

Characterisation of velocity dependent flow-curves and yield-surfaces

Marc Tulke^{a)}, Christian Scheffler^{b)}, Verena Psyk^{b)}, Dirk Landgrebe^{b)}, Alexander Brosius^{a)}

a) Chair of Forming and Machining Processes, Technische Universität Dresden, German

^{b)} Fraunhofer Institute of Machining Tools and Forming Technology, Chemnitz, Germany

Dresden, 19th July 2018

- Introduction
- Principles
 - Electromagnetic accelerated tools
 - Pneumatic accelerated tools
 - Measurement principle of force and displacement
- Parameter identification schema
- Results and summary

2nd Sino-German Workshop| Characterization of velocity dependent flow-curves and yield-surfaces - 3 -

IWU

Pneumatic

FĔ⊀

- hammer velocity up to 15 m/s

Fraunhofer

IWU

- specim. strain rate: up to 1500 s-1

Electromagnetic

hammer velocity: up to 70 m/s
specim. strain rate: up to 10⁵ s⁻¹

Max. strain rate $\approx 10,000 \text{ s}^{-1}$ Max. tool velocity $\approx 70 \text{ m/}_{s}$

Pneumatic Accelerated Tool System Principle

2nd Sino-German Workshop| Characterization of velocity dependent flow-curves and yield-surfaces - 10 -

Measurement Principle - Displacement

Measurement Principle – Displacement Accelerometer

Measurement Principle – Displacement Shadowing principle

Fraunhofer

IWU

FĔ⊀

IWU

Measurement Principle – Displacement Accelerometer vs. shadowing principle

Fraunhofer

IWU

Measurement Principle – Force / Strain

2 Modes Impact and Acceleration

IWU

2nd Sino-German Workshop| Characterization of velocity dependent flow-curves and yield-surfaces - 18 -

Strain Rate in Shear Specimen

^{2&}lt;sup>nd</sup> Sino-German Workshop| Characterization of velocity dependent flow-curves and yield-surfaces - 19 -

Material Parameter Identification – Inverse Procedure

IWU

^{2&}lt;sup>nd</sup> Sino-German Workshop| Characterization of velocity dependent flow-curves and yield-surfaces - 21 -

Remarks?

Questions?

- Two experimental setups for high strain rate testing procedure
- Choice between acceleration and impact mode possible
- Adjustment of strain rate evolution during test
- Identification procedure by inverse approach

The authors thank the Deutsche Forschungsgemeinschaft for funding this research project.