
A GOOGLE-Earth Based Test Bed for  

Structural Image-based UAV Navigation   
 

Eckart Michaelsen 
Target Recognition Department 

FGAN-FOM 
Ettlingen, Germany. 
mich@fom.fgan.de 

Klaus Jaeger 
Target Recognition Department 

FGAN-FOM 
Ettlingen, Germany. 
jae@fom.fgan.de 

 

Abstract - In this contribution a test bed is presented for 
the assessment of structural recognition methods for the 
localization of landmark objects in aerial images.  Instead 
of really flying a system which might jeopardize the utilized 
platform – or using only a limited test image data set which 
is of poor relevance – the recognition system is included 
into a control loop with the camera being simulated by a 
publicly available geo system such as GOOGLE earth.  The 
structural knowledge is represented as declarative 
production system. An approximately correct any-time 
parser is used for controlling the search. A typical example 
run is discussed. Such test bed can help evaluating and 
improving the performance of such systems for the task of 
autonomous visual UAV navigation.  

Keywords: UAV navigation, evaluation, structural 
recognition, production systems, public geo systems. 

1 Introduction 
Automatic fusion of declarative knowledge about e.g. infra 
structure construction with measured pictorial data e.g. 
aerial images is a challenging endeavor. If successful it may 
well be of great advantage for tasks such as autonomous air 
navigation. In a way the ultimate goal should be to give the 
UAV a kind of understanding of the scene below it. For the 
time being we reckon it sufficient if we can give an 
automatic method for recognizing specific salient 
landmarks. Here we distinguish declarative knowledge such 
as handbooks or thesauri on the construction of salient infra 
structure such as bridges, major traffic ways, power plants 
etc. from pictorial knowledge. The latter consists of large 
representative bodies of aerial pictures of such objects. 
Given such data the landmark recognition could be 
achieved using standard appearance based object 
recognition methods. Whatever those are – the chink of 
them rests in the word “representative”. In outdoor scenery 
lighting and the brightness of background objects such as 
plants varies dramatically with daytime and season. The 
reflectivity of the visible surfaces of the landmark objects – 
such as concrete or asphalt – varies also considerable with 
age humidity etc. The geometry of shadows cast by 3D 
structure depends heavily on the time of day and cloud 

cover. The camera will usually be equipped with automatic 
exposure control – so that a particular gray-value does not 
correspond to any calibrated brightness. And last but not 
least – unpredictable arbitrary clutter objects may be 
present on the landmark and on the background. 

On the other hand, while a structural recognition method 
based on declarative knowledge can be implemented 
without any image material at all it cannot be evaluated so. 
And using the same image material that has been used for 
development and debugging is also questionable. The 
evaluation should be done using images that did not even 
exist when the method was fixed.  

1.1 Related work on UAV navigation 
Precision navigation of unmanned aerial vehicles (UAVs) 
like missiles and drones is still one of the most important 
subjects in defense research. Current system design uses 
inertial measurement units (IMU) and/or GPS for UAV 
guidance. However, due to the fact that inertial data are 
affected by noise or drift and GPS-data may be jammed by 
countermeasures, accurate measurement of missile pose 
with respect to the ground scenario may be difficult. To 
overcome these problems, cutting-edge system designs are 
specified by concepts of hybrid navigation, fusing in real 
time all available navigation data such as IMU/GPS, radar 
altimeters, star tracker, passive imaging sensor and digital 
elevation database [1]. The integration of passive imaging 
sensors has some important advantages: they can operate in 
non-GPS environment and in scenarios with poor variations 
of surface elevation. Hence image based navigation of 
UAVs is common topic for decades now and there are 
many approaches for computing ego-motion from optical 
flow measurements (e.g. in [2]) and Structure from Motion 
(SFM) algorithms – such as projective geometry and bundle 
adjustment (e.g. in [3]). In this paper, we propose a method 
for navigation update based on the automatic recognition of 
suitable landmarks by analyzing image data of high 
resolution (IR, Visible, SAR). 
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1.2 Related work on object recognition 
For many years now the majority of the object recognition 
literature evaluates the approaches on turntable benchmark 
sets such as COIL [4]. Turntable data are particularly useful 
in the evaluation of 3D-object recognition. Often, statistical 
modeling (i.e. optimization of MAP) turns out to perform 
best. For the task of autonomous UAV navigation 3D 
recognition capabilities may be only of interest if it is 
intended to fly at very low altitudes. For medium and high 
altitude navigation the errors caused by 3D-structure – such 
as occlusion of lower parts by higher ones – or the 
respective displacements – e.g. caused by moderate tilting 
of surfaces or different scaling due to different height – 
should be no problem for a robust and error tolerant 
recognition system as the one used here.  

