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1 |  INTRODUCTION

Glass, recently redefined as a nonequilibrium, noncrystal-
line condensed state of matter,1 contains a glass transition, 
the region at which it strongly exhibits viscoelastic behav-
iors. Owing to enormously precious properties including 
high hardness, thermal resistance, refractive index, light 
permeability, and stability to extreme environment changes, 
such as humidity and temperature, glass has been replacing 
polymers in many optical applications. Today, optical com-
ponents are challenging for glass optic manufacturers toward 

increasing geometrical complexity, higher precision, and pro-
duction volume. Accordingly, conventional fabrication tech-
niques via grinding and polishing become no longer feasible. 
Instead, replicative manufacturing or glass molding promises 
a distinct satisfaction of such ever-increasing demands. This 
technology enables the fabrication of precision glass optics, 
where the desirable shape is readily achieved after a very 
short molding cycle and requires no subsequent machining 
steps, such as grinding and polishing.

In the glass compression molding, a hot glass blank is 
pressed in between a precision mold pair and then is cooled 
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Abstract
In glass compression molding, most current modeling approaches of temperature-
dependent viscoelastic behavior of glass materials are restricted to thermo-rheolog-
ically simple assumption. This research conducts a detailed study and demonstrates 
that this assumption, however, is not adequate for glass molding simulations over a 
wide range of molding temperatures. In this paper, we introduce a new method that 
eliminates the prerequisite of relaxation functions and shift factors for modeling of 
the thermo-viscoelastic material behavior. More specifically, the temperature effect 
is directly incorporated into each parameter of the mechanical model. The mechanical 
model parameters are derived from creep displacements using uniaxial compression 
experiments. Validations of the proposed method are conducted for three different 
glass categories, including borosilicate, aluminosilicate, and chalcogenide glasses. 
Excellent agreement between the creep experiments and simulation results is found 
in all glasses over long pressing time up to 900 seconds and a large temperature range 
that corresponds to the glass viscosity of log (η) = 9.5 – 6.8 Pas. The method eventu-
ally promises an enhancement of the glass molding simulation.
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down to a solid state. Depending on the temperature differ-
ence between the glass and mold during pressing, the glass 
molding process is distinguished by isothermal glass molding 
or precision glass molding (PGM) and nonisothermal glass 
molding (NGM).2 Regardless, the glass undergoes the heating 
stage to a liquid-like state at nearly softening temperature (Sp) 
in PGM or even above Sp in NGM and the following pressing 
and cooling stages to a solid-like state, typically below tran-
sition temperature (Tg), where its desirable shape is mostly 
achieved.

In this temperature regime, viscoelastic properties dom-
inate the deformation of the glass under thermo-mechanical 
loads. Previous studies demonstrate essential contributions 
of viscoelastic properties to the final shape of molded 
lenses.3‒5 Numerical predictions of the final lens shape re-
quires a coupling thermo-mechanical constitutive model 
to comprehend thermo-viscoelastic responses of glass de-
formation over the entire molding process. For mechanical 
modeling of the viscoelastic responses, a large number of 
rheological models have been investigated in the field of 
glass molding simulation over years. In the early days, be-
havior of glass at the molding temperature was commonly 
considered the pure viscous flow, where flow stress is pro-
portional to the strain rate.6‒8 Other studies use either simple 
Maxwell or Kelvin model to approximate the stress relax-
ation and creep responses, respectively.9,10 Those simple 
models are chosen to qualitatively study the form deviation 
of molded glass shapes and stress characteristics. A later 
study by Zhou et al reports that neither Maxwell nor Kelvin 
model satisfactorily describes the experiment data in the 
temperature regime of glass molding, but Burgers model—a 
combination of both Maxwell and Kelvin model—does.11 
The Burgers model, in fact, can be represented by a two-
term generalized Maxwell model with an identical math-
ematical description.12 The generalized Maxwell model, a 
combination of several Maxwell elements in parallel, has 
been widely utilized in many recent studies to characterize 
the viscoelastic property of glass above the transition tem-
perature.13‒15 The sufficient number of Maxwell elements 
is determined by fitting the relaxation data, either gained 
by stress relaxation experiments or derived from creep ex-
periments. It is emphasized that the number of Maxwell 
elements strongly depends on the temperature chosen for 
the experimental characterization. For example, a six-term 
generalized Maxwell model is commonly found for investi-
gating temperatures in the vicinity of Tg,16 while three terms 
are used at higher characterizing temperatures.17

In addition, the thermal-mechanical modeling of the vis-
coelastic responses necessitates an incorporation of the tem-
perature effect into the mechanical models. Most of the present 
studies relied on thermo-rheologically simple (TRS) modeling 
approach in the field of glass molding simulation.18‒20 The TRS 
assumption is widely employed due to the ease of numerical 

implementation where the coupling temperature-mechanical 
model can be simplified as a solely mechanical model by incor-
porating the so-called reduced time, defined by a shift function. 
It is emphasized that this implementation is valid if and only 
if the shape of stress relaxation functions at every tempera-
ture, when plotted against a logarithmic time, is fully identical. 
However, Scherer stresses that, albeit a good approximation 
near the glass transition, it fails at high temperature where the 
glass exhibits liquid-like viscoelasticity.21 In particular, sensi-
tivity studies of the TRS assumption highlight that non-negligi-
ble deviation occurs in the numerical predictions of the molded 
lens shape22 or creep displacements.5,23

