
Enhancing Cloud based Data Platforms for Smart Cities with
Authentication and Authorization Features

Philipp Lämmel
Fraunhofer Institute for Open
Communication Systems

Berlin, Berlin, GER
philipp.laemmel@fokus.fraunhofer.

de

Nikolay Tcholtchev
Fraunhofer Institute for Open
Communication Systems

Berlin, Berlin, GER
nikolay.tcholtchev@fokus.fraunhofer.

de

Ina Schieferdecker
Fraunhofer Institute for Open
Communication Systems

Berlin, Berlin, GER
ina.schieferdecker@fokus.fraunhofer.

de

ABSTRACT
The protection and securing of data platforms and related services
plays a major role in the development of safety critical infrastruc-
ture for Smart Cities. Therefore, this paper specifies and develops an
Integerated Component for Cloud Services (ISCS) that enables secure
and trusted access to data and related services in the cloud. That
means that the ISCS controls and handles access-related aspects
such as authentication, authorization and registration. Furthermore,
it is deployed and used in a large scale research project, in which it
secures cloud services relating to electric mobility. ISCS is realized
using OAuth and OpenID, whereas both are implemented by ex-
isting open source libraries. OAuth is a standard allowing services
and applications to access safety critical resources in the cloud
using a trustworthy infrastructure. OpenID is a popular standard
originating from the web community, facilitating cross-domain au-
thentication for portal users. The combination of both standards
provides rich functionality, covering substantial aspects related to
cloud service protection and security.

CCS CONCEPTS
• Security and privacy→Authentication;Access control;Au-
thorization; • Computer systems organization → Cloud com-
puting;

KEYWORDS
Authentication, Authorization, Open Data, Smart City

ACM Reference Format:
Philipp Lämmel, Nikolay Tcholtchev, and Ina Schieferdecker. 2017. Enhanc-
ing Cloud based Data Platforms for Smart Cities with Authentication and
Authorization Features. In Proceedings of UCC ’17: 10th International Con-
ference on Utility and Cloud Computing Companion (UCC’17 Companion).
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3147234.3148087

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UCC’17 Companion, December 5–8, 2017, Austin, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5195-9/17/12. . . $15.00
https://doi.org/10.1145/3147234.3148087

1 INTRODUCTION
The protection of access to communication network services is rel-
evant for their general safety and reliability. Thus, authentication
and authorization of users play an important role. The term authen-
tication means that an individual identifies himselfs unambiguously
and evidentiary. Typically, a username and a password are used
for authentication. Authorization describes the process of checking
whether a user has access rights to a specific resource. Thus, au-
thorization presupposes authentication. In recent years, more and
more applications - granting users mobile access to services, e.g. via
Internet - have been deployed. This implies the question whether
it is reasonable to store login credentials in multiple applications.
OAuth has been developed to evade this situation.
Authorization protocols like OAuth provide a process, allowing that
no login credentials (username and password) need to be stored
in an application locally. As a result, the confidentiality of login
credentials and therefore their security is increased. For this rea-
son, OAuth was selected as the used protocol in Fraunhofer GeMo
project [2] to secure the provided cloud services. The aim of the
project, among other things, is to extend car-sharing- service in-
frastructure in a manner, such that the provided services can be
utilized by any user in a secure and mobile way. The secure usage
will be guaranteed by OAuth.
A shared cloud infrastructure is the most important prerequisite
for the realization of joint mobility, provided in context of the
GeMo project in the form of smartphone- and car OBU (on-board
unit)-applications. As mentioned, authorization presupposes au-
thentication of the user in question. As a part of the GeMo project,
the OpenID decentralized authentification system is used. This
leverages the advantage that the user identifies himself to a sup-
porting system by providing a URL after registering to an OpenID
provider once. The present paper presents a component developed
in the GeMo project, which combines OAuth and OpenID to permit
secure access on services, respectively for applications and users.
The services are running in a cloud environment developed and
operated in the course of the GeMo project. The Integrated Compo-
nent for Securing Cloud Services will be subsequently referred to as
ISCS.
The rest of this paper is organized as follows: Section 2 presents
the high-level requirements which were driving the design of the
proposed solution towards extending urban data platforms. The fol-
lowing section 3 presents the overall architecture of the data cloud
developed within GeMo as well as the proposed ISCS component
and illustrates the interactions that enable the integration of Smart
City data platforms with the proposed ISCS solution. Section 4 gives

https://doi.org/10.1145/3147234.3148087
https://doi.org/10.1145/3147234.3148087

an overview of the realized testing and the resulting performance
measurements which were conducted on the developed research
prototype. Section 5 gives an overview of related authentication and
authorization systems, whereas the last section draws conclusions
as well as drafts future research and development directions.

