
Faster Radix Sort via Virtual Memory and Write-Combining

Jan Wassenberg
Fraunhofer IOSB

jan.wassenberg@iosb.fraunhofer.de

Peter Sanders
KIT

September 6, 2010

Abstract

Sorting algorithms are the deciding factor for the per-
formance of common operations such as removal of
duplicates or database sort-merge joins. This work
focuses on 32-bit integer keys, optionally paired with
a 32-bit value. We present a fast radix sorting al-
gorithm that builds upon a microarchitecture-aware
variant of counting sort. Taking advantage of virtual
memory and making use of write-combining yields a
per-pass throughput corresponding to at least 88 %
of the system’s peak memory bandwidth. Our im-
plementation outperforms Intel’s recently published
radix sort by a factor of 1.5. It also compares
favorably to the reported performance of an al-
gorithm for Fermi GPUs when data-transfer over-
head is included. These results indicate that scalar,
bandwidth-sensitive sorting algorithms remain com-
petitive on current architectures. Various other
memory-intensive applications can benefit from the
techniques described herein.

1 Introduction

Sorting is a fundamental operation that is a time-
critical component of various applications such as
databases and search engines. The well-known lower
bound of Ω(n·log n) for comparison-based algorithms
no longer applies when special properties of the keys
can be assumed. In this work, we focus on 32-bit
integer keys, optionally paired with a 32-bit value
(though larger sizes are possible). This simplifies
the implementation without loss of generality, since

applications can often replace large records with a
pointer or index [1]. The radix sort algorithm is com-
monly used in such cases due to its O(N) complex-
ity. In this preliminary report, we show a 1.5-fold
performance increase over results recently published
by Intel [2].

The remaining sections are organized in a bottom-
up fashion, with Section 2 dedicated to the basic real-
ities of current and future microarchitectures that af-
fect memory-intensive programs and motivate our ap-
proach. We build upon this foundation in Section 3,
showing how to speed up counting sort by taking
advantage of virtual memory and write-combining.
Section 4 applies this technique towards our main
contribution, a novel variant of radix sort. The per-
formance of our implementation is evaluated in Sec-
tion 5. Bandwidth measurements indicate the per-
pass throughput is nearly optimal for the given hard-
ware. Its two CPUs outperform a Fermi GPU when
accounting for data-transfer overhead.

2 Software Write-Combining

We begin with a description of basic microarchitec-
tural realities that are likely to have a serious impact
on applications with numerous memory accesses, and
show how to avoid performance penalties by means
of Software Write-Combining. These topics are not
new, but we believe they are often not adequately
addressed.

The first problem arises when writing items to mul-
tiple streams. An ideal cache with at least as many

1

lines could exploit the writes’ spatial locality and en-
tirely avoid noncompulsory misses. However, perfect
hit rates are not achievable in practice due to lim-
ited ways of associativity a [3]. Since only a lines
can be mapped to a cache set, any further alloca-
tions from that set result in the eviction of one of the
previous lines. If possible, applications should avoid
writing to many different streams. Otherwise, the
various write positions should map to different sets
to avoid thrashing and conflict misses. For current L1
caches with a = 8 ways, size C = 32 KiB and lines of
B = 64 bytes, there are S = C

a·B = 64 sets, and bits
[lgB, lgB + lgS) of the destination addresses should
differ (e.g. by ensuring the write positions are not a
multiple of S ·B = 4 KiB apart).

A second issue is provoked by a large number of
write-only accesses. Even if an entire cache line is
to be written, the previous destination memory must
first be read into the cache. While the correspond-
ing latency may be partially hidden via prefetching,
the cache line allocations remain problematic due to
capacity constraints and eviction policy. Instead of
displacing write-only lines that are not accessed after
having been filled, the widespread (pseudo-)Least-
Recently-Used strategy displaces previously cached
data due to their older timestamp. An attempt to
avoid these evictions by explicitly invalidating cache
lines (e.g. with the IA-32 CLFLUSH instruction) did
not yield meaningful improvements. Instead, appli-
cations should avoid ‘cache pollution’ by writing di-
rectly to memory via non-temporal streaming stores.