Finally, to characterize the thermo-viscoelastic material 
behavior of the glass, the most common approach, saying 
conventional approach, is to perform experiments, either 
creep or stress relaxation, at several temperatures. The stress 
relaxation experiment is likely more favorable because the 
model's parameters, for example, the generalized Maxwell 
model, can be directly obtained by fitting the stress relax-
ation data measured at one specific temperature, called the 
reference temperature.24 The disadvantage of this approach is 
that the stress relaxation experiments are mostly conducted at 
temperatures in the vicinity of Tg, which are quite far from the 
actual molding temperature, normally near Sp. In this context, 
the viscoelastic properties at the actual molding temperature 
are determined by using the shift function. In contrast, the 
characterization of viscoelastic properties at the real mold-
ing temperature is restricted to the creep experiment. At such 
high temperature, in fact, the glass becomes liquid-like where 
its relaxation time is extremely fast (τ«seconds) so that the 
data obtained from the stress relaxation experiment is not 
sufficient and reliable for postprocessing. Based on the creep 
approach, the mold displacements are acquired and used to 
compute creep compliances.25,26 The drawback of this ap-
proach is that the temperature-dependent viscoelasticity is 
not accomplished. Instead, the modulus relaxations need to 
be derived from the creep compliance functions using inter-
conversion theory. Relying on the creep setup, in addition, 
previous studies realize a non-negligible discrepancy be-
tween the experiment and numerical prediction of the creep 
displacements.26,27 According to their thoughts, the discrep-
ancy is attributed to friction at the glass–mold contact in-
terface. Nevertheless, satisfactory verifications of the creep 
displacement cannot be obtained by varying the friction coef-
ficients. A recent study by Yu et al shows that if the frictional 
disturbance can be diminished from the creep data so that 
mere purity of the viscoelastic property is secured by creep 
experiments, good agreement can be found.28

Three major contributions are aimed in this research. First, 
a comprehensive study on the conventional characterization 
of the thermo-viscoelastic properties derived from the creep 
experiments is presented. The study aims to demonstrate the 
rationale for the mismatches between the simulation and creep 
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experiments reported in earlier studies; and the following is to 
provide a solution to such existing problem. Furthermore, the 
thermo-mechanical modeling using TRS over a wide range 
of molding temperature is examined. The inadequacy of TRS 
over the wide temperature range is then elaborated. Finally, 
this research introduces a new thermo-viscoelastic modeling 
approach to overcome this deficit. According to the proposed 
method, the prerequisite of the relaxation functions and shift 
factors by using the TRS assumption to characterize the ther-
mo-viscoelastic properties can be completely eliminated. 
Experimental validations are carried out for three different 
glass types commonly used in compression molding for glass 
optic production. Excellent agreement between experiment 
and simulation results found in all three glasses strengthens 
the validity of our method.

2 |  THEORY OF 3D LINEAR 
THERMO-VISCOELASTICITY

The constitutive thermo-rheological model of a viscoelastic 
material determines the relationship among stress, strain, 
strain rate, and temperature. In view of mechanical modeling, 
the stress–strain relation can be either described by differen-
tial forms or hereditary integrals.29 The integral representa-
tion is commonly chosen as its convenience for incorporating 
temperature into the mechanical model and flexibility to ma-
nipulate the measured viscoelastic properties, ie, creep and 
stress relaxation. For linear viscoelastic theory, the relation 
between stress and strain is linear and time dependent, rep-
resented by the following three-dimensional (3D) integral 
forms, using Boltzmann superposition principle:

where σ and ε are stress and strain tensor, respectively; � and 
� are relaxation modulus—and creep compliance tensors, re-
spectively; t is the actual observation time, and t′ is an arbitrary 
time prior to t.

The rate of relaxation rapidly varies with the change of 
temperature. For incorporating the temperature into the me-
chanical formulation, the conventional approach relies on the 
concept of time-temperature superposition principle, mainly 
based on the TRS property. Based on this concept, a single 
parameter � is introduced to combine the effects due to both 
time and temperature. Then, Equations (1) and (2) in varying 
temperature becomes:

where � is the so-called “reduced time”, which is related to the 
real time t by a temperature shift factor a(T) and a reference 
temperature Tr. In case of transient temperature conditions, ie, 
temperature varying with time, the reduced time is defined as 
follows:

where the shift factor is given by:

In Equation (6), τ is the relaxation time. Here a(T) defines 
the horizontal shift from the relaxation curve of the computed 
temperature Tto that of the reference temperature Tr, called 
the master curve.

As mentioned earlier, characterization of the viscoelastic 
responses can be performed by either the creep or stress re-
laxation experiments. In fact, both these phenomena are the 
viscoelastic properties of the same material; therefore, they 
can be interconverted. According to the interconversion the-
ory, the relation between creep compliance and relaxation 
modulus can be defined as a compact form in s-domain by 
applying Laplace transform:

Such a relation can be written in the time domain by per-
forming the inverse Laplace transform:

Using Equation (7), the relaxation modulus is derived from 
the creep compliance on the s-domain, and following the re-
laxation modulus on the time domain � (t) is defined by the 
inverse Laplace transform, using Equation (8). Then, consider-
ing the TRS assumption, the shift factor is determined from the 
modulus relaxations similar as the stress relaxation approach.

Finally, in 3D formulation of the viscoelastic responses, 
the stress–-strain relation, eg, Equation (1), is commonly 
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expressed in a form where the deviatoric and volumetric parts 
are separated. In this regard, the shear and bulk (volumet-
ric) relaxation moduli are employed instead of Young mod-
ulus. Instantaneous shear and bulk moduli can be computed 
from Young modulus and Poisson ratio. In the viscoelastic 
regime, shear deformation is typically more dominant than 
bulk deformation30; hence, time-independent bulk modulus, 
ie, no relaxation, is commonly agreed. Accordingly, the shear 
relaxation modulus and its temperature-dependent character-
istic are the most essential requirements for the characteriza-
tion of the thermo-viscoelastic properties.

3 |  CONVENTIONAL 
CHARACTERIZATION OF THERMO-
VISCOELASTIC MATERIAL 
BEHAVIOR OF GLASS

3.1 | Experimental procedure

The characterization of the glass viscoelastic properties is 
based on the creep approach using the uniaxial compression 
setup. The creep experiments are conducted in a precision 
glass-molding machine Toshiba GMP 207HV. Borosilicate 
SUPRAX® 8488, a “long” glass type, is chosen for the in-
vestigation of the thermo-viscoelastic responses over a wide 
temperature range. Thermal and mechanical properties of 
this glass are provided in Table 1. The glass specimen has 
a cylinder shape. In addition, a high-temperature resistance 
glassy-carbon SIGRADUR® is used as the mold material 
for two essential purposes. First, this mold material allows 
the molding experiments at high temperatures, even above 
Sp, without any glass sticking problem. Second, by fine pol-
ishing, the surfaces of the mold pair is mirror-like with the 
roughness of Ra = 2 nm.31 Such ultraprecision mold surface 
enables a small friction coefficient at the glass-mold inter-
face, below 0.1.32 As indicated in the previous works,5,26,28 

the low friction coefficient is essential to minimize the error 
that leads to the impurity of the viscoelastic properties derived 
from the creep experiments due to the frictional deformation 
of the glass. Figure 1 exhibits the polished glassy-carbon 
molds and the glass specimen used for the creep experiments. 
Besides, demonstrations of pressed glasses at high molding 
temperatures in the vicinity of Sp are presented.

