

Produkt Carbon Footprint am Beispiel ausgewählter Produktverpackungen

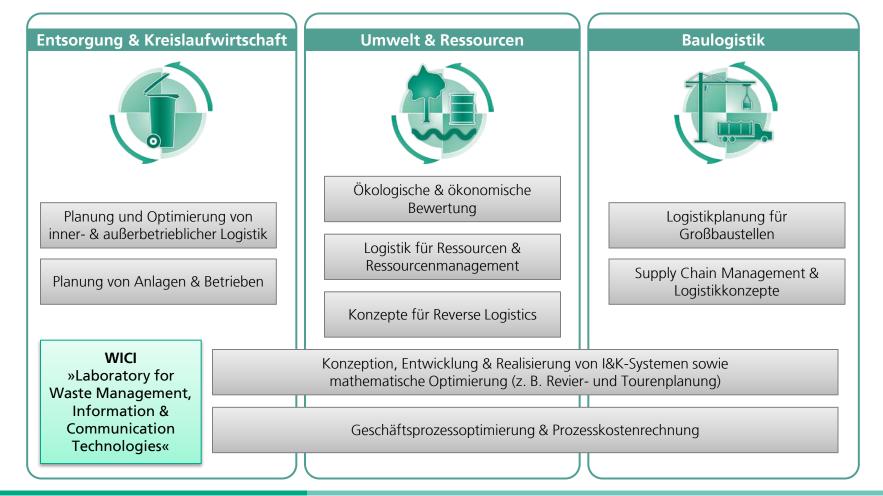
Dr. rer. nat. Kathrin Hesse Fraunhofer IML

17. Stuttgarter Verpackungstage 2010Tagungszentrum Gültstein/Herrenberg21. September 2010

Agenda

- Kurzvorstellung des Fraunhofer IML
- Carbon Footprint
 - Ausgangssituation
 - Allgemeine Vorgehensweise
- Projektbeispiel
 - Carbon Footprint einer Produktverpackung
 - Zusammenführung von Produkt und Produktverpackung
 - Projektergebnis und Optimierungspotentiale

Das Fraunhofer-Institut für Materialfluss und Logistik in Zahlen


- Materialflusssysteme
- 🔷 Unternehmenslogistik
- Degistik, Verkehr und Umwelt

- Gegründet 1981
- Über 190 Mitarbeiter, davon 160 Wissenschaftler
- 250 Studenten
- 18 Mio. € Umsatz, davon über 60% aus Industrie, Handel und Dienstleistung
- Außenstellen und Projektzentren in Cottbus, Frankfurt am Main, Prien am Chiemsee
- Außenstellen im Ausland in Lissabon (Portugal), Peking (China)

Leistungsspektrum Abteilung »Umwelt und Ressourcenlogistik«

Agenda

- Kurzvorstellung des Fraunhofer IML
- Carbon Footprint
 - Ausgangssituation
 - Allgemeine Vorgehensweise
- Projektbeispiel
 - Carbon Footprint einer Produktverpackung
 - Zusammenführung von Produkt und Produktverpackung
 - Projektergebnis und Optimierungspotentiale

Motivation zur Ermittlung des Product Carbon Footprints (PCF)

- Drohende gesetzliche Vorgaben
 - Mögliche Ausweitung des Emissionshandels
 - Mögliche Einführung von PCF-Klassen für Produkte und Produktverpackungen inklusive Kennzeichnungspflicht,
 - z. B. Ampelfarben auf Produktverpackungen
- Bedürfnisse der Kunden bzw. der Öffentlichkeit
 - Steigende Nachfrage nach umweltverträglichen Produkten
 - Zunehmendes Interesse an Informationen über die Umweltwirkungen von Produkten und Produktverpackungen
- Wettbewerb
 - Erschließung des neuen Marktsegments
 - Kostensenkung durch Ressourceneffizienz
 - Berichterstattung über "grünes" Engagement

Begriffsbestimmung »Carbon Footprint«

- Carbon Footprint eines Betrachtungsraums
 - Treibhauspotential (Global Warming Potential GWP)
 über den gesamten Lebenszyklus, d.h.
 »cradle-to-grave« bzw. Scope 1-3 gemäß GHG Protokoll
 - gemessen in Form von CO_2 -Äquivalenten CO_{2e} (CO_2 , CH_4 , N_2O , FKW, H-FKW, SF_6)
- Der zu bilanzierende Betrachtungsraum ist dabei je nach Projekt und Abstraktionsgrad unterschiedlich:
 - Carbon Footprint eines Unternehmens (CCF)
 - System Carbon Footprint
 - Produkt Carbon Footprint (PCF)

