
Stability of global climate cooperation under
uncertainty

Jan Kersting∗

July 21, 2016

Abstract

International cooperation is needed to substantially reduce global
greenhouse gas emissions and avoid dangerous climate change. The
possibility of cooperation is influenced by the presence of uncertainty in
both damages from climate change and the development of low-carbon
technologies. This paper integrates uncertainty into an analysis of the
stability of global climate cooperation, using cooperative game theory.
I find that the deterministic result does not necessarily carry over to
the case including uncertainty, and that the stability of global coop-
eration crucially depends on the ability of a coalition to redistribute
risk between members with different levels of risk aversion. The re-
sults suggest that risk redistribution should feature prominently in the
international climate regime.
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1 Introduction
Global greenhouse gas emissions need to be substantially reduced over the
coming decades in order to avoid dangerous climate change. As emission
reductions in one country benefit all other countries, international negotia-
tions are needed to incentivize emission reductions. This process has led to
the adoption of the Paris Agreement at the 21st Conference of the Parties
(COP21), a framework under which emission reduction pledges are submit-
ted voluntarily by each country.
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The stability of international cooperation on emission reductions has
been the topic of many game-theoretic analyses. The standard model based
on the internal and external stability concept finds that meaningful coop-
eration is only stable among few countries (e.g. Barrett, 1994; Carraro and
Siniscalco, 1993; Diamantoudi and Sartzetakis, 2006). However, stability
among a larger group of countries can be achieved by including trade re-
strictions or R&D in the agreement, or by modifying some assumptions of
the original model (see Hovi et al., 2015, for an overview of extensions and
modifications of the model). In contrast, analyses based on the core stability
concept find global cooperation to be stable (Chander and Tulkens, 1997;
Helm, 2001). This concept is based on a unanimity rule, i.e. cooperation
can only occur on a global level and if all countries agree to cooperate. Such
a structure aligns well with the setup of the international climate negotia-
tions, where “consensus” is needed to adopt decisions.

In the past years, several game-theoretic models based on internal and
external stability have been expanded to include uncertainty about one or
multiple parameter values. Bramoullé and Treich (2009) find that uncer-
tainty about the impact of a global pollutant can have a positive envi-
ronmental effect, as risk averse polluters reduce their emissions. However,
Benchekroun and van Long (2013) find that this result does not hold up in
a dynamic game with a stock pollutant. Barrett (2013) analyzes a threshold
game and finds that uncertainty about the threshold causes cooperation to
be unstable.

A few studies have included uncertainty about mitigation costs. Hong
and Karp (2014) use a theoretical model with uncertainty in the mitigation
cost parameter and find that higher risk aversion of countries increases mem-
bership in a stable climate agreement, but reduces mitigation levels. Kolstad
and Ulph (2011) and Finus and Pintassilgo (2013) use a similar theoretical
model with uncertainty in the benefit-cost ratio of mitigation. They find
that such uncertainty can increase the size of a stable coalition, if countries
are symmetric under uncertainty, but asymmetric after the true nature of
the parameter is revealed. However, this negative effect of the removal of un-
certainty can mostly be avoided by a suitable transfer scheme (Dellink and
Finus, 2012). Dellink et al. (2008) employ a numerical model and find that
uncertainty in the mitigation benefit parameters has a larger influence on
the stability of coalitions than uncertainty in the mitigation cost parameters.

To the best of my knowledge, no attempt has been made to introduce
uncertainty into a model of international climate cooperation using core
stability. This is despite the good alignment of the concept with the in-
ternational climate negotiations and the striking result of the deterministic
model. However, the underlying concept of a cooperative game has been
extended into a cooperative game with stochastic payoffs (Suijs et al., 1999;
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Timmer et al., 2005), including modified definitions of preferences, the ob-
jective function of coalitions, allocations, and of the core. Two distinct
allocation concepts are put forward by Suijs et al. (1999) and Timmer et al.
(2005).

This paper provides the first inclusion of uncertainty in a model of inter-
national climate cooperation using core stability. In particular, this paper
determines whether the result of stable global cooperation in the determinis-
tic model carries over into a model with uncertainty. The game is extended
into a cooperative game with stochastic payoffs, based on adapted pref-
erences and objective functions. I analyze two model setups, one including
technological uncertainty and one including uncertainty in climate damages.
Further, I check the (non-)emptiness of the core for both allocation concepts
put forward in the literature, for both types of uncertainty.

Section 2 gives a general overview of the model and the different game-
theoretic concepts. Section 3 analyzes the model with technological uncer-
tainty, while Section 4 analyzes uncertainty in climate damages. Section 5
situates the results in the general context of international climate negotia-
tions and policy. Section 6 concludes.

2 Uncertainty in a model of climate cooperation
The model in this paper is based on the deterministic model of transfron-
tier pollution by Chander and Tulkens (1997), hereafter CT model. Let
N = {1, .., n} be the set of players, representing countries, of the cooper-
ative game. Then each player i is characterized by a production function
Pi(Ei) and a damage function Di(EN ). The production function depends on
the player’s own emissions Ei and describes the costs of reducing emissions.
The damage function describes the costs of climate change and depends on
global emissions EN =

∑
i∈N Ei. The difference of production and damage

function gives the utility of player i:

ui(Ei, EN ) = Pi(Ei)−Di(EN ). (2.1)

In the subsequent sections of this paper, either the production or the damage
function are modified to include uncertainty. They become a stochastic
variable. Consequently, the utility of player i also becomes a stochastic
variable Ui:

Ui(Ei, EN ) = Pi(Ei)−Di(EN ). (2.2)

In order to define the cooperative game with stochastic payoffs, some adjust-
ments to the deterministic model are needed, following Suijs et al. (1999).
As payoffs are now stochastic, a preference ordering �i is needed, which
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indicates whether player i prefers one stochastic payoff to another. This
paper uses the specific preference ordering proposed by Suijs et al. (1999).
Let αi ∈ (0, 0.5] and qαi(X) be the αi-quantile of payoff X. Then player
i prefers payoff X to payoff Y if and only if the αi-quantile of payoff X is
larger than the αi-quantile of payoff Y :

X �i Y :⇔ qαi(X) ≥ qαi(Y ). (2.3)

This means that qαi(X) is the certainty equivalent of payoff X, cei(X). For
payoffs with symmetric distribution1, αi = 0.5 implies risk neutral behaviour
and αi < 0.5 implies risk averse behaviour, i.e.

cei(X) < E(X). (2.4)

I will occasionally refer to the level of risk aversion, which is higher with
lower αi2. Note that αi > 0.5, i.e. risk loving behaviour, is excluded, for
reasons that will become apparent later in the paper.

To determine emissions and value for each possible coalition S ⊆ N , I
follow the original CT model. Let j /∈ S. Then player j maximizes (the
certainty equivalent of) its individual utility:

max
Ej

cej(Uj(Ej , EN )). (2.5)

All players i ∈ S maximize the sum of (the certainty equivalent of) the
utility of all members:

max
(Ei)i∈S

∑
i∈S

cei(Ui(Ei, EN )). (2.6)

These parallel optimizations provide deterministic emission levels for all
players. The value function V (S) provides the payoffs for each coalition
S ⊆ N . It is given by the sum of the utility of all members of the coalition,
and is therefore a stochastic variable:

V (S) =
∑
i∈S

Ui(Ei, EN ). (2.7)

2.1 Allocation concepts

In order to check whether a stable global agreement is possible, I use the
concept of the core. For the deterministic case, the core contains all allo-
cations of the value of the grand coalition N , such that no coalition can

1This will be the case throughout the paper.
2The level of risk aversion as used in this paper should not be confused with the degree

of risk aversion, which is defined as the ratio of second and first derivative of an agent’s
utility function (Pratt, 1964; Arrow, 1965).
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achieve a higher payoff by defecting from the grand coalition. This requires
the definition of the concept of an allocation. For games with stochastic
payoffs, two different concepts of an allocation exist: the concept of pure
payoff allocation by Timmer et al. (2005) and the concept of expectation
and risk allocation by Suijs et al. (1999).

