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ABSTRACT

Using fully-constrained cable robots as manipulators for

3D-printing, there is the risk of collisions between the cables and
the printing part.
This paper presents a method te calculate the shape of the
workspace volume within which a part can be printed without
such collisions. The presented method is based on the fact that
the printing part is produced in a sequence of horizontal layers.
The areas occupied by the cables in the layers are scaled simi-
lar mappings of the cross-sections of the printing part. There is
no collision if the 2D-shapes occupied by the cables in the print-
ing layer do not overlap with the cross-sections of the printing
part in the same layer. A procedure to find the largest printable
2D-shapes within the class of parallelograms for each layer is
developed. The maximum printable 3D-volume is then given by
stacking the 2D-shapes of each layer. Figures show the results
of the method applied on the cable robot IPAnema 3. Finally, a
guideline for the design of fully-constrained cable robots to max-
imize their printable volume is given.
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INTRODUCTION

For the production of small-scale parts, additive manufac-
turing is an already well-established production technology.
Using this technology for the production of large-scale concrete
parts as depicted in Fig. 1 would be of great profit for the
construction sector. It enables on-site production and new
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FIGURE 1: CONCEPT FOR LARGE-SCALE ADDITIVE
MANUFACTURING (1]
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shapes without the need of formworks, which are necessary in
applying the conventional method to keep the concrete in shape
during the hardening process. Furthermore, it could reduce costs
and production time compared to the conventional production
method [2].

Large-scale additive manufacturing for the construction sector
requires easily transportable robot kinematics with a large
workspace, high accuracy and has to be able to carry high
payloads. A robot class fulfilling these requirements are
cable-driven parallel robots which are the subject of this paper.
Cable-driven parallel robots belong to the family of parallel
robots. Their legs consist of cables which connect a rigid frame
to a mobile platform. Through changing the length of these
cables by winches, the platform can be moved.

Using cable rtobots, collisions can significantly restrict the
workspace. Thus, they have to be considered in the design
phase of a cable robot and during its operation. The occurring
collision types can be categorized in cable-cable, cable-platform,
platform-environment and cable-environment collisions [3].
Several works, studying the determination of cable-cable col-
lisions can be found [3-6]. In [3], an algorithm is presented
which can detect the occurrence of cable-cable collisions when
moving the platform between two poses. For the determination
of the collision-free workspace, Merlet and Perreault et al. [4,5]
propose a method to determine the cable-cable interference
regions for constant orientation through a geometrical approach.
Collisions between cables and platform have been studied for
example in [3,4]. The method proposed in [3] simplifies the
platform geometry by only considering the convex hull of the
platform. In [4], the platform shape is approximated by a
polyhedron. Thus, interferences between the convex hull and the
cables or the polyhedron and the cables can be checked. With
another approach developed by Pott [7], the maximum deflection
angles of the cables at the distal anchor points of the platform
can be calculated and used for cable-platform collision analysis.
For the cable-environment and platform-environment collision
problem, only a few works can be found. Martin et al. [8]
present a method to determine the interference regions where a
collision between the cables and an object in shape of a cylinder
occurs. The interference volume is determined by tangents of
the cables on the boundary of the cylinder which is described
in a closed-form. In [9], for the detection of collisions between
the cable robot and the environment, it is also proposed to use
simple geometric shapes like cylinders or spheres to model
the environment. If more complex shapes have to be checked
for collisions, they are described by polygonal meshes. The
collision is analysed by calculating the distances between the
edges of the polygon and the cables. Bosscher et al. [2] address
the cable-environment collision problem of a fully-constrained
cable robot for contour crafting by moving the proximal anchor
points of the lower cables upwards during the printing process
by four additional actuators.

To the best of the authors’ knowledge, no method can be found
in the literature to determine the collision-free workspace of
fully-constrained cable robots in terms of cable-object collision
for layer-based production processes where the object grows
layer by layer. The proposed approach in this paper regards the
layer-based production process of 3D-printing, but the presented
method is not limited to 3D-printing. It is applicable for all
layer-based production processes, for example automated brick
laying with cable robots as proposed in [10] and [11].