Abstraktionsgrad einer Untersuchung

Systemebene

Distributionssystem

- mit ein bis n Standorten
- produktunabhängig

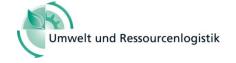
MODELLIERUNG UND DATENERHEBUNG

- Aufnahme der <u>produktübergreifenden</u>
 Distributionswege vom Standort bis zum Einzelhandel
- Datenabfrage, Validierung und Plausibilisierung
- Abbildung im Bewertungstool

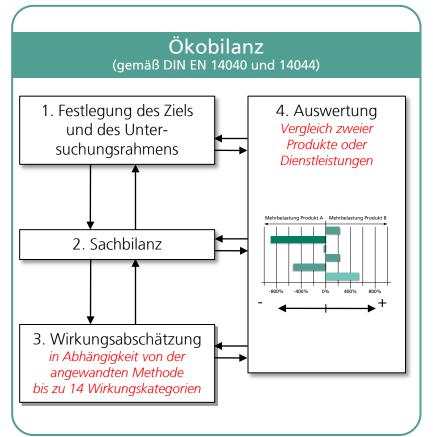
Produktebene

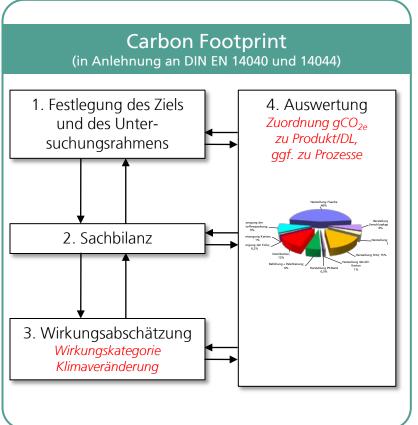
Produkt

 mit der Produktion an einem bis n Standorten

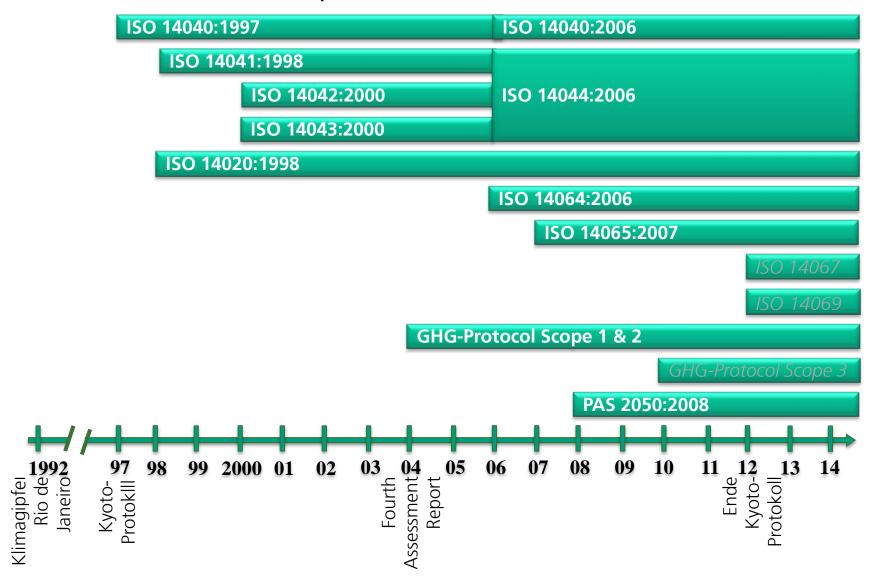

MODELLIERUNG UND DATENERHEBUNG

- Aufnahme des <u>produktspezifischen</u>
 Distributionsweges vom Standort bis zum Einzelhandel
- Datenabfrage, Validierung und Plausibilisierung
- Abbildung im Bewertungstool


ERMITTLUNG DER UMWELTWIRKUNGEN

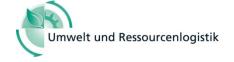

Vorschläge zur Reduzierung der Umweltwirkungen

Abgrenzung Ökobilanz und Carbon Footprint



Entwicklung einer standardisierten Vorgehensweise für den »Produkt Carbon Footprint (PCF)«

