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Abstract— Driver monitoring systems are increasingly in-
troduced in modern commercial vehicles. Their importance
will rise with automated vehicles, requiring the driver to pay
attention or to take over in a timely manner. With the success of
deep learning methods for human body pose estimation, these
systems are also more and more employed in research projects
for driver monitoring. However, their accuracy for driver body
pose estimation is not yet evaluated thoroughly. We therefore
annotate a part of the Drive&Act dataset [1] and evaluate both
2D- and 3D-body-pose performance based on triangulation and
depth images. To this end we also introduce a deep learning
based post processing step for depth image based 3D-pose-
estimation that can be applied without much cost to the result
of any 2D-pose detector, lifting the pose prediction to 3D. Our
evaluation gives an overview of the performance of current state
of the art methods and shows that our depth post processing
method can close the gap to triangulation based methods using
complex camera setups.

I. INTRODUCTION

Distracted drivers are a major cause for traffic accidents
even today. The EU is therefore planning guidelines that
require driver monitoring system in all future vehicles [2].
Automated driving functions, that are more capable, will
likely make this problem even worse because drivers are less
and less occupied by the driving task. It is likely that they will
start to occupy themselves with other tasks either self chosen,
like using a smartphone, or involuntary, for example by
falling asleep [3]. Current commercial systems for automated
driving in SAE level 2 usually require the driver to keep
the hands on the steering wheel. This is an easy measure
to make sure that the driver pays attention and it prevents
many activities that require both hands for a prolonged time.
However, it greatly diminishes the advantages of automated
driving functions and the comfort they could offer.

Because of these reasons there is an ongoing effort to
improve driver monitoring systems. Currently, the focus of
many of these systems is to detect distractedness or tiredness
of the driver. This will likely be necessary to fulfill future
legal requirements. A common approach uses cameras to
monitor the driver’s head. This way it is possible to infer the
visual focus of attention [4] or drowsiness [5] of the driver.
However, these approaches often disregard the rest of the
driver’s body. It is not clear if these systems are sufficient to
let the driver keep his hands off the steering wheel. There are
other approaches that focus less on the face of the driver and
try to interpret the situation in the cabin as a whole. They
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Fig. 1. Example image of our 3D-pose-estimation method using depth
images. Input body pose (red) with wrong detection for the left elbow.
Correction determined by our algorithm (blue) and final result (green).

detect which parts of the car the driver interacts with [6]
or even detect the activities the driver is occupied with [1].
With the increasing success of human body pose estimation
these methods are also more and more used to detect the
upper body pose of the driver. Many approaches use just
the 2D-body-pose, measured in pixels [7], [8], [9]. However,
some use the 3D-body-pose, measured in meters [1], [10],
[11]. The 3D-body-pose is harder to acquire but it allows
to reason about distances [12]. However, as far as we know
there is no public dataset to evaluate the accuracy of 2D-
or 3D-body-pose estimation algorithms for driver body pose
estimation. Our work tries to fill this gap.

We evaluate Openpose [13], a popular method for 2D-
body-pose estimation, for driver body pose estimation. In
addition, we also investigate different methods to determine
the 3D-body-pose based on the 2D-body-pose results of
Openpose. To this end, we compare different sensor se-
tups for triangulation in a multi-view system with 3d-pose-
estimation using a single depth camera. We can show that
occlusions are especially challenging for depth camera based
approach and present a small and fast neural network that
increases robustness to occlusions significantly (see figure 1).
To facilitate the evaluation we manually annotated a small
part of the Drive&Act dataset with both the 2D- and 3D-
upper body pose.



The main contributions of our work are:
1) We manually annotate a subset of the Drive&Act dataset

with 13 upper body keypoints on four views and create
3D-ground-truth in an iterative process.

2) We provide these annotations for future experiments on
the website of the Drive&Act dataset1.

3) We evaluate the popular Openpose approach on the
dataset both for 2D-keypoint accuracy and with different
camera setups for triangulation of 3D-human-body-
keypoints.