The concept of pure payoff allocation defines an allocation of V (S) as
a vector of multiples of V (S) (Timmer et al., 2005). Let g ∈ R|S| with∑
i∈S gi = 1. Then player i ∈ S receives giV (S).

In the concept of expectation and risk allocation (Suijs et al., 1999),
an allocation is defined by two vectors, one for the expected value of the
stochastic payoff, and one for the risk. Let (d, r) ∈ R|S| × R|S|+ with∑

i∈S
di = E(V (S)), (2.8a)

∑
i∈S

ri = 1. (2.8b)

Then player i ∈ S receives

di + ri(V (S)− E(V (S))). (2.9)

The pure payoff allocation concept is a direct translation from the deter-
ministic allocation concept, as every player receives a share of the coalition
value. However, as the coalition value is now stochastic, this means that
a player can only receive a payoff if she also takes on risk. For risk averse
players, the certainty equivalent of the received payoff is reduced by this
presence of risk. The expectation and risk allocation concept remedies this
drawback by allowing for an independent allocation of the expected value
and the risk of the stochastic payoff. As a consequence, it is possible for
very risk averse players to offload (some of) their risk on to less risk averse
players, improving (the certainty equivalent of) total utility. On the other
hand, risk neutral players can “insure” other players against risk by taking
it on themselves, and receive some compensation for this service.

For both allocation concepts, an allocation X of V (N) is in the core of
the game, if for no coalition S ⊂ N there exists an allocation Y of V (S),
such that Yi � Xi for all players i ∈ S. In other words, all members of a
coalition S need to agree on a deviation from the grand coalition N .

For the concept of pure payoff allocation, several convexity concepts
exist, which all imply that the core of the game is not empty (Timmer
et al., 2005). For the concept of expectation and risk allocation, the core of
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the game is not empty if and only if (Suijs et al., 1999)

max
i∈N

qαi(V (N)) ≥
∑
S⊂N

δS max
i∈S

qαi(V (S)), (2.10)

where δS is a balanced map, i.e.∑
S⊂N

δS1i∈S = 1 ∀i ∈ N. (2.11)

In the following sections, I will apply both allocation concepts to stochas-
tic models of climate cooperation. Section 3 considers technological uncer-
tainty, while Section 4 considers uncertainty in climate damages.

3 Technological uncertainty
This section considers uncertainty in mitigation costs, i.e. in the production
function. For the mean µ, I use a quadratic function in emission reductions.
Uncertainty increases with emission reductions, as more new technologies
need to be applied. The distribution is set, such that the standard devi-
ation, σ, increases quadratically with emission reductions, in line with the
deterministic mitigation costs. A normal distribution is used. Specifically,
the model is

Pi(Ei) ∼ N

P 0
i − γi(E0

i − Ei)2︸ ︷︷ ︸
µ

, (θ(E0
i − Ei)2)2︸ ︷︷ ︸
σ2

 , (3.1)

with

• P 0
i : baseline production level

• E0
i : baseline emission level

• γi: mitigation cost parameter

• θ: amount of uncertainty parameter

• µ: mean of normal distribution

• σ2: variance of normal distribution

For α ≤ 0.5, this formulation ensures that, in terms of production, a higher
emission level is preferred to a lower emission level, i.e. emission reductions
are costly3.

3For α > 0.5, this would not necessarily be the case, as the higher risk resulting from
emission reductions is preferred to lower risk. Therefore, this case is excluded throughout
the paper.
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Damages from climate change are assumed to be known with certainty
in this section. They increase quadratically with global emissions EN :

Di(EN ) = πiE
2
N , (3.2)

where πi is the damage cost parameter.

Taking production and damage together, utility is given by

Ui(Ei, EN ) = Pi(Ei)−Di(EN )

∼ N
(
P 0
i − γi(E0

i − Ei)2 − πiE2
N , (θ(E0

i − Ei)2)2
)
. (3.3)

As utility is normally distributed, the certainty equivalent of utility is

cei(Ui(Ei, EN )) = µ+ σz(αi)
= P 0

i − γi(E0
i − Ei)2 − πiE2

N + θ(E0
i − Ei)2z(αi), (3.4)

where z(αi) is the probit function

z(αi) =
√

2 erf−1(2αi − 1), (3.5)

erf(x) = 2√
π

∫ x

0
e−t

2
dt. (3.6)

erf(x) is the so-called error function. z(αi) is strictly increasing and z(0.5) = 0.
Consequently, z(αi) ≤ 0 for the range of αi considered in this paper.

Players determine their emission levels by optimizing the certainty equiv-
alent of utility. Proposition 1 shows the resulting emission levels and the
impact of uncertainty.

Proposition 1. Let S ⊂ N . For the game with technological uncertainty,

(i) emission levels of individual players (Ei(S)) and global emissions (EN (S))
are given by

EN (S) = E0
N

πS
∑
i∈S

1
γi−θz(αi) +

∑
j /∈S

πj

γj−θz(αj) + 1
, (3.7a)

Ei(S) = E0
i −

πS
γi − θz(αi)

EN (S) ∀i ∈ S, (3.7b)

Ej(S) = E0
j −

πj
γj − θz(αj)

EN (S) ∀j /∈ S, (3.7c)

with πS =
∑
i∈S πi.

(ii) increases in the amount of uncertainty (θ) or in the level of risk aver-
sion (−z(α)) influence emission levels like an increase of the mitigation
cost (γ).
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(iii) increases in the amount of uncertainty (θ) or in the level of risk aver-
sion (−z(α)) lead to higher emission levels.

For reasons of readability, all theoretical proofs can be found in Ap-
pendix A.

Proposition 1 (ii) and (iii) follow intuitively from the fact that all players
are risk averse or risk neutral. As emission reductions cause higher uncer-
tainty, an additional “cost” of mitigation is created. This cost is treated
similarly to the deterministic mitigation cost γ. As the damage function is
unchanged compared to the deterministic case, the benefit from emission re-
ductions is also unchanged. Consequently, the optimal emission levels under
technological uncertainty are higher than without uncertainty.

3.1 Stability of global cooperation under pure payoff alloca-
tion

I now consider the stability of global cooperation in the game with techno-
logical uncertainty. Specifically, I check whether the core of the cooperative
game with stochastic payoffs is non-empty for all cases, as in the determinis-
tic case. First, I consider the game under pure payoff allocation. Proposition
2 shows that the result from the deterministic case cannot be transferred to
the uncertain setup.

Proposition 2. Under pure payoff allocation, the core of the cooperative
game with stochastic payoffs and technological uncertainty can be empty.

The proof is given by the following simple counter-example.

Example 1. Let N = {1, .., 4} and

α =


0.001
0.1
0.5
0.5

 , γ = π = E0 =


1
1
1
1

 , P 0 =


10
10
10
10

 . (3.8)

The resulting game is given in Table 4 in Appendix B.

The four players in Example 1 only differ in their risk preferences. Player
1 is very risk averse, player 2 is modestly risk averse, while players 3 and
4 are risk neutral. As a result of their different levels of risk aversion, the
certainty equivalent of a payoff differs between the players. Figure 1 shows
the relation between the share of V (N) a player receives and the respective
certainty equivalent of the payoff, for all players.