The method presented in this paper first calculates the largest
printable 2D-shapes for each layer. Parallelograms are used for
the mathematical description of the horizontal cross-sections of
the printing workspace. The method exploits the fact that the
2D-shapes of the point set defined by the points where the cables
penetrate the printing layer are similar to the cross-section of the
printing part in the printing layer. In a second step, it is checked
whether the calculated largest printable 2D-shapes in each layer
are printable without any interdependence on other 2D-shapes
in other layers. The resulting printable volume which consists of
the stacked 2D-shapes of each layer resembles an approximation
of the collision-free printing workspace.

The so calculated collision-free printing workspace only ad-
dresses the geometric constraints on the workspace imposed by
collisions. Clearly, within a design process of a cable robot,
other criteria such as wrench-feasibility, velocity feasibility, and
reachability have to be taken into account.

Kinematic model of a cable robot for 3D-printing

Based on Fig. 2, the geometry and kinematic model of a ca-
ble robot for the application of 3D-printing is explained in the
following. Consider a cable-driven parallel robot with m cables.
Each cable i with the index i € {1,...,m} is attached to a winch
at its proximal anchor point whose position is defined by the
vector a; € R? in the fixed frame coordinate system .%. The
coordinate system % is spanned by the Cartesian unit vectors
e1,e,,e3 € R3. The other end of the i-th cable is connected to
the platform at its distal anchor point whose coordinates are de-
noted as b; € R? in the platform coordinate system J%. Within
the approach presented in this paper, no rotations of the platform
are considered for the application of 3D-printing. Therefore, the
transformation between the coordinate systems % and % is a
simple translation given by the vector of the platform position
r € R3. Equation (1) expresses the cable vector 1; from the distal
to the proximal anchor point of each cable i in 7.

l;=a; - (r+b;) 1)

The printing nozzle which extrudes the printing material is con-
nected to the mobile platform and is modeled with the vector p.
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FIGURE 2: GEOMETRY MODEL OF A CABLE ROBOT FOR
3D-PRINTING

This vector denotes the position of the extrusion point of the
printing material in the platform coordinate system %p.

Assumptions and Constraints
The approach presented in this paper is based on the follow-
ing assumptions and notations:

- The standard cable model is assumed, i.e. all cables
i=1,...,m of the robot are considered to be straight line
segments between their distal and proximal anchor points b;
and a;. Therefore, each of them can be described by its cable
vector ;.

- The distal anchor points b; of all cables i = 1,...,m
are above the extrusion point of the printing nozzle:
hE = (b; —p,e3) > 0. Herein (-,-) denotes the scalar prod-
uct of two vectors.

- The 3D-printing process is structured in horizontal layers,
which means the printing part is built up through consec-
utive layers of printing material starting from the bottom.
Without loss of generality, it is assumed that the normal of
the printing layers is aligned with the es-axis of the fixed
frame coordinate system 5.

- There is no restriction on the order in which the cross-
sections of the printing part in each horizontal layer can be
printed.

- The reduction of a vector x € R? to its horizontal compo-
nents is denoted as X(e, o,) = ({x,€1), (x,e2))" € R2, The
horizontal unit vectors are denoted by €; := ej(, ¢;) € R?
and'e; := €2(e;e0) € R2.

- The cross-sections of the printing workspace i.e. the largest
printable 2D-shapes in each layer are described by parallelo-
grams.

- The parallelograms are printed around the center points ¢,

whose horizontal components €, ¢,) are the same in all lay-
ers. The height of each layer is given by & = (¢, e3).