4) We present a fast, neural network based, post process-
ing method for 2D-human-body-keypoint estimators to
compute 3d-poses using depth images.

II. RELATED WORK

A. Datasets for Body Pose Estimation

The success of human body pose estimation algorithms
is both rooted in advancements in deep learning algorithms
but also in the public availability of increasingly complex
datasets. The two major datasets that drove advancements in
deep learning based 2D-body-pose estimation are the MPII
dataset [14] followed later by the COCO keypoint dataset
[15]. Both datasets use images mined from the Web that
were manually annotated with keypoints. They depict real
life images of all kinds of situations with multiple persons
per image. As far as we know there are no datasets to
train or evaluate 2D-pose-estimation algorithms for driver
monitoring. The manual annotation of such images is a
laborious process, however, it is possible to directly annotate
what the algorithms should estimate later. This is not as
easy for 3D-body-pose estimation methods because the depth
information is lost when using common projective camera
systems.

Generating accurate 3D-ground-truth data for body pose
estimation is difficult. The best results are achieved with
marker based motion-capture-systems. However, this neg-
atively affects the realism of the resulting camera images
because the data is often recorded in a static environment and
test participants wear motion capture suits [16], [17]. Mark-
erless motion capture systems are less accurate but alleviate
the requirements on clothing [18] there are also methods to
increase background variability using green screens [19]. To
capture realistic camera data a small number of calibrated
cameras in an unconstrained setting is suitable. Annotation
is done by triangulating the manually annotated 2D-body-
pose of all views. The increase in realism comes with the
trade-off of decreased accuracy and the datasets are generally
smaller because of the manual annotation process [20], [21].
For modern methods these datasets are often too small for
training and are only used for evaluation.

There are only few and smaller datasets providing depth
images and 3D-body-pose in good quality. They are usually
not annotated manually. Instead they use for example marker-
less motion capture systems [18] or other depth image based
approaches with manual postprocessing [22].

1www.driveandact.com

To our knowledge there are no publicly available datasets
for driver 3D-pose-estimation. We provide a small manually
annotated dataset for evaluation purposes that contains data
for all three depicted classes of algorithms.

B. Human Body Pose Estimation

The topic of human-body-pose estimation can be divided
into groups corresponding to the datasets.

The detection of the 2D-human-body-pose is often the ba-
sis for 3D-pose-estimation. Although these methods are often
trained on specific datasets to get the best possible results,
the detectors trained on the COCO datasets generalize well
across many domains and use cases. Methods applied for
driver pose estimation are also often trained on this dataset.
Most state of the art detectors determine the location of
each joint by estimating a confidence map per joint. To
handle the detection of multiple persons there are mainly
two approaches. Top-down methods first detect the bounding
box of each person and then apply body-pose estimation to
the cropped area [23], [24]. Bottom-up approaches detect
all body parts within the image and solve the association
problem by estimating additional tensors that help to group
the body parts together [25], [13].

A good baseline for 3D-body-pose estimation with a multi-
view system is 2D-body-pose estimation followed by the
triangulation of each joint. Using a 3D pictorial structure
model (3DPS) for the whole human body instead of tri-
angulating each joint separately can improve results further
[26]. However, this only works for a single person. In the
case of multiple persons it is necessary to find the right
association between detections in multiple views. This can
be done for example with a reidentification network [26]
or geometric constraints [27] and can also be integrated
into 3D pictorial structure models [18]. There are also
end-to-end trained methods inferring the 3D-body-pose of
multiple people directly from the images [28]. They achieve
impressive results. However, they require enough training
data in the target domain.

With the introduction of the Microsoft Kinect, depth image
based methods were the first 3D-human-pose-estimation sys-
tems viable for consumers. The approach relied on synthetic
depth data and random decision forests [29]. There are
multiple deep learning approaches increasing the quality
even further but needing more computing resources [30]. A
main challenge of depth image based methods are occlusions
[22] because of the single view point of the sensor there
is no depth data for occluded joints. Other methods go
even beyond body pose estimation. Bashirov et al. [31], for
example, fit a parametric body model estimating both body
pose and body shape.