A high share of V (N) increases the payoff in expectation, but also in-
creases the level of risk. We see that player 1 actually prefers a payoff of zero
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Figure 1: Certainty equivalent of payoff for varying share of V (N), for all
players in Example 1.

to a small share of V (N), due to its high level of risk aversion. For a share
larger than roughly 0.05, the increase in expectation has the larger effect and
player 1 prefers the higher share. Still, the larger risk for higher shares of
V (N) causes the certainty equivalent of the payoff to increase at the small-
est rate of all players. Player 2 experiences the same phenomenon, but the
impact of risk is much smaller. For players 3 and 4, who are risk neutral,
only the expected value of their share of V (N) matters, and consequently the
certainty equivalent of their payoff increases linearly with the share of V (N).

To now show that the core of this game is empty, I compare the pay-
off of the grand coalition N to the payoffs of all singleton coalitions {i}.
Specifically, I determine the minimum share of V (N) each player needs to
equal its payoff in the singleton case. For example, player 1 compares its
payoff to the payoff of singleton coalition {1}. The corresponding certainty
equivalent is 8.5319. In Figure 1, one can see that player 1 would need a
share of 0.3857 of V (N) or higher to prefer a proposed global allocation to
the singleton payoff.
This calculation can be done for all players. The certainty equivalent of the
singleton payoffs and the resulting minimum shares of V (N) are shown in
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Table 1.

Player 1 Player 2 Player 3 Player 4
Singleton payoff 8.5319 8.3033 7.6406 7.6406
Minimum share 0.3857 0.2865 0.2162 0.2162

Table 1: Singleton payoffs and minimum shares of V (N) to satisfy corre-
sponding singleton coalition for all players in Example 1.

The sum of the minimum shares of all players is 1.1046. As this is larger
than one, no global allocation can satisfy all singleton coalitions simulta-
neously. Therefore, the core of the game is empty. The result is driven
by the risk averse players 1 and 2. For them to join the grand coalition,
both need a share of V (N) substantially larger than 0.25 to compensate for
the technological uncertainty associated with reaching low emission levels.
While the risk neutral players 3 and 4 would be content with less than a
uniform allocation, they cannot lower their share enough to allow sufficient
redistribution to the risk averse players.

The result is also driven by the heterogeneity of risk aversion between
the four players. If all players were as risk averse as player 1, the emission
level in the grand coalition would remain higher, reducing technological
uncertainty. Consequently, each player would be content with a share of
V (N) of 0.25 and the core of the game would not be empty. Similarly, if
all players were risk neutral, the game would be similar to the deterministic
case and therefore the core would not be empty. Overall, the combination
of very risk averse players with risk neutral players causes the emptiness of
the core in Example 1, as the wishes of both groups of players cannot be
sufficiently reconciled in the grand coalition.

3.2 Stability of global cooperation under expectation and
risk allocation

The previous section showed that under pure payoff allocation, the core
of the game can be empty. This is caused by the inability for very risk
averse players to receive an appropriate payoff without also taking on risk.
The expectation and risk allocation concept in this section allows indepen-
dent allocation of expectation and risk. This reinstates the result of core
non-emptiness from the deterministic case. For the analytical proof, two
simplifying assumptions are needed.

Assumption 1. (i) All players are symmetric in all parameters except
αi, the level of risk aversion.

(ii) At least one player is risk-neutral, i.e. αi = 0.5.
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Proposition 3. Under expectation and risk allocation and Assumption 1,
the core of the cooperative game with stochastic payoffs and technological
uncertainty is non-empty.

Numerical simulations suggest that Proposition 3 also holds when As-
sumption 1 is not fulfilled. No counter-example was found.

Intuitively, Proposition 3 is a direct result from the possibility of inde-
pendent risk allocation. This allows the least risk averse player to take on all
risk in the grand coalition. If this player is risk neutral, the game is similar
to the deterministic case and the deterministic core allocation is also in the
core of the stochastic game. If the least risk averse player is not risk neutral,
the acceptance of risk by this player in the grand coalition still creates a total
utility surplus, compared to smaller coalitions. Most of this utility surplus
can then be allocated to the least risk averse player as compensation for the
acceptance of risk, so that this player also agrees to global cooperation. As
the other players are made better off by being allowed to offload risk, this
mechanism allows for a core stable allocation.

4 Uncertainty in climate damages
This section considers uncertainty in the damage function. In a reversal of
the setup in the last section, the production function is known with certainty,

Pi(Ei) = P 0
i − γi(E0

i − Ei)2, (4.1)

while the damage function is normally distributed

Di(EN ) ∼ N
(
πiE

2
N , (κiE2

N )2
)
, (4.2)

with parameter κi for the amount of uncertainty. Similar to the last section,
αi ≤ 0.5 ensures that, when considering damages, a lower global emission
level is preferred to a higher global emission level, i.e. emission reductions
reduce climate damages.

Utility is given by

Ui(Ei, EN ) = Pi(Ei)−Di(EN ) ∼ N
(
P 0
i − γi(E0

i − Ei)2 − πiE2
N , (κiE2

N )2
)

(4.3)
with certainty equivalent

cei(Ui(Ei, EN )) = P 0
i − γi(E0

i − Ei)2 − πiE2
N + κiE

2
Nz(αi). (4.4)

Proposition 4 shows the emission levels resulting from the optimization
of the certainty equivalents of utility and the effect of uncertainty.
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Proposition 4. Let S ⊂ N . For the game with uncertainty in climate
damages,

(i) emission levels of individual players and global emissions are given by

EN (S) = E0
N

(πS − (κz(α))S)
∑
i∈S

1
γi

+
∑
j /∈S

πj−κjz(αj)
γj

+ 1
, (4.5a)

Ei(S) = E0
i −

πS − (κz(α))S
γi

EN (S), ∀i ∈ S (4.5b)

Ej(S) = E0
j −

πj − κjz(αj)
γj

EN (S) ∀j /∈ S, (4.5c)

with πS =
∑
i∈S πi and (κz(α))S =

∑
i∈S κiz(αi).

(ii) increases in the amount of uncertainty (κ) or in the level of risk aver-
sion (−z(α)) influence emission levels like an increase of the damage
cost (π).

(iii) increases in the amount of uncertainty (κ) or in the level of risk aver-
sion (−z(α)) lead to lower emission levels.

Similar to Section 3, Proposition 4 (ii) and (iii) follow directly from the
risk aversion of the players. As uncertainty is tied to the global emission
level, emission reductions reduce uncertainty in this setup. Therefore, an
extra benefit of mitigation is created by the inclusion of uncertainty, which is
added to the deterministic benefit of mitigation, π. Consequently, emission
levels are lower than without uncertainty.

4.1 Stability of cooperation under pure payoff allocation

Again, I first consider the (non-)emptiness of the core of the cooperative
game with stochastic payoffs under pure payoff allocation. In contrast to
the game with technological uncertainty, global cooperation in the game with
uncertainty in climate damages reduces total risk compared to the singletons
case, as global emission levels are lowest under global cooperation. This can
be seen in the standard deviation (σ), which increases quadratically with
global emissions. Therefore, the impossibility of risk redistribution under
the pure payoff allocation concept is not as detrimental to stable global
cooperation as under technological uncertainty, because less risk needs to be
redistributed. Consequently, the core of the game is non-empty for simple
games similar to Example 1. However, games with empty core still exist, as
Proposition 5 shows.

Proposition 5. Under pure payoff allocation, the core of the cooperative
game with stochastic payoffs and uncertainty in climate damages can be
empty.
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The proof is given by the following counter-example.