Printing in a horizontal layer

From the center of the platform at the position r, the printing
nozzle extends downwards to extrude the printing material at the
point r + p with respect to .
The first observation considering collisions between the print-
ing shapes and cables is that not all m cables of the robot are
necessarily relevant regarding such collisions during the printing
process in a horizontal layer. Only cables that cross the printing
layer are relevant. For each cable i = 1, ..., m, the relative height
of the printing layer is defined as h; = h — (a;,e3). Due to the
assumption A = (b; —p,e3) > 0, a cable i is relevant if and only
if its proximal anchor point a; lies below the printing layer i.e. if
its relative height is non-negative h; > 0.
When the printing nozzle is extruding printing material at ¢, each
of the relevant cables i crosses the printing layer A; at a point sf’h" ,
which can be thought as an affine mapping of ¢ cast by the ca-
ble i. The location of this image point s* can be geometrically

i

printing layer

ai ———

FIGURE 3: GEOMETRIC CONSTRUCTION OF THE IMAGE
POINT s¢*

constructed as illustrated in Fig. 3 and described by the following
formula

s7% = ai+f" ((e—p+b) —a) - @

The scalar factor f,.h" describes the portion of the cable which is
below the printing plane

Ry hi
= mm el &)

While the printing nozzle is printing a shape in the horizontal
layer, its similarly moving image point sf’h" traces the affine map-
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ping in the same layer. This image of the printed shape is scaled
by the factor fihi from Eqn. (3). Based on these mappings, a
simple criterion can be formulated to determine whether a shape
belongs to the printing workspace so that there are no cable col-
lisions with the shape during the printing process:

A 2D-shape can be printed in an arbitrary order if and only if it
does not overlap with any of its affine mappings.

This motivates the following definitions:

- Wlh i is the set of 2D-shapes in the printing layer of height
which do not overlap with their image cast by the relevant
cable i. The shapes in this set are said to be printable with
respect to cable i.

- 2k =n; 3’,}' " is the set of 2D-shapes in the printing layer
of height # which do not overlap with any images cast by the
relevant cables. The shapes in this set are said to be printable
with respect to all relevant cables.

Approximation of the printing workspace

To systematically address the question whether 2D-shapes
belong to the printing workspace in a horizontal layer, i.e. are
contained in 9‘;’11, the class of parallelograms which is charac-
terized by few parameters is considered. This allows the explicit
calculation of the optimal size parameters which correspond to
the largest printable parallelograms.
4,9, denotes the class of parallelograms in R? around the
Center Ce, ;) € R? with the linear independent principal axis
d;,d; € R? and two free parameters (aj,az) with a;,a > 0 that
specify the size of its elements.
The parallelogram p(a1,a2) € 4, 4, With sizes a;,az > 0 con-
tains all points in the set

{c(el,ez) +xdy +x0d3 | x) € [-ai,a1], 2 € [—az,az]} . @

Since the class Py, g, has two independent size parameters,
there usually exist two printable parallelograms of infinite size
in Pq,4,0 9;"'. To deal with this multiplicity, the concept of
characteristic parallelograms is introduced.

The space between the center ¢ and its image point sf’h" has
to be split up between the printable parallelogram around ¢

and its affine mapping which is centered at sf’hi . The factor

f,-h" from Egn. (3) implies the partition of the spanning vector

(sf’hi - c) (e1.¢) according to the ratios

1 £

and :
1+£ 14+f

(&)

The printable characteristic parallelogram resulting from this
partition is spanned by

¢, h;
) S =€) (er.e2)
vhi = <__)h_ (6)
1+

The signed versions ali,azzft of the parameters a; = [aﬂ,

ay = |af | of the parallelogram p (|a;|, |las|) satisfy the rela-
tionship

+
[ai] =Q IV where Q= [dy &) eRPZ. (7)

a

Figure 4 illustrates the geometric construction of this parallelo-
gram. The green and red areas represent one quarter of the char-
acteristic parallelogram p (a),a2) and its image p (f,.hi ai, f,.hiaz) .
The areas marked with checkerboard patterns show that an exten-
sion of the characteristic parallelogram in its first parameter a;
does not cause an overlap with the accordingly extended image.