Estimating 3D-body-pose [32] and often also body shape
[33] from monocular images is currently another popular
research area. Often these approaches infer the parameters
of a parametric body model. Although their accuracy is
improving quickly they have to solve a generally ill posed
problem which makes it difficult to determine the absolute
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Fig. 2. The cameras used in the evaluation. Blue: NIR Cameras, Green:
Kinect. The Kinect is also the origin for all evaluations.

position of body joints in the scene. These methods are
therefore not the focus of our work.

Although there are many approaches relying on driver
body pose estimation mostly using pretrained detectors from
other domains [7], [8], [9], [1], [10], [11], there are few
works on driver body pose estimation itself and its accuracy.
Yuen et al. [34] evaluate 2D-hand and elbow estimation using
the popular part affinity field based approach [25]. Martin et
al. [6] present a method for depth based 3D-upper-body pose
estimation using decision forests.

To our knowledge there are no publications investigating
the accuracy of current state of the art approaches for 2D-
or 3D-body-pose estimation for driver monitoring. Our work
tries to fill this gap.

III. ANNOTATING THE DRIVE&ACT DATASET WITH
3D-HUMAN-BODY-POSES

The Drive&Act dataset offers video data of a calibrated
multi-view system with five NIR cameras and a Kinect v2.
In addition it provides the 3D-body-pose of the driver by
triangulating Openpose [13] results. The main purpose of the
dataset is fine grained driver activity recognition. Although
Openpose combined with triangulation was used to generate
the provided 3D-body-poses no evaluation of their accuracy
was conducted. We therefore annotate a part of the dataset
manually as a basis of our experiments.

The first step of generating the dataset for 3D-body-pose
estimation is selecting suitable frames of the Drive&Act
dataset. Picking frames at random would lead to many
images depicting the same pose because in many sections
of the video the test participants are not moving much. On
the other hand for tasks like “picking up an object” there
is rapid movement for a short time. We therefore use the
already existing 3d-body-pose data as a starting point to
select frames. We analyze each sequence of the dataset and
collected all instances where the body pose differed by at
least 10cm in at least one keypoint compared to all the data
we collected before. This way all frames extracted from a
sequence depict a unique pose.

After selecting unique 3d-poses we extracted the corre-
sponding video frames of three NIR-cameras and the Kinect
(see Figure 2).

Annotating this data with 3D-human-body-poses is chal-
lenging, as previously explained. Because our data consists
of only few views with in part challenging occlusions,
annotating the data manually was the only option.

Similar to [20], [21] we manually annotate the 2D-
landmarks of the human body in each camera view and
then use triangulation to generate the 3D-ground-truth. To
further improve the quality of the annotation we reproject
the 3D-ground-truth back to the image and manually fix any
keypoints with a large reprojection error. Overall we annotate
13 upper body joints that are visible in all cameras most of
the time (see figure 3).

We did not annotate all extracted unique poses. Because
of our limited resources for annotation we selected 2000
unique 3D-body-poses of the test participants 11, 12, 13 and
14 of the Drive&Act dataset. This results in 6000 manually
annotated 2D-poses, 1500 for each of the four views and
1500 triangulated and checked 3D-body poses. In addition,
the dataset includes the 1500 corresponding depth images of
the Kinect v2. The size of this dataset is comparable to the
evaluation sets of similar manually annotated datasets. We
specifically chose unique poses that cover many secondary
activities. In addition, the movement options within cars are
more limited compared to general purpose datasets. Our
dataset should therefore be a good benchmark for driver-
upper-body pose estimation both in 2D and 3D.

