
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of
existing products for an assembly oriented product family identification

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

Keywords: Assembly; Design method; Family identification

1. Introduction

Due to the fast development in the domain of
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global
competition with competitors all over the world. This trend,
which is inducing the development from macro to micro
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1].
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find.

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical).

Classical methodologies considering mainly single products
or solitary, already existing product families analyze the
product structure on a physical level (components level) which
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this

Procedia CIRP 81 (2019) 310–315

2212-8271 © 2019 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/)
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems.
10.1016/j.procir.2019.03.054

© 2019 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/)
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems.

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2019) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/)
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems.

52nd CIRP Conference on Manufacturing Systems

Multi-protocol Data Aggregation and Acquisition for
Distributed Control Systems

 David Albert Breuniga,*, Matthias Schneidera
aFraunhofer Institute for Manufacturing Engineering and Automation IPA, Nobelstraße 12, 70569 Stuttgart, Germany

* Corresponding author. Tel.: +49-711-970-1375. E-mail address: david.albert.breunig@ipa.fraunhofer.de

Abstract

In modern automated industrial plants, the share of components embedded in a complex network using nowadays communication
protocols grows. This leads to plants having several interfaces which offer data and which must be addressed during
commissioning. To ease integration and avoid errors, communication interfaces of all involved components can be aggregated.
However, as the components’ cooperation realises higher level functions-in the plant, it is necessary to enhance aggregations with
a plant-specific information model, that incorporates aggregated data and abstract specific plant functions. This paper introduces a
model-driven approach to realise locally deployable data aggregation systems that integrate plant-specific information models.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/)
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems.

 Keywords: data aggregation; information model; DCS; model deployment; distributed; OPC UA

1. Introduction

With the ongoing reduction in effort and cost to realise
sensors and actuators as embedded systems with own
computation and storage functions, modern automated
industrial machines and plants evolve strongly into system-of-
systems. Such systems are not created by developing a
combination of specifically engineered components. Instead
they are based on individual systems that integrate standardised
technologies, even often utilizing off-the-shelf hardware,
especially when it comes to soft real-time systems and
communication technologies like Ethernet or TCP. Software-
defined integration combines those modern small self-
sufficient automation components into task-fulfilling
manufacturing systems. The evolving system-of-systems
concept in industrial plants increases complexity in
engineering. While standardised technologies and interfaces
ease the interconnection of different systems, the growing
number of systems, the huge amount of information and the
wider spectrum of data provisioning increases complexity in

engineering and usage of such systems and make vertical
integration more complicated. These new challenges lead to a
need for methods and system that handle those problems to
support the realisation of both flexible and resilient automation.
This paper presents an approach for an extensible, modular
gateway that enables data aggregation and acquisition of
distributed control systems (DCS) across multiple
communication protocols.

2. Motivation

Traditionally, the hierarchy of automation devices and
applications is explained with pyramids according to the ISA-
95 [1]. Devices and applications act and communicate mostly
on their hierarchy level. Vertical communication is static and
specifically set up. To allow reconfiguration at any time the
hierarchic levels must dissolve to a system of equally treated
nodes which can take part in any business and manufacturing
process. [2]

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2019) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/)
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems.

52nd CIRP Conference on Manufacturing Systems

Multi-protocol Data Aggregation and Acquisition for
Distributed Control Systems

 David Albert Breuniga,*, Matthias Schneidera
aFraunhofer Institute for Manufacturing Engineering and Automation IPA, Nobelstraße 12, 70569 Stuttgart, Germany

* Corresponding author. Tel.: +49-711-970-1375. E-mail address: david.albert.breunig@ipa.fraunhofer.de

Abstract

In modern automated industrial plants, the share of components embedded in a complex network using nowadays communication
protocols grows. This leads to plants having several interfaces which offer data and which must be addressed during
commissioning. To ease integration and avoid errors, communication interfaces of all involved components can be aggregated.
However, as the components’ cooperation realises higher level functions-in the plant, it is necessary to enhance aggregations with
a plant-specific information model, that incorporates aggregated data and abstract specific plant functions. This paper introduces a
model-driven approach to realise locally deployable data aggregation systems that integrate plant-specific information models.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/)
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems.