Example 2. Let N = {1, 2, 3} and

α =

0.001
0.1
0.5

 , κ =

0.01
0.1
0.5

 , γ =

1
1
1

 , π =

 0.1
0.01
0.001


P 0 = 104

1
5
5

 , E0 = 102

1
1
1

 . (4.6)

The resulting game is given in Table 5 in Appendix B.

The three players in Example 2 differ in their risk preferences, with player
1 being very risk averse, player 2 being modestly risk averse and player 3
being risk neutral. They also differ in their personal amount of risk (κ)
and in the deterministic damage cost (π). Player 1 is very risk averse, but
experiences relatively little risk, while having the highest deterministic dam-
age cost. Player 2’s amount of risk and deterministic damage cost are both
modestly high, similar to the level of risk aversion. Player 3 is risk neutral,
while his amount of risk is the highest of all players and the deterministic
damage cost is the lowest. Figure 2 again shows the relation between the
share of V (N) a player receives and the payoff.

The picture is similar to the technological uncertainty case. Player 1
needs a share of V (N) of roughly 0.2 or larger in order prefer the payoff to
zero, due to the detrimental impact of risk. Player 2 experiences the same
mechanism, but the effect is much smaller, while for player 3 the payoff in-
creases linearly with the share of V (N).

Player 1 Player 2 Player 3
Singleton payoff 0.17E+04 4.12E+04 4.99E+04
Minimum share 0.2170 0.5390 0.4948

Table 2: Singleton payoffs and minimum shares of V (N) to satisfy corre-
sponding singleton coalition for all players in Example 2.

For the determination of core emptiness, the minimum shares of V (N)
to satisfy the singleton coalition of each player can be calculated, similar to
Example 1. The results are shown in Table 2 and the sum of all minimum
shares is 1.2508. Consequently, the core of the game is empty. In contrast
to Example 1, the result is not driven by the most risk averse player, who
actually requires less than a uniform allocation share, as the singleton payoff
is relatively low. This is due to the low baseline production level P 0, which
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Figure 2: Certainty equivalent of payoff for varying share of V (N), for all
players in Example 2.

for player 1 is substantially lower than for players 2 and 3. A high share
of V (N) is rather required by player 2, because the modest level of risk
aversion still means that the payoff growth in Figure 2 is substantially less
than for the risk neutral player 3. Further, the singleton payoff of player 2 is
relatively high, because the baseline production level is among the highest
of all players. Consequently, a very high share of V (N) is needed to com-
pensate player 2 for the effect of risk.

Again, heterogeneity between the players is required for the result of
core emptiness. If the players were symmetric in all parameters, the chosen
emission level in the grand coalition, and its associated level of risk, would
conform with the wishes of all players equally. Then, a uniform allocation
of V (N) to all players would be stable and the core of the game would not
be empty. Asymmetry in the parameters can concentrate the detrimental
effects of risk on one or a few players and thereby cause an empty core.
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4.2 Stability of cooperation under expectation and risk allo-
cation

Finally, I check whether the expectation and risk allocation concept rein-
states the result of core non-emptiness from the deterministic case, as it did
under technological uncertainty. This is indeed the case, as Proposition 6
shows.

Proposition 6. Under expectation and risk allocation, the core of the co-
operative game with stochastic payoffs and uncertainty in climate damages
is non-empty.

The intuitive reasoning behind the result is similar to the technological
uncertainty setup, as the independence of risk allocation allows the least
risk averse player to take on all risk in the grand coalition. This creates a
total utility surplus, which can be used to compensate the least risk averse
player for the acceptance of risk, making all players better off under global
cooperation.

5 Discussion
This section situates the theoretical results in the general context of in-
ternational climate policy. Uncertainty continues to play a large role in
the climate policy discourse, as the economic effects of climate change are
still quite uncertain and many current estimates do not account for some
factors likely to influence the impact of climate change, such as changing
weather patterns or tipping points (Burke et al., 2015; IPCC, 2014). Fur-
ther, the future development of low-carbon technologies, and their costs,
remain highly uncertain. For example, carbon capture and storage usually
plays a prominent role in long-term scenarios compatible with ambitious
emission reduction targets, but faces several technical, economic and polit-
ical uncertainties (Watson et al., 2014; Koelbl et al., 2014). On the other
hand, some low-carbon technologies have surprised with rapid cost reduc-
tions, such as the 80% drop in the costs of photovoltaic modules in mature
markets between 2008 and 2012 (IEA, 2014).

In this context, the results of this paper lend themselves to two conclu-
sions. First, the results suggest that global emission levels react differently
to technological uncertainty and uncertainty in climate damages, in a situa-
tion with risk averse actors. While technological uncertainty introduces an
additional mitigation cost, the presence of uncertainty in climate damages
introduces an additional mitigation benefit. Consequently, global emission
levels are higher under technological uncertainty, and lower under uncer-
tainty in climate damages, compared to the situation without uncertainty.
This suggests that research on low-carbon technologies, reducing mitigation
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costs and technological uncertainty, could be particularly effective in lower-
ing global GHG emissions. On the other hand, some amount of uncertainty
in climate damages helps to reduce emission levels, as risk averse actors re-
act to uncertainty by increasing their mitigation efforts. While this result
is also supported by the analysis of Bramoullé and Treich (2009), based on
internal and external stability, Benchekroun and van Long (2013) find that
it no longer holds up in a dynamic game with a stock pollutant. Further,
in the actual climate policy discourse, uncertainty about the effects of cli-
mate change is often used to justify a delay of mitigation efforts, notably
by US President George W. Bush in his announcement that he would not
support the Kyoto Protocol (White House, 2001). Supporters of the pre-
cautionary principle, on the other hand, argue that high climate uncertainty
should compel ambitious mitigation efforts (e.g. Grant and Quiggin, 2014;
Lewandowsky et al., 2014).

Second, the results on core stability in this paper suggest that the ability
of risk redistribution between countries is a key determinant for stability of
a global climate agreement. For both technological uncertainty and uncer-
tainty in climate damages, global cooperation can be unstable under pure
payoff allocation, where risk cannot be detached from the payoff. However,
if the expectation and risk allocation concept is used, where risk can be
freely distributed, a stable global agreement always exists.

This suggests that risk redistribution should be incorporated in the in-
ternational climate regime. In particular, stable cooperation might be aided
by the willingness of some countries to shoulder some of the risk of other
countries, in addition to their own. Arguably, developed countries are better
equipped to deal with with unexpected events than developing countries, due
to higher wealth and well established governmental structures. Therefore,
developed countries could shoulder additional risk, in exchange for more
ambitious emission reductions from developing countries. This would both
reduce the global impact of climate uncertainty and harmonize international
emission reduction efforts.

The redistribution of risk might be achieved via the Warsaw Interna-
tional Mechanism on Loss and Damage (WIM, e.g. UNFCCC, 2013), which
was established at the 19th Conference of the Parties (COP19) in 2013 and
intends to address climate loss and damage in developing countries. The im-
portance of loss and damage was further recognized in the Paris Agreement,
which includes an independent article devoted to the subject (UNFCCC,
2015a, art. 8). While the WIM currently focuses on knowledge and di-
alogue, it was requested at COP21 “to establish a clearing house for risk
transfer” (UNFCCC, 2015b, para. 48). The mandate of the WIM could
further be enhanced at a scheduled review at COP22.

