixed dirt threshold of Td = 0.15.

The evaluation with the recorded database focuses on the
detection rates of different kinds of dirt on different types of
surfaces. The recorded scenes are therefore situated in a well-
illuminated and fairly tidy environment as to expect during
operation typical in offices. To judge the robustness of the
dirt detection system with respect to more complex scenes
we evaluated the performance additionally on scenes with
varying illumination (e.g. direct sunlight, lights switched off),
strong shadows, moving people, or heavy clutter recorded in
our labs and during presentations at trade fairs. Figure 7 and
the accompanying video show that the dirt detection system
deals with all these kinds of disturbances in a satisfying
way because any 3-dimensional clutter is excluded from
dirt inspection beforehand and since the algorithm is rather
insensitive to the absolute level of lighting. The method only
fails if dim lighting prevents dirt from becoming visible in
the image at all, even for a human observer.
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Fig. 7. Dirt detections (green circles) on complex real scenes like clutter
below a desk, the same scene with varying lighting, a scene with strong
shadows, or a scene with moving people.

Finally, we like to visualize the result of mapping the
detected dirt. Figure 8 therefore shows the robot’s view of
the scene and the normalized perspective with detected dirt
in the upper row as well as the generated dirt map at two
close points in time in the lower row. The visualization is
taken from RViz which also displays the corresponding map
of the environment, the colored point cloud data of the RGB-
D sensor as well as the robot model. The images show that
most of the present dirt spots are mapped but also some false
positives find (temporary) entry into the dirt map. These false
positives typically originate from bad ground plane estimates
as depicted in the upper right image or from a bad estimate
of the border to walls or objects placed at the floor.

VI. CONCLUSION AND OUTLOOK

In this paper, we have presented a novel, large and freely
available database for the problem of dirt detection in office
environments. Moreover, a corresponding testing framework
has been made publicly available which facilitates the usage
of this database. We hope that both items attract the focus
of other researchers to this new and important field of
application. Furthermore, a strongly improved version of a
preliminary dirt detection system has been explained and
discussed. This system is able to recognize 90% of present
dirt with a false positive rate of only 45% and is fast enough
to work on a mobile robot. The collection of dirt detections
in a map of the environment has been shown to assist in
distinguishing real dirt from false detections and is of great
use for the interaction with the operator.

The next steps of the ongoing work include the automatic
generation of inspection trajectories for the mobile robot
within a mapped environment as well as the manipulation of
a real vacuum cleaner to remove the found dirt. Afterwards,
we plan to conduct a large scale evaluation of the whole
system in one story of a complex office environment over
a time of several days or weeks. The dirt detection system
itself will be extended by a learning component that can store
which items should not be considered as dirt or which areas

Fig. 8. Visualization of the dirt mapping process.

are commonly misinterpreted as dirt in order to lower the
false alarm rate during application. Furthermore, the benefit
of using the images with the higher 1024x768 resolution,
that are also part of the database, shall become evaluated.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the German Federal Ministry of Economics and Tech-
nology (BMWi) within the project AutoPnP (01MA11005).

REFERENCES

[1] R. Bormann, J. Fischer, G. Arbeiter, F. Weißhardt, and A. Verl, “A
Visual Dirt Detection System for Mobile Service Robots,” in Proc. of
the German Conference on Robotics (ROBOTIK), Munich, Germany,
May 2012.

[2] D. Pangercic, M. Koppany, Z.-C. Marton, L.-C. Goron, M.-S. Opris,
M. Schuster, M. Tenorth, D. Jain, T. Ruehr, and M. Beetz, “A Robot
that Shops for and Stores Groceries,” AAAI Video Competition (AIVC
2011), San Francisco, CA, USA, 2011.

[3] M. Beetz, U. Klank, I. Kresse, A. Maldonado, L. Mösenlechner,
D. Pangercic, T. Rühr, and M. Tenorth, “Robotic Roommates Making
Pancakes,” in IEEE Int. Conference on Humanoid Robots, 2011.

[4] J. Deng, A. C. Berg, K. Li, and L. Fei-Fei, “What Does Classifying
More Than 10,000 Image Categories Tell Us?” in Proceedings of the
European Conference on Computer Vision (ECCV), 2010, pp. 71–84.

[5] S. Hinterstoisser, V. Lepetit, S. Ilic, P. Fua, and N. Navab, “Domi-
nant Orientation Templates for Real-Time Detection of Texture-Less
Objects,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2010, pp. 2257–2264.

[6] A. Collet, M. Martinez, and S. S. Srinivasa, “The MOPED framework:
Object Recognition and Pose Estimation for Manipulation,” The In-
ternational Journal of Robotics Research, 2011.

[7] J. Fischer, G. Arbeiter, R. Bormann, and A. Verl, “A Framework for
Object Training and 6 DoF Pose Estimation,” in Proc. of the German
Conference on Robotics (ROBOTIK), Munich, Germany, May 2012.

[8] L. Itti, C. Koch, and E. Niebur, “A Model of Saliency-Based Visual
Attention for Rapid Scene Analysis,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 20, no. 11, pp. 1254–1259, 1998.

[9] S. Frintrop, “Vocus: A Visual Attention System for Object Detection
and Goaldirected Search,” Ph.D. dissertation, Universität Bonn, 2006.

[10] X. Hou and L. Zhang, “Saliency Detection: A Spectral Residual
Approach,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2007, pp. 1–8.

[11] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2011.

[12] J. Matas, C. Galambos, and J. Kittler, “Robust Detection of Lines
Using the Progressive Probabilistic Hough Transform,” Computer
Vision and Image Understanding, vol. 78, no. 1, pp. 119 – 137, 2000.

2013 IEEE International Conference on Robotics and Automation ICRA, 1252-1259




