THERMAL INFLUENCES ON GEAR MICRO GEOMETRY AND ACOUSTIC EXCITATION

Eric Hensel, Jan Bräunig, Simon Kimme, Holger Kunze, Prof. Welf-Guntram Drossel

© Fraunhofer IWU

Romax Technology European User Forum 2015, 29.-30. September, Paris (FRA)

AGENDA

- Introduction
- Why micro geometry analysis?
- Romax batch run approach using MATLAB
 - simple example model
- Calculation of thermal induced change of gear geometry
 - theoretical descriptions
 - batch run model
 - simulation results
- Conclusion and perspective

Introduction – The Fraunhofer IWU

Fraunhofer: largest organization for applied research in Europe

- founded in 1991
- about 590 employees
- 37.6 million euro annual budget
- head quarter in Chemnitz, branches in Dresden, Augsburg and Zittau

Fields of expertise

Machine Tools, Mechatronics, Lightweight Construction, Forming Technologies, Cutting Technologies, Joining and Assembling, **Production Management**

Dresder

Zittau

Introduction – Tech. Acoustics and Structural Dynamics

Wide range of expertise, focus on gear noise.

- measurement equipment
 - semi anechoic chamber
 - laser scanning vibrometer
 - shaker test bench
 - acoustic cameras
 - from 2015: transmission test rig
 - etc.
- software
 - RomaxDESIGNER
 - PULSE Reflex Core and LabShop incl. TPA, OTPA, OMA, ODS, etc.
 - FEMtools and ME'scope
 - ANSYS and ABAQUS
 - ITI SimulationX

etc.

Why Micro Geometry Analysis?

Because it's of significant relevance for vibration excitation!

- acoustic aspects of the gear box increasingly important
- reason: missing masking (of combustion engine) in electric powered vehicles.
- tooth contact excitation is main source of noise in gear boxes
- excitation in the tooth contact due to
 - variable contact stiffness
 - deformation and deflection of the gear wheels
 - surface structure
 - reversion of friction force at pitch circle
 - change of relation of overlap due to load (reason for specific modifications)
 - deviations from exact involute geometry

Romax batch run approach using Matlab

How to use the benefit of both worlds?

- example model
 - single stage gearbox
 - focus on gear mesh \rightarrow no consideration of peripheral effects (shaft deflections etc.)

variation parameter

- input torque
- limits: 10 Nm to 1000 Nm (increment 10 Nm)
 →101 simulation steps
- result parameters
 - 1st harmonic of TE
 - 2nd harmonic of TE
 - 3rd harmonic of TE

Romax batch run approach using Matlab

How to use the benefit of both worlds?

simulation process in schematic form

Romax batch run approach using Matlab

How to use the benefit of both worlds?

example model: simulation duration for 101 load steps about 200 s

Calculation and Modelling.

- bibliographical reference
 - Kashyap, S.: Development of a procedure to describe plastic gear geometry after a temperature change with application to the prediction of gear load distribution. Master Thesis, Ohio State University, 2011
- assumption: linear thermal expansion (isotropic material behaviour)
- 2 methods
 - temperature influence modelled by change of module $m = f(\Delta T)$
 - temperature influence modelled by change of pressure angle $\alpha_t = f(\Delta T)$
- approach based on base diameter

$$d_b = \frac{z \cdot m_n}{\cos \beta} \cdot \cos \alpha_t$$

calculation of resultant diameters after temperature increase

$$d_{y}^{T_{1}} = d_{y}^{T_{0}} \cdot (1 + \alpha_{therm} \cdot \Delta T)$$

change of tooth thickness analogous

Calculation and Modelling.

- both approaches with same results
- use of module change
- implementation in MATLAB
 - calculation of gear geometry after temperature rise and output of changed gear parameters

Calculation and Modelling.

- validation of analytical model via FE based simulation (ANSYS)
- comparison of analytic calculated tooth flank and numeric determined node displacements
- validation BCs (results shown in figures below)
 - calculation for a temperature rise from 22°C up to 500°C

Calculation and Modelling.

- investigation of micro geometry change
 - distance of discretised target geometry to analytical actual geometry
- superposition of involute and lead slope (reasonable due to based equations)

Calculation and Modelling.

- focus on gear mesh
- deflections due to displacements of other components (e.g. deflections due to shaft bending) not considered
- calculation of gear geometry at temperature T_i in MATLAB
- inputs for batch run
 - normal module
 - tooth thickness
 - face width
 - tip diameter
 - root diameter
- comparison of results for randomly chosen gear sets and temperatures with R14.6 (cause of usage of beta release)
 → same results

Calculation and Modelling.

- investigation of 14 different gear sets with various gear geometries
- different parameter ranges

parameter	minimum	maximum
normal module / mm	2	8
face width / mm	16	90
normal pressure angle / deg	15	25
helix angle / deg	0	32
centre distance / mm	77	360
transverse contact ratio / -	1.04	2.06
axial contact ratio / -	0	1.96

Calculation and Modelling.

changes of simple model necessary

Simulation results.

- objective
 - analysis of change in TE due to temperature variation
- normalization of evaluation parameters x to reference value at 20°C

$$\tilde{x}(T_i) = \frac{x(T_i)}{x(T_{20})}$$

- result parameters
 - 1st harmonic of TE
 - 2nd harmonic of TE
 - 3rd harmonic of TE
- main focus on 1st and 2nd harmonic

Simulation results.

- comparison of TEs for different temperatures and gear geometries
- logarithmic scale due to visualisation
- some gear sets with significant thermal influences

Simulation results.

- correlation between transverse contact ratio and thermal variation in TE harmonics
- gear sets witch transverse contact ratios nearly to an integer value → significant sensitivity to thermal changes in gear geometry

Simulation results.

- correlation of simulation results with well known excitation mapping
- pass of $\varepsilon_{\alpha} = 2$ (or 1) → minimum in TE 1st harmonic
- slight differences between temperatures at minimum in TE and theoretical transverse contact ratio
 → backlash as probable reason

Conclusion and perspective

Conclusion

- thermal induced geometry changes of gear sets \rightarrow slight different gear mesh ratios \rightarrow variation of excitation behaviour
- consideration of thermal elongations maybe necessary (depending on gear pair parameters)
- high sensitivity near $\varepsilon_{\alpha} = 2$ (or 1) (minima and maxima by passing integer values of transverse contact ratio)
- correlation of simulation results with excitation mapping
- ROMAX batch mode → capability of "free" variation calculations using third party applications (e.g. MATLAB)

Perspective

- comparison with measurements
- consideration of thermal induced misalignments
 - e.g. shaft tilts due to thermal housing deformations
- generation of larger data basis for statistical analyses

Thank you very much for your kind interest.

backup

Calculation and Modelling.

overview of 14 different gear sets

gear set	m_n/mm	b/mm	α_n/deg	β/deg	a/mm	$\epsilon_{lpha}/-$	$arepsilon_{oldsymbol{eta}}/-$
1	3	30	20	0	120	1.361	0
2	4	60	20	8	340	1.619	0.332
3	4	30	25	15	240	1.196	0.618
4	4	60	25	0	160	1.212	0
5	6	50	18	20	240	1.405	0.907
6	8	90	20	0	360	1.332	0
7	5	90	20	20	232	1.436	1.96
8	6	75	15	5	353	1.954	0.347
9	6	75	15	5	353	2.018	0.347
10	3	20	23	30	77	1.144	0.991
11	2	20	18	28	81	1.787	1.382
12	2	16	16	31	75	1.908	1.350
13	2.5	17	16	30	79	2.066	1.430
14	2.15	25	20	27	135	1.698	1.794