16



6 Conclusions
This paper integrates technological uncertainty and uncertainty in climate
damages into the model of international climate negotiations using core sta-
bility, by Chander and Tulkens (1997). This requires adjustments of several
concepts of cooperative game theory, most prominently the concept of an
allocation, for which two distinct concepts are put forward in the literature.
I find that the deterministic result of core non-emptiness does not necessar-
ily carry over to the uncertain setup, if the pure payoff allocation concept
is used. However, the expectation and risk allocation concept reinstates the
deterministic result, by allowing independent allocations of expected value
of a payoff and of its risk. The possibility of risk redistribution, for example
through the Warsaw International Mechanism on Loss and Damage, might
therefore improve the opportunity for global agreement in the international
climate negotiations.

The model in this paper could be extended or modified in a few ways.
First, the shape of the production and the damage functions could be gen-
eralized or changed. Second, other probability distributions and preference
orderings could be used. Third, technological uncertainty and uncertainty
under climate damages could both be considered in a joint model, or other
types of uncertainty could be introduced.
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A Proofs

A.1 Proof of Proposition 1

Proof. Let S ⊂ N, i ∈ S, j /∈ S. Then j optimizes the certainty equivalent of
individual utility. Ej(S) and EN (S) denote emissions of player j and global
emissions, respectively, given that coalition S has formed.

cej(Uj(Ej(S), EN (S))) = P 0
j − γj(E0

j − Ej(S))2 − πjEN (S)2 + θ(E0
j − Ej(S))2z(αj)

0 != ∂cej(Uj(Ej(S), EN (S)))
∂Ej(S) = 2γj(E0

j − Ej(S))− 2πjEN (S) + 2θz(αj)(E0
j − Ej(S))

⇒ (γj − θz(αj))(E0
j − Ej(S)) = πjEN (S)

⇒ Ej(S) = E0
j −

πj
γj − θz(αj)

EN (S)

Player i optimizes the sum of all certainty equivalents of utility of the mem-
bers of S:∑
l∈S

cel(Ul(El(S), EN (S))) =
∑
l∈S

P 0
l −γl(E0

l −El(S))2−πlEN (S)2+θ(E0
l −El(S))2z(αl)

(A.1)

0 != ∂
∑
l∈S cel(Pl(El(S))−Dl(EN (S)))

∂Ei(S)
= 2γi(E0

i − Ei(S))− 2
∑
l∈S

πl︸ ︷︷ ︸
=:πS

EN (S)− 2θz(αi)(E0
i − Ei(S))

⇒ πSEN (S) = (γi − θz(αi))(E0
i − Ei(S))

⇒ Ei(S) = E0
i −

πS
γi − θz(αi)

EN (S)

The sum of individual emissions of all players gives global emissions EN (S):

EN (S) =
∑
l∈N

El(S) =
∑
i∈S

Ei(S) +
∑
j /∈S

Ej(S)

=
∑
i∈S

E0
i −

πS
γi − θz(αi)

EN (S) +
∑
j /∈S

E0
j −

πj
γj − θz(αj)

EN (S)

= E0
N −

πS∑
i∈S

1
γi − θz(αi)

+
∑
j /∈S

πj
γj − θz(αj)


︸ ︷︷ ︸

=:χ(S)

EN (S)

⇒ EN (S) = E0
N

χ(S) + 1
χ(S) is the reduction factor of global emissions, showing Proposition 1 (i).
The second and third parts of the Proposition follows directly from (i).
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A.2 Proof of Proposition 3

Proof. As mentioned in Section 2.1, the core of the game is not empty if
and only if condition (2.10) is fulfilled.

In our setup, the maximum quantile of a payoff is

max
i∈S

qαi(V (S)) = max
i∈S

µ(S) + σ(S)z(αi) = µ(S) + σ(S) max
i∈S

z(αi) (A.2)

= µ(S) + σ(S)z
(

max
i∈S

αi

)
, (A.3)

as z is monotonically increasing in α. Assuming at least one risk-neutral
player, this leads to

z

(
max
i∈N

αi

)
= z(0.5) = 0 (A.4)

and
z

(
max
i∈S

αi

)
≤ 0 ∀S ⊂ N. (A.5)

As σ(S) ≥ 0, condition 2.10 is implied by

µ(N) ≥
∑
S⊂N

δS µ(S)

⇔ P 0
N − πN

(
πN

∑
i∈N

γi
(γi − θz(αi))2 + 1

)
EN (N)2

≥
∑
S⊂N

δSP
0
S − πS

(
πS
∑
i∈S

γi
(γi − θz(αi))2 + 1

)
EN (S)2 (A.6)

Global emissions under different coalitions are related by

EN (S) = E0
N

χ(S) + 1 = E0
N

(χ(N) + 1) χ(S)+1
χ(N)+1

= EN (N)χ(N) + 1
χ(S) + 1 (A.7)
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Using (A.7), condition (A.6) becomes

− πN

(
πN

∑
i∈N

γi
(γi − θz(αi))2 + 1

)
EN (N)2

≥−
∑
S⊂N

δSπS

(
πS
∑
i∈S

γi
(γi − θz(αi))2 + 1

)(
EN (N)χ(N) + 1

χ(S) + 1

)2

⇔ πN

(
πN

∑
i∈N

γi
(γi − θz(αi))2 + 1

)

≤
∑
S⊂N

δSπS

(
πS
∑
i∈S

γi
(γi − θz(αi))2 + 1

)(
χ(N) + 1
χ(S) + 1

)2

⇔ πN

(
πN

∑
i∈N

γi
(γi − θz(αi))2 + 1

)

≤
∑
S⊂N

δSπS

(
πS
∑
i∈S

γi
(γi − θz(αi))2 + 1

) πN
∑
i∈N

1
γi−θz(αi) + 1

πS
∑
i∈S

1
γi−θz(αi) +

∑
j /∈S

πj

γj−θz(αj) + 1

2

Using symmetry, we have

⇔ nπ

(
nπ

∑
i∈N

γ

(γ − θz(αi))2 + 1
)

≤
∑
S⊂N

δSsπ

(
sπ
∑
i∈S

γ

(γ − θz(αi))2 + 1
) nπ

∑
i∈N

1
γ−θz(αi) + 1

sπ
∑
i∈S

1
γ−θz(αi) +

∑
j /∈S

π
γ−θz(αj) + 1

2

=π
(
nπ

∑
i∈N

γ

(γ − θz(αi))2 + 1
)

∑
S⊂N

δSs

(
sπ
∑
i∈S

γ
(γ−θz(αi))2 + 1

)
(
nπ
∑
i∈N

γ
(γ−θz(αi))2 + 1

)
 nπ

∑
i∈N

1
γ−θz(αi) + 1

sπ
∑
i∈S

1
γ−θz(αi) +

∑
j /∈S

π
γ−θz(αj) + 1

2

Define

A :=
(
sπ
∑
i∈S

γ

(γ − θz(αi))2 + 1
)(

nπ
∑
i∈N

1
γ − θz(αi)

+ 1
)2

, (A.8a)

B :=
(
nπ

∑
i∈N

γ

(γ − θz(αi))2 + 1
)sπ∑

i∈S

1
γ − θz(αi)

+
∑
j /∈S

π

γ − θz(αj)
+ 1

2

.

(A.8b)

In the next step, I show that ∑
S⊂N

δSs
A

B
≥ n, (A.9)
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completing the proof.

