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Abstract—Currently we can see an increasing adoption of 
multi-core platforms in the area of embedded systems. While 
these new hardware platforms offer the potential to satisfy the 
ever increasing demand for computational power, they pose 
considerable challenges with regard to software development. 
This affects the application software itself, but also the system 
design and architecture. Here, we address the consequences for 
operating system architecture in embedded systems. After dis-
cussing current approaches, we present our own proposal for a 
flexible and configurable operating system design, targeted at 
embedded multi-core platforms. 
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I.  INTRODUCTION 
At the moment, we can see a trend of increasing complexity 

in embedded systems. In some instances the tasks they perform 
become more computation-intensive, like image processing 
frequently used in advanced driver-assistance systems; other 
systems face increasing data volume and throughput require-
ments, e.g. current and next generation wired and wireless 
communication systems. Often we also find that embedded 
systems can no longer be seen as isolated. Instead we have to 
consider their interactions with other devices they are linked to, 
or regard them as a “system of systems”. All of these factors 
introduce new requirements when designing embedded sys-
tems. Aspects like dynamic re-configuration of the system at 
runtime, or the integration of different applications of mixed 
criticality on one device are only few examples of new chal-
lenges. One of the consequences of these trends is that future 
embedded systems will no longer be dedicated to only one 
static task for which they are programmed and optimized at 
design time. Instead they will need to be flexible and open, able 
to adapt to changing scenarios, while still meeting the timing 
requirements of their respective applications. 

In this context, multi-core platforms play an important role. 
They can satisfy the demand for computational power, and can 
provide the flexibility needed in future embedded systems. 

However, multi-core technology itself introduces new difficul-
ties and challenges with regard to application and system soft-
ware. 

The biggest of these challenges is that the software must 
explicitly target parallel execution in order to benefit from the 
available processing power. This means that the software must 
be parallelized and then distributed among the cores. While this 
applies to all parallel and multi-core platforms, embedded 
systems introduce even more constraints. Because factors like 
fabrication cost and energy consumption come into play, em-
bedded multi-core devices are often specialized Systems-on-
Chip (SoCs) with heterogeneous hardware architectures. In 
addition, embedded software must often meet certain timing-
related constraints. Because of the high complexity of the sys-
tems, it is hard to guarantee compliance with these real-time 
requirements. 

The use of operating systems can help alleviate these prob-
lems by reducing the complexity that is visible to the software 
developer. By using abstract programming interfaces, the de-
veloper does not need concern himself with the details of the 
hardware platform. But as embedded platforms and applica-
tions become more complex, there is need for more specialized 
operating systems. 

In this paper we present a new operating system design 
concept that has two main features: First, we use a system 
layout that simultaneously permits both static task placement 
for deterministic timing and a high degree of flexibility at run-
time to optimally utilize the available resources. Second, we 
provide a modular and configurable operating system, in which 
main functions can be tailored to the specific application. 

In Section II we outline current approaches to embedded 
multi-core operating systems. We present our idea of a flexible 
operating systems design in Section III. In Section IV we pre-
sent two different embedded application scenarios to which we 
have tailored our configurable architecture. Section V con-
cludes the paper and gives an outlook on future research. 

The research leading to these results has received funding from the Ger-
man Federal Ministry for Economic Affairs and Energy and the Bavarian 
Ministry of Economic Affairs and Media, Energy and Technology. 



 
Fig. 1. Illustration of different software deployment strategies for multi-core platforms, and the location of the key components scheduling (S) and inter-process 
communication (IPC): (a) Symmetric Multiprocessing (SMP), (b) Asymmetric Multiprocessing (AMP), and (c) our combined approach. 

II. SOFTWARE DEPLOYMENT STRATEGIES FOR MULTI-CORE 
PLATFORMS 

In general there are two major approaches with regard to 
the operating system architecture for multi-core platforms: 
symmetric multiprocessing (SMP) and asymmetric multipro-
cessing (AMP). In the following we use the terms SMP and 
AMP to refer to software concepts, independent of the underly-
ing hardware platform. This should not be confused with the 
terms homogeneous and heterogeneous, which we use to de-
scribe whether a multi-core platform has identical cores (ho-
mogeneous) or cores of different architectures or with different 
features (heterogeneous).  