This leads directly to the next concern: single
memory accesses involve significant bus overhead.
The architecture therefore combines neighboring non-
temporal writes into a single burst transfer. How-
ever, currently microarchitectures only provide four
to ten write-combine (WC) buffers [4]. Non-temporal
writes to multiple streams may force these buffers to
be flushed to memory via ‘partial writes’ before they
are full. The application can prevent this by making
use of Software Write-Combining [5]. The data to be
written is first placed into temporary buffers, which
almost certainly reside in the cache because they are
frequently accessed. When full, a buffer is copied to
the actual destination via consecutive non-temporal
writes, which are guaranteed to be combined into a

single burst transfer.
This scheme avoids reading the destination mem-

ory, which may incur relatively expensive Read-For-
Ownership transactions and would only pollute the
cache. It works around the limited number of WC
buffers by using L1 cache lines for that purpose. In-
terestingly, this is tantamount to direct software con-
trol of the transparently managed cache.

We recommend the use of such Software Write-
Combining whenever a core’s active write destina-
tions outnumber its write-combine buffers. Fortu-
nately, this can be done at a fairly high level, since
only the buffer copying requires special vector loads
and non-temporal stores (which are best expressed by
the SSE2 intrinsics built into the major compilers).

3 Virtual-Memory Counting
Sort

We now review Counting Sort and describe an im-
proved variant that makes use of virtual memory and
write-combining.

The näıve algorithm first generates a histogram of
the N keys. After computing the prefix sum to yield
the starting output location for each key, each value
is written at its key’s output position, which is sub-
sequently incremented.

Our first optimization goal is to avoid the initial
counting pass. We could instead insert each value
into a per-key container, e.g. a list of buckets. How-
ever, this incurs some overhead for checking whether
the current bucket is full. A large array of M pre-
allocated buckets is more efficient, because items can
simply be written to the next free position (c.f. Al-
gorithm 1, introduced in [6]). This algorithm only

Algorithm 1: Single-pass counting sort

storage := ReserveAddressSpace(N ·M);
for i := 0 to M do next [i] := i ·N ;
foreach key,value do

storage [next [key]] := value;
next [key] := next [key] + 1;

writes and reads each item once, a feat that comes at

2

the price of N ·M space. While this appears prob-
lematic in the Random-Access-Machine model, it is
easily handled by 64-bit CPUs with paged virtual
memory. Physical memory is only mapped to pages
when they are first accessed,1 thus reducing the ac-
tual memory requirements to O(N + M · pageSize).
The remainder of the initial allocation only occupies
address space, of which multiple terabytes are avail-
able on 64-bit systems.

Having avoided the initial counting pass, we now
show how to efficiently write values to storage us-
ing the write-combining technique described in Sec-
tion 2. Our implementation initializes the next point-
ers to consecutive, naturally aligned, cache-line-sized
buffers. A buffer is full when its (post-incremented)
position is evenly divisible by its size. When that
happens, an unrolled loop of non-temporal writes
copies the buffer to its key’s current output position
within storage. These output positions are also stored
in an array of pointers.

4 Radix Sort

After a brief review of radix sorting, we introduce a
new variant based on the virtual-memory counting
sort described in Section 3.

A radix sort successively examines D-bit ‘digits’ of
the K-bit keys. They are characterized by the or-
der in which digits are processed: starting at the
Least Significant Digit (LSD), or Most Significant
Digit (MSD).

An MSD radix sort partitions the items accord-
ing to the current digit, then recursively sorts the
resulting buckets. While it no longer needs to move
items whose previously seen key digits are unique,
this is not especially helpful when the number of
passes K/D is small. In fact, the overhead of man-
aging numerous (nearly empty) buckets makes MSD
radix sort less suited for relatively small N .

By contrast, each iteration of the LSD variant par-

1Accesses to non-present pages result in a page fault excep-
tion. The application receives such events via signals (POSIX)
or Vectored Exception Handling (Microsoft Windows) and re-
acts by committing memory, after which the faulting instruc-
tion is repeated.