For S = N , we immediately have A = B. Let S ( N . Then

A =
(
sπ
∑
i∈S

γ

(γ − θz(αi))2 + 1
)(

nπ
∑
i∈N

1
γ − θz(αi)

+ 1
)2

=π3

sn2
(∑
i∈N

1
γ − θz(αi)

)2(∑
i∈S

γ

(γ − θz(αi))2

)
+ π2

2sn
(∑
i∈N

1
γ − θz(αi)

)(∑
i∈S

γ

(γ − θz(αi))2

)
+ n2

(∑
i∈N

1
γ − θz(αi)

)2


+ π

[
s

(∑
i∈S

γ

(γ − θz(αi))2

)
+ 2n

(∑
i∈N

1
γ − θz(αi)

)]
+ 1

=:a3π
3 + a2π

2 + a1π + 1,

and

B =
(
nπ

∑
i∈N

γ

(γ − θz(αi))2 + 1
)sπ∑

i∈S

1
γ − θz(αi)

+ π
∑
j /∈S

1
γ − θz(αj)

+ 1

2

= π3n

(∑
i∈N

γ

(γ − θz(αi))2

)
s2

(∑
i∈S

1
γ − θz(αi)

)2

+

∑
j /∈S

1
γ − θz(αj)

2

+ 2s
(∑
i∈S

1
γ − θz(αi)

)∑
j /∈S

1
γ − θz(αj)




+π2

2ns
(∑
i∈S

1
γ − θz(αi)

)(∑
i∈N

γ

(γ − θz(αi))2

)
+ 2n

∑
j /∈S

1
γ − θz(αj)

(∑
i∈N

γ

(γ − θz(αi))2

)

+s2
(∑
i∈S

1
γ − θz(αi)

)2

+

∑
j /∈S

1
γ − θz(αj)

2

+ 2s
(∑
i∈S

1
γ − θz(αi)

)∑
j /∈S

1
γ − θz(αj)




+π

n(∑
i∈N

γ

(γ − θz(αi))2

)
+ 2s

(∑
i∈S

1
γ − θz(αi)

)
+ 2

∑
j /∈S

1
γ − θz(αj)


+1

=: b3π
3 + b2π

2 + b1π + 1

As an intermediate step, I show a1 ≥ b1 and a2 ≥ b2. Using

1
γ − θz(αi)

= γ − θz(αi)
(γ − θz(αi))2

θz(αi)≤0
≥ γ

(γ − θz(αi))2 , (A.10)

21



we have

a1 =s
(∑
i∈S

γ

(γ − θz(αi))2

)
+ 2n

(∑
i∈N

1
γ − θz(αi)

)

=s
(∑
i∈S

γ

(γ − θz(αi))2

)
+ 2n

(∑
i∈S

1
γ − θz(αi)

)
+

∑
j /∈S

1
γ − θz(αj)


=s
(∑
i∈S

γ

(γ − θz(αi))2

)
+ 2(n− s)

(∑
i∈S

1
γ − θz(αi)

)
+ 2s

(∑
i∈S

1
γ − θz(αi)

)

+ 2(n− 1)

∑
j /∈S

1
γ − θz(αj)

+ 2

∑
j /∈S

1
γ − θz(αj)


(A.10)
≥ s

(∑
i∈S

γ

(γ − θz(αi))2

)
+ 2(n− s)

(∑
i∈S

γ

(γ − θz(αi))2

)
+ 2s

(∑
i∈S

1
γ − θz(αi)

)

+ 2(n− 1)

∑
j /∈S

γ

(γ − θz(αi))2

+ 2

∑
j /∈S

1
γ − θz(αj)


n≥2
≥ n

(∑
i∈S

γ

(γ − θz(αi))2

)
+ 2s

(∑
i∈S

1
γ − θz(αi)

)

+ n

∑
j /∈S

γ

(γ − θz(αi))2

+ 2

∑
j /∈S

1
γ − θz(αj)


=n

(∑
i∈N

γ

(γ − θz(αi))2

)
+ 2s

(∑
i∈S

1
γ − θz(αi)

)
+ 2

∑
j /∈S

1
γ − θz(αj)


=b1
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and

a2 =2sn
(∑
i∈N

1
γ − θz(αi)

)(∑
i∈S

γ

(γ − θz(αi))2

)
+ n2

(∑
i∈N

1
γ − θz(αi)

)2

=2sn

(∑
i∈S

1
γ − θz(αi)

)(∑
i∈S

γ

(γ − θz(αi))2

)
+

∑
j /∈S

1
γ − θz(αj)

(∑
i∈S

γ

(γ − θz(αi))2

)
+ n2

(∑
i∈S

1
γ − θz(αi)

)2

+ 2
(∑
i∈S

1
γ − θz(αi)

)∑
j /∈S

1
γ − θz(αj)

+

∑
j /∈S

1
γ − θz(αj)

2


≥2sn
(∑
i∈S

1
γ − θz(αi)

)(∑
i∈S

γ

(γ − θz(αi))2

)
+ 2n

∑
j /∈S

1
γ − θz(αj)

(∑
i∈S

γ

(γ − θz(αi))2

)

+ s2
(∑
i∈S

1
γ − θz(αi)

)2

+ 2(n2 − s− sn)
(∑
i∈S

1
γ − θz(αi)

)∑
j /∈S

1
γ − θz(αj)


+ 2s

(∑
i∈S

1
γ − θz(αi)

)∑
j /∈S

1
γ − θz(αj)

+ 2sn
(∑
i∈S

1
γ − θz(αi)

)∑
j /∈S

1
γ − θz(αj)


+ (n2 − 2n− 1)

∑
j /∈S

1
γ − θz(αj)

2

+ 2n

∑
j /∈S

1
γ − θz(αj)

2

+

∑
j /∈S

1
γ − θz(αj)

2

≥2sn
(∑
i∈S

1
γ − θz(αi)

)(∑
i∈S

γ

(γ − θz(αi))2

)
+ 2sn

(∑
i∈S

1
γ − θz(αi)

)∑
j /∈S

γ

(γ − θz(αj))2


+ 2n

∑
j /∈S

1
γ − θz(αj)

(∑
i∈S

γ

(γ − θz(αi))2

)
+ 2n

∑
j /∈S

1
γ − θz(αj)

∑
j /∈S

γ

(γ − θz(αj))2


+ s2

(∑
i∈S

1
γ − θz(αi)

)2

+ 2s
(∑
i∈S

1
γ − θz(αi)

)∑
j /∈S

1
γ − θz(αj)

+

∑
j /∈S

1
γ − θz(αj)

2

=2sn
(∑
i∈S

1
γ − θz(αi)

)(∑
i∈N

γ

(γ − θz(αi))2

)
+ 2n

∑
j /∈S

1
γ − θz(αj)

(∑
i∈N

γ

(γ − θz(αi))2

)

+ s2
(∑
i∈S

1
γ − θz(αi)

)2

+ 2s
(∑
i∈S

1
γ − θz(αi)

)∑
j /∈S

1
γ − θz(αj)

+

∑
j /∈S

1
γ − θz(αj)

2

= b2,

where

n2 − s− sn ≥ 0 and
n2 − 2n− 1 ≥ 0
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hold for n ≥ 3 and s ≤ (n− 1).

To show condition (A.9), I distinguish two cases. If A ≥ B, then

∑
S⊂N

δSs
A

B
≥
∑
S⊂N

δSs =
∑
S⊂N

δS
∑
i∈N

1i∈S =
∑
i∈N

∑
S⊂N

δS1i∈S︸ ︷︷ ︸
=1

= n.

If A < B, then

∑
S⊂N

δSs
A

B
=
∑
S⊂N

δSs
a3π

3 + a2π
2 + a1π + 1

b3π3 + b2π2 + b1π + 1 ≥
∑
S⊂N

δSs
a3π

3

b3π3

as
a2π

2 + a1π + 1 ≥ b2π
2 + b1π + 1.