IV. 3D-POSE ESTIMATION METHODS

As presented in the related work section there are different
ways to determine the 3D-body-pose. We focus on methods
that can measure 3D-data based on their sensor system.
Suitable methods therefore either rely on stereo- or multi-
view camera systems that allow triangulation or rely on depth
cameras, using for example the time of flight principle. The
use of the Drive&Act dataset further restricts the evalua-
tion to multi-view and depth camera based methods. All
following 3D-body-pose methods rely on the 2D-body-pose
estimation results of Openpose. We use the default network
without further training but we also evaluate its accuracy for
2D-driver-pose estimation on our new dataset.

A. Multi-View Triangulation
The triangulation method functions mostly as baseline for

the following depth image based methods. In addition, we
evaluate different sensor setups both varying the number of
used cameras, from 2 to 4, as well as varying the position
of the used cameras (see Figure 2). We therefore chose a
simple approach. Our method uses the 2D-pose-estimation
results and triangulates each joint separately. To filter outliers
we determine the average reprojection error of the whole
body pose ep and per joint ej and remove any joint with an
absolute error of ej > 20px or a relative error of ej > 5 ∗
ep. Thresholds were intentionally set to large values to only
remove results with large errors in 2D-body-pose estimation.

B. Depth Image Based
Similar to the presented triangulation approach the goal

is to leverage the progress in 2D-body-pose estimation for



Pose Mean

Input Pose

N
or

m
al

iz
at

io
n

Li
ne

ar
, B

N
,

R
el

u,
 D

ro
po

ut

Li
ne

ar
, B

N
,

R
el

u,
 D

ro
po

ut

Li
ne

ar+

2x

Offsets

1000 1000 1000 39

Fig. 3. Depiction of the depth fix method. It uses the 3D-body-pose of the direct method as input(red). The input gets normalized by subtracting the
mean of the pose. The method produces correction offsets via a small feed forward network. We test two different offset methods. Offsets starting from
the pose center, used for normalization, (yellow) and offsets starting from each joint of the input pose (turquoise).

depth image based 3D-body-pose estimation without retrain-
ing the 2D-pose detector. One way to achieve this is to detect
the 2D-body-pose of the driver on the luminance image
of a time of flight sensor and to use the matching depth
image to determine 3D-coordinates for the 2D-detections.
A direct approach would just look up the depth value of
each 2D-body-joint (u, v) in the depth image d and then use
the inverse camera matrix K to compute the 3D-joint J in
camera coordinates:

Jdirect = K−1

u
v
1

 d(u, v) (1)

The main flaw of this approach is, that the depth image
depicts the surface of the scene. In case of the driver this
would be the clothing or the skin. Because the true body
joints are within the body there is an offset in Z-direction.
The multi-view approach on the other hand does not suffer
from this problem because 2D-poses from different views
show different sides of the body. Their intersection in world
space, determined by triangulation, can describe the true
position of the joint. We test the approach of Shotton et al.
[29] who address this problem by learning offset vectors oj
for each joint on a training set t ∈ T :

Joffset = Jdirect + oj ,with oj =
1

N

∑
t∈T

Jgt − Jdirect (2)

This already improves results as our evaluation shows.
However, there are additional challenges. Fixed offsets do
not account for different body shapes or sizes. Furthermore,
the depth image does not contain valid z-values for occluded
joints. This can lead to large errors (see figure 1).

Our approach therefore calculates offsets that adapt based
on the input pose. The method is able to correct surface
joint positions to the true joint positions within the body. In
addition, it tries to fix any errors introduced by occlusions
by regressing correcting offsets. This is handled by a small
and very fast neural network that can be applied as a post
processing step after generating the 3D-pose using the direct
method (see equation 1). The idea is inspired by Moon et
al. [35] who used a neural network as post processing to fix

common errors of 2D-pose estimators like left-right swaps of
limbs. It is also inspired by Martinez et al. [32]. They showed
that the 3D-body-pose can be regressed from a single 2D-
body-pose estimation in a post processing step using a small
and fast neural network. Our architecture is very similar to
their approach.