2 CAPTURING HIGH LEVEL REQUIREMENTS
This section presents some basic high-level requirements, which
were captured in the course of developing the proposed component.
The requirements originate from various discussions and from the
fundamental needs of the research project (Fraunhofer GeMo), for
which the ISCS component was developed. Obviously, we needed a
piece of software service that can secure a number of flexible open
cloud services in the context of electric mobility, which posed the
demand to come up with an independent component that enables
the authorization of end users as well as of applications running
on various devices - such as on-board-units, smartphones as well
as other cloud services in general. Hence, the component was to
be realized as a standalone service, which can be reached over the
Internet (i.e. in general over IP technology) and provides open in-
terfaces allowing various clients1 to connect. In addition, a number
of requirements stem from the need to enable end users to use the
emerging component, in order to access portals and services that
are utilized via a user interface. Based on such considerations, the
following tangible list of requirements was defined.
Requirement 1 Clients that want to utilize ISCS-protected cloud
services should have the possibility to register for receiving the
rights to interact with the desired cloud services. The registration
should be initially done by a user and can be realized using any
suitable user interface, e.g. web form.
Requirement 2All the information required for registering a client
should be persistently stored within the ISCS component.
Requirement 3 It should be also taken into consideration that
clients are able to register only once with the ISCS.
Requirement 4 End users should also be able to register with the
ISCS. The registration and further authorization and authentication
of end users is to be realized in a way that a cross-service access
is possible (e.g. via OpenID), which means that the user should
register and enter his credentials only once, and should be able to
access multiple services within a particular session.
Requirement 5 Similarly as in Requirement 2, all the information
required for registering an end user should be persistently stored
within the ISCS component.
Requirement 6 Similarly as in Requirement 3, it should be taken
into consideration that users are able to register only once within
the ISCS. That is, duplicate registrations should be avoided.
Requirement 7 The developed ISCS component should ensure
that each client is authorized by an end user before accessing pro-
tected cloud services in a session.
Requirement 8 In-line with Requirement 7, each user should be
authenticated, in order to gain the capabilities to authenticate a
client. This ensures that end users are properly involved in the
process of authorization and authentication of clients.
Requirement 9 In-line with Requirement 7 and Requirement 8, a

1Clients are meant to be different services or applications that utilize the component
developed in the presented work.

client should be authenticated before gaining full access to a ser-
vice.
Requirement 10 The ISCS component should check whether all
required information for a registration is indeed present and should
validate this information when required, i.e. before registering a
client or an end user.
Requirement 11 The IdentityManagement of the ISCS component
should be easy to integrate in state-of-the-art Smart City related
systems, such as CKAN, Liferay and others. This implies that estab-
lished and recognized standards should be used as guidelines for
realizing the interfaces of the emerging component.
The above consideration give a high level view of key requirements
on the emerging ISCS component. These requirements drive the
architectural design and the implementations in the coming sec-
tions and ensure that the proposed solution is indeed usable in the
context of urban platforms for smart cities.

3 CLOUD BASED DATA AND SERVICE
ARCHITECTURE

In this section both the architecture of the City Data Cloud (CDC)
and the Integrated Component for Securing Cloud Services (ISCS)
will be presented.

3.1 City Data Cloud
The City Data Cloud (CDC) aims to provide versatile, mobility-
focused datasets via a centralized platform. Various data sources,
like map resources or governmental road data are integrated and
available via the CDC and therefore, diverse applications and ser-
vices can make use of this data. An exemplary application could be
an embedded application in an On-Board Unit or a web application
accessed via a web browser. The CDC consists of the components
1) Data Portal, 2) Data Registry, 3) Data Store, 4) Triple Store and 5)
Service Layer and the CDC’s architecture can be seen in figure 1
[18]. The components 1,2 and 3 form the Open Data2 Platform of

Figure 1: Architectural view on the CDC [18]

Fraunhofer FOKUS [14]. The Open Data Platform originates from
the Open Cities project [6], in which the CDC can be seen as an
extension of this open source approach. The particular modules of
the CDC are described below.
2Data is considered open, if it is freely usable and distributable by anyone who complies
to the authors regulations, for example in terms of attribution and dissemination (share-
alike) [1].