Creep experiments are performed at four specific tempera-
tures ranging from 650°C to 790°C, which corresponds to the 
viscosity range η = 109.5 – 106.8 Pas. Such viscosity range, from 
slightly above Tg to nearly Sp, is of interest for this study because 
this is a typical molding temperature range for PGM. Besides, 
the glass deformation from a preform to nearly final shape is 
mostly occurred in this temperature range by NGM,33,34 before 
it is sent to a separate annealing oven. Please note that the ex-
perimental characterization of the viscoelastic properties is con-
ducted for equilibrium glasses. The glass specimens are slowly 
heated up with a rate of 5 K/min and then undergone a sufficient 
long soaking, approximately 20 minutes, in order to erase the 
thermal history of the specimens before the creep experiments. 
Within the chosen temperature range, this soaking time is ex-
pected to satisfactorily equilibrate the glass specimens. For the 
creep compression, a pressing time of 900 seconds is held for 
all experiments. The mold displacement is recorded and used in 
the following steps to derive the thermo-viscoelastic properties 
of the glass. Figure 2A introduces the mold displacements of 
four testing temperatures.

3.2 | Computational procedure of 
creep compliance

The computational procedure to obtain the viscoelastic prop-
erties from the creep displacements has been presented in the 
earlier works.25,26 For the completeness of the paper, most 

T A B L E  1  Material properties of glass

Properties* Suprax 8488 Xensation 3D IRG 27

E (GPa) 67 83 16.77

ν (−) 0.20 0.22 0.24

ρ (kg/m3) 2310 2490 3200

λ (W/mK) 1.2 1.22 0.33

α (10-6 /K) 4.3 8.5 22.5

Cp (J/kgK) 750 890 482

Tg (°C) 540 505 197

Sp (°C) 808 720 N/A

*Nomenclature: E, modulus of elasticity; ν, Poison's ratio; ρ, density; λ, thermal 
conductivity; α, thermal expansion coefficient; Cp, specific heat; Tg, glass 
transition temperature; Sp, softening temperature. 

F I G U R E  1  Demonstrations of the polished glassy carbon molds, 
glass specimen, and pressed glass samples at the molding temperature 
in the vicinity of Sp [Color figure can be viewed at wileyonlinelibrary.
com]
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important aspects are highlighted. First, true stress and true 
strain are taken to account for the large deformation of the 
glass specimens. By using the recording displacement history 
u(t) and the initial length of the specimen L0, the true strain 
ε(t) is given as follows:

Following the computation of the true strain, the true 
stress σ(t) is calculated by using the initial cross-section A0 of 
the specimen and applying force F:

Here, please note that the applying force F = 250N is remained 
for all experiments of the entire temperature range. This deploy-
ment is aimed to avoid the effect due to the pressure-dependent 
viscosity,35 which is not considered in this study.

The true stress is calculated by considering a constant vol-
ume of the deformed glass specimen. Theoretically, the creep 
test requires an instantaneous applying stress σ0 that holds 
constantly during the entire experiment. Under experimental 
conditions, however, such requirement cannot be fulfilled. 
Since the machine solely controls the applying force, the sig-
nificant increase of the cross-section during the deformation 
of the glass specimen results in a decrease of the compres-
sion stress. To account for the change of the true stress as a 
variable with time, σ(t), the stress input is approximated by 
the sum of serial constant stress inputs σi.

29 According to the 
Boltzmann superposition principle, the strain output under 
the variable stress input equals to the sum of all discretized 

strain outputs �i resulting from each corresponding discret-
ized stress inputs σi.

Now, it is important to point out that only vertical dis-
placements of the mold, ie, one-dimensional (1D) data are 
acquired by the uniaxial compression setup. Thus, Equation 
(2) needs to be rewritten in the 1D form. In addition, by sep-
arating the initial applied stress (σ(0) = σ0) and the variable 
stress, for the sake of creep compliance computation, an al-
ternative form of Equation (2) becomes:

This convolution integral can be solved by a finite dif-
ference scheme using discretized representations of the true 
stress σn, true strain εi, and creep compliance Ji, defined as 
follows:

Rearranging Equation (12), the discretized creep compli-
ance Ji is given as follows:

Thus, from the recording displacement inputs and the ini-
tial geometry of the glass specimens, using Equations (9-10), 
the creep compliances J(t) are achieved by solving Equation 
(13) iteratively. Figure 2B provides the creep compliances 
computed from the displacement inputs u(t).
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F I G U R E  2  A, Creep displacements of uniaxial compression experiments; and (B) creep compliances computed from the displacements 
[Color figure can be viewed at wileyonlinelibrary.com]
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3.3 | Determination of relaxation modulus

The relaxation modulus can be achieved if the creep com-
pliance function is known, according to Equation (7). Since 
the creep compliance contains discrete data, the creep func-
tion is realized by curve fitting. The fitting of the creep 
compliance data requires a material model. For example, 
generalized Kelvin with three terms is used in previous 
studies.17,26 For the liquid-like creep behavior characterized 
at high temperature range investigated in this study, instead, 
the 4 element-Burgers model is employed. The phenom-
enological representation of the Burgers model is shown in 
Figure 3A. The creep function J(t), accordingly, is defined 
as follows:

where E1, E2, η1 and η2 are the fitting parameters of the Burgers 
model.

