

ASG Platform Development Process
Deliverable D6.IV-1

Authors:
Fabio Bella,
Theresa Lehner,
Alexis Ocampo

Funded and supported by the European
Union Project ASG (FP6-IST-004617).

IESE-Report No. 137.06/E
Version 1.0
March 3, 2006

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competitive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach (Executive Director)
Prof. Dr. Peter Liggesmeyer (Director)
Fraunhofer-Platz 1
67663 Kaiserslautern

Copyright © Fraunhofer IESE 2006 v

Abstract

This deliverable presents the first version of the process for developing the ASG
platform. The document also describes the methodology applied to formalize
and validate the process.

The development process description presented is intended as a reference for
planning, performing, and monitoring the ASG development activities. There-
fore, the deliverable is intended for all parties involved in the development of
the platform and for those people who need more insight into the various in-
terrelated development activities.

Keywords: ASG, Software Process Management

Copyright © Fraunhofer IESE 2006 vi

Executive Summary

This deliverable presents the first version of the process for developing the ASG
platform. The document also describes the methodology applied to formalize
and validate the process.

Major contributions included in the deliverable are an approach to software
process management based on international standards, a conceptual model of
the entities used to describe the ASG development process, a description of the
parts of the ASG development process that are concerned with the engineering
of the platform, and a discussion of the process as applied up to milestone
M18.

This deliverable does not directly address any of the ASG key features but
rather the process aimed at developing the platform that provides them all. The
key features are briefly introduced in the document as factors that influence the
content and structure of the process.

The development process description presented is intended as a reference for
planning, performing, and monitoring the ASG development activities. There-
fore, the deliverable is intended for all parties involved in the development of
the platform and for those people who need more insight into the various in-
terrelated development activities.

Copyright © Fraunhofer IESE 2006 vii

Table of Contents

1 Introduction 1
1.1 Motivation and Contribution 1
1.2 Adaptive Service Provisioning 2
1.3 Process-related ASG Deliverables 4
1.4 Structure of the Deliverable 7

2 Related Work 9
2.1 Service Engineering 9
2.2 Platform Engineering 10
2.3 Application Engineering 12

3 Software Process Management in the ASG Project 14
3.1 Project vs. Process Management 14
3.2 ASG Software Process Management 16
3.3 Process Infrastructure 17

4 ASG Platform Development Process 21
4.1 Process Meta-Model 21
4.2 ASG Development Process Overview 22
4.3 Platform Engineering 25
4.3.1 Analyse ASG Requirements 31
4.3.2 Design Overall Architecture 32
4.3.3 Analyse Subsystem Requirements 33
4.3.4 Select and Specify ASG Ontology Language 33
4.3.5 Model ASG Ontology 34
4.3.6 Design Subsystem 35
4.3.7 Implement Subsystem 36
4.3.8 Subsystem Test 37
4.3.9 Platform Test 38

5 Discussion 40

6 Summary and Outlook 42

References 44

Project Consortium Information 47

Introduction

Copyright © Fraunhofer IESE 2006 1

1 Introduction

One of the most significant results of the ASG project is a software infrastruc-
ture that aims at enabling design, implementation, and use of applications
based on adaptive services, namely the ASG platform. This deliverable deals
with the process applied in the project to develop the platform and the activi-
ties performed to define, establish, and evaluate the development process.

In this section, the need for a work component focusing on process issues is
stated and the main contribution of the deliverable is introduced. The ideas be-
hind adaptive service provisioning as addressed within the scope of the project
are presented in order to understand some of the characteristics of the in-
tended platform that influence the structure and content of the development
process more than others. The relationships to other process-related ASG deliv-
erables are highlighted by explaining the different aspects of the development
process addressed. Finally, the structure of the deliverable is presented.

1.1 Motivation and Contribution

Activities such as requirements analysis, design, implementation, integration,
and testing are performed in the majority of the projects aimed at developing
software and international standards such as the ISO/IEC 12207 “Software Life-
cycle Processes” [9] represent a good starting point for the description of soft-
ware processes. However, each organization aimed at developing software has
its own peculiarities that make the definition of a specific development process
unavoidable. This becomes particularly true with increasing organization size.
Development activities are performed, for instance, within the ASG project by
several teams from different companies, universities, and research institutes.
Development teams range from two-person teams consisting of a PhD student
and a master student to ten professional programmers. Development teams are
not collocated and team members speak different native languages. For all
these reasons, there is a strong need in the project for a common terminology
for process-related terms such as activity, artefact, development cycle, etc., but
also for terms related to the contents of the process, such as names of specific
activities and artefacts.

The ASG process terminology (also called process architecture, meta-model, or
conceptual model) is presented in section 4.1.

The ASG development process and, in particular, the part of the process that
aims at engineering the ASG platform is described in sections 4.2 and 4.3. The

Introduction

Copyright © Fraunhofer IESE 2006 2

development process description presented in this deliverable (and also avail-
able on the project server) is intended as a reference for planning, performing,
and monitoring the ASG development activities. The ASG development process
is defined as an iterative, incremental process that is driven by the development
of demonstrators (so-called scenarios).

An explicit description of the development process enables systematic process
analysis; Section 3.2 presents the approach followed in the project to process
definition, establishment, and improvement.

Since the ASG project is a research project rather than a software development
project, lessons learned during development turn out to be at least as much
important as the software developed. A post-mortem analysis of the develop-
ment activities performed is crucial for identifying and classifying such lessons
learned. The analysis of the development process on the basis of explicit proc-
ess descriptions may simplify such a post-mortem analysis.

1.2 Adaptive Service Provisioning

This section introduces the main ideas behind adaptive service provisioning in
order to understand the functionality and characteristics of the platform to be
developed. One of the major goals of the ASG project is to develop an open
platform for adaptive and flexible service discovery, creation, composition and
enactment.

Introduction

Copyright © Fraunhofer IESE 2006 3

Figure 1: ASG Service Delivery Lifecycle1

In particular, the following research challenges are addressed by the project:

• “Semantic specification of services including functional and non-functional
properties of services

• Dynamic service composition based on semantic service specifications

• Automatic negotiation of service level agreements (SLA) based on user-
specified quality of service (QoS) parameters

• Easy integration of external standardized services incl. registration and de-
ployment

• Adaptive service enactment including monitoring of Service Level Agreement
(SLA) fulfilment, replanning and renegotiation as well as service profiling”1

The functionality to be provided by the intended architecture is shown in Figure
11, which depicts the ASG Service Delivery Lifecycle. At the beginning of the cy-
cle, the current situation and the goal of an end service consumer are stated ei-
ther directly or through a dedicated application. During the planning sub-cycle,
services are discovered and composed to obtain a process that lets the user
achieve his/her goal. During the agreement sub-cycle, Quality of Service pa-
rameters are used to negotiate the service implementations that best fit to the
user’s non-functional constraints. During the enactment sub-cycle, the service
implementations already negotiated for the composition are invoked. New ser-
vices can be registered at runtime. The respective service specification is en-
hanced with semantic meta-data during the integration of the service into the
platform.

1 From the official project flyer available at the project site https://asg-platform.org/cgi-

bin/twiki/view/Public/WebHome

Introduction

Copyright © Fraunhofer IESE 2006 4

Vetere et al. [25] define a semantic layer as the “…methodologies, artefacts,
and techniques aimed at the correct interpretation and implementation of ser-
vice descriptions…”. “In a service-oriented environment, the semantic layer en-
sures that data embedded within messages are interpreted by providers and
consumers as representing the same concepts, relations, or entities in a suitable
abstraction of the real world.” Concerning the possible approach to semantic
interoperability in service-oriented architectures, four different models are pro-
posed [25]. The models are classified based on two fundamental dimensions:

• Integration mappings set up – There are “…two possible ways to set up in-
tegration mappings, one in which each service schema is mapped to any
other (any-to-any) and another in which each one is mapped to a single
schema (any-to-one)”

• Integration logic execution – There are two possibilities of how
“…integration logic is executed: in a single distinguished node (centralized)
or the execution is distributed among multiple, functionality equivalent
nodes (decentralized)”

The approach followed in the ASG project can be classified as an any-to-one
centralized model, where input/output data are mapped to a so called domain
ontology managed by means of a specialized application and single services are
centrally integrated into one composed service through dynamic service com-
position.

1.3 Process-related ASG Deliverables

The work on the processes that aim at developing software in the ASG project
focuses on several aspects addressed from different points of view. For this rea-
son, the discussion about process-related issues is spread among several deliv-
erables of the work component C6 “ASG Development Methodology”.

The ASG Development Process is structured as a set of activities grouped into
three main process groups: Platform, Application, and Service Engineering. The
group Platform Engineering consists of activities aimed at engineering the infra-
structure that supports the intended ASG functionality. Application Engineering
groups those activities aimed at engineering an end user application by combin-
ing the services available with the features of the ASG platform. All the activi-
ties that deal with services to be integrated into the ASG platform belong to
the process group Service Engineering.

Process-related deliverables address or refine different parts of the whole de-
velopment process. Figure 2 shows an overview of the deliverables and their re-
lationships to the main process groups.

Introduction

Copyright © Fraunhofer IESE 2006 5

Deliverables D6.III-7 and D6.III-8 address aspects relevant for all process
groups.

D6.III-7 ASG Application and Service Development Approach – This deliverable
condenses the results of work package D6.III together with the ASG require-
ments engineering technique into the ASG method for developing services and
service-oriented applications.

