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ABSTRACT

Non-linear effects in hyperspectral data are caused by varying
illumination conditions, different viewing angles or multiple
scattering of the incident light. These effects interfere with
commonly used data analysis procedures. Manifold learning
procedures are slow and require certain assumptions about the
data structure that do not necessarily hold in real hyperspec-
tral data. In this paper, a transformation is proposed that uses
neighborhood distances to track the nonlinear structures of
multiple classes simultaneously. The transformation is evalu-
ated using a hyperspectral data set containing nonlinearities.
A classification is performed and the results on the original
and the transformed data are compared.

Index Terms— Hyperspectral, data transformation, miti-
gating nonlinear effects, supervised classification

1. INTRODUCTION

Non-linear effects in hyperspectral data are a significant
source of errors in data analysis. They are caused by vary-
ing illumination conditions, different viewing angles [1] or
multiple scattering of the incident light [2]. Modeling these
effects in airborne hyperspectral data is difficult; as specific
material parameters, a geometric model and detailed infor-
mation about the incident irradiance are required to perform
a full correction with the bidirectional reflectance distribution
function (BRDF). Recently, practical application of BRDF
correction to airborne hyperspectral data is performed [3].
However, they are usually restricted to specific materials like
certain vegetation classes or minerals.
The recent advance of hyperspectral full frame videos could
also benefit from a fast nonlinear transform to support real
time classification. Ground-based sensors are even more af-
fected by BRDF effects, shadows etc. than airborne scanners.
By assuming locally low-dimensional structures in the data,
nonlinear effects can be modeled with ISOMAP [4] or Lo-
cally Linear Embedding (LLE) [5]. Each method has its
limitations. The LLE assumes a locally linear structure,
which is not always the case, observable in Figure 1b. Here,
the class spectra follow a dominant linear curve, but it also
has a certain width that is not the result of noise. ISOMAP
requires a convex parameter space, otherwise the geodesic

estimation will be flawed [4]. Also, the commonly used
approach to parametrize the data by geodesics becomes com-
plicated when the underlying manifold has more than two
dimensions. When the data contains noise, the geodesics tend
to go through outliers and skip over nonlinearities.
In this paper, a transformation is proposed that contracts
sample spectra towards given reference spectra based on the
samples distances to their k-Nearest Neighbors (k-NN) in
each reference class. The transformation of each spectrum is
a linear combination of vectors pointing in the direction of
the class references. The coefficients of the linear combina-
tion are calculated to penalize larger distances. For samples
with smaller distances to the training spectra, this penalizing
results in a translation towards the reference spectra. If the
training data contains nonlinear effects, the transformation
achieves a linearization by identifying samples with the ref-
erence spectra, while the contraction of spectra reduces the
intraclass variance. A further result is increased interclass
distances, which can lead to improved data analysis.
Section 2 contains the description of the proposed method.
Evaluation of the transformation using a classification algo-
rithm on airborne hyperspectral data is performed in Section
3. The results and additional information about selecting
suitable reference data are discussed in Section 4. An outlook
about practical application and possible improvements can be
found in Section 5.

2. METHOD

The scatter plots of hyperspectral data sets usually appear as
a big cluster with multiple peaks, as can be seen in Figure
1a. Each peak stands for one material and is usually caused
by spectra that are brightly illuminated or have a specific ori-
entation relative to the sensor. Both can increase the mea-
sured radiance [3]. The resulting cluster contains varying ra-
diance measurements for different samples of the same mate-
rial, with a difficulty to separate classes when the radiance is
too low. The aim is to identify each spectrum of a material
with a single reference spectrum.
The nonlinear effects result in varying radiance measurements
for different samples of the same material. The goal is to iden-
tify each measurement of a material with a single reference
spectrum.



Fig. 1: a) Example scatter plot of hyperspectral radiance data
for three bands, structured like a cluster with several peaks
that can be identified with different materials. b) Scatter plot
of the nonlinear effect from the metal dome in Figure 2 in two
bands.