Entwicklung der ISO TC 207 »Carbon Footprint of Products«


- Zielsetzung erfordert gleiche Rahmenbedingungen, Annahmen, Datenqualität und Detailtiefe für viele Produkte
 - Verwendung gleicher Eingangswerte für Strom, Metalle, Gütertransporte, Kühlkette etc.
 - Verwendung gleicher europäische Nutzungsmuster (wie bei EuP, europäischer Fahrzyklus) und zusätzlich nationale, regionale, lebensstilbezogene Szenarien
 - Entwicklung spezifischer Regeln für Produktgruppen (Product Category Rules - PCR)
- Berücksichtigung umstrittener Punkte u.a.
 - weiterer Umweltaspekte (Lärm, Feinstaub, Landnutzung etc.)
 - Strom aus erneuerbaren Energieträgern
 - Einkaufsfahrten der Verbraucher

- 1. Definition des genauen Projektzieles
- 2. Eingrenzung des Betrachtungsraumes
- 3. Identifizierung und Erhebung relevanter plausibler Daten
- 4. Auswahl der Emissionsfaktoren
- 5. Berechnung des Carbon Footprints
- 6. Auswertung und Interpretation der Ergebnisse
- 7. Ableitung von Optimierungspotentialen und -maßnahmen

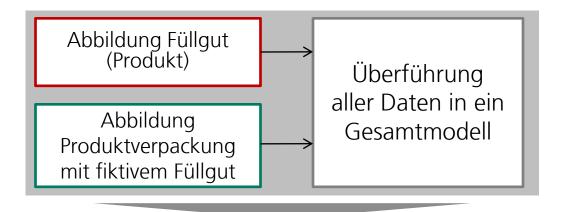
Agenda

- Kurzvorstellung des Fraunhofer IML
- Carbon Footprint
 - Ausgangssituation
 - Allgemeine Vorgehensweise
- Projektbeispiel
 - Carbon Footprint einer Produktverpackung
 - Zusammenführung von Produkt und Produktverpackung
 - Projektergebnis und Optimierungspotentiale

Projektbeispiel bei der Firma Henkel AG & Co. KGaA

Problemstellung

- Die Henkel AG & Co. KGaA legt höchsten Wert auf die Umweltverträglichkeit ihrer Produkte, hierzu wurden interne Produkt Carbon Footprints erstellt.
- Die Produktentwicklung berücksichtigt den gesamten Lebensweg der Produkte, einschließlich Produktverpackungen.



- Verbesserungsmaßnahmen sollen dort ansetzen, wo
 - die Auswirkungen auf die Umwelt relevant sind und
 - Verbesserungen effizient realisiert werden können.

Globales Ziel: Ermittlung eines gesamten Produkt Carbon Footprints Projektphasen

Identifizierung der Umwelttreiber und Ableitung von Optimierungsmaßnahmen

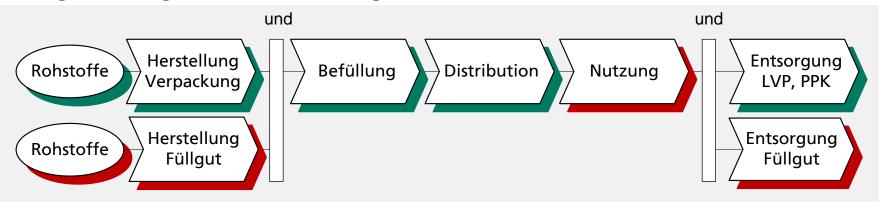
Umsetzen der Optimierungsmaßnahmen

Ziel des Projekts

- Bestimmung des Carbon Footprints ausgewählter Produktverpackungen
- Abbildung der Bilanzierung mittels Umberto-Modell, welches in ein Gesamtmodell integriert werden kann.
- Ausweisen der Ergebnisse in kg CO_{2e} pro funktionelle Einheit
- Veranschaulichung der Ergebnisse durch Einführung einer verständlichen Bezugsgröße

Referenzwert aus dem motorisierten Individualverkehr;
 Pkw-Fahrleistung:
 Welcher Pkw-Fahrleistung entspricht der ermittelte Carbon Footprint der jeweiligen Produktverpackung?

