Feldaktiviertes Sintern (FAST) von keramischen Werkstoffen

J. Räthel, M. Herrmann Fraunhofer IKTS

H.U. Kessel, FCT Systeme GmbH

Inhalt

- Einleitung, Historie
- FAST/ SPS Temperaturmessung/ FEM Simulation
- FAST/ SPS Weiterentwicklungen und Möglichkeiten
- Zusammenfassung

Stand der Technik

Komponenten eines FAST/ SPS Systems

- Uniaxiales Presssystem
- Presswerkzeug (Isografit, CFC, Cermets/ Metalle, Oxide)
- Temperaturgesteuerte Leistungselektronik (variable pulsbare Gleichstromquelle)
- Prozessraum (Vakuum, Ar, N₂, H₂)
- Auswertemöglichkeit (EDV gestützt)

Einleitung

Archivierungsangaber

Field Assisted Sintering Technology (FAST), Spark Plasma Sintering (SPS)

- Modifizierte Heißpresstechnologie, höhere Heizraten, schnellere Zyklenzeiten
- Direkte elektrische Beheizung von Sintergut und/ oder Presswerkzeug
- Stark verringerte(s) Kornwachstum/ Diffusionsprozesse
- Neue Material- Eigenschaftskombinationen
 - Nanostrukturierte,
 - Funktional gradierte Werkstoffe,
 - Nichtgleichgewichtskomposite und
 - Transparente Keramiken

Erweiterung des Eigenschaftsspektrum klassischer keramischer Werkstoffe

Seite 4

Historie, FAST Theorie, Stand der Technik

Theorie für eine elektrisch leitfähige Pulverschüttung (nach Tokita, 1993)

- Punktförmige Berührung + hohe Stromdichten → punktuelle Aufschmelzungen (Elektromigrationsprozesse)
- Bei vorhandener Oxidhülle
 - Ionisation der Gasteilchen der Umgebung
 - Mikroplasmaentladungen
 - Entfernung der Oberflächenschichten
- Bessere Sinterbarkeit f
 ür elektrisch leitf
 ähige Werkstoffe
- Modell f
 ür elektr. leitf
 ähige Materialien, Keramiken sind dies oft nicht!

Einleitung

Taylor, Engle,

Cremer

30er

Geschichte/ Gegenwart

- FCT 12 Anlagen in Europa
- SPS Syntex Inc. 4 Anlagen in Europa und
- 300 Anlagen hauptsächlich in asiatischen Raum
- ca. 400 wissenschaftliche Publikationen werden 2007 erwartet

Inoue, Boesel

60/70er

20. Jahrhundert

Inhalt

- Einleitung, Historie
- FAST/ SPS Temperaturmessung/ FEM Simulation
- FAST/ SPS Weiterentwicklungen und Möglichkeiten
- Zusammenfassung

Werkzeugdesign

- Temperaturverteilung im Werkzeug wird bestimmt durch
 - Werkzeuggeometrie (Durchmesser, Querschnitte,...)
 - Kombination aus temperatur- (und druck-abhängigen) Werkzeugwerkstoffeigenschaften
 - Geringe "thermische Masse"
 - Strahlungsschutz

Temperaturmessung

- Axiales Steuerpyrometer bei FCT Anlagen (Pyrometer 1)
- Radiales Matrizenpyrometer (Pyrometer 2) f
 ür Syntex Anlagen

Temperaturmessung an Modellmaterialien

- elektrisch leitfähiger Werkstoff Wolframcarbid (H.C. Starck, 99,9%)
- elektrisch nicht leitfähiger Werkstoff Siliciumnitrid (Silzot® HQ, 2Y₂O₃, 2Al₂O₃)

mit Auswirkungen auf

- Temperaturverteilung in Werkszeug und Sintergut
- Sinterverhalten
- Materialeigenschaften, Phasenbildung (z.B. α/β Gehalt Si₃N₄)

Temperaturdifferenz zwischen Pyrometer 2 und Pyrometer 1 für Wolframcarbid

Temperaturdifferenz zwischen Pyrometer 2 und Pyrometer 1 während der isothermen Haltezeit bei 1.750 (Si₃N₄) und 2.000°C (WC)

FEM Modellierung

- wichtiges Hilfsmittel zum Design eines FAST, SPS Werkzeugs
- Verständnis der Strukturbildung/ Gradienten im Werkstoff

Fraunhofer Institut Keramische Technologien und Systeme

IKTS

β- Siliciumnitridgehalt an identischen Si₃N₄- Versätzen in FCT und Syntex SPS Anlagen gesintert

Institut Keramische Technologien und Systeme

Vergleichbarkeit von Literaturdaten

- verschiedene Temperaturmessstellen verweisen auf unterschiedlich hohe Sintertemperaturen
- unterschiedlich und unzureichend beschriebene Werkzeugaufbauten f
 ühren zu
 - örtlichen Stromdichtenunterschieden im Werkzeug
- Größe des Werkzeugs bestimmt Leistung und die zu heizende "thermische Masse"
- Strahlungsschutz (Grafitfilz)

Inhalt

- Einleitung, Historie
- FAST/ SPS Temperaturmessung/ FEM Simulation
- FAST/ SPS Weiterentwicklungen und Möglichkeiten
- Zusammenfassung

Hybrid- Heiz- Technologie

Hybrid System HHPD 600 (under Construction)

Max. Durchmesser Ø500 mm Presskraft 60...6000 kN 0...300 mm Stempelweg Stempelgeschwindigkeit 0...4 mm/s RT...2200°C Temperatur Gasdruck 5.10⁻²...1100 mbar Pulsspannung 0...20 V 0...60.000 A Pulsstrom 800 kW SPS Leistung Hybridheizer 200 kW Pulslänge 1...1000 ms Pausenzeit 0...1000 ms Seite 18

іктѕ

Verwendung der FAST/ SPS als schneller Heizer

 Benutzung des Presswerkzeuges als Schnellsinterraum f
ür komplex geformte Teile

Vielfachwerkzeuge, komplexe Geometrien

- Entwicklungsaufwand enorm
- reale 3D Simulation notwendig
- Materialkombinationen (CFC, Isografite) notwendig

FEM Simulation quaderförmiges Bauteil, Variation Werkzeuggeometrie, Werkzeugmaterialien

Inhalt

- Einleitung, Historie
- Stand der Technik
 - FAST Theorie
 - Ergebnisse zur Temperaturmessung
 - Heutige Anlagentechnik
- FAST/SPS Weiterentwicklungen und Möglichkeiten
- Zusammenfassung

Seite 21

Zusammenfassung

FAST/ SPS Technologie

- Verkürzte Taktzeiten, höhere Produktivität
- sehr variable einsetzbar (FAST/ SPS, Hybridsystem, druckfreies Schnellsintern)
- bei elektrisch leitfähigen Materialien sehr große Bauteile realisierbar (bis Ø500mm)
- Temperaturhomogenität bei elektrisch nichtleitfähigen Werkstoffen?

FAST/ SPS Erzeugnisse

- Neue Materialsysteme und Eigenschaften herstellbar → Erweiterung des Eigenschaftsspektrum keramischer Werkstoffe
- rotationssymmetrische und reelle 3D- Geometrien herstellbar (Quader)

niedrigere Produktionskosten – verbesserte Materialeigenschaften – neue Anwendungen

Seite 22

Herzlicher Dank gebührt

J. Hennicke

Danke für Ihre Aufmerksamkeit

Seite 23