Further, we have

∑
S⊂N

δSs
a3π

3

b3π3

=
∑
S⊂N

δSs
sn2

(∑
i∈N

1
γ−θz(αi)

)2 (∑
i∈S

γ
(γ−θz(αi))2

)
n
(∑

i∈N
γ

(γ−θz(αi))2

) [
s
(∑

i∈S
1

γ−θz(αi)

)
+
(∑

j /∈S
1

γ−θz(αj)

)]2
= n2

n
(∑

i∈N
γ

(γ−θz(αi))2

) ∑
S⊂N

δSs
2

(∑
i∈N

1
γ−θz(αi)

)2 (∑
i∈S

γ
(γ−θz(αi))2

)
[
s
(∑

i∈S
1

γ−θz(αi)

)
+
(∑

j /∈S
1

γ−θz(αj)

)]2
= n(∑

i∈N
γ

(γ−θz(αi))2

) ∑
S⊂N

δS

(∑
i∈S

γ

(γ − θz(αi))2

) (
s
∑
i∈N

1
γ−θz(αi)

)2

[
s
(∑

i∈S
1

γ−θz(αi)

)
+
(∑

j /∈S
1

γ−θz(αj)

)]2
≥ n(∑

i∈N
γ

(γ−θz(αi))2

) ∑
S⊂N

δS

(∑
i∈S

γ

(γ − θz(αi))2

)

= n(∑
i∈N

γ
(γ−θz(αi))2

) (∑
i∈N

γ

(γ − θz(αi))2

)

=n,

showing condition (A.9) and completing the proof.
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A.3 Proof of Proposition 4

Proof. Let S ⊂ N, i ∈ S, j /∈ S. Then j optimizes the certainty equivalent
of individual utility.

cej(Uj(Ej(S), EN (S))) = P 0
j − γj(E0

j − Ej(S))2 − πjEN (S)2 + κjE
2
Nz(αj)

0 != ∂cej(Uj(Ej(S), EN (S)))
∂Ej(S) = 2γj(E0

j − Ej(S))− 2πjEN (S) + 2κjz(αj)EN (S)

⇒ γj(E0
j − Ej(S)) = (πj − κjz(αj))EN (S)

⇒ Ej(S) = E0
j −

πj − κjz(αj)
γj

EN (S)

Player i optimizes the sum of all certainty equivalents of utility of the mem-
bers of S:∑
l∈S

cel(Ul(El(S), EN (S))) =
∑
l∈S

P 0
l −γl(E0

l −El(S))2−πlEN (S)2+κlE2
Nz(αl)

0 != ∂
∑
l∈S cel(Ul(El(S), EN (S)))

∂Ei(S)
= 2γi(E0

i − Ei(S))− 2
∑
l∈S

πl︸ ︷︷ ︸
=:πS

EN (S) + 2
∑
l∈S

κlz(αl)︸ ︷︷ ︸
=:(κz(α))S

EN (S)

⇒ γi(E0
i − Ei(S)) = (πS − (κz(α))S)EN (S)

⇒ Ei(S) = E0
i −

πS − (κz(α))S
γi

EN (S)

The sum of individual emissions of all players gives global emissions EN (S):

EN (S) =
∑
l∈N

El(S) =
∑
i∈S

Ei(S) +
∑
j /∈S

Ej(S)

=
∑
i∈S

E0
i −

πS − (κz(α))S
γi

EN (S) +
∑
j /∈S

E0
j −

πj − κjz(αj)
γj

EN (S)

= E0
N −

(πS − (κz(α))S)
∑
i∈S

1
γi

+
∑
j /∈S

πj − κjz(αj)
γj


︸ ︷︷ ︸

=:ψ(S)

EN (S)

⇒ EN (S) = E0
N

ψ(S) + 1

ψ(S) is the reduction factor of global emissions, showing Proposition 4 (i).
The second and third parts of the Proposition follows directly from (i).
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A.4 Proof of Proposition 6

Proof. As mentioned in Section 2.1, the core of the game is not empty if
and only if condition (2.10) is fulfilled.

We have

max
i∈S

cei(V (S)) = max
i∈S

µ(S) + z(αi)σ(S) = µ(S) + z(max
i∈S

αi)σ(S). (A.11)

For simplicity, define

zmax(S) := z(max
i∈S

αi), (zκ)S :=
∑
i∈S

ziκi,

(1
γ

)
S

:=
∑
i∈S

1
γi
.

Then condition (2.10) is equivalent to

P 0
N −

(
πN + (πN − (zκ)N )2

(1
γ

)
N

)
EN (N)2 + zmax(N)

√∑
i∈N

κ2
iEN (N)2

≥
∑
S⊂N

δS

P 0
S −

(
πS + (πS − (zκ)S)2

(1
γ

)
S

)
EN (S)2 + zmax(S)

√∑
i∈S

κ2
iEN (S)2


⇔

πN − zmax(N)
√∑
i∈N

κ2
i + (πN − (zκ)N )2

(1
γ

)
N

EN (N)2

≤
∑
S⊂N

δS

πS − zmax(S)
√∑
i∈S

κ2
i + (πS − (zκ)S)2

(1
γ

)
S

EN (S)2

⇔ πN − zmax(N)
√∑
i∈N

κ2
i + (πN − (zκ)N )2

(1
γ

)
N

≤
∑
S⊂N

δS

πS − zmax(S)
√∑
i∈S

κ2
i + (πS − (zκ)S)2

(1
γ

)
S

(ψ(N) + 1
ψ(S) + 1

)2

⇔ πN − zmax(N)
√∑
i∈N

κ2
i + (πN − (zκ)N )2

(1
γ

)
N

≤
∑
S⊂N

δS

πS − zmax(S)
√∑
i∈S

κ2
i + (πS − (zκ)S)2

(1
γ

)
S

 (A.12)

 (πN − (zκ)N )
(

1
γ

)
N

+ 1

(πS − (zκ)S)
(

1
γ

)
S

+
∑
j /∈S

πj−zjκj

γj
+ 1

2

I first show condition (A.12) for the special case of the All Singletons
map, i.e.

δSingl
S =

{
1, S = {i}, i ∈ N
0, otherwise.

(A.13)
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Then the right hand side of (A.12) is equal to

∑
i∈N

(
πi − ziκi + (πi−ziκi)2

γi

) (
(πN − (zκ)N )

(
1
γ

)
N

+ 1
)2

(∑
l∈N

πl−zlκl
γl

+ 1
)2

=
(

(πN − (zκ)N )
(1
γ

)
N

+ 1
)∑
i∈N

(πi − ziκi)
(
1 + πi−ziκi

γi

) (
(πN − (zκ)N )

(
1
γ

)
N

+ 1
)

(∑
l∈N

πl−zlκl
γl

+ 1
)2

I now show

∑
i∈N

(πi − ziκi)
(
1 + πi−ziκi

γi

) (
(πN − (zκ)N )

(
1
γ

)
N

+ 1
)

(∑
l∈N

πl−zlκl
γl

+ 1
)2 ≥ πN − (zκ)N ,

(A.14)
which implies (A.12), as(

(πN − (zκ)N )
(1
γ

)
N

+ 1
)

(πN − (zκ)N )

=(πN − (zκ)N )2
(1
γ

)
N

+ πN − (zκ)N

≥(πN − (zκ)N )2
(1
γ

)
N

+ πN − zmax(N)
√∑
i∈N

κ2
i

For simplicity, define τi := πi − ziκi. Then (A.14) is equivalent to

∑
i∈N

τi
(
1 + τi

γi

) (
τN
(

1
γ

)
N

+ 1
)