1) Data Portal
The Data Portal is a component that is derived from the Open Data
Platform. It presents the data of the CDC to potential users, for
instance app-developer. In addition, it provides the possibility of
adding new data and data sources to the CDC. In this regard it is
mentionable that the CDC can store data within its architecture
as well as references to external sources. In addition, the portal
provides social media features like a commentary function and a
discussion board [14, 18].
2) Data Registry
The Data Registry is based on CKAN and is responsible for the
indexing and administration of data sources within the CDC, and
thus it stores the metadata entries, describing the data available in
the CDC. This applies to data referenced externally as well as data
stored directly within the architecture [18].
3) Data Store
Arbitrary data is stored in the Data Store component. For this pur-
pose, a REST-Interface is provided on top of the underlying database.
The component can be either realized by a NoSQL database [13] or
via an open REST interface on top of the underlying database. This
interface can be used by applications and services to determine the
data interchange format dynamically [18]. An implementation of
this component has been carried out as a part of [11].
4) Triple Store
The Triple Store gives the opportunity to store data within the CDC.
Ontology-based data can be stored and made available for using a
REST interface (for example to query a SPARQL endpoint) [18].
5) Service Layer
With the aid of the Service Layer, mobile services and applications
that are based on data available in the CDC can be deployed. For
this purpose, a Service Deployment interface has been developed,
which allows developers to add new and update existing services
[18]. Thereby, the openness of the platform in terms of PaaS is im-
plemented [18]. The mentioned services are not limited to the usage
of data stored within the CDC, they can use data from external data
sources, which have been indexed by the Data Registry, too. As a
consequence, the implementation of adapter has to be considered
eventually, which transform the raw data into the required format.
Services can provide specific user interfaces, for instance in the
context of web-based mobile applications, which are accessible via
the HTTP protocol as part of the service layer, as well. Furthermore,
these services provide a REST interface which grant access to JSON-
and XML-based APIs. The combination of services is also possible
so that complex services emerge. This could be realized by using a
Services OrchestrationModule and in this case, services are chained
up and in- and outputs are transferred between adjacent services.

3.2 Integrated Component for Securing Cloud
Services

In this subsection the particular components of the ISCS are pre-
sented regarding their functionality. figure 2 shows the architecture
of the integrated component. The left-hand side shows the Open
Data Platform of Fraunhofer FOKUS, which is the basis of the CDC,
and the clients. The component itself and its modules are shown in
the center, while the database, accessed by the integrated compo-
nent, is shown on the right-hand side.

uses

Database

Consumer AuthzEndpoint

OAuthOpenID

TokenEndpoint

ClientRegistration
Endpoint

RedirectEndpoint

Provider

UserRegistration
Clients (z.B. GeMo
Mobilitätsdienste

oder mobile
Applikation)

uses

us
es

Integrierte Komponente zur Sicherung von Cloud ServicesOpen Data
Plattform

Data Portal

Data Registry

User

Integrated component for cloud services

Clients (e.g.
mobile

applications)

