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Introduction

W Established interconnection material for die attachment in power

electronics applications

m Still questions on manufacturing and design for lifetime estimations

Some experimental results on time dependence available in literature

No detailed discussion about modeling of the results

Application: different time and
stress domains, complex loading

situations

Internal porous structure - high
internal stresses

B How to model the results for which

application?
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Fig.: Typical semiconductor temperature
profile during operation’.

'Ref.: Maerz, M. et al.: Mechatronic Integration into Hybrid Powertrain
— The Thermal Challenge, APEConference, 2006
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Materials and methods

M Sample preparation
“ Sinterpaste: Heraeus LTS043

W Stencil printing of paste on Si substrate
® Drying at 100°C for 30 min
“ Sintering in hot uniaxial-press

“ Temperature: 250°C

@ Time: 120 s

" Pressure: 20 MPa

“ Laser cutting to dog bone shape

“ Final sample thickness: ca. 40 pm

\

\@;’ Fig.: Geometry of the

! @ investigated sintered
silver specimens.

22

Fig.: FIB-Cross section showing the
microstructure of the investigated sintered
silver specimens.
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Materials and methods

B Uniaxial loading experiments
Lloyd testing machine equipped with temperature chamber

Strain measurement: Limess Digital-Image-Correlation system

Monotonic hardening
Constant cross head speed
Temp.: 25°C, 150°C, 250°C
Creep loading
Const. load: 10 N, 12.5N, 15N
Temp.: 75°C, 125°C, 125°C
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Materials and methods
B General modeling strategy: Basic equations and assumptions

Decomposition of total strain (small strain theory)

Etot = Ee T Ep + Eypy = Ee T Ejy

Stress depends only on plastic strain and plastic strain rate

0= f(gp' ép)

Elastic strain: Linear isotropic thermo-elasticity law

1+v U
e =% G—ETr(a)l + a®1
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Materials and methods

B General modeling strategy: Plasticity computation

Plastic strain by associative flow rule

Evolution of v. Mises yield surface by
flow function

Isotropic scalar hardening variable
(Thermodynamic force)

Accumulated plastic strain definition

Evolution of R with acc. plastic strain

\
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Materials and methods

B General modeling strategy: Viscoplasticity computation

Viscoplastic strain by viscoplastic
dissipation potential

, Q)
Evp = %

Combined inelastic treatment

N OARE
tin ="\ 56 ) " 90

Evolution of hardening variable

() _00
"=7"\8Rr) oR

Garofalo stationary creep law

C
Evp = C [SL'nh(Cza)]C3e_T4

Combined creep (transient + stationary)

C10'62t63+1 _C4 Cy
E =
TG+ 1)

e T + Csolte™ T

Perzyna viscoplasticity equation
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Materials and methods

In (de/dt in s™)

Model parameterization

Creep models: Extraction of secondary creep rates and stresses, linear fitting

Non-linear fitting (LM-algorithm) of primary creep ( t_l)m
L . Evp
Perzyna model: Transformation into relaxation data 2> o = g
. _ 14
Global non-linear fitting of rearranged Perzyna model
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Fig.: Parameterization of Norton stationary creep law. Fig.: Parameterization of Perzyna viscoplasticity by relaxation data..
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Results and discussion

B Uniaxial creep loading experiments
Summary of all tests
Only primary and secondary creep

Missing elastic offset strain
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Fig.: Summary of uniaxial creep testing results.

M Hardening experiments and
model predictions

Hardening deacreases with
increasing temperature

At 225°C perfect plasticity

Good predicition at this strain
rate in this strain regime

(o2} @
o o

o

Equivalent Stress in MPa
B

N
o

1 ’ 1 N I ) 1 y I y
o Exp. 25°C——TH-Nort. 25°C -
Exp. 125°C TH-Nort. 125°C
& Exp. 225°C —— TH-Nort. 225°C |
-Perz. 25°C------ Garofalo 25°C
Perz. 125°C Garofalo 125°C
-Perz. 225°C------ Garofalo 225°C 1

O . 1 I X n 1 L
0,000 0,005 0,010 0,015 0,020 0,025 0,030

Total Strain in mm/mm

Fig.: Monotonic hardening experiment results and model predictions.
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Results and discussion

M Multiple-Hardening-Relaxation (MHR) computations: Results overview

Hardening: const. displacement rates: 1E-03 5!, 2E-03 5!, and 3E-03 s’

Hardening segments are followed by holding segments for 100 s

Creep models show the same trend during relaxation

Faster relaxation response for Perzyna model
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Fig.: Multiple-Hardening-Relaxation computations results at 25°C.
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Fig.: Multiple-Hardening-Relaxation computations results at 225°C.
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Results and discussion

® Multiple hardening computations: Transfomed Stress-Strain data

Unequal hardening characteristic of Perzyna and creep models

Only for higher strain rates and temperatures

Creep models converge to static plastic solution
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Fig.: Transformed stress-strain data of MHR computation at 25°C.

70

60

50

40

20

Equivalent Stress in MPa

10

0, 0000 0,0025 0,0050 0,0075 O, 0100 0, 0125 0,0150

30

1 T 1 T T
— Perzyna-Model
—— TimeHardening-Norton

| —— Garofalo-Model

1 L 1 L 1

225 C_

1

Total Strain in mm/mm

Fig.: Transformed stress-strain data of MHR computation at 25°C.
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Results and discussion

M Multiple hardening computations: The creep models
Stress dependency less pronounced at higher temperature
Relaxation is less pronounced at higher Temp., reversely expected!

Reason: Computation scheme for plastic and creep strains
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Lower temp.: Plasticity law
yields low strains for high
stresses. Impact of viscous
strain is high.
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Higher temp.: Instantaneous
plasticity yields high strains
at relatively low stresses.
Viscous strains are small and
plasticity is predominant.

I
1

0,004 0,0010

0,002 0,0005

1
\
1

T P, e i | % ] A 1 A 0,0000
10 150 200 250 300

Timeins

Equivalennt Plastic Strain in mm/mm
Equivalent Creep Strain in mm/mm

o
[=)
S
S
o
)
S

Fig.: Strain decomposition for Multiple-Hardening-Relaxation computations.

\

~ Fraunhofer

11SB




Results and discussion

M Multiple hardening computations: The Perzyna model
Different response compared to creep models
Tight database for the parameterization
Inelastic strain is obtained by a combined single viscoplastic potential

T0)
gin = ao_vp

Accumulated viscoplastic strain rate yields the inelastic strain rate

1

N r—
r= orR ¥ 0o+QoT+Qoo (1—e~b7)

Hardening influences plastic strain rate, creep strain is calculated
independently from the plastic strain

Multiplicative connection between plasticity and viscoplasticity could
lead to a much stronger interaction compared to additive creep analysis

\
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Summary, conclusions and next steps

B Creep and monotonic hardening tests at different conditions were
conducted on sintered silver films

B Three approaches to model the rate-dependency + instantaneous plastic
strain were considered

W Different load scenarios were computed and compared
B The hardening experiments were correctly predicted by all models

B For multiple-hardening-relaxation computation, large differences
between the Perzyna and the creep models were observed

B Multiplicative coupling of the viscous effect and the static plasticity yields
a strong interaction and a higher sensitivity on the model parameters

B Next steps (ongoing):
Conduct MHR-Tests in different time and stress domains

Compare model predictions with experimental results and determine
the domain of validity for each model for sintered silver layers
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