In SMP systems there is one global instance of the operat-
ing system that controls and manages all cores. Scheduling is 
performed globally and centrally, as well as load balancing and 
control of I/O devices. Having only one operating system in-
stance on a multi-core system means that operating system 
code and data structures are shared among multiple cores. As a 
consequence SMP operating systems are only suitable for ho-
mogeneous platforms with a shared memory hardware archi-
tecture. From the application programmer's point of view, SMP 
systems are easy to use. To leverage the parallel hardware 
platform, only a relatively simple API is used (e.g. pthreads), 
while the distribution of tasks to cores and the management of 
resources is handled dynamically by the operating system. 
However, this flexibility and scalability has drawbacks when 
considering embedded systems. One problem is non-
determinism in the timing of task execution, which is a side-
effect of the complexity of dynamic scheduling on multiple 
cores. Also the usage of shared data structures within the ker-
nel, which need to be protected by synchronization mechanism 
like locks or semaphores, can lead to unforeseen delays in 
program execution. 

An alternative to SMP is AMP, where the cores operate in-
dependently. They can either execute separate instances of the 
same operating system, or run totally different environments 
(e.g. a mix of different operating systems, including bare-metal 
applications). The different operating system instances do not 
share any data structures, so this approach is also suited for 
heterogeneous platforms or devices without shared memory. 
Software development and system integration of AMP systems 
differs from that of SMP platforms. In an AMP system, many 
decisions on task distribution and resource allocation are taken 
at design-time, and cannot change dynamically while the sys-
tem is running. While this requires additional planning effort 

and can make application development and deployment less 
flexible, it also has advantages. The inherently higher deter-
minism permits easier analysis and verification of the system’s 
behavior, particularly with regard to timing. 

Pure SMP architectures have limitations when it comes to 
their deployment in embedded systems. They require homoge-
neous, shared-memory hardware platforms, and they introduce 
sources of non-determinism. On the other hand, AMP architec-
tures lack the required runtime flexibility to construct next-
generation embedded designs that are open and address aspects 
like re-configuration or mixed-criticality applications. Thus, 
our aim is to design an operating system architecture that lev-
erages the advantages of both approaches while addressing 
their disadvantages. Similar approaches combining SMP and 
AMP concepts can also be found in operating systems like 
Barrelfish [1] or Helios [2]. However, our proposal specifically 
targets embedded systems with their constraints with regard to 
hardware platforms and application requirements. 

III. MUC-OS: A FLEXIBLE OPERATING SYSTEM DESIGN 
We propose an operating system concept that bridges the 

gap between SMP and AMP. Our design is based on a single-
core operating system which we deploy in an AMP configura-
tion. Each core executes its own instance of the kernel; there 
are no shared data structures within the kernel. This significant-
ly reduces run-time complexity, and thus facilitates analysis of 
timing behavior and resource usage. To enable cooperation of 
the independent OS instances we provide a message-based 
mechanism for inter-process communication (IPC). Our pro-
posed design and its relation to SMP and AMP concepts is 
illustrated in Fig. 1. Thanks to the message-based communica-
tion mechanism it is possible to provide a distributed execution 
environment similar to SMP systems, where services and ap-
plications can be executed distributed across multiple processor 
cores. In fact, from the application’s point of view, our pro-
posed system design is indistinguishable from an SMP system. 

We implemented the proposed operating system design in 
form of a configurable operating system prototype for embed-
ded systems: MUC-OS. Our new operating system is configu-
rable, because we believe that the requirements of embedded 
applications are so diverse that they cannot be met by a single 
configuration or even implementation of an operating system. 
Thus, we propose a modular kernel design that defines only 
small parts of the overall architecture and concept. The goal of 
the design is to establish MUC-OS as a flexible operating sys-
tem platform and basis for further research. 
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TABLE I. OVERVIEW ON THE MODULE STRUCTURE OF MUC-OS. 