However, turntable data usually lack background and 
variation of lighting. There are attempts to alleviate the 
resulting lack of robustness of the statistical methods – e.g. 
[5]. Still, for aerial images taken in a different season under 
completely different lighting this will not suffice.   

1.3 Related work on structural aerial image 
understanding 

The archetype for structural aerial image understanding 
remains the SIGMA system [6]. Another example for such 
systems which were quite popular two decades ago was the 
SCHEMA system [7]. One reason why these kind of 
systems are not so popular anymore may be the lack of 
possibility for objective evaluation – such as is given by 
tests with benchmark data as outlined in Section 1.2. Still, 
our own work stands in continuation of these classics. In 
Section 2 we give a production system and a corresponding 
interpreter and control structure. We have used such 
systems e.g. for fusion of evidence from different sensors in 
a structural and knowledge-based manner [8]. And we hope 
that the work published here may help mitigating the 
evaluation problem.  

The issue of incorporating knowledge about the standard 
infrastructure in the region where the task is to be 
performed into the recognition system is treated e.g. in [9]. 
There the AI-system ALFIE was proposed in which the 
feature extraction methods are chosen and parameterized 
according to the geographical context emphasizing that this 
is non-trivial and important. Road extraction was the major 
application - in contrast to our landmark recognition, and 
satellite images where the main data source in contrast to 
aerial images in our work. Still, our argument is along the 
same lines. 

2 Structural landmark recognition  
The idea here is utilization of known constructive features 
and patterns of salient man-made objects. Instead of relying 
on learning data the system uses knowledge sources such as 
handbooks on infrastructure construction, thesauri, or even 

Wikipedia. The hope is of course that the performance of 
such systems will not depend on whether the learning data 
are representative but on the quality of the utilized 
knowledge and its correct and suitable representation – 
which can be improved almost arbitrarily by diligent labor.       

2.1 An example object and its representation 
Let us take a look at the example of a simple bridge 
crossing a German standard Autobahn. Every few 
kilometers there is a road or railway crossing along such an 
autobahn. And - in Germany - the autobahn-net is dense 
enough that such a bridge is not far away from any point in 
country. It is known that autobahns have a standardized 
lane width of 3.3 meters. Most common design is triple lane 
or dual lane with and additional margin called “Standspur”.  
For the upper part of the bridge we have larger variation. 
But all in all we can summarize the knowledge of such an 
object in the following statements: 

A bridge is an object consisting of two parts: A road_stripe 
and a highway where the upper part is occluding the lower 
part when viewed from above. The road_stripe is made of 
different material than its surroundings such that very often 
it causes a straight long contour on both margins in aerial 
images. Simplified, we may state that a road_stripe causes 
two parallel long_line structures in the image. We do not 
know whether the road will be brighter or darker than the 
background – in fact the direction of contrast may flip 
anywhere, e.g. due to surface renewal. But we may state 
that the contours of a road are in good continuation: A 
long_line is made of a considerable number of contour 
primitive objects line which are aligned and overlapping or 
with minor gaps in continuation.   