There are several advantages of utilizing the Burgers model. 
First, as demonstrated in Figure 3B, the Burgers model illustrates 
an outstanding fitting accuracy over the entire temperature range 
of investigation. An earlier study of the author has indicated that 
the Burgers model precisely predicts the creep displacements of 
B270i glass in a wide molding temperature range, which corre-
spond to viscosity η = 1011.7 − 107 Pas.36 Second, it is empha-
sized that because the Burgers model consists of a Maxwell and a 
Kelvin element, it is capable of representing both creep and stress 
relaxation phenomena. As a result, the relaxation function can 
be directly computed from the fitting parameters obtained from 
the creep compliance. This property helps to avoid the second 
fitting of the relaxation modulus to attain the parameters of the 
relaxation modulus function as pursued in most of the previ-
ous works.25,26 Moreover, the Burgers model is mathematically 
equivalent to a two-term Prony series; therefore, the parameters 
obtained from the creep compliance function (Equation 14) can 
be used to compute the Prony series parameters, ie, weight factor 
gi and relaxation time τi (i = 1,2), in a straightforward manner. 
Details of the mathematical equivalence between the Burgers 
model and two-term Prony series are described in Appendix A. 
When the Prony series parameters are known, the material model 
can be simply implemented into most of the commercial FEM 
simulation software, eg, ABAQUS, using the hereditary integral 
formulation. Finally, compared to generalized Maxwell model 
with 3-6 terms commonly employed in other works, the Burgers 
model contains the fewest fitting parameters (4 parameters) that 
bring essential advantages for the proposed modeling method of 
the thermo-viscoelastic material behavior presented in Chapter 4.

Since four parameters of the model are already realized by 
fitting the creep compliance using Equation (14), the shear 
parameters of the Burgers model, G1, G2, μ1 and μ2, can be 
calculated as follows:

(14)J (t)=
1

E1

+
1

E2

(

1−e
−E2 ⋅ t∕�2

)

+
t

�1

,

(15A)G1 =
E1

2 (1+�)
, G2 =

E2

2 (1+�)
,�1 =

�1

2 (1+�)
,�2 =

�2

2 (1+�)
.

F I G U R E  3  A, Phenomenological Burgers model; and (B) fitting 
of creep compliance using the Burgers model [Color figure can be 
viewed at wileyonlinelibrary.com]

T A B L E  2  Relaxation parameters of Suprax 8488

Temperature (°C)

A, Coefficients computed by Equation (15A) B, Revised coefficients using Equation (15B)

Weight factors, gi (−) Relaxation time, τi (s) Weight factors, gi (−) Relaxation time, τi (s)

g
1

g
2

�
1

�
2

g
1

g
2

�
1

�
2

650 0.999611 3.89e-4 0.7556 286.79 0.999689 3.1e-4 0.6045 286.77

680 0.999884 1.16e-4 0.1354 355.10 0.999908 9.2e-5 0.108 335.09

740 0.999971 2.90e-5 9.35e-3 1432.85 0.999908 2.8e-5 7.48e-3 1432.84

790 0.999984 1.60e-5 2.28e-3 1122.511 0.999987 1.3e-5 1.83e-3 1122.507
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Using the shear parameters in Equation (15A), Prony se-
ries coefficients, including weight factors gi and τi (i = 1, 2), 
are achieved as demonstrated in Appendix A (Equations A6 
and A9). Table 2A provides the computed coefficients of four 
investigating temperatures. Please note that as these coeffi-
cients are calculated directly from the creep compliance pa-
rameters, the second fitting of the relaxation modulus curves 
is no longer necessary. Using these coefficients, Figure 4 
plots the normalized shear relaxation moduli (ψ(t) = G(t)/G0) 
of four testing temperatures, accordingly.

3.4 | Numerical verification of shear 
relaxation parameters

A Finite Element (FE) model is established to verify the 
shear relaxation parameters derived from the uniaxial 
creep experiments. Process inputs and boundary condi-
tions of the FE model are described in Figure 5. For the 
numerical verification of the creep displacements, ie, the 
glass thickness changes, only the glass specimen is con-
sidered. The glass has a cylinder shape and is modeled as 
an axisymmetric deformable body. Vertical displacements 
of bottom surface are constrained, while the top surface 
is coupled with the applying force F taken from the ex-
periments. Since mold parts are not necessarily included in 
the FE model, friction between the glass and molds is ne-
glected. In addition, avoidance of the dimensionality effect 
on the numerical verifications is particularly taken. Before 
each creep experiment, the initial length and diameter of 
the glass specimens are measured with an accuracy of 3 
digits. Then, these geometrical inputs are set for the respec-
tive simulation of the same experiment temperature. The 
numerical verification is performed using ABAQUS/CAE 

2017. The glass properties and viscoelastic parameters are 
given in Tables 1 and 2A.

Figure 6A presents the simulation results of the creep 
displacements. When compared with the experiment data, 
however, the simulation results show obvious disagreements 
found in all testing temperatures. In fact, the numerical pre-
dictions of the creep displacement are always underestimated. 
As mentioned earlier, observations of such discrepancy were 
reported in the previous works.26,27 In their studies, the mis-
match is believed due to friction at the glass and mold contact 
surfaces. They argued that the displacement acquired by the 
compression setup is not purely viscoelastic creep deformation 
of the glass but contains a frictional resistance at the interface. 
The presence of friction violates the nature of the creep data 
used for the derivation of the viscoelastic parameters, and it 
causes the discrepancy. Several studies investigated the in-
fluence of the friction on the viscoelastic constants using the 
creep compression setup. It is demonstrated that the accuracy 
of the obtained viscoelastic parameters can be enhanced if the 
friction between the glass and mold is sufficiently small,23 as 
approached in this research, or the error due to the friction can 
be dismissed from the displacement data.28

The authors agree that the friction at the glass-mold inter-
face, which cannot be avoided by the compression setup, may 
violate the pure creep deformation due to viscoelastic property 
of an investigating material. In this study, however, another 
reason that crucially results in the disagreement between the 
experiment and simulation results is elucidated. The argumen-
tation is that if the creep displacement is used as the input 
data for the derivation of viscoelastic parameters, and the nu-
merical verification—indeed a reverse computation—must 
bring an identical result. Furthermore, because such input 
displacement comprises the deformation due to friction, the 

F I G U R E  4  Normalized modulus relaxation functions of four 
testing temperatures [Color figure can be viewed at wileyonlinelibrary.
com]