Eingrenzung des Betrachtungsraumes (1)

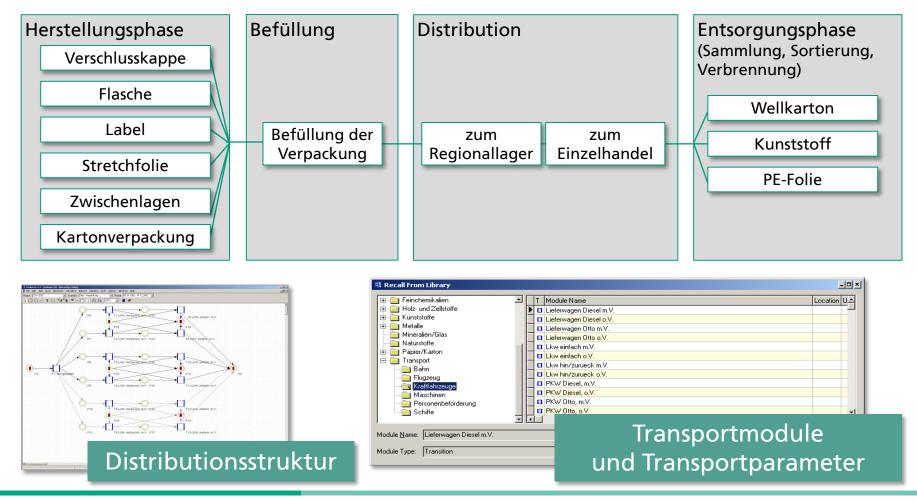

- Produktverpackungen, die in Deutschland vertrieben werden
- Zeitlich
 - 2008/2009
- Funktionell
 - Funktion: Verpackung
 - Funktionelle Einheit: ein Produkt/Consumer Unit (CON)
 - Referenzfluss:
 - Herstellung der Verpackungsbestandteile
 - Herstellung der Ladeeinheitensicherungsmittel, Packhilfsmitteln

Eingrenzung des Betrachtungsraumes (2)

Eingrenzung des Betrachtungsraumes

- Herstellung der Bestandteile der Produktverpackung
- Transport vom Herstellungsort (u.a. Verpackungsfolie, Stretchfolie, Zwischenlagen) zum Abfüllungsort
- Befüllung der Produktverpackung (mit fiktiven Produkt)
- Palettierung und Distribution der Produkte
- Entsorgung der Produktverpackung, Packhilfsmittel, Ladeeinheitensicherungsmitte

Identifizierung relevanter Daten, Durchführung der Datenerhebung und -plausibilierung

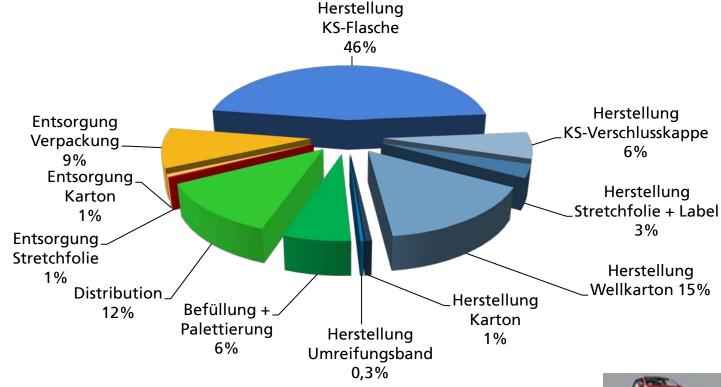


- Erstellung eines unternehmensspezifischen Fragenkatalogs zur Aufnahme der erforderlichen Daten
- Aufbereitung/Zusammenstellung der erforderlichen Daten durch den Auftraggebers und ggf. Lieferanten/Dienstleister
- Prüfung der Daten auf Vollständigkeit und Plausibilität
- ggf. Ergänzungen/Korrekturen der erforderlichen Daten in durch den Auftraggebers und ggf. Lieferanten/Dienstleister
- Daten, die nicht zur Verfügung gestellt werden können, werden falls möglich aus anderen Quellen bezogen oder notfalls qualifiziert abgeschätzt
- Abstimmung der Datenbasis mit dem Auftraggeber
- Freigabe der abgestimmten Datenbasis für die Berechnung des Carbon Footprints vom Auftraggeber

Modellierung in Umberto® am Beispiel Flüssigverpackung

Berechnung der CO_{2e}-Emissionen

- Berücksichtigung folgender Treibhausgase CO2, CH4, N2O, FKW, H-FKW, SF6
- Auswahl der Emissionsfaktoren
 - CML-Methode (auswirkungsorientiertes Modell (midpoint))
 - Eco-Indicator-Methode (schadensorientierten Ansatz (endpoint)

