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Abstract

This paper presents a method to reconstruct three-
dimensional object motion trajectories in stereo video
sequences. We apply stereo matching to each image pair
of a stereo sequence to compute corresponding binocu-
lar disparities. By combining instance-aware semantic
segmentation techniques and optical flow cues, we track
two-dimensional object shapes on pizel level. This al-
lows us to determine for each frame pair object specific
disparities and corresponding object points. By applying
Structure from Motion (SfM) we compute camera poses
with respect to background structures. We embed the
vehicle trajectories into the environment reconstruction
by combining the object point cloud of each image pair
with corresponding camera poses contained in the back-
ground SfM reconstruction. We show qualitative results
on the KITTI and CityScapes dataset and compare our
method quantitatively with previously published monocu-
lar approaches on synthetic data of vehicles in an urban
environment. We achieve an average trajectory error
of 0.11 meter.

1 Introduction

1.1 Trajectory Reconstruction

The perception of three-dimensional object trajec-
tories is crucial for many application domains, such
as autonomous driving and augmented reality. Stereo
matching [I] is a widely used approach to infer 3D scene
information provided by stereo cameras. Stereo match-
ing exploits rectified stereo image pairs to determine
pixel correspondences along so called scan lines. Using
pixel disparities and stereo camera parameters allows us
to triangulate dense scene points for each frame. Since
stereo matching uses only image information of stereo
image pairs to triangulate object points, this technique
is not able to distinguish between static and dynamic
points in the scene. To tackle this issue our pipeline
leverages recent advances in instance-aware semantic
segmentation to track two-dimensional object shapes
and corresponding disparities on pixel level. This al-
lows us to triangulate object specific points using stereo
matching.

Since our approach uses stereo matching instead Struc-
ture from Motion for object reconstruction the method
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Figure 1: Overview of the Trajectory Reconstruction
Pipeline. Boxes with corners denote computation re-
sults and boxes with rounded corners denote computa-
tion steps.

is not hampered by incorrectly registered camera poses
caused by small object sizes, reflecting surfaces and
changing illumination. In addition, object point clouds
derived by stereo matching show usually higher point
densities than Visual Slam or Structure from Motion
reconstruction results.

We use Structure from Motion to determine camera
poses relative to the environment for each time step.
This allows us to embed the stereo matching based tri-
angulated object points in a common coordinate frame
system and to compute three-dimensional object motion
trajectories.

1.2 Related Work

[B, 4, [5] are three widely used off-the-shelf stereo
matching methods. Recently, [6] and [7] presented
two ConvNet based stereo matching approaches outper-
forming previous state-of-the-art on the Stereo Robust
Vision Challenge [§]. The usage of these methods is lim-
ited, since the corresponding ConvNet models require
input data matching the image ratios used for training
and validation.

The authors in [J] compute stereo matching and class
segmentation jointly using Conditional Random Fields.



Figure 2: Multiple Object Tracking Scheme. The variables have the following meaning. I: image, OF": optical flow,
D: detection, P: Prediction, T: Tracker State, i: image index. Arrows show the relation of computation steps. A
computation step depends on the results connected with incoming arrows. The optical flow color coding used is

defined in [2]. The figure is best viewed in color.

Furthermore, [I0] leverages Markov Random Fields to
perform joint optimization of stereo matching and class-
agnostic object segmentation. In contrast, our method
allows to compute stereo matching results associated
with instance information as well as class labels.
Recently, several works determined object models in-
cluding object shape and pose using stereo matching
based point triangulations. [II] combines 2D object
bounding box detections and 3D stereo depth measure-
ments. Thus, also background structures are considered
as object points. The detections and measurements
are tracked with a 2D-3D Kalman filter to compute
three-dimensional bounding box proposals for each ob-
ject. [12] leverages a deformable vehicle shape prior
to reconstruct 3D pose and shape. [I3] tracks objects
in 3D using [14] and imposes a common shape and a
motion model by combining the information acquired
by multiple frames corresponding to the same track.

1.3 Contribution

The core contributions of this work are as fol-
lows: (1) We present a new pipeline to reconstruct
three-dimensional trajectories of moving objects using
stereo video data. (2) Earlier methods used bounding
box detections to create stereo matching based object
reconstructions. Our approach determines binocular
disparities on pixel level, which avoids the triangulation
of environment points during object reconstruction. (3)
In contrast to previous joint stereo matching and seg-
mentation methods, our approach allows to determine
a class label as well as a corresponding object video
identifier for each triangulated object point. (4) Due
to the lack of suitable real-world benchmark datasets,
we demonstrate the effectiveness of our method using
synthetic data of vehicles in an urban environment.