F I G U R E  5  Representation of FE model for numerical 
verifications [Color figure can be viewed at wileyonlinelibrary.com]
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friction at the glass-mold interface should not be reconsidered 
in the FE simulation for the verification.25 According to the 
thoughts, the simulation and experiment displacements have 
to be identical. So why do such large discrepancies observed 
in Figure 6A come from? Described in Sections 3.2 and 3.3, 
the shear relaxation modulus is derived from the uniaxial dis-
placement, ie, the 1D experiment data, and is computed using 
the 1D viscoelastic formula (Equation 15A). Viscoelastic 
theory performed in ABAQUS simulation platform is devel-
oped for generalization of the integral representation to three 
dimensions.37 In 3D formulation, the stress tensor is split into 
volumetric and deviatoric parts for the ease of modeling the 
nature of volume-preserving materials such as viscoelasticity. 
Here, it is emphasized that while the volumetric (dilatational) 
tensor carries out the bulk or volumetric deformation of the 
materials, the deviatoric tensor solely accounts for the shear 
deformation, meaning that no volumetric changes are taken. 
Meanwhile, as discussed earlier, the bulk deformation is 
time-independent, ie, no viscoelastic property. For this reason, 
the Poisson's ratio given in Equation (15A) must be set to 0.5 
instead. This implementation is essential to correct the compu-
tation of the shear parameters of the constitutive model given 
in the 3D viscoelastic formulation while taking no account of 
the deformation due to viscoelastic bulk.38 The time-indepen-
dent bulk modulus, in fact, results in an elastic response,5 and 
therefore it can be accounted by the elastic component of the 
Burgers model (E1). Eventually, the shear relaxation parame-
ters are defined as shown in the following revised equation:

Table 2B provides the revised Prony series coefficients 
calculated from shear relaxation parameters using Equation 
(15B). Based on these coefficients, simulations are rerun 
using the same setting as described in Figure 5. Figure 6B 
plots the simulation results and the experiment creep displace-
ments. It is clear that great agreements of all experiments are 
found. Please remind the underestimation of the simulated 
creep displacements observed in Figure 6A. This underesti-
mation results from the contribution of the bulk deformation 
implicit in the shear parameters by Equation (15A), which is 
certainly not when the deformation of the viscoelastic bulk is 
excluded from the computation of the shear parameters using 
Equation (15B). The validated results emphasize the essential 
implementation of the shear relaxation coefficients in the 3D 
formulation for the simulation of the glass molding processes.

Up to now, the viscoelastic parameters derived from the creep 
displacement at individual testing temperature are fully validated. 
For the glass molding simulation, however, temperature-depen-
dent viscoelastic parameters are required. For modeling the ther-
mo-viscoelastic responses, most of the previous studies relied 
on the TRS behavior of the viscoelastic materials. The next step 
focuses on an examination of this thermo-viscoelastic modeling 
approach over the temperature range chosen in this study.

3.5 | Numerical verification of thermo-
viscoelastic parameters using TRS

Thermo-viscoelastic modeling using TRS necessitates a shift 
function. The shift function is determined from the shear relaxa-
tion modulus functions varying with temperatures (Figure 4). 
First, the master curve at an arbitrary experiment temperature—the (15B)

G1 =
E1

2 (1+�)
, G2 =

E2

2 (1+0.5)
,�1 =

�1

2 (1+0.5)
,�2 =

�2

2 (1+0.5)
.

F I G U R E  6  Verification of creep displacements using: (A) parameters computed by Equation (15A); and (B) revised parameters using 
Equation (15B) [Color figure can be viewed at wileyonlinelibrary.com]
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reference temperature Tr—is selected. In this study, the shear re-
laxation function at 680°C is considered. Following, this master 
curve is shifted to the relaxation curves of other temperatures 
along the abscissa. Relying on the Williams-Landel-Ferry (WLF) 
equation, the shift function is defined as follows:39

where C1 and C2 are constants obtained by fitting the shifts 
computed from the master curve to each individual tempera-
ture. Figure 7 exhibits the curve fitted by WLF equation and the 
constants.

Figure 8 provides simulation results of the creep displace-
ments using temperature-dependent viscoelasticity by using the 
WLF shift function. At the reference temperature (T = 680°C), 
the experiment and simulation results are certainly validated, 
exactly the same as observed in Figure 6B. However, discrepan-
cies between the simulation and experiment data occur at other 
temperatures. The discrepancy becomes larger and non-negli-
gible at temperatures further from the reference temperature. 
This evidence indicates the inadequate implementation of the 
TRS behavior for a large temperature range. Consequently, nu-
merical predictions of the molded glass characteristics, eg, form 
deviation or stress, are not reliable.

The underlying cause of the observed discrepancies stem 
from an improper assumption using the TRS over the range of 
studying temperature. In principle, the application of the TRS 
is valid if and only if the master relaxation curve and the shifted 
curves are fully identical, because only a horizontal shift is acted 
by the TRS theory. In order to examine this requisite, Figure 9A 
plots the relaxation functions at four testing experiments (solid 
lines) and the relaxation curves shifted from the master curve 
(dashed lines). The plots reveal that the modulus relaxation func-
tion and the shifted curve are not fully identical. While two data 
have a good match within the first relaxation response, ie, fast 

relaxation time (τ1≈10−5 − 10−2 seconds), an obvious distinction 
can be recognized when one looks a bit closer on the long-term 
relaxation response (τ2≈10−2 – 103 seconds) as indicated in the 
zoomed plot (Figure 9B). Similar findings can be seen in the 
work of Zhou et al26 and Yu et al28; however, impacts of such 
nonidentical relaxation response in the long term on the creep 
displacements have not been studied. It is obvious that the first 
relaxation period occurs extremely short (<0.01 second) com-
pared to the total pressing time. In contrast, the second relaxation 
period, though it weighs only a small proportion of the entire 
relaxation spectrum, holds the entire creep experiment, starting 
at very early stage (0.01 second) till the end of the pressing time 
(900 seconds). Therefore, the second relaxation stage definitely 
contributes a substantial dominance, while the first relaxation 
barely plays a role in the overall deformation of the glass in 
the creep experiments. According to the definition of the TRS 
(Equation 6), only one relaxation time—the first relaxation time 
�1—is mainly involved in the determination of the shift factor be-
cause of its dominant overlapping ratio. The second relaxation 
times, however, have not the same temperature dependence, lead-
ing to the dissimilarities between the master and shifted curves 
when using the shift factors computed from the first relaxation 
times. Such inadequate characteristic of the TRS makes it in-
sufficient to represent the temperature-dependent viscoelastic 
property over a wide temperature range. Clearly seen in Figure 
8, even a small difference of relaxation response in the long-term 
relaxation time can bring substantial deviations in the numerical 
computation of creep displacements.