Algorithm 2: Parallel Radix Sort

parallel foreach item do
d := Digit(item, 3);
buckets3 [d] := buckets3 [d] ∪ {item};

Barrier;

foreach i ∈
[
0, 2D

)
do

bucketSizes [i] :=
∑

PE |buckets3 [i]|;
outputIndices := PrefixSum(bucketSizes);
parallel foreach bucket3 ∈ buckets3 do

foreach item ∈ bucket3 ∀PE do
d := Digit(item, 0);
buckets0 [d] := buckets0 [d] ∪ {item};

foreach bucket0 ∈ buckets0 do
foreach item ∈ bucket0 do

d := Digit(item, 1);
buckets1 [d] := buckets1 [d] ∪ {item};
d := Digit(item, 2);
histogram2 [d] := histogram2 [d] + 1;

foreach bucket1 ∈ buckets1 do
foreach item ∈ bucket1 do

d := Digit(item, 2);
i := outputIndices [d] + histogram2 [d];
histogram2 [d] := histogram2 [d] + 1;
output [i] := item;

titions all items into buckets by the current key digit.
Since buckets are not recursively split, their sizes
are nearly equal (under the assumption of a uniform
key distribution) and the sort is stable (preserving
the original relative order of values with equal keys).
However, this comes at the cost of more copying.

To reduce this overhead and also parallel communi-
cation, we make use of “reverse sorting” [7], in which
one or more MSD passes partition the data into buck-
ets, which are then locally sorted via LSD. This turns
out to be even more advantageous for Non-Uniform
Memory Access (NUMA) systems because each pro-
cessor is responsible for writing a contiguous range of
outputs, thus ensuring the OS allocates those pages
from the processor’s NUMA node [8].

Let us now examine the pseudocode of the radix
sort (Algorithm 2), choosing K = 32 for brevity and
D = 8 to allow extracting key digits without mask-
ing. Each Processing Element (PE) first uses count-

3

ing sort to partition its items into local buckets by the
MSD (digit = 3). Note that items consist of a key and
value, which are adjacent in memory (ideally within a
native 64-bit word, but larger combinations are pos-
sible in our implementation via larger user-defined
types). After all are finished, the output index of
the first item of a given MSD is computed via prefix
sum. Each PE is assigned a range of MSD values,
sorting the buckets from all PEs for each value. Note
that skewed MSD distributions cause load imbalance,
which can be resolved by one or more additional re-
cursive MSD passes (left for future work). The local
sort entails K/D − 1 iterations in LSD order. The
first copies the other PE’s buckets into local mem-
ory. Pass K/D − 1 also computes the histogram of
the final digit. This allows writing directly to the
output positions in the final pass. Note that three
sets of buckets are required, which makes heavy use
of virtual memory (3·2D ·|PE| = 6144 times the input
size). While 64-bit Linux grants each process 128 TiB
address space, Windows limits this to 8 TiB, which
means only about 1 GiB of inputs can be sorted. This
restriction can be lifted when the key distribution is
known and each bucket does not need to pre-allocate
storage for all N items.

We briefly discuss additional system-specific con-
siderations. The radix 2D was motivated by easy
access to each digit, but is also limited by the cache
and TLB size. Because of the many required TLB
entries, we map the buckets with small pages, for
which the Intel i7 microarchitecture has 512 second-
level TLB entries. To increase TLB coverage, we use
large pages for the inputs. The working set consists of
2D buffers, buffer pointers, output positions, and 32-
bit histogram counters. This fits in a 32 KiB L1 data
cache if the software write-combine buffers are limited
to a single 64-byte cache line. To avoid associativity
and aliasing conflicts, these arrays are contiguous in
memory. Interestingly, these optimizations do not de-
tract from the readability of the source code. Knowl-
edge of the microarchitecture can also be applied to-
wards middle-level languages and enables principled
design decisions.