For the proposed transformation the following assumptions
are necessary. We assume that the dimension p of the spec-
tral signatures is sufficiently high to distinguish between two
different materials or classes, even if they can not be linearly
separated. This means, that nonlinear effects do not cause
the spectra of two different materials to be equal. Also, we
assume the signal-to-noise ratio to be sufficiently high that
neighboring classes do not interpenetrate each other.
Finally, a set of training samples for each class is required,
which should contain labeled samples of each class with dif-
ferent illumination conditions. These serve as an approxima-
tion to the class structure.
Expressed mathematically, let S be the given data set with n
samples s1, . . . , sn ∈ Rp. From the above assumptions it fol-
lows, that each of the t different classes M1, . . . ,Mt ⊆ Rp

occupies a unique space in Rp. Then, for two different ma-
terials Mi and Mj , Mi ∩Mj = ∅ for i 6= j holds. If there
exist two samples s1, s2 with s1 = s2 and s1 ∈ Mi, then it
automatically follows that s2 ∈Mi.
Let M̃i ⊂ Mi be the set of training spectra for class i, i =

1, . . . , t. Approaches to select suitable training data M̃i are
discussed in Section 4.
Let s̃i ∈ Rp be a chosen reference spectrum for class i. To
compute the transformation, the vectors vs,i ∈ Rp from a
sample s ∈ S to the class references s̃i, i = 1, . . . , t are re-
quired. The transformed spectrum s̃ ∈ Rp is computed by
translating the original sample s with a convex combination
of all vs,i. The coefficients c̃s,i for the convex combination
are calculated from the k-NN distances to the training spectra
M̃i for all classes i.
With the data set S, the reference spectra s̃i and the training
samples M̃i for each class i, the transformation can be com-
puted with Algorithm 1.
For each sample s ∈ S, the first step is to calculate its k-
Nearest Neighbors among the training spectra M̃i of every

Algorithm 1 Collapsing point cloud by clusters
Inputs

1: Hyperspectral data set S ⊆ Rp

2: Training data M̃i ⊆Mi for i = 1, . . . , t
3: Reference spectra s̃i ∈ Rp

Steps
1: for all s ∈ S do
2: Calculate k-Nearest Neighbor distance vectors

dk(s, M̃i) for i = 1, . . . , t.
3: vs,i ← s̃i − s
4: Define f : R → R to be a suitable decay function to

penalize larger distances dk(s, M̃i)

5: if At least one element of dk(s, M̃i) = 0 for one class
i = 1, . . . , t then

6: s̃i ← s
7: else
8: ∀i = 1, . . . , t: cs,i ← f(d(s, M̃i))

9: c̃s,i ← cs,i/
∥∥∥∑t

i=1 cs,i

∥∥∥
2

10: s̃← s+
∑t

i=1 cs,ivs,i
11: end if
12: end for

Output S̃

class Mi. The k-dimensional distance vector dk(s, M̃i) can
be saved to apply different penalty functions during transfor-
mation. In Step 3 the directional vector vs,i between the sam-
ple s and the reference spectra s̃i are calculated. These are
used in Step 10 to calculate the translation of s by a convex
combination of the vectors vs,i. Steps 5 and 6 guarantee, that
any sample s ∈ M̃i is identified with the correct reference s̃i.
In Steps 8 and 9 the coefficients c̃s,i for the convex combina-
tion of the vs,i are calculated and applied to s in Step 10 to
calculate the transformed spectrum s̃. The convex combina-
tion ensures that the transformed data S̃ lies on a hyperplane
containing all the reference spectra s̃i.

3. EXPERIMENTS

To evaluate the proposed transformation, a hyperspectral data
set with 400× 400 samples and p = 127 bands was selected.
The data was recorded with an AISA Eagle in the wavelength
range of 400 − 990 nm. The scene contains several flat roof
buildings, tree lines, roads and a big metallic dome. Figure 2
depicts the scene as a color composite.
Five classes, asphalt, metal, grass, roof and tree, were man-
ually extracted as ground truth reference. The training sam-
ples M̃i were specifically chosen to contain different illumi-
nation conditions. Especially the tree class poses many vari-
ations. The samples from treetops have different orientations
between illumination and sensor, spectral variation due to nu-



Fig. 2: RGB composite of three hyperspectral bands. The
depicted scene was used for the experiments in section 3.
The classes for transformation and classification were asphalt,
metal, grass, roof and tree.

tritional variances and shadowing. Reference spectra s̃i of
each class were directly taken from field spectroscopy data.
The transformation was calculated using random sets of train-
ing data from the selected reference data. The decay function
was chosen to be f(d5(s, M̃i)) = 1/d5(s, M̃i) to increase the
distance between the transformed sample and the classes that
are far away.
To classify the original and the transformed data, the Spec-
tral Angle Mapper (SAM) was chosen. The SAM calculates
the inner product between a sample and the reference spec-
trum and takes values between 0 (no similarity) to 1 (sample
and reference are identical). Table 1 contains the reliability
and overall accuracy of the classification results for the origi-
nal and the transformed data. The reliability is defined as the
fraction of correctly classified pixels with regard to all pixels
classified as this class. The overall accuracy is the fraction
of correctly classified pixels with regard to all pixels of that
ground truth class.