 

Figure 1. Knowledge about the anticipated appearance of a 
bridge in an aerial image 

A highway is composed of two parallel highway_stripe 
objects which lie a certain distance apart. These are similar 
to road_stripe objects – only a little wider and with less 
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tolerance in width. In Fig. 1 some of this knowledge is 
presented in a pictorial manner using the same color which 
is applied in the text to the symbols representing the entities 
of this discourse. Fig. 1.a) depicts a possible mutual 
geometric positioning of the non-primitive objects. In Fig. 
1.b) a suitable set of primitives is given supporting this 
layout. Arbitrary other primitive and non- primitive objects 
in the picture would be regarded as clutter.  

The presented declarative knowledge about such a 
landmark connects the concept “bridge over an Autobahn” 
with measurements that can be easily obtained from an 
image by using a gradient filter and a threshold (as they are 
provided by most image processing tool boxes). Here we 
sketched this knowledge informally. Errors and 
misunderstanding can of course be avoided when AI-
formalisms or other well defined structures are utilized – 
such as UML. But in principle no example images are 
needed. While advancing to a more precise formulation of 
the knowledge the parameters inherent in the geometric 
constraints have to be fixed. Most of these can be set from 
available sources – such as the set value and tolerance for 
widths of the objects and angle tolerances. An overall 
scaling can be estimated from the flight elevation and the 
focal length of the camera. Other tolerances – such as the 
deviation in position and orientation of the primitive line 
objects from the corresponding non-primitive long_line 
object can be obtained from the properties of the image 
filter used for the object orientation. For the setting of these 
parameters some representative image data are actually 
helpful, in particular to estimate the noise in homogenous 
regions and distribution of gradient magnitudes at road 
margins. With no image material at all one may still take 
the default values recommended in the image processing 
software manual. 

2.2 The production system formalism 
In order to utilize a piece of declarative knowledge – such 
as developed in Section 2.1 – in a machine it has to be 
coded accordingly. A convenient way is given by 
production systems. The example gains the following form: 

−⎯⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯⎯→

⎯⎯⎯⎯→

intersect

mid-line

mid-line

mid-line

,

,

,

_ _

_

,

_

_

T shaped

parallel

parallel

parallel

highway stripe highway str

road stripe

road strip

highwa

long

y

high ipe

highway stri line longline

lo

wa

nge l

bridge

ine

pe

y

lon
∧⎯⎯⎯⎯⎯⎯→regression ,...,colinear overlapp

gline

longline line line
 Figure 2. Example production system, the colours of the 

symbols are also used in other figures and in the text   

As usual for context free systems there is always only one 
non-terminal symbol on the left-hand side of the 
productions. According to the right-hand side we 
distinguish two normal forms: 1) An ordered pair of the 

same or different symbols (such as numbers 1 to 4); 2) a set 
from instances of the same symbols. These two forms are 
treated differently when parsing an image as indicated 
below in Section 2.3. In contrast to string rewriting 
grammars this formalism works on sets of objects that have 
geometric attributes (such as locations and orientations in 
the image). An elaborated theory for such structures can be 
found in [10]. In our notation the constraints (that replace 
the concatenation used in string grammars) are written 
above the production arrow. Such constraint-set-grammars 
also need the definition of a function constructing the 
attributes of the left-hand side for each production (here 
written below the arrow).  Syntactically, the system can be 
used left to right. Then it defines a language – the set of all 
images that contain such a bridge. Using a random 
generator it can be utilized as computer graphics tool to 
construct example images. This direction is called the 
generative direction. The other direction – right to left – is 
called the reducing direction. This direction is parsing 
given input images for the presence of such objects. Due to 
the combinatorial nature of the definitions sound and 
complete parsing may be infeasible. We will give 
approximate solutions in the next section.  

