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ABSTRACT 

If for a given application, candidate tracking methods for humans need to be selected and optimized, then relevant sensor 
and truth data as well as appropriate assessment criteria are required. In the work reported in this contribution we used 
data recently collected in a riot control scenario. We then processed the sensor data using a set of tracking methods from 
literature. Tracking results and truth data allowed us to deduce metrics that reflect the usefulness of a tracking method for 
the selected scenario. The software implementation of the assessment criteria, together with sensor and truth data, forms 
a benchmark for tracking algorithms in a riot control scenario. It can be used by developers to optimize their tracking 
systems and to demonstrate their usefulness for application in a riot control scenario. The performance and robustness of 
optimized tracking methods can considerably improve situational awareness in a riot control scenario.  
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1. INTRODUCTION 

In these days political demonstrations belong to civil liberty and take place all over the world. Unfortunately peaceful 
demonstrations sometimes turn over to become violent. In order to prevent outbreaks of disorder security personnel has 
to be trained and educated accordingly. Therefore, authentic scenarios so-called crowd and riot control (CRC) scenarios 
are imitated by training supervisors and trainees. In reality security guards have to withstand high pressure: Individuals 
may act differently and not foreseeable as in trained scenarios. In these situation a surveillance systems can assist 
security guards to establish order.  

In this work we define a CRC assistance system which supports the tracking and seizure of an offender in a crowd. For 
the acquisition of the supervised areas we install cameras on elevated observation points or on unmanned aerial vehicles. 
For people tracking we use single object trackers such as covariance tracker from Porikli et al. [11] which produces point 
hypotheses. Our main focus lies on the tracking module and its optimization using meaningful performance evaluation 
metrics. 

In recent years there were a number of publications in the field of performance evaluation of object detection and object 
tracking systems which was advanced by the international workshop of PETS (Performance Evaluation of Tracking and 
Surveillance). In order to get unbiased objective results of performance evaluation there is a need to define standard 
metrics [15]. In evaluation of object detection algorithms there was an achievement of consistent metrics. By contrast for 
tracking algorithms there is no general agreement for assessment metrics. Basic metrics such as true positive are defined 
differently by authors: In [5] Ellis defines true positives as “the number of observations confirmed by the ground truth”  
whereas Bashir and Porikli define it as the “number of frames where both ground truth and system results agree on the 
presence of one or more objects…”[1]. In literature authors define metrics that assess every single frame (Bashir and 
Porikli), or detected objects (Bashir and Porikli [1] / Lazarevic-McManus et al. [6]) or overall trajectories (Perera et al. 
[10]). The decision what metrics are appropriate for performance evaluation depend on the task definition.  

In this paper, we propose suitable metrics for quantitative assessment and optimization of CRC trackers and we evaluate 
the performance of three different trackers that are demonstrated as appropriate for riot control scenarios. A qualitative 
assessment of several trackers resulted that these trackers are the best ones for CRC.   

In Section 2 we define the CRC assistance system and describe its individual modules. Then we present the data set 
recently collected in a CRC scenario in Section 3 and in Section 4 we give a brief summary about the tracking methods. 



 
 

 

 

In Section 5 we present suitable metrics for CRC tracker. The results of the performance evaluation are shown in Section 
6 before we conclude our contribution in Section 7. 

 

2. CRC ASSISTANCE SYSTEM 

We define a CRC assistance system which subsequently tracks an individual in a crowd. In the flow chart (Fig. 1) we 
show one loop of the system with the four modules: data acquisition, manual detection, tracking and situation analysis. 
The assistance system starts with the data acquisition by using optical sensors which outputs a single image. In the first 
loop of the system the object is initialized by an operator sitting in front of a display. The operator selects a suspicious 
individual in the image by clicking on her or his head. The described process is called manual detection. It delivers the 
object position to the tracking module. After a successful object initialization the process of manual detection can be 
skipped in subsequent loops. In this case the object position of the last loop is used as the input of the tracking module. 
During the tracking module the detected object position of image t-1 is retrieved in image t within a region of interest. As 
a result the predicted object position is used in the situation analysis module. In the situation analysis expertise is used to 
detect possible dangerous situations and suspicious behavior. During the runtime of the assistance system the operator 
can interact with the system and readjust the tracking window if necessary. 