 Module name Description 

 Boot Code The Boot Code systematically initializes the hardware with help of the Hardware Abstraction Layer. It brings the 
hardware platform to a defined state in which all processor cores are correctly initialized, booted with their own instance 
of the operating system kernel and connected via the IPC module. The implementation of this module is fixed. 

Process Management This module defines the task state model as shown in Fig. 2 and provides functions to create and destroy tasks, and to 
migrate them between processor cores. Our state model is based on the five-state model originally presented in [5], with 
an extension that allows for a task to suspend other tasks. The implementation of this module is fixed. 

Module Interfaces The interface definition is not strictly a module, but still forms a component of the overall MUC-OS kernel. It specifies 
the interfaces of all modules listened in this table, as well as their interconnections. 

 HardwareAabstraction 
Layer (HAL) 

The HAL provides functions to save/restore a task context, enable/disable interrupts, initialize task stacks, and to initialize 
specific hardware components. Additionally, the HAL implements the system call interfaces and manages the context 
switch to the kernel in case of a system call. The user has to provide an own HAL module for each hardware platform he 
wants to support. 

Scheduler The scheduler handles the local management of computational resources. Each processor core has its own scheduler; a 
coordination between the instances can take place through the exchange of IPC messages. Thus, also a global scheduling 
using task migrations between cores can be realized. Thanks to the modular structure, even a hierarchical scheduler is 
possible that itself utilizes other scheduler modules to schedule the individual containers. 

Inter-Process 
Communication (IPC) 

The IPC module implements the message passing paradigm within the MUC-OS kernel. It provides a message based 
communication mechanism for inter-process and inter-core communication. Implementations of the IPC module could 
either be a simple queue based message exchange protocol, more sophisticated protocols like e.g. MCAPI [16], or any 
other mechanism that could be used to deliver messages. 

 Memory Manager If required by an application, the memory manager module implements memory allocation and deallocation functions. A 
possible implementation is e.g. a memory pool based management. The module may also be extended or adapted by other 
modules to provide features like garbage collection. 

Resource Manager This module manages and multiplexes the accesses to peripheral devices from the application tasks. 
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We subdivide our operating system into seven individual 
modules: boot code, process management, hardware abstrac-
tion layer, scheduler, inter-process communication, memory 
manager, resource manager. Our design defines the interfaces 
of all modules and provides fixed implementations of two of 
them: the boot code and the process management. In combina-
tion with the module interface specification, we call these two 
modules the core functionality of our operating system. Except 
for this small part of the kernel, the whole operating system is 
designed to be configurable and adaptable. However, to build a 
fully functional operating system three more modules are re-
quired: the hardware abstraction layer, the scheduler, and the 
inter-process communication module. We call these modules 
the essential modules. The aforementioned six modules can be 
complemented by other optional modules: the memory manag-
er or the resources manager module. A special feature of the 
optional modules is that they run on top of the abstraction layer 
defined by MUC-OS and thus do not notice or care on which 
processor core they are actually executed. An overview of the 
module structure of MUC-OS and the functions of the individ-
ual modules is given in Table I. 

We have chosen the presented module structure to cover 
most functions of a typical operating system, as described in 
well-known textbooks [3] [4] [5]. In case a specific use case 
requires additional modules, those can be easily integrated into 
the system. However, for most embedded application scenarios 
it should be sufficient to adapt the existing modules and im-
plement an application specific version. We tried to reduce the 
efforts required to maintain or extend our operating system, as 

well as the initial training hurdle, by avoiding a strict compo-
nent based programming model and by providing simple, well 
documented module interfaces. Our goal is to provide a plat-
form for the evaluation of future operating system concepts or 
components that could be easily used and extended by students. 
As a consequence, we specified the core functionality of our 
operating system as fixed, as mentioned above. 