2.3 Approximate any-time parsing 
In order to utilize a piece of declarative knowledge – such 
as developed above instances of the most primitive object 
type have to be extracted (i.e. segmented) from the image. 
Figure 3 shows the pseudo-code of the hypotheses driven 
parser that is used. Basically, every object instance 
new_elem causes the construction of a hypothesis – first it 
is a nil hypothesis. The administration of the hypotheses in 
the queue is the main process. Several of these may be 
processed in parallel threads (in the example in Section 2.4 
64 parallel hypotheses were processed). If they are nil-
hypotheses they will be cloned according to the right-hand 
side of the productions. For instance in the system given in 
Section 2.2 a nil-hypothesis corresponding to a long_line 
object will be cloned twice once as hypothesis for a 
road_stripe object and once as hypothesis for a 
highway_stripe object. Else, if they have a production 
associated they will trigger a query for corresponding 
partners that fulfill the constraint. It is evident from the 
pseudo-code that for productions of the normal form 1) a 
combinatorial search is performed. A nested for loop will 
often cause the construction of multiple new object 
instances. For this particular system a polynomial 
complexity of sixth order can be predicted in the number of 
long_line objects. Other such systems that contain recursive 
loops (i.e. real syntactic structure) in their normal form 1) 
productions are of exponential complexity. Thus a sound 
parser is not robust and feasible for such systems. It is hard 
to predict the computational effort for a complete search – 
it may be critically dependent on the input data and the 
thresholds. There are two ways to mitigate this 
disadvantage: First one may abstain from complete search. 
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Instead, the hypotheses are occasionally sorted according to 
priorities. These may result from the quality of the 
corresponding objects (bottom up); or they may result from 
the importance of the production and from a focus of 
interest set by the current search situation (top down). 
Different top-down strategies for systems of this sort have 
been compared e.g. in [11]. In the example run documented 
in Section 2.4 such control strategies are used. Of course an 
incomplete search will only give an approximate parse. But 
the search can thus gain any-time capability. 

 Figure 3. hypotheses driven control loop 

Second one the normal form 2) for productions is 
introduced as a shortcut for clustering sub-systems [12]. In 
the example system the fifth production replaces a 
subsystem containing long_line→line,line and 
long_line→long_line,line. As can be seen in the pseudo-code 
in the lower internal else branch, such shortcut productions 
of normal 2) are not treated in the sound combinatorial way. 
Not all possible sub-sets fulfilling the constraint are 
enumerated. Only the maximal set fulfilling the constraint 
is chosen. Of course this is also an approximate solution. 

   

Figure 4. Results on one example image  
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2.4 One example run 
In Figure 4 a result is displayed that has been achieved 
using the production system given in Section 2.2 with the 
control indicated in Section 2.3. Break criterion was here at 
least ten instances of the object bridge found or the 
exceedance 60 seconds of overall search time. A rather 
typical image of a German autobahn with a bridge and a 
village nearby was used. The feature extraction – a squared 
averaged gradient filter with threshold on the ratio of the 
two eigenvalues – is run on scaled versions of 2562, 1282, 
and 642 pixels respectively, resulting in 14837 line object 
instances which are displayed in the lower part of Figure 4. 
Actually in this run 52 bridge instances were reduced in 
approximately 4 seconds calculation time on our server 
(which is a machine operating 8 CPUs at 3GHz, and we are 
picking always the 64 best hypotheses from the queue 
running the system also in 64 threads). Between these root 
objects and the primitives we have 66 road_stripe, 64 
highway_stripe, 20 highway, and 292 long_line object 
instances. The latter are displayed in the center of Figure 4. 

The resulting landmark locations displayed in the upper 
part of Figure 4 cluster roughly around the correct position. 
However, there is a bias to the North. This is a frequent –
and foreseeable - displacement when operating the system 
in bright sunlight at noon on the northern hemisphere: The 
shadow of the bridge will often be mistaken for the object 
itself. Still the center of gravity of the 52 bridge instances is 
located 38m West and 16m South of the image center 
which is a good correction – such that the next image at the 
next landmark will also actually contain this landmark 
object and the flight simulation will not go astray.   