2 Trajectory Reconstruction

Fig. [1] shows an overview of the proposed object
trajectory reconstruction pipeline. We perform stereo
matching to obtain pixel disparity values for each image
pair of the stereo camera. Following the Multiple Object
Tracking (MOT) approach presented in [I7] we track
objects on pixel level in the images captured by the left
sensor of the stereo camera. We use background images
as input for Structure from Motion [I8] to compute an
environment model and associated stereo camera poses.
For each object we leverage corresponding segmentation
masks to determine object specific disparity values and
to triangulate object points. Embedding the object
points into the environment reconstruction for each
time step allows us to determine the three-dimensional
object motion trajectory.

In the following, ¢ denotes the image index and the time
step, respectively. The used MOT scheme is outlined
in Fig. We leverage the instance-aware semantic
segmentation approach presented in [IIQI} to compute
object detections D; on pixel level in all left images.
The optical flow cues OF; [20] allow us to predict two-
dimensional object shapes into subsequent images. Let
P; denote the corresponding predictions. We associate
the predictions P; and detections D;; to determine
the tracker state T; 41 at time ¢ 4 1.

We use the complement of instance-aware semantic
segmentations [I9] to determine environment images.
Applying SfM [I8] to left and right background images
enables us to compute stereo camera poses. Let R; €
SO(3) and ¢; € R? denote the corresponding camera
rotations and centers, respectively. The usage of the
background images of the right camera for SfM allows to
increase the robustness and removes the scale ambiguity



(a) Left Input Frame.
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Figure 3: Object trajectory reconstruction using three stereo sequences (stuttgartOl-stuttgartO3) included in
the Cityscapes dataset [15] and one stereo sequence (2011_09-26_drive_0013) of the KITTI dataset [16]. Object
segmentations and reconstructions are shown for one of the vehicles visible in the scene. The reconstructed camera
poses are shown in red. The vehicle trajectories are colored in green and blue. The figure is best viewed in color.
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Figure 4: Coordinate frame system of the stereo camera.
¢; and ¢, denote the centers of the left and right camera
and b denotes the corresponding baseline. x and z are
the coordinate axis of the stereo camera system.

of the computed reconstruction results.

Stereo matching [3, 4] based point triangulation ex-
ploits the relative poses of the left and the right sensor
of a stereo camera to determine three-dimensional scene
points. Corresponding matches are determined along so
called scan lines and allow to define pixelwise disparity
functions d;(-) for each time step.

Without loss of generality, we describe the trajectory
reconstruction for a single object. In the following,
(u,v) € P; denotes the set of pixels representing the
current object in image i. Fig. [4] shows the setup of
the stereo camera system and the corresponding coor-
dinate frame systems, i.e. the x axis is pointing to the
right, the y axis downwards and the z axis forward. We
use the disparity-to-depth mapping matrix Q accord-
ing to equation to determine homogeneous points
(Tu, Yu, 2, Wy, p,;) corresponding to the pixel disparity
triplets (u, v, d;(u,v)) of the left image.

Ty 1 0 0 —Cy u
Yo o 0 1 0 —Cy v 1
z — 100 0 f ) di(u,v) (1)
Wa,v,i 0 0 F = 1
Q

Here, (cy,c,) and f denote the principal point and
the focal length in pixels. b is the extent of the
stereo camera baseline in the background SfM coor-
dinate frame system. This ensures, that object points
and camera poses are correctly scaled. Normalizing
(T, Yoy 2, Wy 0i) T yields the actual three-dimensional
object point 0y, ; = (2% Yo Z )T in camera

Woy 0,0 ) W, v,i ) W, v,i

coordinates. We decrease computation time and mem-
ory consumption using only every second object pixel
for triangulation.

We observe that incorrectly estimated disparity values
lead to distant, isolated object points - usually close
to the object boundary. We assume that each object
consists of a single connected component, i.e. each ob-
ject point has neighbor points with similar depth values.
Equation shows the depth error §z of triangulated
points using stereo matching. For more details see [21].

22.6d
b-f

0z = (2)

Here, b, f and dd are the corresponding stereo camera
baseline, focal length and disparity deviation values.
Equation shows a) the estimated depth error 6z
increases quadratic with the corresponding distance z
and b) the estimation of close points is more reliable
than the computation of distant points. Defining a
threshold for disparity variation between adjacent
pixels allows us to compute dynamic depth intervals
of valid object points, which take the corresponding
depth value into account.

For each object pixel (u,v) € P;, we consider a
local [ x [ neighborhood of object points N =
{ou+m,v+n,i | m,n € {_LéL ) \_éJ}A(u+m7v+n) €
P;} around (u,v). Let z,.,,; denote the depth value
corresponding to 0y ;. We consider o,,,; as
outlier, if there is a point Oyimvtni € N with
Zuwi > Rutmootn,i T 5Zu+m,v+n,i~ In this case
Ou+m,vtn,i lies closer to the camera and according to
equation the corresponding depth can be estimated
more reliably.