 

 
Fig. 1. CRC assistance system 

 

3. DATA SET 

For our work we used data which was collected during a military CRC training. The camera was installed 25 meter high 
on a crane platform and recorded data from nadir view (see Fig. 2). The CRC scenarios consisted of three different levels 
of escalation. First the crowd started with a peaceful demonstration. Later there were violent protests and an escalation of 
the riot where offenders bumped into the chain of guards. 



 
 

 

 

 

Fig. 2. Technical data acquisition details 

 

In data acquisition we used a single-chip CMOS camera with a 20Hz sampling rate and a resolution of 752 x 480 pixels. 
The resolution of an individual is about 16 x 16 pixels (compare Fig. 3). Each pixel of the image sensor chip captures 
only 8 bit: one of the three basic colors red, green or blue. The 24 bit color information for each pixel is computed in an 
embedded software module.  

 

 

Fig. 3. Sample resolution of an individual 

 

As a result of the nadir view there are only few object occlusions. Naturally, pictures from unmanned aerial vehicles 
contain a crowd consisting of small individuals which is a challenge for our tracking module (compare Fig. 4). 
Additionally, in our real data sets we have got to deal with variations of contrast of the individuals to the background. 
There are individuals with weak (see Fig. 5 circle 1) and significant (see Fig. 5 circle 2) contrast to the background. 
Another challenge is the similarity of objects (see Fig. 5 circle 3). As a consequence of fast changing lightening 
conditions there are local and global variations of luminance linked with strong shadowing effects (see right image in 
Fig. 4). 
 
 



 
 

 

 

  

Fig. 4. Snapshots from the CRC data set 

 

 

Fig. 5. Data set challenges 

 

4. TRACKING METHODS 

We qualitatively assessed a set of original tracking methods from literature and adapted methods to CRC scenarios. The 
qualitative assessment allowed us to compile a first ranking of the tracking methods. In this section we give a brief 
summary of the best three trackers.  

 

4.1 Color Based KLT 

We extended the pyramidal implementation of the KLT (Kanade-Lucas-Tomasi Feature Tracker) [4] by color weighted 
features. Detailed information about the original KLT can be found in [7, 12 and 13]. Here we give a short overview of 
the color based pyramidal KLT. First, weights of colors are determined within a tracking window which contains the 
target object. A color weight is obtained by subtracting the number of a color in a specified tube around the tracking 
window from the number of this color within the window. Additionally, the weights are normalized with respect to the 
total number of colors. Thus, high positive values for weights indicate colors that only exist on the target.  Then local 
image structures that exhibit strong gradients are extracted within the tracking window and are weighted by the color 
weights: The weights of each pixel within the window are added and divided by the total number of pixels inside. After 
that, the optical flow vectors for the image structures are calculated by the pyramidal KLT and the mean endpoint of all 
vectors which points to the new location of the tracking window are determined. Thereby, the vectors are weighted by 
the weights of the image structures and the sum of squared differences between the image structures of the starting and 
receiving points. 

 



 
 

 

 

4.2 Color Histogram Tracker 

Histogram trackers are widely used and demonstrated as reliably [8, 9]. As color is an important feature for tracking in 
CRC scenarios we adapted a color histogram tracker to these scenarios. We give a brief summary of the adapted 
histogram tracker. The first step is equivalent to the color weighting process of the color based KLT. Then a color 
histogram is calculated and weighted by the color weights. In the next image this histogram is compared with histograms 
extracted from the region near the target object. The best match is determined with a figure of merit and returned by the 
algorithm.  