Several studies attempt to enhance the model predictions 
by not only shifting the master curve horizontally but also 
vertically, called Thermo-Rheologically Complex, so that the 
vertical differences can be reduced.40 However, it is stressed 

(16)log (a (T))=
−C1

(

T −Tr

)

C2+
(

T −Tr

) ,

F I G U R E  7  WLF-fitting function and constants

F I G U R E  8  Simulation results of creep displacements 
using thermo-rheologically simple [Color figure can be viewed at 
wileyonlinelibrary.com]
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that the vertical shift, again, is another assumption, and it is 
only valid if the master and shifted curves are fully vertically 
identical. In the following chapter, an alternative approach is 
introduced to improve the modeling of temperature-depen-
dent viscoelasticity without assuming that the thermorheo-
logical material behavior is simple or complex.

4 | PROPOSED THERMO-
VISCOELASTIC MODELING APPROACH

This chapter introduces a new modeling approach of the 
thermo-viscoelastic behavior of glass materials. The pro-
posed method aims at the characterization of the tempera-
ture-dependent viscoelastic parameters without using the 
relaxation moduli and shift function. To characterize the vis-
coelastic properties at a specific temperature, ie, isothermal 
rheology, the earlier verifications demonstrate that the rheo-
logical Burgers model is fully adequate to represent the creep 
response (Figure 6B). For incorporating temperature into the 
rheological model, ie, thermorheology, the central point is 
to pursue a unique set of Burgers model parameters, called 
Burgers parameters, which are dependent on temperature, 
and this unique parameter set is able to represent the glass 
viscoelastic responses over the entire temperature range.

As previously presented, the relaxation parameters, ie, 
relaxation time τi and weight factors gi(i = 1, 2), can be di-
rectly calculated from four Burgers parameters (Equations 
A6 and A9; Appendix A). It means that if there exists a tem-
perature-dependent function for each individual Burgers pa-
rameter, the relaxation parameters at any temperature can be 
determined while the prerequisite of the relaxation functions 
and shift factors is no longer necessary.

4.1 | Determination of Burgers parameters

Our method focuses on finding a parameter set of the 
Burgers model, ℘=℘

(

E1 (T) , E2 (T) , �1 (T) , �2 (T)
)

, 
which is able to represent both creep and stress relaxation 
over the entire temperature range. Using the creep com-
pliances at four experiment temperatures (Figure 3B), the 
Burgers parameters of each temperature are obtained by a 
nonlinear curve fitting. Figure 10 presents the fitting values 
of these parameters in natural logarithmic scales varying 
with temperatures. Here, it is noted that the first spring of 
the Burgers model, E1, represents the instantaneous viscoe-
lastic response, which is accounted for the Young modu-
lus of glass materials. This parameter can be temperature 

F I G U R E  9  A, Relaxation functions and shifted data using WLF function; and (B) zoomed plot of relaxation functions at large time scales 
[Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E  1 0  Temperature-dependent parameters of the Burgers 
model
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dependent, measured by several available techniques, 
such as Brillouin light scattering3 or impulse excitation.41 
However, since most of glass molding simulations con-
sider a constant Young modulus, usually available in glass 
datasheet, the parameters E1 is assumed to be temperature 
independent. Thus, this value is constant given at room 
temperature (Table 1). The relations of other parameters, 
ie, E2, η1 and η2, with temperature, plotted in Figure 10, 
reveal a unique trend where the properties of these param-
eters are decreasing with increasing temperatures.

In the next step, such relations between each Burgers 
parameter and temperature demand a best mathematical de-
scription, ie, a relevant temperature-dependent model. In this 
regard, it is necessary to figure out a realistic model using 
the fewest possible number of fitting parameters. Since the 
observing trends shown in Figure 10 are similar to that of 
the glass viscosity, existing models for the equilibrium vis-
cosity of glass can be a good reference. In the transition 
region, most of the glass exhibits non-Arrhenius behavior, 
and a sufficient model to represent such behavior requires at 
least three parameters. In this study, the major focus puts on 
three-parameter models only, able to describe the universal 
physics of the viscoelastic responses. A model in the form of 
Vogel-Fulcher-Tammann (VFT) equation is chosen given as 
follows:

where T is the absolute temperature, and ℘ is each of the three 
temperature-dependent parameters of the Burgers model, ie, E2, 
η1 and η2. In other words, each Burgers parameter can be de-
termined at any temperature by the VFT function. Advantages 
of the proposed method are to increase the freedom of each 
model parameter when they are coupled with temperature, 
whereas all thermo-mechanical coupling parameters using the 
TRS property are restricted to a single temperature-dependent 
variable—the shift factor. Please note that the similar approach 
can be applied to any other rheological models instead of the 
Burgers model.

The VFT-fitting function in Equation (17) is chosen be-
cause each coefficient contains universal physics; though 
it is commonly known as an empirical estimation of vis-
cosity with temperature dependence in the glass transition. 
In fact, the three coefficients, A, B, and T0, in the VFT 
form correspond, respectively, to (a) the viscosity at in-
finite temperature; (b) a function curve defining the fra-
gility of a glass-forming material; and (c) a temperature of 
a glass-forming liquid at which its entropy, if the liquid is 
cooled sufficiently slow, coincides with the crystal entropy, 
defined as the Kauzmann temperature.42 Understanding the 
physical meaning of each coefficient helps to minimize the 
number of fitting coefficients.

4.2 | Minimization of number of fitting 
coefficients

Using the VFT-fitting equation, the three temperature-
dependent Burgers parameters are obtained, each of which 
contains three unknown coefficients. Thus, the total number 
of fitting coefficients is nine, including A(E2), B(E2), T0(E2); 
A(η1), B(η1), T0(η1) and A(η2), B(η2), T0(η2). It is stressed that 
one can use all nine coefficients to determine each Burgers 
parameter as the temperature dependence.