5 Performance Evaluation

We characterize the performance of our sorting
implementation by its throughput, defined as N

t1−t0
,

where N = 64 Mi and t0 and t1 are the earliest and
latest start and finish times reported by any thread.
The test platform consists of dual W5580 CPUs
(3.2 GHz, 48 GiB DDR3-1066 memory) running
Windows XP x64. Our implementation is compiled
with ICC 11.1.082 /Ox /Og /Oi /Ot /Qipo /GA /EHsc

/MD /GS- /fp:fast=2 /GR- /Qopenmp /QaxSSE4.2

/Quse-intel-optimized-headers. For uniformly
distributed 32-bit keys generated by the WELL512
algorithm [9] and no associated values, the basic
algorithm (‘VM only’) reaches a throughput of
334 M/s, as shown in the second column of Table 1.
When write-combining is enabled (‘VM+WC’),
performance nearly doubles to 621 M/s.

Intel has reported 240 M/s for the same task and
a single but identical CPU [2]. For a fair com-
parison with our dual-CPU system, we double the
given throughput, which assumes their algorithm is
NUMA-aware, scales perfectly and is not running at
a lower memory clock (since DDR3-1066 is at the
lower end of currently available frequencies). We
must also divide by the given speedup of 1.2 due to
hyperthreads, since those are disabled on our ma-
chine. This (‘Intel x2’) yields 400 M/s; the proposed
algorithm is therefore more than 1.5 times as fast.

A separate publication has also presented results
[10] for the Many Integrated Cores architecture. The
Knights Ferry processor provides 32 cores, each with
4 threads and 16-wide SIMD. The simulation (‘KNF
MIC’) shows a throughput of 560 M/s. Our scalar
implementation is currently 1.1 times as fast when
running on 8 cores.

Recently, a throughput of 1005 M/s was reported
on a GTX 480 (Fermi) GPU [11]. However, this ex-
cludes driver and data-transfer overhead. For ap-
plications in which the data is generated and con-
sumed by the CPU, we must include at least the
time required to read and write data over the PCIe
2.0 bus. Assuming the peak per-direction band-
width of 8 GB/s is reached, the aggregate through-
put (‘GPU+PCIe’) is 501 M/s. Our implementation,
running on two CPUs, therefore outperforms this al-

4

gorithm on the current top-of-the-line GPU by a fac-
tor of 1.24 despite lower transistor counts (2 · 731 M
vs. 3000 M) and thermal design power (2 · 130 W vs.
275..300 W).

Algorithm K=32,V=0 K=32, V=32

VM only 334 203
Intel x2 400 307
GPU+PCIe 501 303
KNF MIC 560 (unknown)
VM+WC 621 430

Table 1: Throughputs [million items per second] for
32-bit keys and optional 32-bit values.

Similar measurements and extrapolations for the
case of 32-bit keys associated with V = 32-bit values
are given in the third column of Table 1. Since the
slowdown is less than a factor of two, the implemen-
tations are at least partially limited by computation
and not bandwidth. Intel’s algorithm is more effi-
cient in this regard, with only a 1.3-fold decrease vs.
our factor of 1.4. The additional data transfers over
PCIe render the GPU algorithm uncompetitive.

To better characterize performance, we measured
the exact traffic at each socket’s memory controller.
Since this information is not available from current
profilers such as VTune (which use per-core perfor-
mance counters), we have developed a small kernel-
mode driver to provide access to the model-specific
performance counters in the Intel i7 uncore2. Un-
cached writes constitute the bulk of the write com-
biners’ memory traffic and are therefore of particular
interest. They are apparently reported as Invalid-To-
Exclusive transitions and can thus be counted as the
total number of reads minus ‘normal’ reads [12]. We
find that 2041 MiB are written, which corresponds
to 64 Mi items · 8 bytes per item · 4 passes (slightly
less because our final pass cannot use non-temporal
writes when the output position is not aligned). Sur-
prisingly, 2272 MiB are read. The cause of the ad-
ditional 10 % is unknown and will be investigated in
future work. However, we can provide a conservative

2The part of the socket not associated with a particular
core.

estimate of the bandwidth utilization. Given the pure
read and write bandwidths (38687 MB/s and 28200
MB/s) measured by RightMark [13], the minimum
time required to read and write the items’ 2048 MiB
is 132 ms, which is 88 % of the total measured time.
Since this calculation does not include write-to-read
turnaround [14, p. 486], there is even less room for
improvement than indicated.