 Keywords: data aggregation; information model; DCS; model deployment; distributed; OPC UA

1. Introduction

With the ongoing reduction in effort and cost to realise
sensors and actuators as embedded systems with own
computation and storage functions, modern automated
industrial machines and plants evolve strongly into system-of-
systems. Such systems are not created by developing a
combination of specifically engineered components. Instead
they are based on individual systems that integrate standardised
technologies, even often utilizing off-the-shelf hardware,
especially when it comes to soft real-time systems and
communication technologies like Ethernet or TCP. Software-
defined integration combines those modern small self-
sufficient automation components into task-fulfilling
manufacturing systems. The evolving system-of-systems
concept in industrial plants increases complexity in
engineering. While standardised technologies and interfaces
ease the interconnection of different systems, the growing
number of systems, the huge amount of information and the
wider spectrum of data provisioning increases complexity in

engineering and usage of such systems and make vertical
integration more complicated. These new challenges lead to a
need for methods and system that handle those problems to
support the realisation of both flexible and resilient automation.
This paper presents an approach for an extensible, modular
gateway that enables data aggregation and acquisition of
distributed control systems (DCS) across multiple
communication protocols.

2. Motivation

Traditionally, the hierarchy of automation devices and
applications is explained with pyramids according to the ISA-
95 [1]. Devices and applications act and communicate mostly
on their hierarchy level. Vertical communication is static and
specifically set up. To allow reconfiguration at any time the
hierarchic levels must dissolve to a system of equally treated
nodes which can take part in any business and manufacturing
process. [2]

	 David Albert Breunig et al. / Procedia CIRP 81 (2019) 310–315� 311
2 David Albert Breunig et al. / Procedia CIRP 00 (2019) 000–000

All devices and applications that shall act as reconfigurable
and interconnected nodes need a common communication
platform. One technological approach for this is OPC Unified
Automation (OPC UA). Besides OPC UA, consumer- and IT-
aimed technologies like REST or MQTT are more widely used
in industrial environments, because of cheaper hardware, open-
source software, technological possibilities and maturity, and
especially the easier access from high-level PC office systems
[3] Since devices and applications in industrial automation are
distinguished by their operating time compared to IoT and
consumer devices, the current limited communication
technologies will stay in use for years. The increasing massive
machine-to-machine communication raises various challenges
for acquisition and aggregation of data:

• Higher complexity: The distribution of functions of a
system to several sub-systems (e.g. field devices) with
different communication protocols increases the
complexity of vertical integration.

• Huge amounts of data: The increasing availability of data
down to the sensor and actuator level results in huge
amounts of data. Many of these (raw) data can usually be
pre-processed to reduce both the network load and the
amount of transferred data.

• Extensibility of data provisioning: Sensors and actuators
are usually small embedded systems with little
performance and therefore limited functionality. These
devices can’t be extended by additional data provisioning
functions (e.g. pre-processing or history generation).

• Security: Data within production networks are often
sensitive and should not be accessible from outside. In
addition, external accesses to the production network is
security-critical. The more devices that can be reached
externally from this network, the larger the attack surface
of this network.

The approach presented in this paper addresses these
challenges. Through data aggregation, distributed systems can
be uniformly represented to external systems and the
complexity of several sub-systems is not transferred to these
external systems. By pre-processing the data, the amount of
transferred data as well as the network load is reduced. Small
embedded systems can be extended by additional data
provisions functions. By concentrating on one device, only one
part of the network is exposed and the attack surface of the
network is kept to a minimum.