 

4.3 Covariance Tracker 

The main idea of the covariance tracking method of Porikli et al. is to describe image regions by covariance matrices 
[11]. For each region of interest pixel a number of features such as position, color and gradients of pixels is measured 
and coded in a covariance matrix. This so-called covariance descriptor contains information about linear correlations 
between the features. After the detection of the region of interest the covariance descriptor is computed and stored in an 
initial model. In the next step the initial model is searched in a target image. The algorithm returns the descriptor with the 
smallest difference to the initial model and then it updates the initial model with this one. 

 

5. PERFORMANCE EVALUATION 

The basis of performance evaluation is to define appropriate metrics that fulfill tracking requirements. According to 
Bernardin et al. there is no common agreement for suitable metrics for performance evaluation of tracking algorithms 
among image processing experts [2].  

For a CRC tracker we claim:  

1. The correct recognition of the object from frame to frame. 

2. The precise estimation of the object position. 

3. The consistent tracking of an object during the image sequence. 

Performance evaluation is necessary to assess the robustness of tracking algorithms and to compare them with results 
from literature [2]. Therefore a number of metrics were presented in the past. In [1] the authors distinguish metrics in 
frame-based and object-based metrics whereas Perera et al. define frame-based and track-based metrics [10]. Frame-
based metrics evaluate only one frame at a time unlike object-based or track-based metrics which assess trajectories. 
Trajectories are created by the interpolation of discrete hypothesis points obtained from a tracking algorithm.  

In literature there is an agreement of basic metrics from signal detection theory being both relevant for performance 
evaluation of detection and tracking algorithms. These are: true positive (TP), true negative (TN), false positive (FP) and 
false negative (FN). For every image containing ground truth or not the tracking algorithm returns hypotheses as centers 
of gravity or not. In [5] Ellis defines the following four combinations: 

 

Ground truth existing Ground truth not existing 

Algorithm returns hypothesis TP (detection) FP (false alarm) 

Algorithm does not return hypothesis FN  TN  

 

Table 1. Metrics from signal detection theory 

 
In spite of the agreement of these basic metrics in literature there is a difference of their interpretation. For instance, the 
sense of TP differs from the number of hits counted for one ground truth object [5], so multiple detections are counted. 
Lazarevic-McManus et al. define TP as the number of detected ground truth objects per sequence [6]. Bashir and Porikli 



 
 

 

 

define it as the number of images having at least one object detection per image [1]. According to Yin et al. using all four 
basic metrics is useful for performance evaluation of detection algorithms [14]. In our case, the metric TN isn’t 
significant because no background images were recorded. For the work reported here we used exact ground truth 
polygons and tracking hypotheses as centers of gravity. To determine the basic metrics we ran a point-in-polygon test. 

We define the basic metrics as follows:  

[1] and [6] define normalized rates to obtain quantitative evidence. These are: True Positive Rate , False Negative Rate 
, Positive Prediction  and False Alarm Rate . 

The True Positive Rate is the relation of the correct detected objects to the number of ground truth objects and is defined 
as follows: 

 

The False Negative Rate is the relation between the numbers of not detected objects and the number of ground truth 
objects and is defined as follows: 

 

The Positive Prediction, likewise a ratio for the correctness of the algorithm, is computed by the relation of the number 
of detections and the number of hypotheses: 

 

The False Alarm Rate defines the relation of the number of false alarms and the number of hypotheses. It gives evidence 
to the error rate of the tracker: 

 

The presented rates fulfill the first requirement. The correct recognition of objects from frame to frame can be measured 
by the True Positive Rate and Positive Prediction. If tracking algorithms return exactly one object hypothesis per image 
containing exactly one ground truth, the number of false negatives and false positives is always identical because the 
number of ground truth objects is equal to the number of tracking hypotheses.  

To accomplish the second requirement: the precise estimation of the object position, we use a known metric from 
literature. The Object Tracking Error (OTE) defined by the authors Black et al. [3] measures the Euclidean Distance of 
the ground truth center of gravity and the hypothesis center of gravity for one ground truth object of an image. It is 
defined as follows:  

 

Whereas  is the number of images containing both ground truths and tracking results.  and define the x- and y-
coordinate of the ground truth center of gravity in the  image respectively  and  are the coordinates of the 
hypothesis center of gravity in the  image. 