To compute the full object trajectory we transform
the object point cloud for each time step 4 into world
coordinates with Pj;,=Ci+ RZ-T 1 0j 4.

3 Experiments

We considered [3], 4], 5] for stereo matching of object
points and [23] [I8] 24] to reconstruct environment struc-
tures and corresponding camera poses. Evaluations on
the KITTT and the CityScapes dataset demonstrated
that a) [3] produces frequently vertical disparity arti-
facts, which result in incorrectly triangulated object
points and b) [4] provides a better trade-off between
reconstruction quality and computation time than [3| [5].
Also, we observe that [I8] outperforms [23] 24] w.r.t.
the number of correctly registered cameras.

In our experiments we used the following parameters
for outlier removal: [ = 5 to define the local 5 x 5
neighborhood areas and dd = 5 pixels to constrain the
valid triangulation depth. For instance, this results in a
depth range of 6Z = 0.6 and §Z = 1.3 meter using the
parameters of the KITTI dataset and a triangulation
depth of Z = 10 and Z = 15 meter, respectively.

Fig. 3] shows a qualitative evaluation of the proposed
3D object trajectory reconstruction approach on se-
quences of the CityScapes and the KITTI dataset. The
Cityscapes and the KITTI dataset are captured with
a stereo camera baseline of 0.22 m and 0.54 m, respec-
tively. According to the Fresnel equations, reflections
at surfaces increase while the viewing angle between
camera and surface decreases. This effect cause huge
sets of incorrect disparity values in specific images, for
instance, when vehicles are overtaking.

Due to the lack of suitable real-world benchmark
datasets, we used the synthetic vehicle trajectory
dataset presented in [22] to quantitatively evaluate the
proposed pipeline. The dataset contains 35 sequences



(a) Reconstructed vehicle trajectory in the coordinate frame (b) Registered vehicle trajectory at selected frames with corre-

system of the virtual environment. sponding ground truth vehicle models.

Figure 5: Registration of the reconstructed vehicle trajectory (green) for quantitative evaluation.
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Figure 6: Quantitative evaluation of the proposed method using the dataset presented in [22]. The dataset contains
seven different vehicle trajectories (Right Curves, Left Curves, Crossing ...) and five different vehicle models (Lancer,
Lincoln Navigator, . ..). The figure shows the trajectory error in meter, which is the average trajectory-point-mesh
distance, i.e. the shortest distance of each object point to the vehicle mesh at the corresponding time step. The
trajectory error is affected by background camera poses registration errors and incorrect vehicle point triangulations.

The intervals shows the standard deviations of the trajectory error.

Average Trajectory Error (meter)

Method | Lancer Lincoln Smart Van  Golf
Ours 0.06 0.06 0.07 0.10 0.27
m 0.11 0.09 0.14 0.21  0.30
[22] 0.20 0.23 0.33 0.33 0.47

Table 1: Trajectory error per vehicle of the benchmark
dataset presented in [22]. Our approach achieves an av-
erage trajectory error of 0.11 m considering all sequences
and outperforms the method presented in [22] [26].

of 5 different vehicles using a stereo camera baseline of
0.3 meter. The provided ground truth vehicle meshes
allow to assess the trajectory at each frame of the se-
quence. We register the reconstructed object trajectory
with the virtual environment by estimating a similarity
transformation [25] between the reconstructed and the
ground truth camera poses. Fig. |5|shows an example
of a registered trajectory. For evaluation we use the
trajectory error defined in [22], which is the shortest
distance of each object point to the ground truth vehicle
mesh of the corresponding time step. We achieve an
average error of 0.11 meter and outperform the monoc-
ular methods presented in [22] 26]. Fig. [6] and table

show the corresponding results. Note that, [22] [26]
apply SfM to the left images of the stereo camera to
compute an object reconstruction, which shows a lower
point density than the object point cloud obtained by
stereo matching. We observe that the trajectory error
of one vehicle is systematically worse than the average.
A reason for this is that the Van vehicle model shows
predominantly homogeneous surfaces, which hampers
the stereo matching reconstruction quality. Our process-
ing chain is not runtime-optimized and does currently
not allow to process sequences in real time.

4 Conclusion

We presented a method to reconstruct three-
dimensional object trajectories in stereo video data.
Leveraging instance-aware semantic segmentation and
optical flow techniques for Multiple Object Tracking
allows us to determine object specific disparity values
on pixel level. This avoids the triangulation of back-
ground structures while reconstructing object shapes
using stereo matching. We evaluated our algorithm
qualitatively on the KITTI and the Cityscapes dataset
and outperformed previously published monocular tra-
jectory reconstruction approaches on synthetic data of
vehicles in an urban environment. In future work, we



intend to tackle the problem of invalid stereo matches
caused by strong surface reflections.
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