Figure 2: Architectural view on the developed ISCS

As a consequence of requirement 1,2,4 and 5 there has to be a
component for the registration of users and clients respectively. To
create a solution as modular and maintainable as possible, these two
components have to be independent and separate from each other.
The modules UserRegistration and ClientRegistrationEndpoint are
designated for the registration of users and clients and are shown
in figure 2. The figure also illustrates the independence of the com-
ponents from one another.
Referring to requirement 7, a component is required that authorizes
the clients. TheAuthzEndpoint is designated for that purpose. Given
that the authentication of the user is presupposed for authorization,
an appropriate component is required as well. For that purpose,
OpenID is used which is a well established community standard.
Thereby, the Consumer and Provider modules are in charge of per-
forming authentication. These modules should be independent from
the aforementioned modules as well. The User module sends an
XRDS (Extensible Resource Descriptor Sequence) document that
identifies the Provider in return for a request. Furthermore, a module
determining and validating access rights needs to be available. This
task is executed by the TokenEndpoint within the OAuth component.
Finally, the OAuth component encompasses a RedirectEndpoint that
serves as an alternate endpoint for clients without an own redirect
URI. That guarantees that the data is resent to the requesting client.
The requirements 2 and 5 imply that all data is persisted. Therefore,
a database (see figure 2) that allows independent access is required.
The underlying database should be also interchangable, which can
be achieved by the application of a persistence framework like Hi-
bernate [3].
Figure 3 shows the typical requests to the ISCS. the topmost se-
quence shows a request for authorization. In this request, a client
sends a request along with the required parameter to the AuthzEnd-
point, which belongs to the OAuth-subcomponent (see message
requestAuthcode() in figure 3). In the next step the transmitted in-
formation are validated (see message validateInput() in figure 3)
and also checked for validity. Subsequently, the client needs to be
authorized by the user (see message askUserForAuthorization in fig-
ure 3). After the authorization is completed, an authorization code
is issued and saved in the database (see message saveAuthCode() in
figure 3).
The next sequence shows the exchange of an access token and a
refresh token against a previously received authorization code (see
message requestToken() in figure 3). The authorization code is send

Figure 3: Illustration of typical requests

to the TokenEndpoint, which belongs to the OAuth-subcomponent,
and is exchanged with the mentioned tokens in case of a valid au-
thentication. The generated tokens are additionally persisted in the
database (see message saveAccessToken() and saveRefreshToken() in
figure 3). In this way requirements 7,8 and 9 are fulfilled, addressing
the authorization of a client corresponding to the specification of
OAuth.
The next sequence shows the request to an access protected service
(message api_call() in figure 3). At this point, the ISCS validates the
received parameters for the service (message validateToken() and
isValidAccessToken() in figure 3) and thereby fulfills requirement
10.
Access token have a restricted validity, and thus clients have to use
the provided refresh token in order to get a new access token. This
process is realized by the message refreshToken() shown in figure
3). Thereby, the input is validated again and the refresh token is
checked for its validity (message validateInput() and isValidRefresh-
Token() in figure 3).
Finally, you can login to the Open Data Platform via OpenID. This
procedure does not inhere further effort since the platform is based
on Liferay, which is delivering OpenID by default. For that purpose,
the ISCS would start the OpenID protocol and the user could use
his credentials to log in. Requirement 11 is thereby fulfilled.

4 EVALUATION: MEASUREMENT RESULTS
In this section, the Integrated Component for securing cloud Ser-
vices (ISCS) will be evaluated. Due to the compactness of this paper,
the presentation will focus on performance tests, because we think
that these measurements provide the most insights. During the
development of the ISCS, the authors did a lot of dynamic testing of
the system by means of unit tests, integration tests and fuzz tests.
Dynamic testing helps to investigate the behavior of the system.
The software is executed and input data is sent to the system. After-
wards, the output of the system is checked for validity. Unit tests
perform isolated tests on a subsystem with respect to the required

and expected functionality. In the context of integration testing,
these subsystems are grouped and tested in combination. Fuzz test-
ing describes a kind of security testing by sending invalid data to
the system. In this case the robustness and stability of the ISCS is
investigated.
More than 10000 tests were implemented and generated and en-
sured the correctness as well as robustness of the emerging solution.
The performance of the component was investigated and will be
discussed in the next subsection.

4.1 Performance Tests
Performance tests have been executed in order to evaluate the
developed ISCS with respect to non-functional requirements such
as high performance and low resource usage. Various integration
and fuzzing tests were selected and adapted to measure runtime
and memory usage.