Figure 3 shows our network architecture. The basic build-
ing block is a linear layer followed by batch normalization,
rectified linear units and dropout. The first block increases
the feature dimensionality while all remaining blocks keep
the dimensionality the same. The main network consists of
groups of two basic building blocks and a skip connection.
Our network consists of two main groups. The final layer of
the network is a linear layer that regresses correction offsets.

The network uses the 3D-body-pose determined by the
direct method as input. The offsets the network outputs
are location independent. The location of the input pose is
therefore normalized by subtracting the center of the input
pose cp computed as the mean of all vaild body joints.

We experiment with two different methods to generate
offsets for corrected poses.

The depth regression method (see Figure 3 yellow) de-
termines the output pose by adding the offsets to the body
center cp used for normalization. This forces the network to
reconstruct the full body pose centered at the origin that is
then moved to the correct location by adding the body center
point cp.

The depth fix method applies the offsets to the correspond-
ing input body joints (see Figure 3 turquoise). This resembles
the method described in equation 2 but with dynamic offsets
that depend on the input pose. This approach can make better
use of the input pose which is already quite accurate in many
cases. Offsets are therefore small except for errors caused by
occlusions.

To train the network we use the euclidean loss function.
However, because both our input data as well as the labels
can be incomplete we add additional masking to the loss
function to not penalize the network in training.



V. EVALUATION

A. Implementation Details

Openpose was not retrained. We used the default im-
plementation with the default 25 keypoint model for 2D-
pose estimation. However, we only use the 13 keypoints
depicted in figure 3. Openpose is trained on color data and
requires three channels as input. We therefore generate three
channel images by replicated the grayscale data. Images of
camera IR1,3 and the Kinect had to be rotated by 90◦ so the
driver was upright in the image. Otherwise Openpose would
not work. The images are unevenly lit. We tested different
methods to adapt the brightness. The best results were
achieved using adaptive histogram equalization (CLAHE) of
opencv with a limit of 2.

The depth image based methods require training. Because
of our limited annotated data we used the best results
of the triangulation methods as ground truth and used all
sequences not part of the annotated testset for training. This
likely reduces performance because of the additional label
noise. This approach results in a cross person evaluation
of these methods. The neural networks are implemented
in pytorch 1.4.0. We use the Adam optimizer with default
parameters and train for 80 epochs using a batch size of
128. The learning rate is multiplied by 0.1 after 30 and
60 epochs. Participants 2 and 3 were used for validation,
manually annotated test participants 11 to 14 for testing and
the remaining participants for training.

B. Metrics

Object Keypoint Similarity (OKS) This is the main met-
ric introduced by the COCO benchmark [15] for 2D-
human-body pose evaluation. Its basis is the distance
between predicted and Ground Truth joints. There are
additional weights that model both the annotation error
and a acceptable quality for each joint. The main metrics
are the mean average precision (AP) over 10 OKS
thresholds and the average recall (AR).

Mean per joint position error (MPJPE) This metric is
widely used especially for 3D-body-pose evaluation. It
measures the mean euclidean distance between mea-
sured and ground truth joints of the body pose. For
multiple frames it is defined as the mean of the result for
each pose. This metric is susceptible to missing joints.
We therefore only take into account joints that are valid
in measured and ground truth poses.

Percentage of Correct Keypoints (PCK) This metric con-
siders joints correctly classified if the distance to the
ground truth is within a threshold. We follow Mehta et
al. [19] and determine the area under the curve (AUC)
with a maximum threshold of 150mm (PCK1−15). The
advantage of this metric is that it penalizes missing
joints only slightly and covers all performance aspects
of the detectors.

C. 2D-Pose-Estimation Results

Table I shows the results for 2D-pose-estimation with
Openpose. Note again, that the method was not retrained

TABLE I
RESULTS FOR 2D KEYPOINT DETECTION.