D6.III-8 ASG Quality Modeling Approach - Non-functional requirements are, by
their nature, intertwined. Through a dependency analysis, conflicting require-
ments can be identified and resolved. This deliverable contains an approach for
eliciting and documenting conflicting non-functional requirements for ASG.

Deliverables D6.IV-1-M18, D6.IV-1-FINAL, D6.III-1 [28], D6.IV-2 [34], D6.IV-3
[35], and D6.V-1 address aspects of platform engineering.

D6.IV-1-M18 ASG Platform Development Process – This is the present docu-
ment, which introduces the first version of the process for developing the ASG
platform and describes the methodology applied to formalize and validate the
process.

D6.IV-1-FINAL ASG Platform Development Process – The deliverable presents
the final version of the process for developing the ASG platform. The document
also includes lessons learned from developing the platform by means of the
process described.

D6.III-1 Adaptable Process Engineering Survey – This M6 deliverable surveys
available processes for developing solutions based on adaptive service provi-
sioning. The deliverable represents a starting point and the basis for work con-
cerned with engineering processes performed in the ASG project.

D6.IV-2 Tracing and Logging Concept – In this deliverable, a tracing and log-
ging concept for the ASG platform is presented. It contains tracing and logging
rules and guidelines. The report describes what to trace/log and how to analyse
collected data.

D6.IV-3 Testing Methodology for Platform Code - The aim of this deliverable is
to provide a testing methodology for ASG platform code. The methodology en-
compasses testing strategies, approaches and techniques and is an integral part
of the ASG platform development process.

D6.V-1 Reference Architecture - This report summarizes the final version of the
ASG reference architecture and its evolution throughout the project. The ASG
architecture has a direct impact on platform development processes, since it
partially reflects the structure of the teams involved in developing the platform.

Introduction

Copyright © Fraunhofer IESE 2006 6

Deliverables D6.III-2 [32], D6.III-5 [33], and D6.I-1 [29] address aspects relevant
for application and service engineering.

D6.III-2 ASG Development Process – Application and Service Engineering - To
use the ASG platform, application and services have to be developed. The proc-
esses for application and service engineering, with their activities, artefacts,
roles, tools, and assets are specified in this deliverable.

D6.III-5 Testing Methodology for ASG Applications and Services – This deliver-
able contains an assisting approach for the ASG development process, a testing
methodology for ASG. The methodology encompasses testing strategies, ap-
proaches, and techniques for ASG applications and services.

Platform
Engineering

Service
Engineering

Application
Engineering

D6.III-7

D6.III-8

D6.IV-1-M18

D6.IV-1-FINAL

D6.III-2

D6.III-5

D6.III-1

D6.IV-2

D6.IV-3

D6.V-1

D6.II-1

D6.I-1

D6.I-2

D6.III-3

Figure 2: Overview of Process-related Deliverables

D6.I-1 Requirements Specification Survey - This report describes the current
state-of-the-art and state-of-the practice in service-oriented requirements speci-
fication. The survey is focused on the relationship between use cases, services,
and processes to understand how services can be used to determine processes
and use cases (i.e., service-based application specification). The survey is used as
a basis for developing the requirements engineering method for ASG.

Deliverable D6.II-1 [31] addresses aspects relevant for application engineer-
ing.

Introduction

Copyright © Fraunhofer IESE 2006 7

D6.II-1 Case Study: Requirements Specification - This report describes a case
study that applies the ASG requirements engineering method for applications.
The first part documents the requirements engineering methodology for appli-
cations that are based on the ASG platform. The second part documents the
results of the requirements engineering method applied on the ASG dynamic
supply chain scenario.

Deliverables D6.I-2 [30], and D6.III-3 address aspects relevant for service engi-
neering.

D6.I-2 Reuse-Oriented Requirements Technique – This deliverable describes a
requirements engineering technique especially developed for service-oriented
adaptive systems realized in the ASG context. The technique targets service
providers, in particular.

D6.III-3 Performance Engineering Methodology – The performance methodol-
ogy is a step by step guidance to support estimation and evaluation of the per-
formance behaviour of ASG services.

1.4 Structure of the Deliverable

The remainder of this deliverable is structured as follows:

Section 2 “Related Work” introduces the approaches to software development
that best fit the purposes of development activities performed within the scope
of the ASG project. The section therefore illustrates the current state of the
practice in the field of processes aimed at providing solutions based on service-
oriented architecture with particular attention given to the initiatives currently
exploring semantic interoperability aspects.

Section 3 “Software Process Management in the ASG Project” discusses the
approach followed in the project to define, establish, and evaluate the process
to develop the ASG software. This section also presents the infrastructure ap-
plied to exchange process-related information and manage the process.

Section 4 “ASG Platform Development Process” represents the core of the de-
liverable and discusses both structure and content of the process applied to de-
velop the platform.

In section 5, peculiarities of the platform development process are identified
and discussed. Also, the question about the generalizability of the process pro-
posed is investigated together with the issues that still remain open.

Introduction

Copyright © Fraunhofer IESE 2006 8

Finally, section 6 “Summary and Outlook” subsumes the deliverable and
sketches next steps to take as well as the relationships between the work
documented in this deliverable and other parts of the project.

Related Work

Copyright © Fraunhofer IESE 2006 9

2 Related Work

This section introduces processes, methods, and techniques available for each
of the process groups addressed: Service Engineering, Platform Engineering,
and Application Engineering. The section sketches the current state of the prac-
tice in the field of processes aimed at providing solutions based on service-
oriented architecture with particular attention given to the initiatives currently
exploring semantic interoperability aspects. The content of this section is a
summary of the survey performed at M6 and documented in deliverable D6.III-1
“Adaptable Process Engineering Survey”.

2.1 Service Engineering

Web and Telecommunication Services - approaches that can be of help in
identifying similar resources from a business perspective can be found in the
Web service-oriented engineering domain as well as in related domains such as
telecommunications [27], [1], [2],[3].

These domains do not show substantial differences in their processes when
transforming a business idea into a service model. They suggest capturing the
business idea through scenarios, then creating a conceptual service model that
reflects service concepts involved in the mentioned scenarios, followed by a re-
finement of the service flow by defining operations, relationships to external
services, and states of the service, and finally, orchestrating the service by defin-
ing rules and interaction models. These steps have been followed for the devel-
opment of ASG prototypes and captured in the ASG development process.

Traditional requirements analysis techniques can be performed through inter-
views or group meetings with stakeholders in order to discover candidate ser-
vices. Another possibility is to follow the Component Business Modeling [4]
(CBM) technique. CBM is a technique that could help in deriving services in a
top-down manner. It provides a framework for viewing the business as a net-
work of discrete services, turning the services into unique building blocks. A
comprehensive survey on approaches for eliciting candidate services and speci-
fying them as requirements is provided in D6.I-1 Requirements Specification
Survey. The survey is used as a basis for developing the requirements engineer-
ing method for ASG.

Business process models can be described after the candidate services have
been identified. They shall be described as a sequence of operations/services
performed with a specific business goal in mind. Once the business process

Related Work

Copyright © Fraunhofer IESE 2006 10

model has been identified, techniques from enterprise architecture frameworks
and object-oriented analysis and design can be used for implementing and de-
ploying the service(s) [27]. The actual tendency of major software vendors (e.g.,
Websphere Integration Server Foundation, Business Works, Oracle BPEL Process
Manager) is to provide support for the static and dynamic design of such busi-
ness processes as well as for their implementation. Software vendors enable the
definition of state models and choreography of business processes. They also
integrate Web services with process engines [22], [13] on top of their Web ap-
plication servers, e.g., the IBM WebSphere Application Server - Express V5.0.2.
The ASG project is using the advantages offered by such tools to represent ex-
ecutable flows of models, i.e., the choreography, and object-oriented analysis
and design for implementing and deploying the services.

2.2 Platform Engineering

ASG focuses on developing a platform that allows the automation of issues
that are manually solved in service engineering such as service discovery, and
composition. The ASG approach consists of adding a semantic layer to service
descriptions that allows reasoners to compose, or discover automatically such
services.

Similar approaches are currently evolving concerning the engineering of solu-
tions aimed at handling services in a semantic-oriented way: IRS [16], OWL-S
[19], WSMO [23], and METEOR-S [21]. Although they address similar objectives,
they also turn out to be different in terms of reasoning support, mainly due to
different underlying logic and ontology frameworks. The approaches show
complementary strengths and there is evidence of convergence among the ap-
proaches. However, until now none of these initiatives provide a documented
process that describes how to engineer such a platform.

Some ideas of WSMO and its language WSML have been adopted by the ASG
project. The ideas have been helpful for the development of the ASG proto-
types. On the other hand, ASG generates new requirements to be implemented
by the leaders of the WSMO initiative.

From a very different perspective, when looking at some objectives of ASG at a
higher level of abstraction, e.g., reusability of functionality, scalability, and in-
teroperability, one can find initiatives with similar objectives such as the enter-
prise architecture frameworks. Such frameworks are domain-specific architec-
tures that provide semi-complete applications and can be specialized to pro-
duce custom applications. Examples are the SAP® NetWeaver®, or the extinct
IBM San Francisco Framework®, whose main ideas are now implemented inside
IBM Websphere®. Such frameworks are composed of common objects and
business processes that can be used for building applications in a given domain.
Approaches for developing such basic framework components or extending the

Related Work

Copyright © Fraunhofer IESE 2006 11

frameworks do no differ from the traditional ones (e.g., object-oriented pro-
gramming). However, a deep understanding of the framework components
and business processes is needed in order to create a new application, which is
a non-trivial task due to the complexity and size of the frameworks.