Configurable operating systems are not a new approach; 
several competing concepts exists, so we briefly explain how 
our approach fits into the research landscape of configurable 
operating systems: Research lists more than 15 different con-
figurable operating systems [6] [7], out of which four suggest 
comparable approaches: eCos [8], MMLite [9], Pebble [10], 
Think [11], and Exokernel [12]. However, in contrast to MUC-
OS, eCos stops the configuration and modularization at the 
kernel level, while our approach allows to flexibly adapt the 
kernel to the very specific needs of an application. MMLite and 
Think address embedded system and systems with restricted 
resources in general; however they focus explicitly on the sup-
port of dynamic re-configurations of the final system and thus 
suffer certain performance degradations. With MUC-OS, we 
lay our focus on static systems and compile-time configuration 
of the whole operating system to deliver the best possible per-
formance of the system. Pebble also focuses on embedded 
applications and reduces the fixed function set of the operating 
system to a minimum, as we do. However, they restrict all 
functions outside this small “kernel nucleus” to the user space, 
hence inducing a potentially high processing overhead due to 
frequent context switches. The Exokernel project suggests a 



 
Fig. 2. Extended five-state task model of MUC-OS, based on the original 
work by Stallings [5]. 

more competitive approach by utilizing static libraries to con-
struct the overall operating system. Accordingly, Exokernel is 
classified as a so called library operating system. However, 
Exokernel does not target resource restricted embedded sys-
tems, but focuses on large distributed systems. 

In Fig. 3 we set the attributes of MUC-OS in relation to 
those of the four configurable operating systems for embedded 
systems: eCos, MMLite, Pebble, and Think. The original clas-
sification of the four operating systems and the illustrative 
diagram were taken from [7]. We complemented the original 
diagram with the attributes of our proposal according to the 
guidelines given by [7]. The axes of the diagram shall be inter-
preted as follows: 

• G (granularity) quantifies the size of the smallest con-
figuration unit defined by the examined operating sys-
tem. 

• D (depth) quantifies the size of the smallest non-
configurable part of an operating system. An operating 
system is either fully configurable (full) or has a fixed 
set of functions that cannot be configured. Depending 
on the size of the fixed part, an operating system is ei-
ther identified as partially-small (p-small), -medium (p-
med), or -big (p-big). Where p-small stands for a rather 
small fixed function set and p-big for an almost non-
configurable operating system with a large fixed func-
tion set. 

• T (time) quantifies the point during the life cycle of an 
operating system until which the system can be config-
ured: at development time only (dvpt), at boot time 
(boot), or even at runtime (execution). 

• I (integrity) examines the possibility to ensure the valid-
ity of a new operating system configuration; the options 
are: none, semantic, security. The semantic integrity can 
be achieved through interface type-checking, a dedicat-
ed language, constraint definitions, or the framework it-
self. The security level reflects system that actively en-
sure the correctness of any configuration, e.g. by protec-
tion domains or configuration policies. It should be not-

ed that every operating system that falls into the last 
category also provides a semantic validation. 

For a more detailed discussion of the attributes and the 
classification of the individual operating systems we kindly 
refer the interested reader to the original work [7]. 

We provide a fully functional prototype of MUC-OS that 
implements the core functionalities and all essentials modules. 
To evaluate the expandability of our flexible operating system 
design, we applied the MUC-OS prototype to two case studies, 
which each required their own implementations of the sched-
uler and inter-process communication modules. These two case 
studies and their impact on the module implementations are 
discussed in the following section. 

IV. APPLICATION EXAMPLES 
In this section we present two example configurations of 

our operating system platform. Each of the scenarios presents 
itself with different requirements, making it necessary to use 
different implementations of the scheduling and inter-process 
communication modules. 

A. VoIP Processing Platform 
The first example is a voice processing application from the 

field of telecommunication. The specific requirements of this 
case study include (soft) real-time constraints, given in terms of 
a number of simultaneous voice channels that need to be pro-
cessed without loss of data. Further constraints are presented 
by the target system, which is a homogeneous multi-core plat-
form. To reduce fabrication cost and energy consumption, the 
design does not have hardware support for cache coherence, so 
special care has to be taken when accessing memory. We con-
figured our operating systems with three objectives: 1. provide 
a consistent environment to the VoIP application despite the 
absence of coherent caches, 2. fully utilize the available pro-
cessing power by dynamically managing task distribution 
among the cores, and 3. reduce energy consumption by switch-
ing off cores in times of low system utilization. 