4.1.1 Measuring the Execution Time. The results are shown in
figure 4. Four typical scenarios are displayed which represent fre-
quently executed use cases of the ISCS (e.g. ClientRegistration).
The results are shown as a boxplot. 120 samples were created for
the request of an access token, while 220 samples were created for
the request of a refresh token and 400 samples were created for
the remaining requests. With more than 100 test data sets for each
use case, the sample is representative. As illustrated in figure 4, the

ClientRegistration AuthCode TokenRequest AccessToken RefreshToken

0
10

20
30

40

Anfragen

A
nt

w
or

tz
ei

te
n

(m
s)

ClientRegistration AuthCode TokenRequest AccessToken RefreshToken

0
10

20
30

40

Anfragen

A
nt

w
or

tz
ei

te
n

(m
s)

R
es

po
ns

e
tim

e
(in

 m
s)

Requests

Figure 4: Performance measurements regarding typical re-
quests to the ISCS

median of the response time is below 30 ms for every single request.
At the same time 75% of the data is below 32 ms. Thus, the result
can be considered as good. At the same time it has to be mentioned
that the input data for the deployed fuzz tests is often invalid, which
means that the ISCS does not access the database in some of those
samples. Nevertheless, these tests and obtained measurements give
a reasonable indication for the ISCS’ performance. Furthermore,
these tests validated the system in terms of changes in behavior. It
can be concluded that the system operates correctly and with good
performance under data fuzzing as well as valid requests.
According to a study performed by Jako Nielsen, the response time
should lie between 0.1 and 1.0 second, giving the user the feeling
of immediate response [17]. Within this timespan the user’s train
of thought is not disrupted, avoiding the need for sending further
feedback [17]. However the user would still notice a delay which is
why it should be pointed out that the measurements rarely exceed
a value of 300 ms. The performance of the ISCS can be considered
as very well due to these results.

4.1.2 Memory Usage. In this subsection the memory usage of
the ISCS is investigated. Test cases refering to the runtime mea-
surement were adapted in a way, such that the usage of the heap
memory for the ISCS component is displayed. The Java Virtual
Machine has been started with different heap size parameter values,
taking a value of 64 MB, 128 MB and 256 MB. Again fuzz tests were
used in the first step. The results are shown in figure 5 and figure
6. The observed memory usage is typical for a java application,
raising to a certain point before the garbage collector is called and
releasing unused memory space after each periodic garbage collec-
tor invokation. The resource usage is considered to be sufficiently

0 100 200 300 400

20
40

60
80

10
0

Iteration (~Zeit)

H
ea

p-
S

pe
ic

he
rv

er
br

au
ch

 v
on

 IS
C

S
 (M

eg
ab

yt
es

)

64 MB
128 MB
256 MB

Iteration (~time)

He
ap

 M
em

or
y

co
ns

um
pt

ion
 o

f I
SC

S
(in

 M
B)

Figure 5: Token Request

0 20 40 60 80 100 120

20
30

40
50

60
70

80

Iteration (~Zeit)

H
ea

p-
S

pe
ic

he
rv

er
br

au
ch

 v
on

 IS
C

S
 (M

eg
ab

yt
es

)

64 MB
128 MB
256 MB

Iteration (~time)

He
ap

 M
em

or
y

co
ns

um
pt

ion
 o

f I
SC

S
(in

 M
B)

Figure 6: Validating an Access Token

small. Memory is used as long as it is available, without ever be-
coming excessively large, which in turn would be an indication for
a memory leak. It can be assumed that the developed solution is
free of memory leaks or other greedy sub-optimal code fragments.

5 STATE OF THE ART
Having presented the way data platforms for Smart Cities can be
enhanced as to protect and secure the data and corresponding ser-
vices, we proceed with a state-of-the-art review of technologies
which are related to the area of authentication and authorization
in distributed systems. These technologies can all play a key role
when designing security solutions for urban data platforms.
Kerberos is a very popular legacy system for realizing authenti-
cation and authorization in distributed systems. Currently, it is
available in its version 5 and was originally developed by the Mas-
sachusetts Institute of Technology (MIT) [16]. Kerberos is meant
to provide an infrastructure for authentication on top of an in-
secure network. It is partially based on the protocol of Nedham