Configuration AP50−95 AP50 AP75 AR50−95 AR50 AR75

IR 1 63.3 90 70.2 75 94.1 83.5
IR 2 65.5 88.9 74.5 77.9 94.3 86.3
IR 3 71.3 96.5 86 79 98.1 92.1
Kinect 79.3 98.5 93.5 85.3 99.1 96.8

Overall 68.9 92.6 79.9 79.3 96.4 89.7

on any data of the interior of the car. Overall, the scores
are comparable to the results on the MS Coco dataset. This
is not expected because of the domain shift to NIR images
and the differing environment. The reason could be that the
driver fills most of the image so the detection itself is not
as challenging. Nevertheless, there are differences in quality
between the camera views. The results of the camera at the
A-pillar of the driver side are worst. The reason might be that
this camera is the closest and exhibits the most extreme view
of the driver. There are also lots of self occlusions by the
arms of the driver. The cameras on the Co-Driver side work
best likely because their view is usually least obstructed.
However, a Co-Driver would likely cause occlusions quite
often. The results of the Kinect are by far the best. The cause
for this is likely, that the field of view is not as big so some
challenging poses with wide spread arms are not in frame.
The Kinect also has the most even illumination and the best
contrast of all the cameras in the dataset likely contributing
to the resulting performance.

D. 3D-Pose-Estimation Results

Table II shows the results of the 3D-body-pose estimation
approaches. The results of the left side of the body are
generally worse than the results of the right side of the
body. The reason for this is worse visibility because of sensor
placement issues and self occlusion. Except for camera IR1
all other sensors view the driver from the front or from the
right side. Overall most multi-view setups work better than
the depth image based methods.

In addition, using more cameras for triangulation im-
proves results further. The driver fills a large part of the
image in most cases. As already shown this makes the
task of 2D-body-pose estimation less challenging compared
to other datasets. However, the large size of the person
also means that the estimated joints can move by a few
pixels without necessarily being wrong because it is hard
to locate the true joint position exactly. This can affect
triangulation method negatively. The effect is bigger with
smaller baselines as shown by the two-camera-setup IR3 +
Kinect. Camera system IR13 on the other hand has the widest
baseline of the setups with two cameras. Its performance is
comparable to camera setups with more than two cameras.
Overall, triangulation with all four cameras results in the best
performance according to the PCK metric.

The results of the depth image based methods follow the
reasoning presented at the introduction of each method. The
direct approach works worst having consistently larger errors
than the method using fixed offsets. Applying the two deep



TABLE II
RESULTS FOR 3D KEYPOINT DETECTION.

Configuration lEye rEye nose lShoulder rShoulder neck lElbow
mpjpe [mm]

rElbow lWrist rWrist lHip rHip midHip mpjpe
[mm]

PCK1−15

[%]
availability

[%]

IR123 + Kinect 9.4 12.2 15.6 30.0 25.5 51.7 49.6 25.8 45.2 28.7 88.2 77.4 72.1 43.4 66.8 88.9
IR123 8.7 11.9 15.7 27.5 23.6 48.5 42.1 22.0 38.6 26.8 86.3 78.2 70.2 39.4 62.6 82.7
IR23 16.5 15.7 21.2 53.4 35.5 63.4 84.9 27.4 72.6 32.5 128.5 92.3 100.6 58.5 58.8 88.6
IR12 9.5 11.6 15.7 28.2 44.3 43.8 42.1 33.2 32.4 34.3 105.3 121.9 98.4 50.8 58.0 81.1
IR13 12.8 12.8 17.8 33.2 29.2 45.7 42.2 35.8 34.5 30.9 86.8 84.5 75.5 43.9 61.5 84.5
IR3 + Kinect 31.3 27.8 32.0 142.0 74.7 86.7 200.7 67.7 129.6 61.5 178.5 159.9 144.3 105.5 47.9 94.1