For the benefit of computational effort, however, the 
next step is to find a less possible number of the fitting co-
efficients. First, all three Burgers parameters would have the 
same Kauzmann temperature since it is the unique property 
of a glass material; hence, T0(E2)  =  T0(η1)  =  T0(η2)  =  T0. 
Besides, as observed in Figure 10, the variation of tempera-
ture-dependent viscosity η1(T) is mostly identical to that of 
E2(T). From the mathematical view using the VFT equation, 
both coefficients would have a similar coefficient B—the fra-
gility, meaning that B(η1) = B(E2). Finally, we assume that 
the Kelvin component of the Burgers model has the same in-
finite viscosity, permitting A(η2) = A(E2). According to this 
thought, the number of fitting coefficient reduces to five, 
which are A(η1), B(η1), A(η2), B(η2), and T0.

As illustrated in Figure 10, the VFT model using a set of five 
fitting coefficients ℜ=ℜ

(

A
(

�1

)

, B
(

�1

)

, A
(

�2

)

, B
(

�2

)

, T0

)

 
yields excellent fits for all three Burgers parameters over the 
temperature range of investigation. It means that each Burgers 
parameter can be determined at any specific temperature. By 
using these parameters, eventually, either creep or relaxation 
responses can be directly identified without awareness of the 
relaxation functions and shift factors.

4.3 | Thermo-viscoelastic 
modeling procedure

Based on the discussions in Sections 4.1 and 4.2, a thermo-
viscoelastic modeling approach is established as in the 
following:

The procedure starts with creep experiments conducted 
at a certain number of chosen temperatures n (eg, n=4, 
Figure 3B) in the range of glass molding. Corresponding 
mold displacements u

exp

k
 over entire recording time t 

are acquired, while k is the index of the displacement 
(k=1−n). Goal of this study is the development of a com-
putational method to estimate the creep displacements 
called ucal

k
, using the single set of Burgers parameters ℘.  

Objective of the parameter estimation procedure is to 
minimize the difference between the estimated and ex-
periment displacements. More specifically, the estimation 
procedure is converted into an optimization problem so as 
to determine the unique parameter set ℘ by matching the 

(17)ln (℘)=A (℘)+
B (℘)

(

T −T0 (℘)
) ,
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estimated and experiment displacements simultaneously 
at all temperatures.

In fact, providing that the parameter set ℘ is known, the 
creep displacements are achieved according to the compu-
tational procedure presented in Section 3.2. Furthermore, 
the single set of Burgers parameters is able to compute 
all n displacements at different temperatures by using the 
temperature-dependent relation defined by Equation (17). 
Therefore, the computation of creep displacements over 
the experiment temperature range eventually requires de-
termining the set ℜ of 5 unknown coefficients as discussed 
in Section 4.2.

A computational solver is developed for this purpose. 
Inputs fed into the solver consist of five unknown coeffi-
cients, the glass property (E,�) and the experiment data, ie, 
recording forces and displacements. Outputs are the com-
puted displacements ucal

k
. At first, ucal

k
 are computed using an 

arbitrary set of coefficients. Following, they are compared 
with the experiment data u

exp

k
. Providing the difference is 

bigger than an acceptable tolerance, a new coefficient set ℜ 
is updated to correct the computed displacements iteratively 
until the following relation is satisfied:

In this formulation, uexp

k
(�) and ucal

k
(�) are vectors con-

taining the experiment and computed displacements, re-
spectively, taken at a given time � (0<𝜁 < t) and at the k-th 
temperature; t is the recording time of the displacement. The 
time-displacement data obtained from creep experiments are 
highly nonlinear as shown in Figure 2. The overdetermined 
system of linear equations cannot be solved for Equation 
(18). Therefore, the determination of the coefficient set ℜ 
is necessarily required a powerful nonlinear optimization. In 
this study, the Levenberg-Marquardt algorithm is utilized for 
the parameter estimation. Accordingly, the optimization pro-
cedure serves to estimate the computational displacements 
iteratively until the difference can be sufficiently negligible 
to satisfy Equation (18).

To calculate the displacements from the coefficient 
set, the solver consists of 3 modules. The first module is 
to determine the Burgers parameters from the coefficient 
set. At this point, note that the Burgers parameters can be 
converted into relaxation parameters in the form of Prony 
series, for the ease of model implementation into an FEM 
commercial software, such as ABAQUS. In the following 
step, as the Burgers parameters are known, the creep com-
pliances are computed in the second module. Lastly, the 
third module is employed to calculate the displacements 
from the computed creep compliances. Detail of the com-
putational procedure is described in the flowchart provided 
in Appendix B.

4.4 | Numerical validations

Numerical validations of the proposed method are conducted 
in ABAQUS. The FE model shown in Figure 5 is used to 
simulate the creep displacements at four testing tempera-
tures. Viscoelastic parameters are provided in Table 3. The 
viscoelastic parameters are implemented for the simulation in 
ABAQUS via a UMAT user-subroutine. Figure 11A presents 
the simulation results, which greatly agree with the experi-
ment data. Compared to the large discrepancies observed in 
Figure 8, the proposed method obviously enhances the simu-
lation accuracy.

In order to demonstrate the efficiency of this method, 
further simulations are performed to predict the creep dis-
placements at other temperatures that are not involved in 
the VFT-fitting function. For this reason, creep experiments 
from 650°C to 790°C with an increment of 10°C are vali-
dated. Using the same viscoelastic parameters in Table 3, 
FEM simulations are run at every experiment temperature. 
Figure 11B presents the simulation results and experimental 
data. Exceptionally good agreement is found within the entire 
temperature range chosen for the validation.

Furthermore, to intensify the appropriateness of the method, 
other glass types, commonly used in PGM, are investigated. 
Beside the borosilicate glass SUPRAX® 8488, two other glass 
categories of SCHOTT, aluminosilicate Xensation® 3D and 
infrared chalcogenide IRG 27 (As2S3), are chosen. Thermo-
mechanical properties of these glass materials are provided in 
Table 1. Figures 12 and 13 introduce the creep experiments and 
numerical validations of the Xensation® 3D and IRG 27, re-
spectively. For those plots, the dashed lines in Figures 12A and 
13A present the numerical verifications at the testing tempera-
tures chosen for obtaining the Burgers parameters by the pro-
posed method. The VFT-fitting functions of those parameters 
are shown in Figures 12B and 13B, and the corresponding val-
ues are provided in Table 3. Besides, the solid lines exhibit the 
validation of the creep displacements at temperatures that are 
not involved in the fitting functions. These results demonstrate 
that accuracy of the numerical predictions at other temperatures 
within the glass molding range is satisfied. The validation re-
sults of three different glass categories strengthen the validity 
of the proposed method in characterizing and modeling the 

(18)u
exp

k
(�)=ucal

k
(�) .