3. Data in Industrial Automation and related work

3.1. Field data providers and technologies in use

Systems made out of Programmable Logic Controllers
(PLC) and hard-wired (field bus) devices are the standard
approach when production processes require digital and hard-
real time control. Such systems are the main providers of
information on the field level. Due to limited storage and
computation abilities, regular PLCs cannot collect and store

huge amounts of data. PLCs are preferable for discrete
processes where software changes are rarely made. They are
complemented by standalone sensors and actuators for non-
real-time tasks. Some PLCs are hardwired combinations of PC-
like x64-/x86-systems and closed, proprietary real-time
hardware, so control tasks can be integrated, triggered and
supervised via x64-/x86-software. Most PLCs are single-
systems, designed according to the IEC 61131 norm. They are
the main current data-providing and data-dependent devices in
automation and plant control. Programming languages of IEC
61131 focus on fulfilling basic requirements like controlling
I/O and realising logical and mathematical functions,
communication control is restricted. High-level
communication (e.g. data distribution to computer systems)
works by either closed, manufacturer-dependent function
blocks or by running additional communication modules in a
runtime environment, which provides access to specially
marked data fields of the PLC. The quality of data and
distribution is bound to the possibilities the PLC
manufacturer’s software offers. Many of today’s PLCs offer
TCP/IP-based protocols for vertical integration, like OPC UA
or MQTT. Formatting and data access though are still
dependent on implementation both by the manufacturer and the
control program run on the PLC.

3.2. Interoperability between systems and protocols

A common problem is the insufficient interoperability
between communication protocols. Communication system
used in industrial environments vary in protocol design and
architecture, hardware and usage. Several communication
protocols, especially field bus protocols, rely on special
hardware and cannot be integrated directly into a site- or
company-network, neither physically nor logically.

Some communication protocols make use of predefined
formats for data to be transmitted, by e.g. reserving data fields
for names or timestamps, or by providing a fixed set of
datatypes that can be used for operation. Other communication
protocols do not specify any formatting for their actual
payload. Additionally, communication protocols differ in their
general structural approach, that can be client-server, publish-
subscribe or prosumer-consumer [3]. Even if devices use a
common protocol, different interfaces and behaviour on the
application layer may still make the devices incompatible [4].

Attempts to find solutions for interoperability problems are
mostly IoT-oriented, e.g. aimed towards embedded devices
with PC communication hardware (Ethernet, Wireless LAN,
Bluetooth), low-cost x86-/x64-/ARM- or related hardware, and
often with Linux operations systems. Industrial electronics and
hardware are closed and often fully inaccessible for
modifications, so the user is bound to the device’s specific
abilities.

Lobashov et al. [5] identify different approaches for
interconnecting industrial protocols in vertical integration, one
of which is using application gateways that have IP/fieldbus
translation abilities. This method offers an elegant and reusable
solution, while decoupling field and office levels. However,

312	 David Albert Breunig et al. / Procedia CIRP 81 (2019) 310–315
 David Albert Breunig et al. / Procedia CIRP 00 (2019) 000–000 3

implementation and integration efforts are greater compared to
fieldbus-wrapping methods [5].

Derhamy et al. [4] present an approach for interconnecting
IoT devices with HTTP, XMPP, MQTT, OPC UA or CoAP
interface. The approach utilises distributed modules (“cloud-
edge”) for translating messages sent by and to IoT devices into
an intermediate data format. The approach does not address
data transformation or aggregation. Based on [4], Derhamy et
al. [6] examine the interoperability of OPC UA in service-
oriented architectures and introduce a translation service for
HTTP/CoAP/MQTT-to-OPC UA. OPC UA node management
functions are also mapped to the intermediate format.

Cruz et al. [7] present a bridging approach from MQTT to
HTTP. As HTTP and the RESTful services built upon HTTP
are popular for their easy use when integrating web services
and IoT devices, Cruz et. al propose a MQTT-client-to-HTTP-
client translating service, which listens to a topic on an MQTT
broker and forwards all incoming messages to a HTTP server.

In a partly similar approach to Cruz et al. [7], Schiekofer et.
al [8] propose an integration of HTTP/REST and OPC UA.
Both approaches provide information from a communication
protocol on a HTTP/REST based server, which can be accessed
from other devices. Any device or application endpoint that is
interested in data must have a HTTP/REST client functionality
that can be configured to fit the server’s data offerings.