Depth Direct 32.8 29.5 25.2 97.0 52.6 108.4 158.4 49.7 109.3 36.1 235.4 128.7 197.1 99.5 50.2 97.0
Depth Fixed Offset 22.5 15.4 21.0 78.2 35.7 78.2 133.5 39.5 109.8 40.2 117.5 94.8 88.6 68.9 61.8 97.0
Depth Regress Direct 20.8 20.9 22.6 45.8 36.0 61.2 69.4 48.1 82.1 54.5 83.2 80.1 70.6 55.9 63.8 97.0
Depth Fix 18.2 15.8 22.1 44.2 31.7 58.9 64.6 40.9 75.7 41.5 81.5 80.0 69.0 51.9 66.5 97.0
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Fig. 4. Spread of errors along the Z-Axis highlighting the challenges of
using depth images with occlusions.

learning based methods improves results further. As expected
regressing the full pose based on the body center performs
worse than regressing shorter offsets for each individual input
joint with the depth fix method. However, compared to the
depth offset method using fixed offsets the deep learning
based methods improve results mostly on joints that are
often occluded like the hips and the left side of the body.
This highlights the effectiveness of these methods to deal
with occlusions. The overall performance of the best depth
method surpasses the triangulation approaches using just two
cameras and reaches the quality of the best triangulation
method according to the PCK metric. However, there are
tradeoffs while the best triangulation method produces joints
that are more accurate (mpjpe) the best depth method has
higher availability and therefore detects overall more joints
but with less precision.

Figure 4 further investigates the accuracy of the best
triangulation method compared to the simplest and best depth
image based method. The graph depicts the spread of errors
along the Z-Axis. The evaluation is conducted in the camera
coordinate system of the Kinect. The Z-Axis in this coordi-
nate system is the axis that relies on the values in the depth
image. It is affected the most by occlusions. Compared to the
previous evaluation the triangulation method does not exhibit
overly large errors on this axis. This indicates a more uniform

spread of the error on all three axes. The depth methods on
the other hand exhibit large errors especially on the left side
of the body which is occluded more often. The deep learning
based depth fix method is able to substantially reduce the
errors to a similar size compared to the triangulation method.

E. Runtime Discussion

The following runtime analysis was conducted on a sys-
tem with an AMD Ryzen Threadripper 1920X CPU and a
nVidia 2080Ti graphics card using cuda 10.1 and cudnn 7.6.
Openpose was used with default setting using the python
wrapper. It is the basis of all presented methods. The runtime
for a single frame was 28.3 ms. All other components of the
system have negligible runtime. The triangulation takes about
1 ms and even the deep learning based methods for depth
offset estimation take just 1.5ms.

The overall framerate of all methods is therefore depend-
ing on the speed of Openpose and the number of necessary
cameras. The best depth image based method achieves 33fps
and can utilize the full speed of the Kinect. A two camera
triangulation based system achieves 17fps and the most ac-
curate four camera system 8.7fps. All methods are therefore
usable for many use cases needing soft real time.

There are other detectors running at higher frame rates
but often with lower accuracy. All presented methods work
with any generic 2D-pose detector and can make use of any
advancements in the area. In addition our published dataset
allows anyone to evaluate different setups to find the best
compromise between speed and accuracy.

VI. CONCLUSION

We investigated the performance of state of the art detec-
tors for 2D- and 3D-human-body-pose estimation methods
for driver pose estimation. Because there was no suitable
dataset we annotated part of the Drive&Act dataset as a
test set and made it publicly available. We evaluated the
popular Openpose method without retraining on this data
and can show good performance despite the domain shift
to NIR images. Our methods therefore build on top of
Openpose or any other 2D-body-pose detector making full
use of large datasets in other domains. We presented a
method to triangulate the 3D-driver-body-pose based on two
or more camera views and compare different setups and their
advantages in our evaluation. We also investigated depth



image based 3D-driver-body-pose estimation. Our method
lifts 2D-body-pose detections to 3D using the depth im-
age. Our evaluation shows that this method can handle the
common artifacts of this approach caused by occlusions
closing the gap to triangulation based methods that require
more complex camera setups. In addition, although our depth
based method uses deep learning it uses negligible computing
resources and runs at over 600 fps. It can therefore easily be
combined with any 2D-human-body-pose detector without
negatively affecting the frame rate of the whole system.
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