Due to the novelty of the domain, developing a platform such as the ASG is a
task of high complexity that requires risks to be managed and minimized.
Therefore, following a strict, inflexible process model like the waterfall model is
not suitable for such a development project, in which organizations must react
to the context in the most appropriate manner. This is only possible by means
of flexible processes [18]. The spiral model, the throwaway prototype model,
the incremental development model, and the Extreme Programming approach
can be considered suitable starting points for the definition of a life cycle for
engineering the ASG platform.

The spiral model [6] assumes risks as the driver force of software projects. This
model proposes ongoing refinement of the system specification into source
code components. Refinements are made through cycles, and each cycle is risk
assessed. A risk assessment determines if a project continues or is cancelled.
The nature of the spiral model seems reasonable to apply in a convulsionate
domain like semantic web services, but the real costs of identifying, analyzing
and maintaining risks are high and can turn out to be too expensive for small
and medium companies, or, for instance, the ASG project infrastructure.

The throwaway prototype model and the incremental development model [15]
were found suitable for domains such as Internet and mobile applications [12],
[17] that present similar characteristics of novelty like the ASG project. In the
incremental model, essential functions are provided at the beginning of a pro-
ject, and then more capable versions of the system are provided according to a
strategic prioritization of the requirements to be fulfilled. Increments are usually
defined as an agreement between the customer and the development organi-
zation. This allows development organizations to get feedback from the final
customer during the development of the increments until the final version of
the solution is delivered. Additionally, monitoring and controlling the project
plan can be done more precisely, and the quality of increments can be assured
with the established verification and validation activities. What is the best in-
crement to be delivered? What is a realistic time interval for each increment?
How to select a consistent set of requirements for the increment? These are
questions, which have been already addressed in the area of requirements en-
gineering and applied in areas like Internet or mobile applications [11], [8].

The Extreme Programming approach does also reflect an incremental model
and has been proposed by [14] and [26] as suitable for Web-based projects
where time to market plays an important role. Extreme programming focuses
on producing source code and test drivers, avoiding documentation, and han-
dling the volatility of requirements through small releases. Development cycles

Related Work

Copyright © Fraunhofer IESE 2006 12

are short and based on requirements that will really generate business value for
the customer. A risk of following agile approaches is that they rely on tacit
knowledge of developers [7]. In the context of the ASG this can become a criti-
cal issue especially because developers are still learning due to the immaturity
of the Semantic Web Services domain. Additionally, issues like scalability and
performance have to be carefully designed.

2.3 Application Engineering

Applications based on a platform such as the ASG can go from simple Web in-
terfaces to more sophisticated applications running on mobile devices. Which-
ever the case is, lack of experience dominates. Therefore as in the case of plat-
form engineering, it is advisable to avoid or minimize risks by following life cy-
cle models such as the spiral model [6], the throwaway prototype model, or the
incremental development model [15].

Planning releases also becomes an issue especially in the context of ASG be-
cause developers are still learning. In that case, approaches from the area of re-
quirements engineering and applied in areas like Internet or mobile applications
[11], [8] are of great value. Furthermore, issues like scalability and performance
have to be carefully addressed.

According to [20], it is advisable for any organization intending to engineer an
application for a platform of similar characteristics as the ASG to make explicit
decisions at the management level before the start of the project concerning
the following issues:

• Which types of benefits would the organization like to achieve first?

• What scope does the organization want for the platform-based application
in the near and medium term?

• Which technical aspects or elements of a platform-based application should
be exploited first?

These questions have been and continue to be systematically answered in the
context of the ASG project before developing the prototypes. Benefits have
been realized by business scenarios, the scope through the requirements of the
ASG platform, and the technical aspects to be exploited first through the priori-
tization of the requirbements. [27] proposes one strategy for establishing the
foundations of a grid service application. The strategy comprises the following
set of steps:

1. Identify similar resources from a business perspective (i.e., potential Web or
telematic services),

Related Work

Copyright © Fraunhofer IESE 2006 13

2. Handle services in a semantic oriented way,

3. Virtualize such services. In this context, virtualization means making informa-
tion available whenever, wherever it is needed [20], [28].

ASG has followed the first two steps of such a strategy. The third step has not
been followed since grid computing has been left out of the scope of the pro-
ject.

Software Process Management
in the ASG Project

Copyright © Fraunhofer IESE 2006 14

3 Software Process Management in the ASG Project

This section presents the approach applied within the scope of the ASG project
to manage software processes. Before the approach and the needed infrastruc-
ture are discussed in more detail, the distinction between project and process
management is introduced according to the definitions provided by the interna-
tional standards ISO/IEC12207 “Information Technology - Software Life Cycle
Processes” [9] and 15504 “Information Technology – Software Process Assess-
ment” [10].

3.1 Project vs. Process Management

Project and process management represent two different but strongly interre-
lated points of view on development: Project management deals with identify-
ing, establishing, coordinating, and monitoring “activities, tasks, and resources
necessary for a project to produce a product and/or service meeting the re-
quirements“ [10]. Process management deals with establishing “a suite of or-
ganizational processes for all software lifecycle processes as they apply to its
business activities“[10].

Software Process Management
in the ASG Project

Copyright © Fraunhofer IESE 2006 15

Figure 3: Excerpt of Release Page from the ASG Wiki

According to this distinction, process management activities include defining
process goals, identifying activities and roles, helping in deploying the process,
checking process conformance, defining and documenting the processes as
performed, capturing process data, and maintaining process descriptions.

On the other hand, project management activities include identifying tasks,
evaluating the feasibility of achieving the process, planning and allocating re-
sources and infrastructure, implementing activities, monitoring project execu-
tion, reviewing work products and evaluating results, taking action on deviation
from plan (i.e., replanning), and demonstrating successful achievement.

Figure 3 shows an excerpt of a Web page used for planning the release for
M10 according to the activities defined in the process description. On the page,
information about allocation of resources, main tasks, and important changes
of the plan or the allocation were provided and managed.

The next section shows how process management activities are performed in
ASG to support project management and, at the same time, project manage-
ment information is used to manage and improve the software process.

Software Process Management
in the ASG Project

Copyright © Fraunhofer IESE 2006 16

3.2 ASG Software Process Management

As stated in section 1.1 “Motivation and Contribution”, process management
activities are performed in the ASG project to provide

• explicit guidance for developing the ASG platform,

• a reference taxonomy for terms related to the development of the platform,

• sound collections of document examples, templates, and guidelines,

• explicit definitions of roles, activities, artefacts, tools, and their mutual rela-
tionships, and

• suitable resources for quality management such as explicit goals for docu-
ments and quality criteria for their evaluation.

The approach defined for managing the software process is shown in Figure 4
and consists of five main phases: Initial Process Drafting, First Process Refine-
ment, Second Process Refinement, Process Stabilization, and Post-Mortem
Analysis.

Initial Process
Drafting

First Process
Refinement

Second
Process

Refinement

Process
Stabilization

Development
Prototype M6

Development
Prototype M30

Development
Prototype M20

Development
Prototype M12

Post-Mortem
Analysis

Process Definition

Process Enactment

Figure 4: ASG Approach to Software Process Management

Initial Process Drafting. During this phase, a first process draft is sketched on
the basis of recognized international standards such as ISO/IEC12207 “Informa-
tion Technology - Software Life Cycle Processes” [9], and 15504 “Information
Technology – Software Process Assessment” [10] and discussed with the man-
agers of the development teams to ensure its applicability. The main goal of
this phase is to make the various process purposes explicit and provide a first
set of process-related terms to be used by the heterogeneous teams involved in
the development of the prototype.

First Process Refinement. In this second phase, documents produced during the
first development cycle are analyzed and the process description is refined ac-
cordingly. Process refinements at this stage include more detailed guidance for
specific activities and tools. A first formalization of process roles is achieved and
responsibilities are tentatively assigned. The process infrastructure is also re-
fined, since first document templates are defined and the project portal is

Software Process Management
in the ASG Project

Copyright © Fraunhofer IESE 2006 17

(re)structured to reflect, among other things, the process information gathered.
The purpose of the second phase is to improve process awareness and let the
heterogeneous development teams come to a common process understanding.

Second Process Refinement. The purpose of the second process refinement is to
let all parties involved in development achieve a common understanding of the
development process. For this purpose, a detailed process description is pro-
vided, which reflects the development activities as performed by the involved
roles, and which is agreed on by all process performers. During this phase, pro-
ject members involved in the development of the ASG platform are inter-
viewed. They answer questions about their experience and the role they play,
the experience level and the organisation of their software team, the process
followed by the team. Also, they provide feedback on the process as refined
during the second phase and on the process infrastructure implemented.

Process Stabilization. During this phase, process changes are controlled through
a change management procedure: changes must be requested, motivated, ana-
lysed, and collectively accepted before they can be implemented. The purpose
of this phase is to keep the process stable to enable unbiased process analysis.
Nevertheless, valuable process changes should be considered and eventually
implemented whenever needed.

Post-Mortem Analysis. At the end of the project, a post-mortem analysis is per-
formed by interviewing process performers. The purpose of this closing phase is
to extract lessons learned during development and to package the main project
results, also in terms of considerations regarding the process applied.