3 The test bed 
A structural recognition system – such as the one presented 
in Section 2 leaves a lot of room for improvement and 
tuning. Also, though being constructible without example 
data, it can only be evaluated using representative image 
data. And moreover, input data are needed to debug the 
system. Thus it is a non-trivial task to assess the value of 
such systems for automatic landmark-based aerial 
navigation. We see three possible approaches for this: 

1) One way to provide suitable data would be to equip an 
unmanned aerial vehicle with a camera and feed the 
incoming images to the system. The decisions and 
measurements of the system would then in turn be used as 
input to the flight control system of the platform. This 
would be the test closest to the application meant – the gold 
standard. However, next to many technical problems and 
high costs – in particular in the case of recognition failures 
which may of course lead to the loss of the platform – it 
also poses severe judicial problems: The use of autonomous 
aerial platforms is very restricted in civilized areas and who 
should be liable in case major damage is caused?   

2) Therefore most often the data were acquired in a 
different way: Aerial images of interesting landmarks 
where taken in measurement campaigns or bought from 
commercial providers. With a sufficiently large set of such 
images the system could be debugged, tuned, and assessed. 
It was possible to compile statistics from which a success 
rate and a mean square error could be estimated. However, 
this requires discipline from the developers: In order to be 
significant, the data should be separated into a learning set 
used for debugging and tuning and a test set used for 
assessment. The developers should not consult the test set 
during the learning phase, and nothing should be changed 
anymore in the assessment phase. Best way to guarantee 
this is to take the test pictures after the system has been 
fixed and let the assessment be done by another working 
group. Also the test pictures should not be taken from the 
same region, or in the same season and daytime etc. 
Moreover, this assessment evaluates only an isolated 
component of the landmark navigation control cycle. In the 
control loop the position from which the n+1th picture is 
taken is dependent on the result of the recognition and 
measurement in the nth picture. After all recognition rate 
and precision of the recognition system are not the desired 
estimation parameters. Instead, the probability of going 
astray has to be estimated – in particular in a fusion setting, 
where the navigation is not only landmark based but also 
includes an inertial system and maybe other means. 
Inferring such probability from the recognition rate and 
precision may not be easy and error prone. 

 

Figure 5. Schema of the test bed  

3) A compromise today is to use one of the publicly 
available geo systems such as Google Earth or MS Live 
Search as camera simulator. This approach is sketched in 
Figure 5. Next to the geo system and the landmark 
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recognizer a third system is required. We call it the 
navigation simulator. It simulates the flight and the other 
navigation systems that are fused with the landmark 
recognition. It uses a random generator. The main 
advantage of this approach is – it closes the control loop 
while avoiding the costs and risks of a real flight.         

In Figure 5 four interfaces are indicated by numbers: 1) the 
navigation simulator gives a specification to the geo system 
that is sufficient to acquire an image. This is essentially a 
geo location (in North and East as angles in degree Minutes 
and seconds). These data may be augmented by an altitude 
or orientation angles in yaw, pitch, and roll respectively. 2) 
The geo system gives an image to the landmark recognizer. 
This may be augmented by auxiliary annotations, e.g. the 
focal length or height above ground or scale of pixel to 
meter, the principle point of the camera etc. 3) The 
landmark recognizer gives a position measurement to the 
navigation simulator. There may be an additional 
assessment about the reliability, certainty, or probability of 
this measurement and also an estimation of its error (a 
variance). This interface closes the loop such that the 
system can run automatically without interference of a user 
or developer. The evaluation measure then is simply 
whether and how often the system has lost its path. 4) A 
user has to specify the landmark path in a format accessible 
by the navigation simulator (say e.g. XML based KML 
files). If the user is identical with the developer he should 
only see the map layer of the geo system, but not the 
images – otherwise he/she would be tempted to pick 
landmarks that suit the system particularly well seeing 
images very similar to the ones that will be used in the loop. 
This would bias the performance assessment.  

In our current implementation the navigation simulator sets 
the new actual position xn from the old xn-1 basically by 
adding the difference of the setpoints dn.  