3.3. Pre-platform concentration of devices and data

Internet or site-intranet platforms are data receivers and
management systems for devices and applications. When
hundreds or thousands of endpoints are connected to a single
platform, complexity and data load must be reduced, for which
a pre-platform concentration of devices and data is necessary.
Such can take place in a gateway or a smaller, local platform
(often called “Fog”). Delsing et al. [9] call the usage of local
cloud platforms a reasonable way for the future integration of
IoT devices in industrial environments, and propose the static
implementation of protocol translators into such platforms.
Kum et al. [10] introduce a “Fog” IoT architecture for
aggregating communication. A pre-platform server does not
route all communication between device and platform but
create depictions of data on the platform. The device accesses
buffered data on its nearer fog server instead of data on the
farther away platform.

Fantacci et al. [11] show an approach to gateway usage in
home automation, in which devices of several relevant
protocols were concentrated on a common communication
gateway, that uses the Open Mobile Alliance (OMA) DM
protocol for platform connection. OMA DM was created for
mobile device management [12]. In the approach, technology-
specific adapters provide connectivity for different home
automation protocols. The adapters are instructed by a model
that defines which information has to be collected from the
connected devices. The gateway interacts locally with user’s
devices, and with external service providers over the internet.

Seilonen et al. [13] introduce a concept for aggregating the
data of multiple OPC UA servers to a single separate server.
The developed concept designs a system consisting of a OPC
UA server, an aggregating application, one or more OPC UA
clients and adapters to other data providing servers. The
aggregation application collects data and provides it on its own
OPC UA server. Being a pure aggregation, collected nodes are
routed through without changes or transformations.

Banerjee and Großmann [14] present another approach for
aggregating OPC UA. The approach and the aim are fairly
similar to [13] with a further focus on combining OPC UA
servers that use the standard OPC UA information models for
FDI, AutomationML and PLCOpen. An external “Global
Mapping Repository” supplies the shown Aggregation Layer
with rulesets for mapping. [14] bases on earlier work presented
by Großmann et al. [15].

Current approaches mainly focus on single communication
protocols such as OPC UA, MQTT or fieldbus protocols. In
comparison, the approach presented in this paper enables the
acquisition and aggregation of data across different
communication protocols. The modular architecture makes it
easy to provide support for additional communication
protocols. At the same time, additional modules e.g. for data
aggregation or pre-processing can be added.

4. Concept

The target of the presented approach is to define an abstract,
multi-protocol data handling system, based on a generic and
adaptable instruction model. The system addresses networks of
industrial control systems. Its information model defines which
device and applications must be integrated, which data must be
received or read, which transformations and aggregations must

Fig. 1. Architectures of classic and device aggregation approach.

	 David Albert Breunig et al. / Procedia CIRP 81 (2019) 310–315� 313
4 David Albert Breunig et al. / Procedia CIRP 00 (2019) 000–000

be done to the data and how data must be provisioned for its
clients. As seen in Fig. 1, the goal is to reduce the number of
externally available information providers of a plant or a DCS
to one.

Unlike other approaches which concentrate on single
problems like cross-protocol and cross-device communication
or aggregation like [8], [7], [13], this approach shall provide a
single system for translation, aggregating and transforming
communication. The goals and main points of the approach are:

• Extensibility: Concept and implementation must be open
for the addition of new technologies for receiving and
sending data and exposing functions. The model and
implementation shall be split in modules for in- and output,
data collecting, data transformation and data provisioning.

• Independence from protocol, format and paradigm: It
is necessary to define a common minimal set of relevant
information among communication protocols, so data can
be carried from any source to any target. All relevant
paradigms and formats must be handled. To do so, a
minimal set is defined as a bundle of name, value and
timestamp, and instructions for data access are added.

• Base for vertical integration: The model and
implementation do not aim to fulfill hard real-time
requirements. It shall run on computer hardware and be
connected with standard network hardware.

• Portability: Model and system shall be portable and
dividable. Extensibility and portability are supported by
modularising the system. Doing so, the model itself can be
derived from an external system (like a device
management software) and the modules can be distributed
to several platforms, e.g. to be nearer to control systems.