6 Conclusion

We have introduced improvements to counting sort
and a novel variant of radix sort for integer key/value
pairs. Bandwidth measurements indicate our algo-
rithm’s throughput is within 12 % of the theoreti-
cal optimum for the given hardware. It outperforms
the recently published results of Intel’s radix sort
by a factor of 1.5 and also outpaces a Fermi GPU
when data transfer overhead is included. These re-
sults indicate that scalar, bandwidth-sensitive sort-
ing algorithms still have their place on current ar-
chitectures. We believe the general software write-
combining technique can provide similar speedups for
other memory-intensive applications.

References

[1] P. Bohannon, P. McIlroy, and R. Rastogi. Main-
memory index structures with fixed-size partial
keys. In SIGMOD Conference, pages 163–174,
2001.

[2] N. Satish, C. Kim, J. Chhugani, A. Nguyen,
V. Lee, D. Kim, and P. Dubey. Fast sort on
CPUs and GPUs: a case for bandwidth oblivious
SIMD sort. In A. Elmagarmid and D. Agrawal,
editors, SIGMOD Conference, pages 351–362.
ACM, 2010.

[3] Mehlhorn and Sanders. Scanning multiple se-
quences via cache memory. Algorithmica, 35,
2003.

[4] Intel. Intel Architecture Software Developer
Manual, 2010. System Programming Guide.

5

[5] Intel Corporation. Intel 64 and IA-32 Architec-
tures Optimization Reference Manual, Novem-
ber 2009.

[6] J. Wassenberg, W. Middelmann, and
P. Sanders. An Efficient Parallel Algorithm for
Graph-Based Image Segmentation. http://

algo2.iti.uni-karlsruhe.de/wassenberg/

wassenberg09parallelSegmentation.pdf,
June 2009.

[7] D. Jimenez-Gonzalez, J. Navarro, and
J. Larriba-Pey. Fast parallel in-memory
64-bit sorting. In Proceedings of the 2001
International Conference on Supercomputing
(15th ICS’01), pages 114–122, Sorrento, Napoli,
Italy, June 2001. ACM.

[8] D. an Mey and C. Terboven. Affinity Matters!
OpenMP on Multicore and ccNUMA Architec-
tures. In Parallel Computing: Architectures, Al-
gorithms and Applications, volume 15, February
2008.

[9] F. Panneton, P. L’Ecuyer, and M. Matsumoto.
Improved long-period generators based on lin-
ear recurrences modulo 2. ACM Transactions
on Mathematical Software, 32, 2006.

[10] N. Satish, C. Kim, J. Chhugani, A. Nguyen,
V. Lee, D. Kim, and P. Dubey. Fast sort on
CPUs, GPUs and intel MIC architectures. Tech-
nical report, Intel, 2010.

[11] D. Merrill and A. Grimshaw. Revisiting sort-
ing for GPGPU stream architectures. Technical
Report 3, University of Virginia, February 2010.

[12] D. Levinthal. Performance Analysis Guide for
Intel Core i7 Processor and Intel Xeon 5500 pro-
cessors. Intel.

[13] D. Besedin. RightMark Memory Analyzer.
http://cpu.rightmark.org. Accessed 2009-01-09.

[14] B Jacob S. Ng D. Wang. Memory systems:
cache, DRAM, disk. Morgan Kaufmann, 2007.

6

http://algo2.iti.uni-karlsruhe.de/wassenberg/wassenberg09parallelSegmentation.pdf
http://algo2.iti.uni-karlsruhe.de/wassenberg/wassenberg09parallelSegmentation.pdf
http://algo2.iti.uni-karlsruhe.de/wassenberg/wassenberg09parallelSegmentation.pdf