As the timing requirements of the application focus on 
throughput rather than guaranteed compliance with a determin-
istic task schedule, we configured the system to use a preemp-
tive round-robin scheduler and a queue-based IPC mechanism 
that provides best-effort message delivery. To address the ab-
sence of coherent caches, we specifically adapted the IPC 
mechanism and the implementation of the message queues. We 
also provide a basic memory management module to execute 
required operations whenever regions of memory are accessed 
by more than one core. On top of these basic functions, we 
provide a service module for global load management. It can 
either balance load evenly, thus optimizing throughput, or 
optimize for low energy consumption by concentrating tasks on 
few cores, making it possible to switch off other cores. De-
tailed information on our load management module is provided 
in [13] and [14]. 

B. Automotive ECU 
The second example is an automotive control unit for a 

small electric vehicle. Due to price and energy constraints, the 
electric vehicle has to implement all its software functions on 
only one electronic control unit (ECU). This ECU has to man-
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Fig. 3. Comparison of MUC-OS against existing research in the area of 
configurable operating systems, based on the on the results of [7]. 

age the control of the engines and breaks, as well as the info-
tainment system. Accordingly, the operating system on that 
ECU has provide a deterministic environment, easily accessible 
by runtime analysis, while at the same time being able to exe-
cute tasks of different criticality in parallel. Again, we config-
ured our operating system with three objectives: 1. provide an 
execution environment that allows a dependable execution of 
applications with hard real-time constraints, 2. Implement 
trustworthy isolation of tasks of different criticality, and 3. 
minimize the energy consumption by relocating tasks and 
switching off cores in times of low system utilization. 

Our configuration reflects the objectives as follows: As 
scheduler, we chose a rate monotonic scheduler. The rate mon-
otonic scheduler allows to specify a second scheduler module 
that handles the scheduling of best-effort task in free time slots 
within the schedule plan. We have configured a simple round 
robin scheduler with time slices for that purpose. With the 
combination of a rate monotonic and a round robin scheduler 
we can guarantee a temporal isolation of the different tasks and 
dependable issue time for hard real-time applications. To com-
pletely fulfill objectives 1 and 2, however, further steps are 
needed. A dependable execution of hard real-time tasks re-
quires an analyzable execution environment and a trustworthy 
isolation of mixed criticality tasks not only requires a temporal 
isolation, but also a spatial isolation. Thus, we configured the 
system with an IPC module that supports a deterministic mes-
sage delivery and with a memory management module that 
provides memory protection mechanisms to isolate different 
tasks in memory. In addition to the mentioned modules we re-
used the global load management service from the first exam-
ple to optimize the system for low energy consumption. More 
details on the configured information and communications 
technology (ICT) platform for electric vehicles and the deter-
ministic IPC mechanism are presented in [15]. 

V. CONCLUSION AND OUTLOOK 
This paper gives an overview on the standard software de-

ployment strategies for multi-core platforms: SMP and AMP. 

We postulate that neither of these approaches is a likely fit for 
embedded systems in general. Thus, we purpose a new com-
bined deployment strategy which utilizes the AMP concept 
with a message based communication infrastructure that pro-
vides a distributed execution environment, like SMP systems 
do. We embed the new deployment strategy into a flexible 
operating system called MUC-OS. The MUC-OS kernel can be 
adapted to specific platforms and applications by configuration 
and implementation of five individual modules. We evaluated 
the MUC-OS design within two example configuration: a VoIP 
Processing Platform and an Automotive ECU. 

In future, we plan to extend MUC-OS with basic virtualiza-
tion capabilities in form of a hierarchical scheduler, a temporal 
and spatial isolation of tasks, and a real-time capable peripheral 
virtualization. 
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