4.1. Instruction Model and core modules

The Instruction Model is the basic information model that
instructs the application which communication modules must
be run, which information has to be get over those modules,
which operations must be done with the data, and how and
which data must be output. An information as seen in the
context of this concept is a minimal set of data depicting a
variable or an object which is name, actual value and a

timestamp. An example for an Instruction Model is shown in
Fig. 3. The Instruction Model sections reflect the application’s
functional structure:

• Integration modules: Integration modules realise
communication-protocol specific integration and are held
ready by a repository (e.g. classes, plugins, runtime
libraries). Those modules realise in- and data output.

• Information to get: This section instructs the application
which information must be collected and which integration
module must be used for every information.

• Information to provide: This section as model instructs
the application which information must be provided over
which integration module.

• Operations: Operations, like object creation, aggregation
into data service or averaging, enable the pre-processing
and aggregation of data. The operations are provided by
Operation Modules. Each operation identifies an operation
module to use, provides a description for the operation
having necessary information and variables, and depicts a
new information as a target for the operation’s result.

The two core modules are the application’s organising and
data distributing centre (see Fig. 2):

• Manager: The manager parses the Instruction Model and
stores the instructions for all modules. All modules must
register with the manager to receive their instructions.

• Data router: The Data router listens for new information
from the modules. If a new information is received, it is
forwarded without checking over an information-specific
topic to all subscribed modules.

Information provided by the integration modules and by the
operator modules will be treated equally by the Data router.
Therefore, both unchanged and changed data can be
provisioned at the same level. If an information is actualised
and distributed, receiving operation or integration module can
decide whether to wait for other information that are part of an
operation or a provisioning, or to use old values for the other
information. Additional module-specific instruction, like OPC
UA node ids, can be placed in “Access”-sub-objects. Similarly,
modules can receive additional module-specific instructions
over the “Configuration” sub-object.

4.2. Integration and operation modules

Based on the model, the necessary integration and operation
modules are instantiated (see architecture in Fig. 2). Integration
modules realise communication-protocol specific integration
and are held ready by a repository (e.g. classes, plugins,
runtime libraries). Those modules realise in- and/or data output
functionality. Operation modules offer specific abilities for
processing data (e.g. object creation, aggregating into data
series or averaging). All modules register themselves at the
Manager module using their module id (the key of the defining
JSON object in the model), which then distributes instructions
concerning information and operations.

Fig. 2. Basic architecture of the concept.

314	 David Albert Breunig et al. / Procedia CIRP 81 (2019) 310–315
 David Albert Breunig et al. / Procedia CIRP 00 (2019) 000–000 5

5. Implementation

The described concept was implemented as a distributed
.NET and C++ application. This implementation mainly
focuses on the functional part of data acquisition and
aggregation and does not make use of dedicated security
functions (e.g. authentication or encryption). This aspect will
be considered in future work. The implementation follows the
modularized approach described in the concept. Each module
is implemented as an independent program. In order to link
these independent modules with each other the message queue
ZeroMQ is used. ZeroMQ has the advantages that it is broker-
less, implementations are available in many common
programming languages and it offers high performance for
message exchange. For implementation, an object-oriented
approach is used. The implemented integration modules (OPC
UA server, OPC UA client, MQTT client) and operation
modules (Math module, aggregation module) are derived from
a common base class, so that further integration modules for
other protocols can be added with little effort. The internal data
model is created by the Manager module directly from the
instruction model provided in JSON.

After interpreting the Instruction Model, the Manager
module holds derived, module-specific instructions for
modules that are part of the application. All modules, including
the Data router, connect to the Manager module and request
instructions. Unlike other modules, the Data router is a fixed
part of the application and not instantiable more than one time.
After registering to the Manager module and receiving
instructions, the Data router subscribes to new information of
all modules. Thus, new information can be received from an
integration module via the corresponding communication
protocol and published to the Data router. The same applies to
the operation modules, which can publish their results after the
operation has been processed. The Data router publishes all
received data to the relevant modules. Therefore, integration
modules which provide information or operation modules
subscribe at the Data router for information that are relevant to
them. In this way all modules are notified about relevant
information when new information arrives and can thus keep a
representation of their relevant data. Based on this an operation
module can directly perform its operations with the latest data
without querying them.