4. DISCUSSION

From Table 1 it is apparent, that the classification on the orig-
inal data set has high rate of false classifications for the la-
bels metal, tree and grass. The SAM can not handle nonlin-
ear data structures, e.g. samples on some parts of the metal
dome, and confuses them with roof spectra. In the original
data no sample was incorrectly classified as asphalt or metal.

Fig. 3: Results of SAM for the classes metal in the left column
and tree on the right. The upper images were computed from
the original data, the lower from the transformed data. Look-
ing at the dome and the trees, the SAM results look more ho-
mogeneous in the lower line, especially the area on the dome
where the total reflection occurs.

While a confusion of the vegetation classes is understandable,
the SAM classification in the transformed data is much better.
The transformation significantly improves the classification
of the metal dome and vegetation classes.
Two rule images of the SAM classification are depicted in
Figure 3 for the original (upper row) and the transformed
(lower row) data. The SAM results are more homogeneous in
the vegetation areas and on the metal dome in the transformed
data. As there was not much bare soil in the scene, the grass
mask also contained areas where grass was very thin. Thus,
the selected reference data also contained mixtures of grass
and bare soil. In the transformed data an unmixing of these
two materials would no longer be possible.
There are several approaches to select the training data M̃i ⊆

RELorig ACCorig RELtrans ACCtrans

asphalt 1 0.9750 0.9976 0.9840
metal 1 0.7115 0.9641 0.9975
grass 0.9391 0.9351 0.9795 0.9979
roof 0.7330 1 0.9751 0.9544
tree 0.9118 0.9222 0.9762 0.9762

Table 1: Reliability (REL) and overall accuracy (ACC) for
the classification results of original and transformed data,
computed from the confusion matrices.



Mi for each class in the data set. The straightforward but most
time-consuming method is to select them manually from the
data. This approach is subject to the accuracy of the analyst
and errors in class labeling may occur. Another approach is to
use segmentation algorithms with significantly more classes
than expected and identifying segments of different classes
with one material, e.g. grass in the sun and in the shadow.
Active classification approaches can also help to describe the
data better by giving hints to regions that can not be classified
properly [6].
The transformation on the test scene was performed on a stan-
dard computer, the implementation was carried out in MAT-
LAB. Computation depends on the number of reference spec-
tra in M̃i and the number of samples in S. With 2000 ref-
erence spectra per class it took approximately 2 minutes to
compute the results for 400 × 400 samples. Run time opti-
mization through parallelization is possible.
During selection of reference data M̃i it is important to cover
the nonlinear effects of each class Mi. The method can not
transform e.g. shadow regions properly, if no material infor-
mation about any samples in the shadow is available.
It has not yet been analyzed whether transferring the train-
ing data to another data set is possible without correction.
Technically, the training data could still be useful, as the as-
sumptions from section 2 about the uniqueness of the present
classes still holds. However, if the illumination conditions
are completely different from the original, the previously ex-
tracted reference spectra M̃i might not be good representa-
tives of the class structures in the new image. Also, no gen-
eral approach exists to determine whether the training data
sufficiently describes the class structures. Analyzing the dis-
tribution of training spectra in Rp could give additional infor-
mation.

5. OUTLOOK

The first experimental results from section 3 look very
promising. The next step is to apply the transformation to
commonly used data like the RIT SHARE 2012 data set [7].
Considering the recorded data and the different experiments,
generating a subset to test classification of targets under vary-
ing illumination conditions is possible.
The proposed method suffers from the fact that it relies on
the completeness of the training data. If a nonlinear effect
has no sample in the training data, the transformation will
not resolve it. A further task is to research data-driven point
cloud analysis in high-dimensional data to select suitable
training samples, thus reducing or completely skipping man-
ual ground truth generation [8].
Applying a suitable noise model before data transformation
could also improve the results. Especially, when samples
have such a low radiance that they violate the uniqueness
assumption of the occupied space in Rp of each class from
Section 2.

The next step is to compare results of nonlinear classifiers
on the original data with linear classifiers on the transformed
data.
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