and Schroeders for authentication [15] as well as on further de-
velopments, which were proposed by Denning and Sacco in [10].
Thereby, the Kerberos architecture uses a centralized instance that
issues tickets to the entities needing authentication/authorization
for access to network resources.
Mozilla Persona, originally known as BrowserID, is another system
of general interest and was initially developed by the Mozilla Foun-
dation [5]. It implements a decentralized authentication procedures
that allows the access to multiple websites based on a one-time
authentication using an email address. The system security is based
on an asymmetric cryptographic system utilizing digital signatures.
After login, a so-called Identity Assertion is being created, which
contains the email address of the user in question. This Identity
Assertion is signed with the private key of the user in question and
subsequently sent to the corresponding resource hosting entity (e.g.
server), which in turn requests the verification of the assertion to
be conducted by an Identity Provider.
OpenID [7] is probably the most popular technology in that field.
It is also one of the technologies utilized in the current work. Since
it usage was widely exemplified in the current work, we are not
going to further ellaborate but just mention OpenID for the sake of
completeness.
The Security Assertion Markup Language (SAML) was developed
by the Services Committee of the Organization for the Advance-
ment of Structured Information Standards (OASIS) [6] [8]. SAML is
an XML based framework, which enables both the authentication
and authorization of users. Based on SAML, it is possible to conduct
various assertions based on single identities, attributes, and access
rights.
Shibboleth was developed by Internet2/MACE as an authentication
and authorization system for webservices [9]. The goal is to en-
able the one-time authentication of users, which in turn can use
the services of various providers. Shibboleth is based on an exten-
sion of the previously presented SAML standard [8] [9]. Similarly,
Shibboleth involves three different parties: an Identity Provider, a
Service Provider and an optional Discovery Service [4]. The task of
the Identity Provider is the management and verification of user
identities, whilst the Service Provider is in charge of securing the
belonging web service. By utilizing the Discovery Service, it is
possible to establish connections to various Identity and Service
Providers. These components can be operated independently and
can dynamically support and facilitate the authentication and au-
thorization processes.
Finally, for the sake of completeness, we should mention the second
key technology used in this work - OAuth 2.0 [12]. It is a widely
used standard for cross-service authentication and authorization,
which is supported by key players on the market (e.g. Facebook and
Twitter). Since the usage of OAuth 2.0 for the purpose of enhancing
cloud based urban data platforms was widely exemplified within
the current paper, the authors decided to omit further details of the
standard.
The current section has elaborated on technologies with respect to
the broader picture of solutions and methods for enhancing Smart
City data platforms with security features. These approaches can
be used in similar works to achieve the goal of providing services
in a secure way.

6 CONCLUSIONS AND FUTUREWORK
In this paper an Integrated Component for securing Cloud Services
(ISCS) has been presented. The component is based on the IETF
standard OAuth and the community standard OpenID. It has been
developed in context of the Fraunhofer GeMo project to guarantee
the secure access of services, respectively applications and their
users, to the cloud infrastructure used within GeMo. This cloud
infrastructure is a typical example for a data platform for Smart
Cities with corresponding services running on top of it, adding
value to the data and presenting it to end users in a consumable
way. Hence, the paper presents a concept that allows to enhance a
cloud based data platform for Smart Cities with authentication and
authorization features.
The presented design is based on a set of high-level requirements,
which are subsequently used to drive the specification of an ar-
chitecture and belonging interaction flows for the ISCS. Based on
these specifications, a prototype implementation of the ISCS was
developed and evaluated in terms of stability and performance, as
well as memory usage. The obtained results show that it is possible
to realize the ISCS in a way that it responds fast and efficiently
despite the multiple interactions required for achieving its goals.
Furthermore, the research prototype shows some moderate mem-
ory usage and increased robustness based on the employed testing
techniques.
Our future work will move into the direction of deploying the ISCS
component in various research projects on European level as well
as in different industrial projects. Furthermore, we believe that as-
pects such as billing and accounting for the usage of urban data and
services can be further integrated into the ISCS. Hence, this would
be another direction requiring some more specific investigation in
the coming years.

REFERENCES
[1] 2017. Definition of Open Data. http://opendefinition.org/. (2017). last accessed:

October 13, 2017.
[2] 2017. GeMo. https://www.gemo.fraunhofer.de/en.html. (2017). last accessed:

October 13, 2017.
[3] 2017. Hibernate. http://hibernate.org/. (2017). last accessed: October 13, 2017.
[4] 2017. How Shibboleth Works: Basic Concepts. http://shibboleth.net/about/basic.

html. (2017). last accessed: October 13, 2017.
[5] 2017. Mozilla Persona. https://developer.mozilla.org/en-US/Persona. (2017). last

accessed: October 13, 2017.
[6] 2017. Online Community for the Security Assertion Markup Language (SAML)

OASIS Standard. http://www.saml.xml.org. (2017). last accessed: October 13,
2017.