In general, the main idea behind the approach followed is to start with com-
monly accepted process knowledge, to refine it with information gathered from
the development cycles, and to improve therewith the process according to the
real project needs. In order to use as much evidence emerging from the devel-
opment activities as possible, the five phases are synchronized with the major
milestones defined for the project. This means that beside the first phase,
which started with the project, each phase begins after a major milestone is
achieved.

3.3 Process Infrastructure

A great part of the infrastructure implemented to exchange project information
is also used to establish the development process. Process-related information is
exchanged, therefore, over several channels consisting of regular teleconfer-
ences and meetings on the one hand, and technical solutions such as a project
portal, electronic process guides, and a Web-based project management solu-
tion on the other hand.

Software Process Management
in the ASG Project

Copyright © Fraunhofer IESE 2006 18

Figure 5: Excerpt of the ASG Development Page on the ASG Wiki

Teleconferences are held regularly with the participation of ASG members in-
volved in development activities. Usually, the teleconferences are held once a
moth. Before major milestones, the teleconferences are held twice a month or
even weekly. Their main goal is to discuss the status of development activities,
eventual problems and /or risks, and to make decisions about the development
of demonstrators. From the point of view of process management, the telecon-
ferences are important sources of process evidence, i.e., many discussions pro-
vide hints about how the process is enacted, which parts of it are performed
without impediments and which parts need deeper analysis as a consequence
of weak or even wrong process formalization.

Two different kinds of meetings play an important role for process manage-
ment: Regular work-component workshops provide an insight into the degree
of process establishment in the different development teams. Multi-component
workshops held for a particular purpose such as the “Dynamic Supply Chain
Workshop” held February 8, 2006 during the 4th ASG week in Jyväskylä offer
the opportunity to enact specific process activities and validate the process de-
scription with these.

Software Process Management
in the ASG Project

Copyright © Fraunhofer IESE 2006 19

Figure 6: Excerpt of the Electronic ASG Development Process Guide

A Wiki server, also called ASG Wiki2, is used as project portal, that is, a Web
portal to exchange ASG internal information. Figure 5 shows an excerpt of the
ASG Wiki page dedicated to the ASG development process. Developers found it
very useful to share available templates and descriptions of development tools
through the Wiki server. Due to its importance, the location of these assets is
also provided in the process description.

An Electronic Process Guide (EPG) is a process description provided as a set of
interlinked Web pages [5]. An EPG created for the ASG development process
can be reached from the development process page on the ASG Wiki. Figure 6
shows an excerpt of the EPG. Entities are grouped according to their type, that
is, activities, artefacts, roles, and tools are grouped together. Furthermore,
graphical refinements such as role-specific views are provided. One useful fea-

2 The main page of the ASG Wiki is public and can be viewed at https://asg-platform.org/cgi-

bin/twiki/view/Public/WebHome.

Software Process Management
in the ASG Project

Copyright © Fraunhofer IESE 2006 20

ture is the possibility to navigate through the process description by clicking on
entities depicted in the graphical refinements.

Figure 7: Excerpt from the ASG Task Management Environment

During development, many tasks must be defined and monitored. Ideally, each
task should be regarded as an instance of (part of) an activity defined in the
process description. For several reasons, this cannot always be the case: a proc-
ess description, for example, can not foresee every situation and task to deal
with; since process descriptions are intended for human beings, they should not
be too detailed to avoid unneeded overhead and frustration; it is normal that
process descriptions get out of date. Development tasks can be comfortably
managed with the aid of a dedicated tool. This may also help to analyse the
tasks with respect to process adherence. The commercial tool JIRA (Figure 7)
has been adapted to reflect the ASG development process and is used to man-
age the individual development cycles.

ASG Platform Development
Process

Copyright © Fraunhofer IESE 2006 21

4 ASG Platform Development Process

This section is the core of the deliverable and describes the ASG development
process as defined after the second process refinement (i.e., after the milestone
M12). The whole development process consists of three groups of development
activities, so-called Process Groups: Platform Engineering, Application Engineer-
ing, and Service Engineering. This deliverable focuses on the process group Plat-
form Engineering. Application and Service Engineering are discussed in detail in
the deliverable D6.III-2 “ASG Development Process – Application and Service
Engineering”.

The remainder of the section is structured as follows:

Section 4.1 “Process Meta-Model” introduces the concepts applied to describe
the process and their mutual relationships.

Section 4.2 “ASG Development Process Overview” presents the interfaces be-
tween the process group Platform Engineering and the other groups Applica-
tion and Service Engineering. The interfaces are described in terms of artefacts
exchanged between related activities.

Section 4.3 “Platform Engineering” describes the process group Platform Engi-
neering in more detail. This part of the process is aimed at engineering the in-
frastructure that supports (most of) the intended ASG functionality.

4.1 Process Meta-Model

The Software Process Engineering Meta-Model (SPEM) [24] is an adopted speci-
fication of the OMG that aims at standardizing how software processes are de-
scribed. In the specification, the UML approach is extended to model families of
related software processes. The modelling levels applied to structure object-
oriented approaches are applied to the software process engineering domain.
M2 is the level of the meta-model. At this level, those concepts and their rela-
tionships are described that can be used to model a software process. M1 is the
level of software process models such as, for example, the Rational Unified
Process (RUP) or the international standard ISO / IEC 12207. M0 is the project
level: project plans and histories are examples of models within this level.

Within the scope of the ASG project, software processes are described in terms
of Activities, Artefacts, Roles, Assets, and Tools. The resulting process models
include both textual descriptions and diagrams that illustrate the relationships

ASG Platform Development
Process

Copyright © Fraunhofer IESE 2006 22

between the entities of the model in a graphical way (e.g., workflows and role-
specific views).

Figure 8 shows the process architecture applied within the project, i.e., the enti-
ties used to describe the ASG development process and their relationships. The
process architecture is very close to the conceptual model presented in [24] and
can be considered a subset of the SPEM. According to the figure, each activity
in the process is described in terms of its purpose and tasks. Roles can be in-
volved in different activities. Tools and assets are used to perform activities. In-
put artefacts are consumed in activities to produce output artefacts. Further-
more, activities may include sub-activities and artefacts may consist of sub-
artefacts.

Activity Artefact

Role

Tool Asset

-consumingActivity

*

-inputArtefact

*
-producingActivity

*

-outputArtefact

*

-involvingActivity *

-involvedRole *

-usingActivity*

-usedTool*

-usingActivity*

-usedAsset*

-subActivity

*

-superActivity

0..1
-superArtefact

0..1
-subArtefact *

Figure 8: Overview Process Architecture

4.2 ASG Development Process Overview

As already stated in section 1.3, the ASG Development Process is described as a
set of activities grouped into three main process groups: Platform Engineering,
Application Engineering, and Service Engineering.

Figure 9 shows an overview of the ASG development process with the three
process groups and the artefacts exchanged. In the following, the artefacts ex-
changed, i.e., the interfaces between the process groups, are briefly intro-
duced.

ASG Platform Development
Process

Copyright © Fraunhofer IESE 2006 23

The process group Application Engineering produces the artefacts Prioritized
Subsystem Requirements, Service Landscape, Domain Ontology Change Re-
quests, and Prototype Test Documentation.

• Prioritized Subsystem Requirements is a list of requirements to be fulfilled by
a subsystem, which should be implemented during a given development cy-
cle. This artefact is used to drive the development of the platform through
the implementation of applications (demonstrators).

• Service Landscape is a description of the services needed to run the applica-
tion.

• Domain Ontology Change Requests are extensions of the concepts and rela-
tionships described in the domain ontology that are required to formulate
problems and solutions addressed by the intended application.

• Prototype Test Documentation includes test cases and results for the running
prototype, i.e., the end user application that calls services discovered, nego-
tiated, composed, and eventually replanned with the aid of the ASG plat-
form.

ASG Platform Development
Process

Copyright © Fraunhofer IESE 2006 24

Figure 9: Overview of the ASG Development Process

The group Platform Engineering produces the artefacts ASG Requirements,
Subsystem Requirements, ASG Ontology, and ASG Platform Release.

• The artefact ASG Requirements is the set of features the platform has to
provide.

• Subsystem Requirements are different sets of features to be provided by the
subsystems within the platform. There is one document of this type for each
subsystem.

• ASG Ontology is the meta-model used to specify services both semantically
and syntactically and to formalize domain-specific ontologies, i.e., models of
(parts of) the real world.

• An ASG Platform Release is a version of the platform that has already been
integrated and tested. A release can be deployed and executed and serves as
reference system for further development.

ASG Platform Development
Process

Copyright © Fraunhofer IESE 2006 25

The group Service Engineering produces the artefacts Domain Ontology and
Services Deployed and Running on Platform.

• The Domain Ontology is a formal model of (parts of) the real world.

• The artefact Services Deployed and Running on Platform represents a run-
ning ASG platform after the deployment of new services.

Platform and Service Engineering are driven in the project by Application Engi-
neering, i.e., decisions about which platform features should be implemented
first and which services should be developed and deployed on the platform are
made according to the needs of the applications engineered for demonstration
purposes (so called scenarios). At the beginning of each development cycle, the
requirements still to be implemented in the ASG platform and its subsystems
are analyzed in Application Engineering (in the figure, the artefacts ASG Re-
quirements and Subsystem Requirements) and a list of requirements to be im-
plemented during the cycle is produced according to the features needed for
the scenarios (in the figure, the artefact Prioritized Subsystem Requirements).