C,h;
S;

FIGURE 4: GEOMETRIC CONSTRUCTION OF THE CHAR-
ACTERISTIC PARALLELOGRAM IN 9,}' i

This printable extension could also be made in the second param-
eter a; instead. From this observation, it becomes apparent that
the characteristic parallelogram p (a1, az) is the largest parallelo-
gram, so that both sides can be individually extended to the print-
able parallelograms p (aj,+o) and p(+oe,az). These are the
largest printable parallelograms in terms of area in Fg; g, N ?{' i

If vf"' is parallel to one of the principal axis d; or dj, its corre-
sponding size parameter a:]t or a2i has the value 0. For such a
configuration, only one of the mentioned parallelograms will be
a valid printable parallelogram in %y, 4,. Depending on the ge-
ometry of the robot, there may also be multiple largest parallelo-
grams in %q, 4, N .@fl‘u in terms of area.

Before this multiplicity can be dealt with, Algorithm 1 creates

a list .%, containing the characteristic parallelogram sizes of all

Copyright © 2018 ASME



relevant cables. The input arguments of Algorithm 1 are the fixed
parameters of &y, 4, and the center ¢. In Line 1, the list .%] is
initialized. While iterating over all cables, a check is performed
in Line 2 to skip over the irrelevant ones. The scaling factor
fi”" and the image point sf’h" of the center ¢ are calculated in
Lines 3 and 4 followed by v?" and the signed parameters ali., ait
in Lines 5 and 6. In Line 7, the absolute values of these param-
eters i.e. the size parameters of the characteristic parallelogram

in Pq, 4, P are added to the list &;.

Algorithm 1: Calculate list of characteristic parallel-
ogram sizes .Z]

Input: center ¢ € R?, principal axis d;,d; € R?, cable
robot geometry {a;,b;,p}
Output: characteristic parallelogram sizes .%}

Q= [d; d]
1 .Zl = {}
for cablei=1,...,m do
h; :=(c—a;,e3)
K = (b;—p,e3)
2 if 4; < 0 then continue
3 fih" = #

o | sth=ai+fli((c—p+b)—a)

st e
s V= (e1.e2)
.

1+£ "
at Y, T 1
| e
7 $1={ﬂ»(|a1i|7la§:|)}
end
return %

Algorithm 2 processes this list to extract all parameter combi-
nations that resemble printable parallelograms in %y, 4, U 3’:11.
Firstly, the entry (4o, +c0) is added to the list %] in Line 1.
This is done to account for the possibility that one parameter of a
printable parallelogram could be infinite. Then, an iteration over
all combinations of parameter tuples (a;,az) (set in the Lines 2
and 3) in % is started. In Line 4, each parameter combination is
compared to all printable parameter pairs in .%}. If both a; and
ay are larger than the corresponding sizes of any entry from the
list, the parallelogram p(aj,a;) ¢ 2% is not printable. Parame-
ter tuples that pass this test are in 32’;‘" and are added to the list

Algorithm 2: Calculate list of printable parallelogram
sizes .2
Input: characteristic parallelogram sizes .Z]
Output: sorted list of printable parallelogram sizes %
in #g, 4,N 33;1]1

L =1}
1 24 = {4, (+o,+=)}
fori=1,...,.% size() do
for j=1,...,.% .size() do
2 ay :=4(i,1)
3 ay:=2(j,2)
printable = true

fork=1,...,% size() — 1 do
if (A (k1) <ar) and (L (k,2) < ap)
then printable = false

end
5 if printable = true then
6 | L ={2,(a1,a2)}
end
end
end
7 sort (%)
return .%

% in Line 6. The rows of this list are then sorted in Line 7 into
descending order with respect to the area of the parallelograms.
Figure 5 shows the four largest printable parallelograms calcu-
lated by Algorithm 1 and 2. The calculation is performed with
the parameters in [m]:

p=[0.000-03]", ¢=[0.00.0-03]",

®
di=[061.0]", dy=[0.6 -1.0]",

for the cable robot IPAnema 3. Table 1 lists the vectors of the
IPAnema 3 proximal anchor points with respect to the coordi-
nate system 5 and the distal anchor points with respect to .
Note that the parallelograms in Figs. 5a and Sc appear at the top
of the list .% because one of their size parameters was set to a
very large constant in the implementation of Line 1 from Algo-
rithm 2.