[7] 2017. OpenID Authentication 2.0 - Final. http://openid.net/specs/
openid-authentication-2_0.html. (2017). last accessed: October 13, 2017.

[8] 2017. Security and Privacy Considerations for the OASIS Security Markup Lan-
guage V2.0. http://docs.oasis-open.org/security/saml/v2.0/saml-sec-consider-2.
0-os.pdf. (2017). last accessed: October 13, 2017.

[9] 2017. Shibboleth. http://shibboleth.net/. (2017). last accessed.
[10] Dorothy E Denning and Giovanni Maria Sacco. 1981. Timestamps in key distri-

bution protocols. Commun. ACM 24, 8 (1981), 533–536.
[11] Benjamin Dittwald. 2012. Eine webbasierte Infrastruktur zur Speicherung und

Abfrage von strukturierten offenen Daten. Master’s thesis. Freie Universität Berlin.
[12] D. Hardt. 2012. The OAuth 2.0 Authorization Framework. RFC 6749 (Proposed

Standard). (Oct. 2012). http://www.ietf.org/rfc/rfc6749.txt
[13] M. Indrawan-Santiago. 2012. Database Research: Are We at a Crossroad? Reflec-

tion on NoSQL. In Network-Based Information Systems (NBiS), 2012 15th Interna-
tional Conference on. 45–51. https://doi.org/10.1109/NBiS.2012.95

[14] Evanela Lapi, Nikolay Tcholtchev, Louay Bassbouss, Florian Marienfeld, and Ina
Schieferdecker. 2012. Identification and Utilization of Components for a Linked
Open Data Platform. 2012 IEEE 36th Annual Computer Software and Applications
Conference Workshops 0 (2012), 112–115. https://doi.org/10.1109/COMPSACW.
2012.30

[15] Roger M. Needham and Michael D. Schroeder. 1978. Using Encryption for Au-
thentication in Large Networks of Computers. Commun. ACM 21, 12 (Dec. 1978),
993–999. https://doi.org/10.1145/359657.359659

[16] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. 2005. The Kerberos Network
Authentication Service (V5). RFC 4120 (Proposed Standard). (July 2005). http:
//www.ietf.org/rfc/rfc4120.txt Updated by RFCs 4537, 5021, 5896, 6111, 6112,
6113, 6649, 6806.

[17] Jakob Nielsen. 1994. Usability engineering. Elsevier.
[18] Nikolay Tcholtchev, Benjamin Dittwald, Thomas Scheel, Begüm Ilke Zilci, Danilo

Schmidt, Philipp Lämmel, Jurma Jacobsen, and Ina Schieferdecker. 2014. The
Concept of a Mobility Data Cloud: Design, Implementation and Trials. In IEEE
MidArch - 8th IEEE International Workshop on Middleware Architecture in the
Internet co-located with COMPSAC 14.

http://opendefinition.org/
https://www.gemo.fraunhofer.de/en.html
http://hibernate.org/
http://shibboleth.net/about/basic.html
http://shibboleth.net/about/basic.html
https://developer.mozilla.org/en-US/Persona
http://www.saml.xml.org
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-authentication-2_0.html
http://docs.oasis-open.org/security/saml/v2.0/saml-sec-consider-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-sec-consider-2.0-os.pdf
http://shibboleth.net/
http://www.ietf.org/rfc/rfc6749.txt
https://doi.org/10.1109/NBiS.2012.95
https://doi.org/10.1109/COMPSACW.2012.30
https://doi.org/10.1109/COMPSACW.2012.30
https://doi.org/10.1145/359657.359659
http://www.ietf.org/rfc/rfc4120.txt
http://www.ietf.org/rfc/rfc4120.txt

	Abstract
	1 Introduction
	2 Capturing High Level Requirements
	3 Cloud based Data and Service Architecture
	3.1 City Data Cloud
	3.2 Integrated Component for Securing Cloud Services

	4 Evaluation: Measurement Results
	4.1 Performance Tests

	5 State of the Art
	6 Conclusions and Future Work
	References