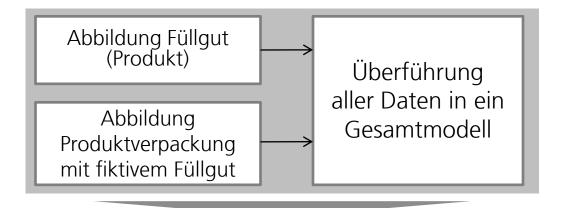


- Umrechnung in CO_{2e} pro funktionelle Einheit
- Ausweisung der CO_{2e}-Werte hinsichtlich einzelner Lebenszyklusphasen
- Identifizierung signifikanter CO_{2e}-Treiber
- Durchführung von Sensitivitätsanalysen bezüglich
 - Zusammensetzung der Lkw-Flotte
 - Variation verschiedener Werkstoffe und Mengen
 - Substitution durch Recyclat

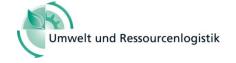
Beispielhafte Darstellung eines Carbon Footprint einer marktüblichen Flüssigverpackung

Der CO₂-Fußabdruck entspricht einer Autofahrt von 1,23 km.

Herausforderungen bei der PCF-Erstellung für die Verpackung


Daten

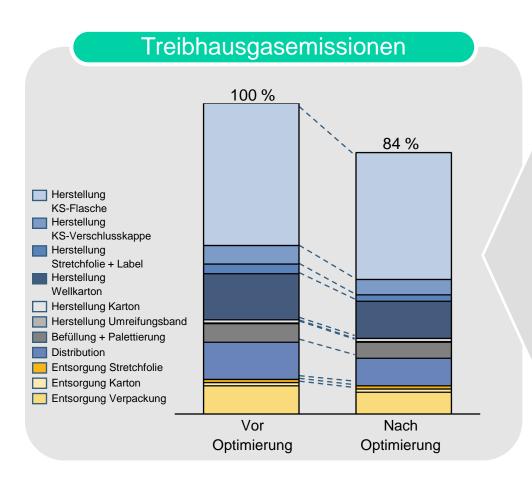
- Notwendiger hoher Detaillierungsgrad der Daten für die Ermittlung des PCF, keine aggregierten Daten
- Aufwendige und langwierige Beschaffung nicht betriebseigener Daten
- Stetige Marktanpassungen beeinflussen die Validität des Datenbestandes (Änderungen von Material, Lieferanten etc.)
- Ergebnis
 - Keine Aussagekraft des Verpackungswertes ohne Berücksichtigung des gesamten Produktes


Globales Ziel: Ermittlung eines gesamten Produkt Carbon Footprints Projektphasen

Identifizierung der Umwelttreiber und Ableitung von Optimierungsmaßnahmen

Umsetzen der Optimierungsmaßnahmen

Ergebnis für ein Waschmittelprodukt inkl. Verpackung (Waschtemperatur 46°C)


Persion of the second of the s

- mehr als 70% des gesamten Produkt Carbon Footprints ist der Nutzungsphase zuzuordnen
 - insbesondere durch den Betrieb der Waschmaschine und die Erwärmung des Wassers
- weniger als 30% des gesamten Produkt Carbon Footprints ist den anderen Phasen zuzuordnen
 - Herstellung und Transport der Rohstoffe, davon entfällt ein überproportionaler Anteil auf Inhaltstoffe wie Enzyme
 - Produktion, Verpackung, Distribution, Einkaufsfahrt und Entsorgung

Potenzialableitung am Beispiel Flüssigverpackung

Optimierungsansätze

- Design: Materialauswahl, Energieeffizienz, Haltbarkeit, Recyclingfähigkeit, Verfügbarkeit, virtuelle Produktentwicklung
- Verpackung: Größe, Re-use/Recycling, Materialien
- Prozesse: Auftragserfüllung, Herstellung, Transport, Qualitätskontrolle, Bedarfs-/Angebotsplanung
- Komponenten: Substitute, Beschaffung, Standort
- Energie: auf fossilen Brennstoffen basierend, auf erneuerbarer Energie basierend, sonstige
- Bestand: Sicherheitsbestände, Losgrößen, Planungsfrequenz, Nachschubprogramm
- Transport: Verkehrsträgermix, Sendungshäufigkeit, Last-/ Frachtkonsolidierung, Routing

Kontakt Seite 26

Kontakt

Dr. rer. nat. Kathrin Hesse

Projektleiterin Umwelt und Ressourcenlogistik

Telefon +49 (0) 231 / 97 43-364

Telefax +49 (0) 231 / 97 43-77364

E-Mail Kathrin.Hesse@iml.fraunhofer.de