Iinterdependence of horizontal printing layers
In the previous sections, only collision-free printing within a
single layer (of height) / has been discussed. To print 3D-objects
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cable i a; [m] b; [m]

1 [ 3.757, 5376, 1.882]7[ 0.248, 0.110,—0.167]"
2 [ 4.043,-5.376, 1.863]" [ 0.248,—0.110,—0.167)"
[-4.043,-5.557, 1.878]" [-0.248,—0.110,—0.167]"
[-4.340, 5.233, 1.873]" [-0.248, 0.110,—0.167]"
[ 3.185, 5.796,—1.870]" [ 0.110, 0.248, 0.167]"
[ 4.073,-5.589,-1.903]T [ 0.110,—0.248, 0.167]"
[~3.811,-5.738,~1.888]" [-0.110,—0.248, 0.167]"
[-3.993, 5.441,-1.882]" [-0.110, 0.248, 0.167]"

[-- NS B Y

TABLE 1: Geometrical parameters of the cable robot IPAnema 3

(b) £(2)

(©) 22 (3) (UEZ1C))

FIGURE 5. LARGEST PARALLELOGRAMS CALCULATED
BY ALGORITHM 2

made up of many vertically stacked layers in a height interval
[Amin, Amax], cable collisions with the cross-sections in all the
other layers have to be avoided. When printing in the layer h+ Ah
with Ak > 0, the cables should neither collide with the printing
shape inside this layer, nor with any previously printed shape in
a lower layer h.

To simplify the task of finding the largest printable shapes in all
layers h € [Mmin, Pmax] Which satisfy these criteria, a condition
is sought under which the interdependence between these layers
can be neglected. The idea is that such a condition would guar-

antee that for each cross-section, the constraints on its largest
printable shape due to the affine mappings cast from the cables
within this layer are stricter than those due to the following cross-
sections in higher layers.

Let 5”, ", be the set of 2D-shapes in the printing layer of height
h; which do not overlap with the image of the printed shape in
the layer h; + Ah cast by the relevant cable i. The shapes in this
set are said to be printable with respect to the layer h; + Ak and
cable i.

With this definition, the condition which allows to neglect the in-
terdependence of the shapes in the layers of the relative height
interval [A; min, himax] = [min — (2i,€3) , hmax — (ai,€3)], can be
stated as

I < Fl ©)
Vh; € [hi,mimhi,max] s Ah € (0, hi,max - hi] .

Before this condition can be adapted for the shape class of par-
allelograms 4, 4,, some general observations and notations
need to be introduced. Note that the spanning vector vf‘ from
Eqn. (6) of the characteristic parallelogram in 5’!’ ‘ can also be
constructed as the distance vector between ¢ and sf"h‘ minus the
spanning vector of the corresponding affine mapping. This con-
struction can also be used to define the characteristic parallel-
ogram in 9 . The affine mapping cast by cable i in layer A;
while prmtmg in layer h; + Ak can also be thought of as being the
result of printing in the layer h; with an extended printing nozzle
Par = P — Ahes. The resulting image point sf’f;, in the layer 4; is
calculated by adapting Eqn. (2) to the extended printing nozzle

Sgms = a0 +f1ay (€~ Pan+b) —2) , (10

with the scaling factor

thh h"+h,+Ah an

The size of the corresponding affine mapping depends on the
image of the characteristic parallelogram in the higher layer
h; + Ah. Tts size is given by the spanning vector f; hi+Ahy h AL
When the area of this image is projected onto the layer h,, it
shrinks according to the factor F—iﬁ This observation can be
combined with the formula from Eqn. (10) to obtain the span-
ning vector vt Al

hl Wi hi hi+AR_hi+Ah

Vian = (S:Alh —C) (er.e2) — hi +1Ahfi i "