1 ( )n n n n nx x d d cβ ε−= + + + −  

The correction cn comes through interface 3). For 
simplicity these are currently all just planar vectors in 
meters. This formular models a Gaussian drift in two 
quantities: A standard deviation ε (currently set by default 
to 0.3%) and a bias β (currently set by default to 0.1% to 
the East). Thus after a flight distance of 10km the expected 
position of the landmark is 10m west and it the expected 
deviation from that is 30m. Thus, without correction, a 
flight will get lost after about a hundred km. We have made 
several test runs over German autobahns each using a 
dozen landmarks or so. For these experiments the 
recognition outcome is mostly like that indicated in Section 
2.4: The landmarks found cluster densely round the correct 
position with a slight bias to the North. Each such outcome 
gives a proper correction in particular regulating against the 
bias. Occasionally, two or more clusters of landmarks are 
found. Most often the correct one is the one with more and 

better objects – giving the same correcting result. Two 
kinds of errors also occur now and then (each with roughly 
5% frequency or so):  

1) No landmark is found within the time bound of 60 
seconds. This happens often due to missing contrast. The 
modeled contours do not appear. This is a minor problem 
because in these cases the navigation simulator just 
continues with the prior estimation (landmark precisely in 
the middle of the image). Even if this would happen 
successively three times (which never occurred) the next 
landmark would probably still be in the image.  

2) The best (or only) landmark cluster is wrong. Such error 
happens when adjacent structure – such as factory buildings 
or other traffic infrastructure – resembles the modeled 
structure. This causes a radical correction. The next 
landmark will be considerable off center. In all these cases 
it was found still – so that the flight can recover from this 
error. Two such errors in a row (and in the same direction) 
would be enough to lead the flight astray. But we never 
observed such behavior up to now. 

4 Discussion 
The presented work has somewhat preliminary character. 
There are many more questions posed than answered. 
Therefore, before concluding this contribution in Section 
4.2 we will outline those directions of future corresponding 
research in this field which promise most benefit for the 
application.    

4.1 Future work 
The theory of productions systems as presented in Section 2 
is not at all complete. E.g. Section 2.3 treats approximate 
correct parsing. Classically, a parse is either correct or not. 
“Approximation” here, first of all, requires a metric on 
partial parses, and then mathematical results are needed on 
the convergence of the algorithm to the correct complete 
parse according to this metric – and bounds on the residual 
incorrectness or risk of incorrectness respectively. The 
setting of the thresholds in the constraint part of the 
productions should be based on a normal distributed error 
model and a uniformly distributed clutter model – similar to 
the model introduced in [13]. At least the background 
clutter model should be learned and updated from 
intermediate images taken between the landmarks. Also, of 
course, many other salient landmark objects should be 
expressed as production systems – compiling a considerable 
catalog of objects.  

We are aware that the flight simulator is also fairly crude 
yet. The error model should be replaced by one realistically 
modeling an inertial system. And Bayesian inference should 
replace the current simple acceptation of the best landmark 
position cluster. A Kalman filter should be included for the 
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simulation of the fusion of data from different simulated 
sources. The system has the setpoints, corrections, and 
actual points for each flight experiment and all example 
pictures. Not only counting the recognition rates is 
permitted but also estimating the quantitative deviation 
error for correct recognition cases. And this is possible for a 
real test set previously unknown to the developer – a rare 
and most favorable situation in pattern recognition! First 
results on the recognition rates and calculation times 
dependent on different control rationales will soon be 
published [14]. 

4.2 Conclusion 
Previous application of structural landmark recognition was 
part of an automatic target recognition system for missiles 
and UCAVs (unmanned combat air vehicles) [15]. Fusing 
data from a FLIR sensor and a real aperture radar (RAR) 
man-made structures like bridges were localized. Image 
sequences were taken by time-consuming and expensive 
measurement campaigns. Hence evaluation results were 
based on only a small set of different scenarios. On the 
other hand, the proposed GOOGLE-Earth based test bed 
offers the possibility of systematic evaluation of landmark 
recognition for UAV navigation independent from complex 
sensor data gathering. First experiments with the geo 
system in the simulated control loop indicate promising 
perspectives for the development and assessment of such 
knowledge based recognition systems. We conclude that 
the development of visual landmark-based navigation 
systems for UAVs – and in particular knowledge based 
such approaches – can benefit a lot from the utilization of 
such popular current Geo-systems. This certainly deserves 
further attention.   
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