6. Evaluation

For evaluating the concept and the implementation, a model
plant operated by compressed air and controlled by two
Siemens ET200SP PLCs and an ARM-based Kunbus
Revolution Pi PLC was used. Both Siemens PLC run OPC UA
servers for data provisioning. The Revolution Pi PLC provides
sensor values via MQTT.

The aggregation application runs on a PC and uses
integration modules for connecting to the OPA UA servers and
the MQTT broker. It runs an OPC UA server integration
module for final data provisioning. All devices are
interconnected via an Ethernet network.

{
.."Modules": {
...."ClientModule1": {
......"Type": "OpcUaClient",
......"Configuration": {
........"OpcUaServerAddress":”opc.tcp://plcPress:4840"
......}
....},
...."ClientModule2": {
......"Type": "MqttClient",
......"Configuration": {
........"Broker": "192.168.0.103",
........"Port": 1883
......}
....},
...."MathOperationModule": {
......"Type": "MathOperator",
......"Configuration": {}
....},
...."AggregationModule": {
......"Type": "Aggregation",
......"Configuration": {}
....}
..},
.."InformationsToGet": {
...."state": {
......"Module": "ClientModule1",
......"Access": {"NodeId": "ns=2;s=runState"}
....},
...."pressure1": {
......"Module": "ClientModule2",
......"Access": {"Topic": "Pressure1"}
....}
..},
.."Operations": {
...."operation1": {
......"Operator": "MathOperationModule",
......"Description": "${pressure1}/1000",
......"Result": "p_bar"
....},
...."operation2": {
......"Operator": "AggregationModule",
......"Description":{\"State\":${state},\"p\":${p_bar}}",
......"Result": "output"
....}
..},
.."InformationsToProvide": {
...."output1": {
......"Module": "ClientModule1",
......"Access": {"Topic": "pressures"},
......"Source": "output"
….}
..}
}

Fig. 3. Simple example for an Instruction Model.

	 David Albert Breunig et al. / Procedia CIRP 81 (2019) 310–315� 315
6 David Albert Breunig et al. / Procedia CIRP 00 (2019) 000–000

Before using the application, the control systems of the
model plant were already connected to an externally run cloud
platform. All PLCs had to be exposed to the virtual private
network of the cloud platform. As the systems’ data must be
available outside of the virtual private network as well, public
routing through the firewall for every PLC had to be created
and maintained. With the application, the routing could be
reduced to a single route and the control systems are now
decoupled from both internet and virtual private network.

As for the data transformation capability of the
implementation, the presented exemplary math operator
module was used to average compressed air pressure and flow
values on two separate compressed air lines. The lines feed
separate parts of the plant, while being fed by the same air
source. The implemented math module already introduces a
great benefit at minimal expense, as now unit transformations,
averaging and other operations can be realised in a DCS
without modifying existing control programs.

The current approach concentrates on core data like name,
value and timestamp and does not offer special, architecture-
specific metadata like different timestamps or datatype
references in OPC UA. Such data could be added by adding a
serialisation of the raw input variable or object to every
message. However, this is only useful if involved modules are
able to understand the additional data. The authors decided
against this feature after a first implementation because of the
bigger message size and the small benefit in actual usage.

7. Conclusion and future work

The presented approach shows how to aggregate data in
production networks with huge number of participants with
different communication protocols. This achieved by
introducing an information model that enables a low effort
integration of different field devices. Various communication
protocols can be supported by appropriate integration modules.
Integration modules for OPC UA and MQTT were
implemented prototypically. The information of the different
field devices is provided by these integration modules and can
be used for several pre-processing steps such as aggregation or
mathematical operations. Furthermore, we applied the
presented approach in a real-world usage scenario with
industrial PLCs. The research presented in this paper lowers the
effort for data aggregation and cloud integration of field
devices on the one side. On the other side the security is
increased by reducing the attack surface of production
networks by concentrating the data access to a single point.

As future work, we plan to implement additional integration
modules for other communication protocols to support more
field devices. The pre-processing possibilities should be
extended by further functions such as history generation.
Furthermore, the modelling of the instruction model can be
simplified by graphical tools, and the application and modules
should be deployable on edge devices from cloud. The

implementation can serve as basis for a central data handling
service in local or on-site platforms.