Once the platform is engineered, the activities within the process group Plat-
form Engineering do not need to be performed anymore. The activities aimed
at engineering new applications and services make use of the platform as it is
and no new platform-related requirements are elicited or implemented. Main-
tenance activities can be performed if required.

The overview of the ASG Development Process (see Figure 9) shows all interface
artefacts for which a new version can be created during one development cy-
cle. To synchronize the work to be performed within the different process
groups, specific releases of the interface artefacts are defined as milestones at
the beginning of each development cycle and are used as a reference in the
next development cycle.

4.3 Platform Engineering

The process group Platform Engineering aims at creating an infrastructure that
implements (most of) the features needed to realize solutions based on adap-
tive services. Since the ASG platform consists of several subsystems, this process
group includes both activities addressing the platform as a whole system and
other activities addressing the individual subsystems within the platform. The
activities Analyse ASG Requirements, Design Overall Architecture, Select and
Specify ASG Ontology Language, Model ASG Ontology, Platform Test address
the whole ASG platform. The activities Analyse Subsystem Requirements, De-
sign Subsystem, Implement Subsystem, Subsystem Test are performed at least
once for each individual subsystem.

ASG Platform Development
Process

Copyright © Fraunhofer IESE 2006 26

Figure 10 shows an overview of all ASG Subsystems. The structure of the sub-
system partially reflects the structure of the teams involved in developing the
platform, since most of the subsystems is being developed by one team.

Figure 11 shows the activities included in the process group and the artefacts
produced and consumed by the activities. Not every activity must be performed
during one cycle: The diagram shows all relevant dependencies, i.e., all activities
that can be potentially instantiated and all artefacts for which a new release
can be produced. The diagram is intended to aid planning the development cy-
cles, i.e., to decide which activities should be activated during a given develop-
ment cycle to produce a new version of the related artefacts.

ASG Platform Development
Process

Copyright © Fraunhofer IESE 2006 27

Figure 10: Overview of ASG Subsystems

ASG Platform Development
Process

Copyright © Fraunhofer IESE 2006 28

At the beginning, requirements for the ASG platform are elicited and analysed.
The results of this activity (artefact ASG Requirements in the figure) are used to
design the overall architecture (artefact ASG Architecture in the figure). With
the architecture, all subsystems are identified. Thereafter, the requirements of
each subsystem are analyzed and the results are collected in separate artefacts
of the type Subsystem Requirements. The analysis of subsystem requirements is
the first of the subsystem-related development activities that can be performed
concurrently for each subsystem: Each subsystem development consists of a
separate path of requirements analysis, design, implementation, and testing ac-
tivities. At the same time, available formalisms for describing the ASG Ontology
are investigated and the most suitable candidates are selected. Thereafter, the
ASG Ontology is formalized using the selected language(s). The ASG Ontology
is the language/data model used within the platform to exchange service-
related information between subsystems, to specify user problems, expected
solutions, and the solutions retrieved by the platform. Once matching versions
of the subsystems and the ontology are available at the end of a development
cycle, a new release of the platform can be integrated and tested (artefact ASG
Platform Release in the figure).

The following artefacts are the results of the activities performed to engineer
the platform: ASG Requirements, ASG Architecture, Subsystem Requirements,
ASG Ontology Language, ASG Ontology, Subsystem Design, Subsystem, Tested
Subsystem, ASG Platform Release.

The ASG Requirements list and describe the different features that the ASG
Platform has to provide.

The ASG Architecture documents the architecture of the whole platform. Dif-
ferent architectural views such as logical, structural, functional, and behavioural
views are provided.

For each subsystem, the requirements are identified and documented in an ar-
tefact Subsystem Requirements.

The artefact ASG Ontology Language describes the formalism to be used to
formalize the ASG Ontology (i.e., Flora, WSMO, etc.).

The ASG Ontology artefact describes both the meta-model for specifying ASG
services and the meta-model for formalizing the domain model.

The Subsystem Design documents the architecture of a single subsystem. For
each subsystem, one artefact of this type is produced. Like the ASG Architec-
ture, the Subsystem Design should also present different architectural views
such as logical, structural, functional, and behavioural views.

ASG Platform Development
Process

Copyright © Fraunhofer IESE 2006 29

The artefact Subsystem is an executable piece of code that implements the
functionality of a single subsystem. For each subsystem, one artefact of this
type is produced. The artefacts are, at the same time, configuration items man-
aged with the ASG configuration management system.

The artefact Tested Subsystem includes the system tested, the test cases used
for testing it, and the results of the test once it has been performed. For each
subsystem, one artefact of this type is produced. The artefacts are at the same
time configuration items managed with the ASG configuration management
system.

The ASG Platform Release is an executable version of the ASG platform that
represents a milestone and can be used as a reference for further development.
The artefact is, at the same time, a configuration item managed with the ASG
configuration management system.

ASG Platform Development
Process

Copyright © Fraunhofer IESE 2006 30

Figure 11: Workflow with the Process Group Platform Engineering

As stated in the previous section, the artefact Prioritized Subsystem Require-
ments is used as input for the activities of the Platform Engineering process
group but is produced by activities of the Application Engineering group.
Thereafter, the Platform Engineering process is defined as an iterative, incre-
mental process that is driven by the development of demonstrators.

ASG Platform Development
Process

Copyright © Fraunhofer IESE 2006 31

The roles Customer3, Requirements Manager, Architect, Ontology Manager,
Subsystem Manager, Subsystem Requirements Engineer, and Platform Integra-
tor are involved in the activities of the process group Platform Engineering.

In the following subsections, the individual activities are introduced in more de-
tail.

4.3.1 Analyse ASG Requirements

The purpose of this activity is to establish the requirements for the ASG Plat-
form.

The activity consists of the tasks:

• Identify the features of the ASG platform. All expected features of the plat-
form are identified, documented, and agreed upon by the ASG project
members.

• Derive correct and testable requirements. Single, unique, functional and
non-functional requirements are derived. The consistency of the require-
ments is checked. The requirements are formulated in a way that their ful-
filment after implementation can be objectively tested.

• Specify the Requirements by describing the possible interactions between
applications and the ASG Platform. For this purpose, the use of use cases is
recommended.

The activity is performed by the role Requirements Manager, Customer, Subsys-
tem Manager. During the activity, the artefact ASG Requirements is produced.
No explicit input artefact is consumed by the activity. The ASG Wiki server is
used, among other things to exchange information about the ASG require-
ments and to publish related documents. The work component C4 has defined
and used a template for requirements-related deliverables. Another asset for
this activity are the Documentation Guidelines for Requirements.

• Involved Roles: Requirements Manager, Customer, Subsystem Manager

• Tools: ASG WIKI Server

• Assets: C4 Template for Requirements-related Deliverables, Documentation
Guidelines for Requirements

• Outputs: ASG Requirements

3 This role is challenging in every research project. In ASG, the role is mainly played by the industrial partners

from the work component C7.

ASG Platform Development
Process

Copyright © Fraunhofer IESE 2006 32

4.3.2 Design Overall Architecture

The purpose of the activity is to define the architecture for the ASG Platform by
identifying all needed subsystems and their relationships according to the ASG
requirements.

The activity consists of the tasks:

• Identify the different subsystems of the ASG Platform needed to implement
the ASG requirements.

• Identify the relationships among the identified subsystems.

• Document the architecture according to the Documentation Guidelines. For
this purpose, at least four different architectural views can be considered
and should be documented: a logical, a structural, a functional, and a be-
havioural view.

1. In the logical view, packages identify logical subsystems and dependen-
cies identify interactions and data exchange among the logical subsys-
tems.

2. In the structural view, public interfaces of the subsystems shall be model-
led in more detail.

3. In the functional view, the functionality of each subsystem is described.

4. In the behavioural view, the system behaviour is described for the case
that a method is invoked.

• Baseline the Documentation of the ASG architecture.

• Define the Integration Strategy and Guidelines.

• Define the Integration Test Plan.

The activity is performed by the role Architect. During the activity, the artefact
ASG Architecture is produced. The artefact ASG Requirements is consumed as
input. The UML tool Magic Draw is used to model the system. The ASG Wiki
server is used, among other things, to exchange information about the ASG Ar-
chitecture and to publish related documents. The Documentation Guidelines for
Analysis & Design can be used for further details on how to document the sys-
tem.

• Involved Roles: Architect

• Tools: ASG WIKI Server, Magic Draw

• Assets: Documentation Guidelines for Analysis & Design, Magic Draw How-
To

• Inputs: ASG Requirements

ASG Platform Development
Process

Copyright © Fraunhofer IESE 2006 33

• Outputs: ASG Architecture

4.3.3 Analyse Subsystem Requirements

The purpose of this activity is to establish the requirements for each subsystem
(identified during the activity Design Overall Architecture) by refinement of the
ASG requirements (specified during the activity Analyse ASG Requirements) and
the interactions between subsystems (identified during the activity Design
Overall Architecture).

The activity consists of the tasks:

• Identify the interaction among this subsystem and the other subsystems as
described in the ASG Platform Architecture.

• Define use case diagrams or sequence diagrams to describe the interaction.

• Document the interaction according to the Documentation Guidelines for
Requirements.

• Document the identified requirements in the corresponding deliverable.

• Plan subsystem releases.