 

NTP The number of objects with at least one detection per ground truth.  

NFP The number of detected objects not confirmed by ground truth. 

NFN The number of ground truth where no hypothesis was assigned.  

 



 
 

 

 

For the sake of completeness, we define the dispersion measure of the  which is the variance . It is given 
through 

 

 

Additionally, we computed the minimal ) and maximal ): 

 

. 

 

The last requirement is the consistent track of an object during an image sequence. Therefore, we introduce the metrics 
hold-in duration, hold-in loss and track fragmentation.  

The hold-in duration specifies how many images were tracked subsequently without a tracking loss, in Fig. 6 e.g. 8 
images in track 1 and 5 images in track 2. The hold-in loss specifies the number of images which were not detected 
subsequently, e.g. 1 image (see Fig. 6). The track fragmentation specifies the number of track fragments, e.g. 1 in Fig. 6 
below. 

To enhance the significance of the hold-in duration, hold-in loss we defined additionally the mean, the minimum and 
maximum value.  

 

Fig. 6. Definition of hold-in duration, hold-in loss and track fragmentation 
 

6. RESULTS 

For performance evaluation we considered several individuals within a sequence of 1000 images. During the whole 
image sequence the individuals were visible. The ground truth was generated semi-automatic with the in-house 
annotation tool CART [8, 9]. The assessed tracking methods were Color Based KLT (KLT), Color Histogram Tracker 
(ColHist) and Covariance Tracker (Covariance) described in Section 4. 
 
The results are shown in Table 2 and Fig. 7 to 11. The results are averaged over the individuals. We plotted the True 
Positive Rate and False Negative Rate, the hold-in duration, the hold-in loss, the OTE and the track fragmentation. As 
stated previously the results of True Positive Rate and Positive Prediction respectively False Negative Rate and False 
Alarm Rate are in each case equal because the trackers returned exactly the same number of hypotheses per image as it 
contained ground truths. 
 
 
 



 
 

 

 

Metrics KLT Covariance ColHist 

Total ground truth 1000 1000 1000 

Number of TP 918,2 958,8 538,9 

Number of FP 81,8 41,2 461,1 

Number of FN 81,8 41,2 461,1 

True Positive Rate  92,56% 96,26% 53,73% 

False Negative Rate  7,44% 3,74% 46,27% 

Positive Prediction  92,56% 96,26% 53,73% 

False Alarm Rate  7,44% 3,74% 46,27% 

OTE 11,0 9,8 31,0 

 0,9 1,1 1,2 

 33,1 28,1 105,6 

Hold-in duration μ 739,3 655,8 309,6 

Hold-in duration min 672,7 569,8 268,1 

Hold-in duration max 845,2 864,9 429,6 

Hold-in loss μ 38,1 3,7 168,7 

Hold-in loss min 29,3 0,6 105,9 

Hold-in loss max 69,5 27,8 324,8 

Track Fragmentation 1,9 4,6 6,0 
 

Table 2. Performance evaluation overview 
 
 
 

 

Fig. 7. True Positive Rate / False Negative Rate 
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Fig. 8. OTE 

 
 
 
 
 
 

 

Fig. 9. Hold-in duration 
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Fig. 10. Hold-in loss 

 
 
 
 
 
 

 

Fig. 11. Track Fragmentation 
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7. SUMMARY 

We defined a CRC assistance system that supports the control of crowds and the breakup of riots. Since in riot control 
scenarios it is important to track individual people reliably a performance evaluation of tracking methods is necessary. 
We proposed metrics for quantitative performance evaluation and optimization of tracking methods for riot control 
scenarios. The metrics, sensor data recently collected in a riot control scenario and the ground truths form a benchmark 
for CRC trackers. We used it to optimize trackers for CRC scenarios proposed in this contribution and for the 
performance evaluation of these tracking algorithms. The benchmark is a beneficial support for the developing of 
methods for tracking people in riot control scenarios.  
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