_ (; —P) (e;,2)hi + (3 =€) (e ¢5) (1} +240)
K +2h; +2Ah

12)
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This vector describes the characteristic printable parallelogram
in layer &; with respect to the affine mapping cast by cable i due
to the characteristic parallelogram in the higher layer h; + Ah.
To adapt the condition in Eqn. (9) for the case of parallelograms
in 2y, 4,, the derivative of vf"Ah with respect to Ah is calculated
by

d on _ (i = P) (e ¢3) (=27 + (8 =€) (&1 ¢5) (4hi)

dAR AR (HE -+ 2h; + 2Ah)°

(13)

Note that the direction of this derivative does not depend on Ah.
The idea is that if both parameters (a;,a;) of the characteristic
parallelograms in %4, g, N 9”:",‘31; which are defined by vf"Ah grow
for increasing Ah, the smallest characteristic parallelogram in
this group is the one in %y, g, N 9”,."" which is spanned by v?" =
v:"‘b. Figure 6 illustrates a setting where this condition is satisfied.

FIGURE 6: VISUALIZATION OF THE INTERDEPENDENCE
CRITERION

The other characteristic parallelograms which are defined
through affine mappings cast from the cables in higher layers
h; + Ah can then be neglected since they are larger.

Based on the relationship between the signed parameters a; =
{af,a3} of the characteristic parallelogram and its spanning
vector from Eqn. (7), the condition from Eqn. (9) can be ex-

pressed as

d
w20

d
<~ 2aqp—a; >0
dAh (14)

Ak o~ g 0d 5 -
4=>2<Q lv:f’Ah,ek> <Q ]d_Ah—v?”A’"ek> >0
k= {172} WVhi€ [hi,mim hi,max] ,Ah € (Oahi,max - hi]

Since only the signs of the expressions in this criterion matter, all
positive factors can be omitted

i =N/t 4 b =
2<Q IV?,Ahyek> <Q lmviyAh,ek> >0
<= Q71 (b = D) () ey i + (8 — €) ey 00 P ) » &)

{Q7 (= (bi = P) (e1.e) +2(8i —€) ey ) &) = 0.
(15)

With this simplification, it becomes apparent that it suffices to
only check Eqn. (15) for € = {€;,€;} and the boundaries of the
height interval &; = {h; min, Pimax } -

As mentioned before, characteristic parallelograms have the
property that one of their size parameters can be increased with-
out loosing the printability of the parallelogram with respect to
the associated relevant cable. If the characteristic parallelogram
in 97’!"' and the one in .@:"Ah are extended in different size param-
eters, this can render the resulting parallelogram in layer h; + Ak
unprintable with respect to a parallelogram in the layer A;. Such
a setting is illustrated in Fig. 7 where the extended parallelogram
from vi”' is shown in green and the affine mapping resulting from
the extension of the parallelogram spanned by vf"Ah is colored
red. Since there is an overlap of the parallelogram and its im-
age, the shown green parallelogram is not printable. Therefore it
can be concluded that in general g, g, N 37,.”" is not a subset of
Pa;.4,0N ?{h even if the criterion from Eqn. (15) holds.

The overlap from Fig. 7 can be avoided by extending both paral-
lelograms in the same dimension. This is illustrated in Fig. 8.
Since the characteristic parallelogram in 9{: "\ 18 induced by the

one in 9!" *+A% from the higher layer h; + Ah, overlaps as in Fig. 7
can be entirely avoided by extending all characteristic parallelo-
grams in all layers h; € [h; min, himax] in the same size parameter.