Acknowledgements

This research was done within the research project Center
for Cyber-Physical Systems (S-TEC ZCPS) at Fraunhofer
Institute for Manufacturing and Automation Engineering
founded by the Ministry of Economic Affairs, Labour and
Housing Baden-Württemberg. The implementation is available
over the project’s code repository at https://github.com/stec-
zcps/mdaa.

References

[1] Nof, S.Y. (Ed.), 2009. Springer Handbook of Automation. p. 1812,
Springer, Berlin, Heidelberg.

[2] Geisberger, E., Broy, M., 2012. agendaCPS: Integrierte Forschungs-
agenda Cyber-Physical Systems. p. 297. Springer, Berlin, Heidelberg.

[3] Sauter, T., Treytl, A., 2010. Communication Systems as an Integral Part
of Distributed Automation Systems, in: Kühnle, H. (Ed.), Distributed
Manufacturing: Paradigm, Concepts, Solutions and Examples. Springer
London, London; p. 93-111.

[4] Derhamy, H., Eliasson, J., Delsing, J., 2017. IoT Interoperability—On-
Demand and Low Latency Transparent Multiprotocol Translator. IEEE
Internet of Things Journal 4; p. 1754–1763.

[5] Lobashov, M., Bratukhin, A., Sauter, T., Palensky, P., Dietrich, D., 2006.
Vertical integration in distributed automation environment. e & i
Elektrotechnik und Informationstechnik 123; p. 166-171.

[6] Derhamy, H., Ronnholm, J., Delsing, J., Eliasson, J., van Deventer, J.,
2017. Protocol interoperability of OPC UA in service oriented
architectures, in: 2017 IEEE 15th International Conference on Industrial
Informatics (INDIN); p. 44-50.

[7] da Cruz, M.A.A., Rodrigues, Joel J.P.C., Paradello, Ellen S., Lorenz,
Pascal, Solic, Petar, Albuquerque, Victor Hugo C., n.d. A Proposal for
Bridging the Message Queuing Telemetry Transport Protocol to HTTP on
IoT Solutions, in: 2018 3rd International Conference on Smart and
Sustainable Technologies (SpliTech).

[8] Schiekofer, R., Scholz, A., Weyrich, M., 2018. REST based OPC UA for
the IIoT, in: 2018 IEEE 23rd International Conference on Emerging
Technologies and Factory Automation, in press.

[9] Delsing, J., Eliasson, J., van Deventer, J., Derhamy, H., Varga, P., 2016.
Enabling IoT automation using local clouds, in: 2016 IEEE 3rd World
Forum on Internet of Things (WF-IoT); p. 502-507.

[10] Kum, S.W., Moon, J., Lim, T.-B., 2017. Design of fog computing based
IoT application architecture, in: 2017 IEEE 7th International Conference
on Consumer Electronics - Berlin (ICCE-Berlin); p. 88-89.

[11] Fantacci, R., Pecorella, T., Viti, R., Carlini, C., 2014. Short paper:
Overcoming IoT fragmentation through standard gateway architecture,
in: 2014 IEEE World Forum on Internet of Things (WF-IoT); p. 181-182.

[12] Elgazzar, M.H., 2015. Perspectives on M2M protocols, in: 2015 IEEE
Seventh International Conference on Intelligent Computing and
Information Systems (ICICIS); p. 501-505.

[13] Seilonen, I., Tuovinen, T., Elovaara, J., Tuomi, I., Oksanen, T., 2016.
Aggregating OPC UA servers for monitoring manufacturing systems and
mobile work machines, in: 2016 IEEE 21st International Conference on
Emerging Technologies and Factory Automation (ETFA).

[14] Banerjee, S., Großmann, D., 2017. Aggregation of information models —
An OPC UA based approach to a holistic model of models, in: 2017 4th
International Conference on Industrial Engineering and Applications.

[15] Großmann, D., Bregulla, M., Banerjee, S., Schulz, D., Braun, R., 2014.
OPC UA server aggregation;The foundation for an internet of portals, in:
Proceedings of the 2014 IEEE Emerging Technology and Factory
Automation (ETFA).