The activity is performed by the role Subsystem Requirements Engineer. During
the activity, the artefact Subsystem Requirements is produced. The artefacts
ASG Requirements and ASG Architecture are consumed as input. The tool
Magic Draw is used to perform the activity. The Documentation Guidelines for
Requirements can be used for further details on how to document the subsys-
tem requirements.

• Involved Roles: Subsystem Requirements Engineer

• Tools: Magic Draw

• Assets: Documentation Guidelines for Requirements

• Inputs: ASG Requirements, ASG Architecture

• Outputs: Subsystem Requirements

4.3.4 Select and Specify ASG Ontology Language

The purpose of this activity is to identify and evaluate available formalisms for
describing the ASG Ontology. The most suitable candidates are selected.

The activity consists of the tasks:

ASG Platform Development
Process

Copyright © Fraunhofer IESE 2006 34

• Identify concepts and their relations used to specify the ASG services seman-
tically and syntactically.

• Document the identified concepts and relations.

• Identify concepts and their relations used to specify the ASG domain ontol-
ogy.

• Check both models in the common configuration management system.

• Identify available formalisms for modelling the concepts and relationships
identified.

• Evaluate the formalisms with respect to their applicability within the ASG
platform.

• Select the most suitable formalism(s).

The activity is performed by the role Ontology Manager. During the activity, the
artefact ASG Ontology Language is produced, which consists of the selected
formalisms and the rationales behind the decision made. The artefacts Priori-
tized Subsystem Requirements and Subsystem Requirements are consumed as
input. The artefact Prioritized Subsystem Requirements is not produced within
this process group but during activities from the Application Engineering group.
The initial models of the ASG ontology needed to clarify requirements for the
ontology language have been sketched with the tool Magic Draw. The tool
Subversion is used as configuration management system. Furthermore, the tool
ASG Wiki Server is used to exchange information related to the ASG Ontology
Language and to publish the main results of this activity. Currently, no specific
assets are used to perform the activity.

• Involved Roles: Ontology Manager

• Tools: Magic Draw, Subversion, ASG WIKI Server

• Assets: None

• Inputs: Prioritized Subsystem Requirements, Subsystem Requirements

• Outputs: ASG Ontology Language

4.3.5 Model ASG Ontology

The purpose of this activity is to model both concepts and relationships needed
to specify services on the one hand, and the domain ontology on the other
hand, by means of the selected ontology language.

The activity consists of the tasks:

ASG Platform Development
Process

Copyright © Fraunhofer IESE 2006 35

• Model the concepts needed to specify the services and their relationships by
means of the selected ontology language.

• Model the concepts needed to specify the domain ontology and their rela-
tionships by means of the selected ontology language.

• Check both specifications in the common configuration management sys-
tem.

The activity is performed by the role Ontology Manager. During the activity, the
artefact ASG Ontology is produced. The artefact ASG Ontology Language is
consumed as input. The tool Magic Draw is used to perform the activity. Fur-
thermore, the tool ASG Wiki Server is used to exchange information related to
the ASG Ontology and to publish the main results of this activity. Currently, no
specific assets are used to perform the activity.

• Involved Roles: Ontology Manager

• Tools: Magic Draw, ASG WIKI Server, Subversion

• Assets: None

• Inputs: ASG Ontology Language

• Outputs: ASG Ontology

4.3.6 Design Subsystem

The purpose of this activity is to define the design for the subsystem by identify-
ing the different components and their relationships that are needed to imple-
ment a Subsystem that fulfils the respective Subsystem Requirements.

The activity consists of the tasks:

• Identify the different components needed to implement the Subsystem Re-
quirements.

• Identify the relationships among the different components.

• Document the subsystem design with different (architectural) views as de-
scribed in the Documentation Guidelines for Analysis & Design:

– In the logical view, packages identify logical subsystems and dependen-
cies identify interactions and data exchange among the logical subsys-
tems.

– In the structural view, public interfaces of the subsystems shall be mod-
elled in more detail.

– In the functional view, the functionality of each subsystem is described.

ASG Platform Development
Process

Copyright © Fraunhofer IESE 2006 36

– In the behavioural view, the system behaviour is described for the case
that a method is invoked.

• Define Subsystem Test Plan.

• Define Subsystem Integration Plan.

The activity is performed by the role Subsystem Manager. During the activity,
the artefact Subsystem Design is produced. The artefacts ASG Ontology and
ASG Ontology Language are consumed as input. Currently, no specific tool
must be used to perform the activity. However, the UML tool Magic Draw is
recommended; some teams also apply similar tools from other vendors. The as-
set Documentation Guidelines for Analysis & Design is used to perform the ac-
tivity. The work component C4 defines and uses its own templates as a basis
for the deliverables that collect the results of this activity (i.e., C4 Template for
Design-related Deliverables).

• Involved Roles: Subsystem Manager

• Tools: Magic Draw

• Assets: C4 Template for Design-related Deliverables, Documentation Guide-
lines for Analysis & Design

• Inputs: ASG Ontology, ASG Ontology Language

• Outputs: Subsystem Design

4.3.7 Implement Subsystem

The purpose of this activity is to produce executable components/subsystems
and verify that they properly reflect the subsystem design.

The activity consists of the tasks:

• Develop subsystem components by using the Java Coding guidelines.

• Develop Unit Tests for each component (executable component) for validat-
ing the internal behaviour of the whole subsystem (using, for example,
JUnit).

• Execute each single Unit Test and thus validate the internal behaviour of the
whole subsystem.

• If all Test Cases are successful, provide code files (configuration items) for
the configuration management (Subversion) considering the ASG versioning
concept.

• Develop Subsystem Test Cases for validating the component interaction us-
ing JUnit.

ASG Platform Development
Process

Copyright © Fraunhofer IESE 2006 37

• Develop Subsystem Test Cases for validating the Subsystem Interaction using
JUnit.

The activity is performed by the subsystem developers. However, the role Sub-
system Manager is responsible for the activity and this is the only role visible for
the project partners outside the development team. During the activity, the ar-
tefact Subsystem is produced. The artefact Subsystem Design is consumed as
input. The tools Eclipse and JUnit are used to perform the activity. The asset
Coding Guidelines is provided to improve the uniformity of code. The asset Unit
Test Coverage Recommendations helps to identify the minimal coverage re-
quired for unit test.

• Involved Roles: Subsystem Manager

• Tools: Eclipse, JUnit

• Assets: Coding Guidelines, Unit Test Coverage Recommendations

• Inputs: Subsystem Design

• Outputs: Subsystem

4.3.8 Subsystem Test

The purpose of this activity is to perform an end-to-end testing of a Subsystem
to ensure that it meets the Subsystem Requirements.

The activity consists of the tasks:

• Develop the Subsystem Test Plan.

• Perform the Subsystem Test.

• Discuss, document, and decide on the result of Test Cases (based on Subsys-
tem Requirements and Design).

• Define a strategy for the regression test.

• Carry out regression testing in case of changes.

• Publish test results on the Maven site.

• Release the Subsystem by adding it to the ASG subversion server.

The activity is performed by the subsystem developers. However, the role Sub-
system Manager is responsible for the activity and this is the only role visible for
the project partners outside the development team. During the activity, the ar-
tefact Tested Subsystem is produced. The artefacts Subsystem Requirements,
Prioritized Subsystem Requirements, and Subsystem are consumed as input.

ASG Platform Development
Process

Copyright © Fraunhofer IESE 2006 38

The tool JUnit and Maven are used to perform the activity. Currently, no asset is
used to perform the activity.

• Involved Roles: Subsystem Manager

• Tools: JUnit, ASG Subversion Server, Maven

• Assets: None

• Inputs: Subsystem Requirements, Prioritized Subsystem Requirements, Sub-
system

• Outputs: Tested Subsystem

4.3.9 Platform Test

The purpose of this activity is to integrate the different subsystems, build up the
ASG platform, and ensure that the different subsystems interact correctly ac-
cording to the architecture.

The activity consists of the tasks:

• Ensure that all needed subsystems are present and tested (each subsystem is
checked out from subversion in the correct version).

• Develop the Platform Test.

• Assemble a working build of the ASG platform.

• Perform the Platform Test.

• Document, discuss, and decide on the results of the Platform Test.

• Define a strategy for the regression test.

• Carry out regression testing in case of changes.

• Publish build and test results on the Maven site.

• Provide a working release of the ASG platform.

The activity is performed by the Platform Integrator with the collaboration of
the Subsystem Managers. During the activity, a new ASG Platform Release is
produced. The artefacts ASG Ontology, ASG Requirements, and Tested Subsys-
tem are consumed as input. The tools Maven, Subversion, and JUnit are used to
perform the activity. Currently, the assets Integration Guidelines, Integration
Test Plan Recommendations, and Maven Guidelines are used to perform the ac-
tivity.

• Involved Roles: Platform Integrator, Subsystem Manager

• Tools: Maven, Subversion, and JUnit

ASG Platform Development
Process

Copyright © Fraunhofer IESE 2006 39

• Assets: Integration Guidelines, Integration Test Plan Recommendations,
Maven Guidelines

• Inputs: ASG Ontology, ASG Requirements, Tested Subsystem

• Outputs: ASG Platform Release

Discussion

Copyright © Fraunhofer IESE 2006 40

5 Discussion

The discussion in this section focuses on process generalizability, process pecu-
liarities, and open process issues. Most of the considerations are presented
from the point of view of the process group aimed at engineering the ASG
platform but also pertain to the whole development process and concern, in
particular, the relationships between the process groups.