To select the size parameter for each relevant cable i that is ex-
tended in all layers h;, the following procedure is implemented.
Firstly, the list of printable parallelograms .%5 is calculated by
the Algorithms 1 and 2 for the lowest layer A, in the printing
height interval [Amin, fimax]-
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FIGURE 7: OVERLAP OF EXTENDED PARALLELOGRAM
AND IMAGE BASED ON v}’ AND v/},

FIGURE 8: SETTING OF FIG. 7 WITHOUT OVERLAP

From this list, a suitable pair of parallelogram sizes is selected
and for each relevant cable i, the information of which size pa-
rameter is not extended gets saved in a new list £3. The entries
in this list % (i) either have the value 1 or 2 depending on which
parameter is not allowed to be extended. To select a printable
parallelogram in the higher layers h; + Ak with Ah > 0, Algo-
rithm 1 and a modified version of Algorithm 2 are employed.
The list .%; is given as an input argument to Algorithm 2 and the
following code is inserted before Line 5.

if (& (i) =2and a; > % (i,2)) or
(& (j)=1and a > £ (j,1))
then printable = false

This additional criterion ensures that for all relevant cables i, the
characteristic parallelograms in each layer are extended in the
same size parameter. From the sorted list % that is produced
with this modification for each layer & € (Amin, Aimax], the firsti.e.
the largest parallelograms are selected.

The approximation of the printing workspace formed by the par-
allelogram layers, calculated through this procedure, is visual-

ized in Fig. 9. Hereby the same robot geometry and parameters
are used as in Fig. 5. The calculation is performed for the height
interval [—1.75m,0.65m].

FIGURE 9: PRINTABLE VOLUME CONSISTING OF PAR-
ALLELOGRAM LAYERS

Design guidelines

The previous sections focused on the question whether 2D-
shapes and 3D-objects can be printed by a given cable robot. In
this section, the reverse problem is discussed.
Given the goal of printing large shapes and objects with a fully-
constrained cable robot, the question is how to design the robot’s
geometry {a;,b;, p}i-; in order to fulfill this objective.
This question can be addressed through the observation that the
size of any printable convex shape in W;‘n around the center ¢ in
the layer /4 can be characterized by the vectors vf" of all relevant

cables i from Eqn. (6). The expression for vf" can be reformu-
lated in terms of the cable robot’s geometry {a;. b;,p}

(N
I (st c) (elyeZ)
¥V, ose—

hi
' 1+f; (16)
K K '
- hf +2h, (bl p) (e],ez) + hf+2hz (al c) (el,ez) "

From this formula, it becomes apparent that v?" is a linear combi-
nation of (b; — P) (¢, ¢,) and (8 —€) (¢, ¢,)- Therefore the size of
printable shapes which is directly related to the norm of this vec-

tor “vﬁ"' H can be maximized by obeying the following guidelines
when designing a cable robot for the application of 3D-printing.
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- The proximal anchor points a; of all relevant cables i should
be far away from each other so that the center of the printed
shape ¢ can be placed in their middle.

As a result ||(a; — €) (¢, ¢,) || should be large for all relevant
cables i.

- For all relevant cables i, the vector (b; —p) e, ¢,) should
point in the same direction as (a; — ¢}, ¢,) and its norm
[|(B; — ) (¢, ) || should be large.

- Since for most cable robots the robot frame is much larger
than its platform [|(a; —¢) (¢, ey)|| = [|(Bi —P) (e;.e) ||, the
extrusion point of the printing nozzle should be far below
the platform A% >> 0.

Conclusion

In this paper, a method is presented to calculate the
workspace within which a part can by generated by a 3D-printing
process with a fully-constrained cable robot without collisions
between the cables and the printing part. The method is based on
an analysis of the largest printable 2D-shapes in each layer. For
the description of the 2D-shapes, parallelograms are used. After
a check of the interdependency between the horizontal layers, the
largest printing workspace volume is described by stacking the
printable 2D-shapes of each layer. Implementations of the meth-
ods and visualizations of the resulting largest printable shapes
and volumes are provided. Finally, design guidelines for fully-
constrained cable robots to maximize the printing workspace are
derived.
The proposed method is not restricted to 3D-printing. It is
suitable to calculate the largest feasible volume of a fully-
constrained cable robot for any layer-based production process.
Thus a useful tool is provided to evaluate the suitability of fully-
constrained cable robots used as a manipulator for layer-based
additive manufacturing.
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