T A B L E  3  Thermo-viscoelastic coefficients

Coefficients Suprax 8488 Xensation 3D IRG 27

A (η1) 17.347 68 18.0983 12.5106

B (η1) 8316.032 8852.178 10 053.35

A (η2) 10.543 54 16.357 12.689

B (η2) 18 531.4523 3385.455 3865.25

T0 515 823 476

 15512916, 2020, 4, D
ow

nloaded from
 https://ceram

ics.onlinelibrary.w
iley.com

/doi/10.1111/jace.16963 by Fraunhofer IPT
, W

iley O
nline L

ibrary on [12/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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thermo-viscoelastic nature of glass for FEM simulation in the 
glass molding process.

In addition to considering the VFT model, it is empha-
sized that other existing equilibrium viscosity models can 
be valid for the proposed method. To demonstrate, the 
MYEGA viscosity model, recently introduced by Mauro 

et al43 is investigated. Similar as the VFT form, this model 
contains three fitting parameters that are used to obtain the 
temperature-dependent Burgers parameters. Figure 14 com-
pares the simulation of creep displacements of the MYEGA 
and the VFT models where exceptionally identical results 
are found. In future work, the validity of the equilibrium 

F I G U R E  1 1  A, Validations of creep displacements for Suprax 8488 glass at four testing temperatures; and (B) validations over temperature 
range from 650°C to 790°C [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E  1 2  A, Validations of Xensation 3D glass; and (B) temperature-dependent Burgers parameters [Color figure can be viewed at 
wileyonlinelibrary.com]
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viscosity models needs to further examine a broader tem-
perature range, particularly for temperatures near Tg and 
below.

Finally, the methodology is independent from the choice 
of material models defined by simulation users. For exam-
ple, the generalized Maxwell model with multiple Maxwell 
terms n≥3 are commonly used in many previous studies. We 
emphasize that the same modeling procedure can be truly ad-
opted for other user-defined material models.

5 |  CONCLUSIONS AND FUTURE 
RESEARCH

An accurate model to characterize the thermo-viscoe-
lastic properties is among the most successful keys for 
the simulation of the PGM process. In this paper, present 
restrictions on the modeling of the viscoelastic material 
behavior have been resolved. For the simulation of the 
viscoelastic responses, a correct implementation of the 
relaxation parameters derived from the creep experiment 
data is elucidated. The finding gets rid of the mismatch 
between the simulation and experiment data of the creep 
displacements. For modeling the temperature-dependent 
viscoelasticity, a detailed examination reveals the defi-
ciency of the TRS assumption over a wide temperature 
range of glass molding. To overcome this deficit, the 
paper presents a novel method for modeling the thermo-
viscoelastic material behavior of glass. The proposed 
method permits a determination of the thermo-viscoe-
lastic parameters without using the relaxation functions 
and shift factors. The constitutive Burgers model demon-
strates its sufficient representations of the viscoelastic re-
sponses over the range of molding temperature chosen in 
this study. Temperature is incorporated into each Burgers 
parameters in the form of VFT function to account for 
the temperature-dependent viscoelasticity. The method 
illustrates that a single set of five coefficients satisfac-
torily characterizes the thermo-viscoelastic properties of 
the glass. By multiple curve fitting of the creep displace-
ment data, the parameter set is achieved. Using this sin-
gle set, the viscoelastic responses, either creep or stress 

F I G U R E  1 3  A, Validations of IRG 27 glass; and (B) temperature-dependent Burgers parameters [Color figure can be viewed at 
wileyonlinelibrary.com]

F I G U R E  1 4  Comparison of MYEGA (solid line) and VFT 
model (dashed line) for IRG 27 glass [Color figure can be viewed at 
wileyonlinelibrary.com]
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relaxation, at any temperature within the glass molding 
range can be directly determined. Thanks to the math-
ematically equivalent advantage of the Burger model and 
the two-term Prony series, the five temperature-depend-
ent viscoelastic parameters are implemented in the FEM 
simulation tools via UMAT, using the hereditary integral 
approach in a straightforward procedure. The validity of 
the proposed method is steadily solidified by excellent 
agreements between the experiments and simulation re-
sults of three different glass types in a broad temperature 
range.

To widen the applications of our modeling method, future 
work will examine the validity of fitting models in a broader 
temperature range of glass transition and below. In this con-
text, we will focus on the implementation of nonequilibrium 
viscosity models, such as the Mauro-Allan-Potuzak model,44 
in order to incorporate thermal history and thermo-visco-
elastic properties into a single constitutive model of glass 
materials.
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APPENDIX A

MATHEMATICAL EQUIVALENCE 
BETWEEN THE BURGERS MODEL 
AND THE TWO-TERM PRONY 
SERIES
Constitutive equation of the Burgers model in the differential 
form is given as (Findley et al29):

Using Laplace transformation, the solution to creep and 
stress relaxation responses can be obtained:

and

where q1,q2, and A are the parameters defined as follows:

with

and �1,�2 are the relaxation times, given as follows:

Following, shear parameters of the Burgers model are cal-
culated by using Lamé constants:
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By inserting Equation (A7) into Equation (A3), the shear 
relaxation modulus is gained:

Let us define two new parameters g1,g2, called weight 
factors:

Then, Equation (A8) is expressed in a compact form:

Easily to realize that g1 + g2 = 1. Therefore, the shear re-
laxation modulus of the Burgers model (Equation A10) is math-
ematically equivalent to the two-term Prony series.

(A7)

G1 =
E1
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(A9)

g1 =
�1�2

(

�1−�2

)

(

G2

�2

−
1

�1

)

, g2 =
�1�2

(

�1−�2

)

(

1

�2

−
G2

�2

)

.

(A10)G (t)=G1

[

g1 ⋅e
−t∕�1 +g2 ⋅e

−t∕�2

]

.

F I G U R E  B 1  Flowchart of 
the computational procedure for the 
determination of temperature-dependent 
viscoelastic parameters

APPENDIX B

COMPUTATIONAL PROCEDURE 
FOR THE DETERMINATION OF 
TEMPERATURE-DEPENDENT 
VISCOELASTIC PARAMETERS
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