The generalizability of the platform engineering, i.e., the applicability of the
process to other, similar contexts, is ensured by the fact that the process was
defined on the basis of the software engineering processes described in the in-
ternational standard ISO/IEC 12207 “Software Lifecycle Processes” and includes
typical activities such as requirements analysis, design, implementation, integra-
tion, and testing, which are performed in the majority of the projects aimed at
developing software. Also, the process described does not present significant
differences from other development processes in terms of activity performed.
This is mainly due to the fact that the process aims at developing the ASG plat-
form, whereas peculiar activities are required to use it. ASG-specific activities
characterise, therefore, more the process groups Application and Service Engi-
neering (described in [32]).

However, the processes discussed present own peculiarities. One first interest-
ing characteristic is how the different process groups relate to each other: an
ASG solution is based on at least one application operated by an end user (usu-
ally a human being) and on services that are discovered, negotiated, composed,
invoked, and, eventually, replanned by the platform. This means that a single
solution consists of several parts such as an application, services, and the ASG
platform, which are engineered by different teams or even organisations and
need to be integrated and tested in different stages. A similar situation can also
be found in a solution developed following a service-oriented approach without
semantic-based interoperability support. In order to deal with such complexity,
the ASG development process is defined as an iterative, incremental process
that is driven by the development of demonstrators. On the other hand, since
the ASG project is a research project, the demonstrators implemented do not
only solve a customer’s problems but must primarily show the functionality of
the platform and the achievement of research goals. Therefore, the develop-
ment process turns out to be somehow technology-driven. Sometimes the
question of what kind of problems can be solved with the technologies under
investigation seems to influence the development activities more that the ques-
tion of what kind of technology one needs to solve a given, concrete problem.
The various integration stages also imply several testing stages. The needed
testing activities could already be identified in this phase of the project but

Discussion

Copyright © Fraunhofer IESE 2006 41

were not sufficiently investigated yet. In particular, goals and strategies of the
different test activities must be analyzed deeper in order to avoid both redun-
dant, time-consuming testing and insufficient test coverage.

Another characteristic, which is quite usual in research projects, is that enacting
development activities in strict accordance with the process description can not
and should not be enforced. This is a consequence of the fact that the inherent
creativity of the research work must be defended and supported. The proto-
types developed represent a suitable means for making ideas explicit and en-
hance the communication among teams. On the other hand, such prototypes
aim at showing the achievements of research activities and the quality assur-
ance activities performed within the project must focus more on the quality of
these achievements than on the quality of the software developed.

Another peculiarity of the process is the great amount of emerging standards
and languages to be considered. Standards from the field of service-oriented
architectures such as Web services play an important role as do ontology lan-
guages such as OWL and WSML and semantic service approaches such as
OWL-S and WSMO.

The process is also influenced by the great diversity of the development teams
in terms of team size, programming skills, and domain of interest. A shared ar-
chitecture modelled with the aid of tools that allow distributed design over the
Internet is the key to aligning ideas and letting a common vision emerge from
separate sets of, often only implicitly stated, requirements. The subsystems
within the shared architecture partially reflect the structure of the development
team, and development cycles are also planned in terms of parts of the archi-
tecture that should be addressed and implemented.

Summary and Outlook

Copyright © Fraunhofer IESE 2006 42

6 Summary and Outlook

This deliverable presents the first version of the process for developing the ASG
platform. It also describes the methodology applied to formalize and validate
the process.

The many activities performed to define and establish a shared development
process and the great amount of effort spent on them are justified by the fact
that development activities are performed within the project by several teams
from different organisations. Development teams range from two-person teams
consisting of a PhD student and a master student to ten professional program-
mers. Development teams are not collocated and team members speak differ-
ent native languages. For all these reasons, there is a strong need in the project
for a common taxonomy of the terms related to the software development
process applied.

This deliverable contributes both a process architecture (see section 4.1) and a
process description (sections 4.2 and 4.3). The work on software processes
within the ASG project focuses on several aspects addressed from different
points of view. This deliverable addresses, in particular, the activities aimed at
engineering the ASG platform. A description of the processes intended for en-
gineering services and applications for the platform can be found in deliverable
D6.III-2 “ASG Development Process – Application and Service Engineering”. An
overview of all development process-related deliverables and their relationships
is presented in section 1.3.

Describing processes explicitly is just one of the activities performed to manage
the ASG development process. Other activities include establishing, analysing,
and improving the process continuously. The process management approach
followed in the project is also presented in this deliverable (section 3.2). Accord-
ing to the approach, this deliverable represents another step towards the chal-
lenging formalisation of development processes in the emerging domain of so-
lutions based on semantic services. Further steps to be performed in the near
future include a deeper analysis and implementation of the many testing activi-
ties needed to ensure reliable, integrated solutions. Furthermore, a post-
mortem analysis of the development activities should be performed to gather
and classify the lessons learned during two and a half years of development.

The process description presented in this deliverable is used as a reference for
planning, performing, and monitoring the ASG development activities. There-
fore, the deliverable targets all parties involved in the development of the plat-

Summary and Outlook

Copyright © Fraunhofer IESE 2006 43

form4 and those people who wish or need more insight into the various interre-
lated development activities.

4 ASG members involved in development activities may appreciate the electronic ASG development process

guide available at
https://asg-platform.org/cgi-bin/twiki/viewauth/Internal/ASGDevelopmentProcess.

References

Copyright © Fraunhofer IESE 2006 44

References

[1] Adamopolous, D.X.; Haramis, G.; Papandreou, C.A.: Rapid prototyping of
new telecommunications services: a procedural approach, Computer
Communications 21, pp. 211-219, 1998.

[2] Adamopoulus, D.X.; Papandreou, C.A.: An integrated object-oriented ap-
proach to telecommunications service engineering, Proceedings of
IFAC/IFOR/IMACS/IFIP LSS ’98, Rio, Greece, pp. 834-839, 1998.

[3] Adamopoulus, D.X.; Pavlou, G.; Papandreou, C.A.: An integrated an sys-
tematic approach for the development of telematic services in heterogene-
ous distributed platforms, Computer Communications 24, pp. 394-415,
2001.

[4] Adler, M.: Component business modeling - mapping the way in insurance,
Available at
http://www.ibm.com/industries/financialservices/doc/content/news/newslett
er/1061216103.html

[5] Becker-Kornstaedt, Ulrike; Hamann, Dirk; Kempkens, Ralf; Rösch, Peter;
Verlage, Martin; Webby, Richard; Zettel, Jörg: Support for the Process En-
gineer. The Spearmint Approach to Software Process Definition and Process
Guidance. In Advanced Information Systems Engineering. International
Conference CAiSE'99 - Proceedings (1999), 119-133.

[6] Boehm, B.W.: A Spiral Model for Software Development and Enhance-
ment, IEEE Computer, vol 21, No 5, pp. 61-72 (1988)

[7] Boehm, B.W.: Get Ready for Agile Methods, with Care, IEEE Computer, vol
35, No 1, pp. 64-69 (2002).

[8] Carlshamare, P.: Release Planning in Market-Driven Software Product De-
velopment: Provoking and Understanding. Requirements Engineering, No.
7, pp. 139-151, (2002)

[9] International Organization for Standardization (ISO): ISO / IEC
12207:1995/Amd.2:2004(E): Information technology - Software life cycle
processes. Amendment 2.Genf, 2004

[10] International Organization for Standardization (ISO): ISO/IEC 15504, Infor-
mation Technology - Software Process Assessment - Parts 1-9. Technical
Report Type 2, Genf, 1998.

References

Copyright © Fraunhofer IESE 2006 45

[11] Karlsson, E.: A Construction Planning Process. Q-Labs, LD/QLS 96:0381,
Lund Sweden (1999).

[12] Karlsson, E., Taxen, L.: Incremental Development for AXE 10. ACM
SIGSOFT Software Engineering Notes, vol. 22, No. 6 (1997).

[13] Liu, W.; Goldzmidt, G.; Joseph, J.: On demand business process life cycle,
Part 5: Workflow development, deployment, and testing, Available at:
http://www- 128.ibm.com/developerworks/library/ws-odbp5/?ca=dnt-64

[14] Maurer, F., Martel, S.: Rapid Development for Web-Based Applications.
IEEE Internet Computing, vol 6, No 1, pp. 86-90 (2002)

[15] McDermid, J.A., Rook, P.: Software Development Process Models, Software
Engineer’s Reference Book, Ed., Boca Raton, FL: CRC Press, pp. 15.26 –
15.28. (1994).

[16] Motta, E.; Dominguez, J.; Cabral., L.; Gaspari, M.: IRS-II: A Framework and
Infrastructure for Semantic Web Services. In: Fensel, D., Sycara, K., My-
lopoulos, J. volume eds.): The SemanticWeb - ISWC 2003. Lecture Notes in
Computer Science, Vol. 870. Springer- Verlag, Heidelberg (2003) 306–318.

[17] Nerurkar, U.: Web User Interface Design: Forgotten Lessons. IEEE Software,
vol. 18, No. 6, pp. 69-71 (2001).

[18] Ocampo, A., Boggio, D., Muench, J., Palladino, G.: Toward a Reference
Process for Developing Wireless Internet Services, IEEE Transactions on
Software Engineering, vol. 29, no. 12, pp. 1122-1134, December, 2003.