(∑
l∈N

τl
γl

+ 1
)2 ≥ τN

⇔
∑
i∈N

τi

(
1 + τi

γi

)(
τN

(1
γ

)
N

+ 1
)
≥ τN

∑
l∈N

τl
γl

+ 1

2
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We have∑
i∈N

τi

(
1 + τi

γi

)(
τN

(1
γ

)
N

+ 1
)

=
∑
i∈N

τi

(
1 + τi

γi

)∑
j∈N

τj
∑
k∈N

1
γk

+ 1


=

∑
i,j,k∈N

τ2
i τj
γiγk

+
∑

i,j,k∈N

τiτj
γk

+
∑
i∈N

τ2
i

γi
+
∑
i∈N

τi

=
∑
i,j∈N

τ2
i τj
γ2
i

+
∑

i,j,k∈N
k 6=i

τ2
i τj
γiγk

+
∑
i,j∈N

τiτj
γi

+
∑
i,j∈N

τiτj
γj

+
∑

i,j,k∈N
k 6=i
k 6=j

τiτj
γk

+
∑
i∈N

τ2
i

γi
+
∑
i∈N

τi

≥
∑
i,j∈N

τ2
i τj
γ2
i

+
∑

i,j,k∈N
k 6=i

τiτkτj
γiγk

+ 2
∑
i,j∈N

τiτj
γi

+
∑
i∈N

τi

=
∑
i∈N

τi

∑
j∈N

τ2
j

γ2
j

+
∑
j∈N
k 6=j

τjτk
γjγk

+ 2
∑
j∈N

τj
γj

+ 1



=
∑
i∈N

τi


∑
j∈N

τj
γj

2

+ 2
∑
j∈N

τj
γj

+ 1


=τN

∑
l∈N

τl
γl

+ 1

2

,

showing (A.14).

For the general case, define

g(S) :=
πS − zmax(S)

√∑
l∈S κ

2
l + (πS − (zκ)S)2

(
1
γ

)
S[

(πS − (zκ)S)
(

1
γ

)
S

+
∑
l /∈S

πl−zlκl
γl

+ 1
]2 . (A.15)

From the singleton case, we have(
(πN − (zκ)N )

(1
γ

)
N

+ 1
)2 ∑

S⊂N
δSingl
S g(S)

≥(πN − (zκ)N )2
(1
γ

)
N

+ πN − zmax(N)
√∑
i∈N

κ2
i . (A.16)
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Let

δ̂S =


ε, S = {i, j}
1− ε, S = {i}, S = {j}
δSingl
S , otherwise

(A.17)

for some ε > 0. δ̂ thus is a balanced map that shifts some weight from the
singleton coalitions of the players i and j to the joint coalition of these two
players. I now show that δ̂ also satisfies condition (A.12). Two cases need
to be distinguished:

Case 1: g({i, j}) ≥ g({i}) + g({j}) (A.18)

Then (
(πN − (zκ)N )

(1
γ

)
N

+ 1
)2 ∑

S⊂N
δ̂Sg(S)

(A.18)
≥

(
(πN − (zκ)N )

(1
γ

)
N

+ 1
)2 ∑

S⊂N
δSingl
S g(S)

(A.16)
≥ (πN − (zκ)N )2

(1
γ

)
N

+ πN − zmax(N)
√∑
i∈N

κ2
i ,

showing (A.12).

Case 2: g({i, j}) < g({i}) + g({j}) (A.19)

Define a new game, denoted by ∼, in which players i and j are replaced
by a single player, called T , i.e.

Ñ = N\{i, j} ∪ {T}. (A.20a)

Let

z̃T := zmax({i, j}), (A.20b)

κ̃T :=
√
κ2
i + κ2

j , (A.20c)

Ẽ0
T := E0

i + E0
j , (A.20d)

P̃ 0
T := P 0

i + P 0
j , (A.20e)

while the parameters for other players stay as in the original game.
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Choose π̃T and γ̃T as solutions to the system of inequalities

(
(πN − (zκ)N )

(1
γ

)
N

+ 1
)2

g({i, j}) +
∑
l∈N
l 6=i,j

g({l})



≥
(

(π̃Ñ − (z̃κ̃)Ñ )
(1
γ̃

)
Ñ

+ 1
)2

g̃(T ) +
∑
l∈N
l 6=i,j

g̃({l})

 , (A.21a)

(π̃Ñ − (z̃κ̃)Ñ ))2
(1
γ̃

)
Ñ

+ π̃Ñ ≥ (πN − (zκ)N )2
(1
γ

)
N

+ πN . (A.21b)

For example, in Example 2, one could choose π̃T and γ̃T as in Table 3. A
general solution for π̃T and γ̃T is not spelled out in this proof, due to length
and complexity.

i j π̃T γ̃T
1 2 2.00E-3 5.56E-2
1 3 2.00E-1 1.00E-1
2 3 1.50E-1 1.00E3

Table 3: Values of π̃T and γ̃T that satisfy equations (A.21) in Example 2.
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Thus(
(πN − (zκ)N )

(1
γ

)
N

+ 1
)2 ∑

S⊂N
δ̂Sg(S)

=
(

(πN − (zκ)N )
(1
γ

)
N

+ 1
)2

(1− ε)g({i, j}) + ε(g({i}) + g({j})) +
∑
l∈N
l 6=i,j

g({l})


(A.19)
≥

(
(πN − (zκ)N )

(1
γ

)
N

+ 1
)2

g({i, j}) +
∑
l∈N
l 6=i,j

g({l})


(A.21a)
≥

(
(π̃Ñ − (z̃κ̃)Ñ )

(1
γ̃

)
Ñ

+ 1
)2

g̃(T ) +
∑
l∈N
l 6=i,j

g̃({l})


=
(

(π̃Ñ − (z̃κ̃)Ñ )
(1
γ̃

)
Ñ

+ 1
)2 ∑

S⊂Ñ

δ̃Singl
S g̃(S)

(A.16)
≥ (π̃Ñ − (z̃κ̃)Ñ ))2

(1
γ̃

)
Ñ

+ π̃Ñ − zmax(N)
√∑
i∈N

κ2
i

(A.21b)
≥ (πN − (zκ)N )2

(1
γ

)
N

+ πN − zmax(N)
√∑
i∈N

κ2
i ,

showing (A.12). As the iterative application of transformation (A.17) can
produce any balanced map δ, this completes the proof.
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B Additional tables

Coalition S V(S)
µ σ2

{1} 8.7498 0.0050
{2} 8.5937 0.0514
{3} 7.6406 1.3917
{4} 7.6406 1.3917
{1,2} 17.4751 0.4565
{1,3} 15.8882 6.9740
{1,4} 15.8882 6.9740
{2,3} 15.8706 6.1752
{2,4} 15.8706 6.1752
{3,4} 15.0455 7.8550
{1,2,3} 25.4051 8.7419
{1,2,4} 25.4051 8.7419
{1,3,4} 24.8395 9.3169
{2,3,4} 25.0362 7.8691
{1,2,3,4} 35.3460 7.0608

Table 4: Cooperative game with stochastic payoffs for parameters (3.8).
Payoffs are normally distributed with N (µ, σ2).

Coalition S V(S)
µ σ2

{1} 3.5E+03 3E+05
{2} 4.84E+04 3.11E+07
{3} 4.99E+04 7.783E+08
{1,2} 5.03E+04 1.46E+07
{1,3} 5.38E+04 5.244E+08
{2,3} 9.77E+04 5.340E+08
{1,2,3} 1.009E+05 1.962E+08

Table 5: Cooperative game with stochastic payoffs for parameters (4.6).
Payoffs are normally distributed with N (µ, σ2).
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