[19] OWL Services Coalition (2003): OWL-S: Semantic Markup for Web Services,
(http://www.daml.org/services/owl-s/1.0/), viewed 15 Feb 2005.

[20] Palfreyman, J. (2004): Grid Explained. IBM Global Services, 2004.

[21] Patil, A. A.; Oundhakar, S. A.; Sheth, K. Verma: Semantic Web Services:
Meteor-S Web Service annotation framework, Proceedings of the 13th
WWW conference, May 2004.

[22] Reapple, M.: IT-Ballet. Vier Process Engines im Vergleich (Comparison of
four process engines), iX- Magazin für Profesionelle Informationstechnik.
2004.

[23] Roman, D.; Lausen, H.; Keller, U.: Web Services Modeling Ontology Stan-
dard, WSMO Working Draft v02, 2004.

References

Copyright © Fraunhofer IESE 2006 46

[24] Software Process Engineering Metamodel Specification, January 2005, Ver-
sion 1.1, formal/05-01-06, an adopted specification of OMG Group Inc.
Available at http://www.omg.org/technology/documents/formal/spem.htm

[25] Vetere G., Lanzerini M.: Models for semantic interoperability in service-
oriented architectures. IBM Systems Journal, Vol. 44, No. 4, 2005Zettel, J.,
Maurer, M., Münch, J., Wong, L.: LIPE: A Lightweight Process for E-
Business Startup Companies based on Extreme Programming. Proceedings
of the Third International Conference on Product-Focused Software Proc-
esses Improvement (PROFES), pp. 255-270, (2001)

[27] Zimmermann, O.; Krogdahl, P.; Gee, C.: Elements of Service-oriented
Analysis and Design: An interdisciplinary approach for SOA projects, Avail-
able at http://www- 106.ibm.com/developerworks/Webservices/library/ws-
soad1/

ASG Deliverables

[28] Bella et al.: Adaptable Process Engineering Survey, ASG Deliverable D6.III.1,
delivered at M6

[29] Eisenbarth et al.: Requirements Specification Survey, ASG Deliverable D6.I-
1, delivered at M6

[30] Eisenbarth et al.: Reuse-Oriented Requirements Technique, ASG Deliverable
D6.I-2, delivered at M12

[31] Eisenbarth et al.: Case Study: Requirements Specification, ASG Deliverable
D6.II-1, delivered at M18

[32] Lehner et al.: ASG Development Process – Application and Service Engi-
neering, ASG Deliverable D6.III-2, delivered at M18

[33] Tahir: Testing Methodology for ASG Applications and Services, ASG Deliv-
erable D6.III-5, delivered at M18

[34] Tahir: Tracing and Logging Concept, ASG Deliverable D6.IV-2, delivered at
M18

[35] Tahir: Testing Methodology for Platform Code, ASG Deliverable D6.IV-3,
delivered at M18

Project Consortium Information

Copyright © Fraunhofer IESE 2006 47

Project Consortium Information

Partner Acronym Contact

University of Potsdam,
Germany

Dr. Regina Gerber
Universitaet Potsdam
Am Neuen Palais 10
D-14469 POTSDAM
Germany
Email: rgerber@rz.uni-potsdam.de
Tel: +49-331-9771080

University of Leipzig,
Germany

Prof. Bogdan Franczyk
Universitaet Leipzig
Ritterstrasse 26
D-04109 LEIPZIG
Germany
Email: franczyk@wifa.uni-leipzig.de
Tel: +49.341-33720

University of Innsbruck,
Austria

Prof. Dieter Fensel
Institute of Computer Science
University of Innsbruck
Technikerstr. 25
A-6020 INNSBRUCK
Austria
Email: dieter.fensel@deri.org
Tel: +43-512-5076488

Fraunhofer IESE,
Germany

Dr. Dirk Muthig
Fraunhofer Institut Experimentelles Software
Engineering.
Fraunhofer Platz 1,
D-67663 KAISERSLAUTERN
Germany
Email: muthig@iese.fraunhofer.de
Tel: +49-631-6800-1320

DaimlerChrysler Research,
Germany

DI Jens Weiland
DaimlerChrysler AG
Postfach 2360
D-89013 ULM
Germany
Email: jens.weiland@daimlerchrysler.com
Tel: +49-731-5052404

Project Consortium Information

Copyright © Fraunhofer IESE 2006 48

HPI at University Potsdam,
Germany

Hasso-Plattner-Institut fuer Softwaresystem-
technik gGMBH
Prof.-Dr.-Helmert-Strasse 2-3
D-14482 POTSDAM
Germany

Prof. Mathias Weske
Email: Mathias.Weske@hpi.uni-potsdam.de
Tel: +49-331-5509191

Prof. Andreas Polze
Email: andreas.polze@hpi.uni-potsdam.de
Tel: +49 331 5509 231

NUIG,
Ireland

Prof. Christoph Bussler
National University of Ireland
Science and Engineering Technology Building
Galway
Ireland
Email: chris.bussler@deri.ie
Tel: +353-87-6826940

Swinburne University,
Australia

Prof. Ryszard Kowalczyk
Swinburne University of Technology
PO Box -218
AUS-3122 HAWTHORN
Australia
Email: rkowalczyk@it.swin.edu.au
Tel: +61-39-2145834

Thueringer Anwendungszentrum
fuer Software-, Informations- und

Kommunikations-technologie
GmbH, Germany

DI Holger Krause
Thueringer Anwendungszentrum fuer Soft-
ware-, Informations- und Kommunikations-
technologie GmbH
Langewiesener Strasse 32
D-98693 ILMENAU
Germany
Email: Krause@transit-online.de
Tel: +49-3677-845109

NIWA, Austria

DI Alexander Wahler
NIWA-WEB Solutions Niederacher & Wahler
OEG
Kirchengasse 13/1a
A-1070 VIENNA
Austria
Email: wahler@niwa.at
Tel: +43-131-9584311

Project Consortium Information

Copyright © Fraunhofer IESE 2006 49

Telenor Communications II AS,
Norway

Dr. Rolf. B. Haugen
Telenor ASA
Snaroeyveien 30
N-1331 FORNEBU
Norway
Email: rolf-bjorn.haugen@telenor.com
Tel: +47-900-51101

Siemens AG,
Germany

DI Klaus Jank
Siemens AG
Corporate Technology, Software and System
Architecture
Otto-Hahn-Ring 6
D-81730 MUENCHEN
Germany
Email: klaus.jank@siemens.com
Tel: +49-89-636-50573

Rodan Systems,
Poland

Mariusz MOMOTKO
Rodan Systems Spolka Akcyjna
Ul. Pulawska 465
PL-02-844 WARSZAWA
Poland
Email: Mariusz.Momotko@rodan.pl
Tel: +48-58-5502024

University Jyväskylä,
Finland

Prof. Jari Antti VEIJALAINEN
Jyvaskylan Yliopisto
Seminaarinkatu 15
FI-40014 JYVASKYLA
Finland
Email: jari.veijalainen@titu.jyu.fi
Tel: +358-14-2603021

Telekomunikacja Polska,
Poland

Bogdan BANSIAK
Telekomunikacja Polska S.A.
Ul. Obrzezna 7
PL-02-691 WARSZAWA
Poland
Email: Bogdan.Bansiak@telekomunikacja.pl
Tel: +48-22-6995340

Marketplanet,
Poland

Otwarty Rynek Elektroniczny S.A.
Ul. Domaniewska 41
PL-02-672 WARSZAWA
Poland
Email: info@marketplanet.pl
Tel: +48 22 576 88 00

Project Consortium Information

Copyright © Fraunhofer IESE 2006 50

ASTEC Sp. z o.o.,
Poland

Janusz MICHALEWICZ
ASTEC SP. Z O.O.
Ul. Piaskowa 14
PL-65-209 ZIELONA GORA
Poland
Email: J.Michalewicz@astec.com.pl
Tel: +48-68-3298031

The Poznan University of Economics,
Poland

Prof. Witold ABRAMOWICZ
Akademia Ekonomiczna W Poznaniu
Al. Niepodleglosci 10
PL-60-967 POZNAN
Poland
Email: W.Abramowicz@kie.ae.poznan.pl
Tel: +48-61-8569333

FH Furtwangen,
Germany

Prof. Ulf Schreier
University of Applied Sciences Furtwangen
Rogert-Gerwig-Platz 1
D-78120 FURTWANGEN
Germany
Email: schreier@fh-furtwangen.de
Tel: +49-7723-920153

Polska Telefonia Cyfrowa,
Poland

Longin BRZEZINSKI
Polska Telefonia Cyfrowa SP. Z O.O.
Al. Jerozolimskie 181
PL-02-222 WARZAWA
Poland
Email: lbrzezinski@era.pl
Tel: +48-22-4135808

University of Koblenz-Landau,
Germany

Prof. Steffen Staab
Institute of Computer Science
Universität Koblenz-Landau
PO Box 201 602
56016 Koblenz
Germany
Email: staab@uni-koblenz.de
Tel: +49-261-287 2761

Erik Lillevold,
Norway

Erik Lillevold
Åsheimneien 33
2016 Frogner
Norway
Email: erlille@online.no
Tel: +47-9134-4641

Document Information

Copyright 2006, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Title: ASG Platform Development
Process
Deliverable D6.IV-1

Date: March 3, 2006
Report: IESE-137.06/E
Status: Final
Distribution: Public

