Ermittlung der Sonnenschutzwirkung der Fassade

Tilmann Kuhn

Fraunhofer-Institut für Solare Energiesysteme, Freiburg

Inhalt des Vortrags

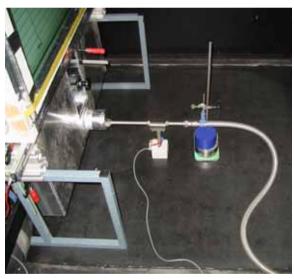
- Einführung
- Grundlagen
- Methodik für die Analyse des thermischen Komforts und Grundsätzliche Unterschiede im Systemverhalten

Die Methode hat sich in der Praxis bewährt

Beispiel: Gallileo, Frankfurt (Main), Germany

Auftraggeber

- GVP (Dresdner Bank) und
- Bug AluTechnic



Die Methodik hat sich in der Praxis bewährt

Beispiel: Messeturm, Basel

g = 0.06 (geschlossene Lamellen)

g = 0.10 (Lamellen 40° aus der Horizontalen gekippt)

020604_TK

Auftraggeber:

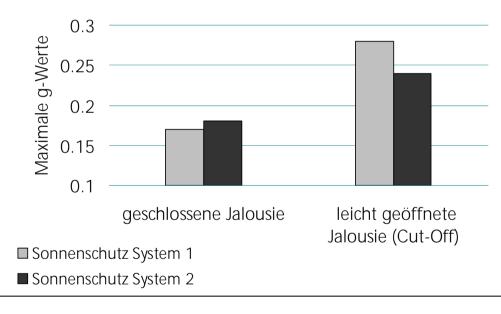
- Bug AluTechnic

The methodology has been proven in practice

Example: New building of the Fraunhofer headquarters

Customer

- Fraunhofer Society



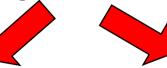
GALAXY Wien

- System 1 (verspiegelt):
 Solare Gewinne ändern sich um 65% je nach Nutzung
- System 2 (weiß): Solare Gewinne ändern sich um 33% je nach Nutzung

Süd-Südost Fassade GALAXY

Analyse des Gebäudeverhaltens

Physikalisches Modelle für Sonnenschutz, Blendschutz + Tageslichtversorgung


(Validierung durch Messungen!)

Festlegung von verschiedenen Regelstrategien

Berechnung von Stundenmittelwerten

(g-Wert, mittlere Leuchtdichte, Beleuchtungsstärke,...)

Analyse der Häufigkeitsverteilung

thermische Gebäudesimulation (Raumtemperaturen, Energieverbrauch)

Analyse des Gebäudeverhaltens

Physikalisches Modelle für Sonnenschutz, Blendschutz + Tageslichtversorgung (Validierung durch Messungen!)

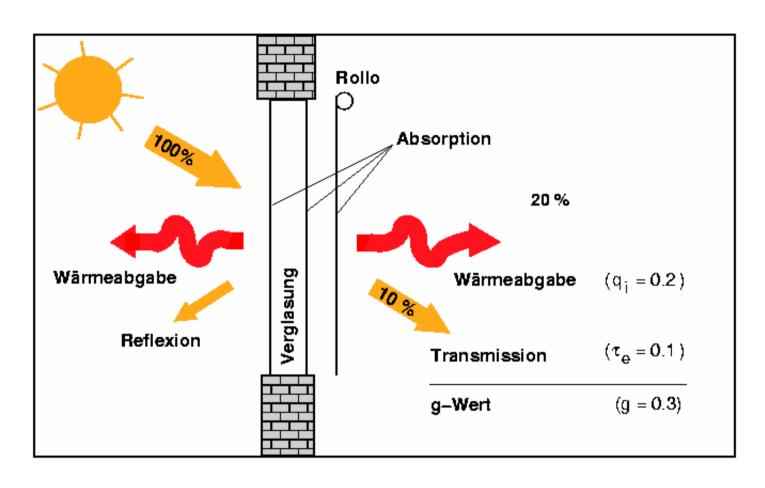
Festlegung von verschiedenen Regelstrategien

Berechnung von Stundenmittelwerten

(g-Wert, mittlere Leuchtdichte, Beleuchtungsstärke,...)

Analyse der Häufigkeitsverteilung

thermische Gebäudesimulation (Raumtemperaturen, Energieverbrauch)

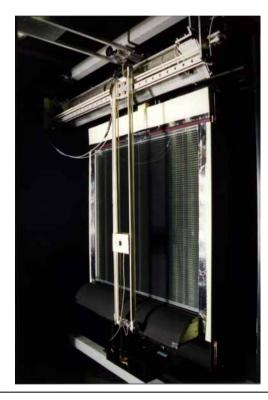


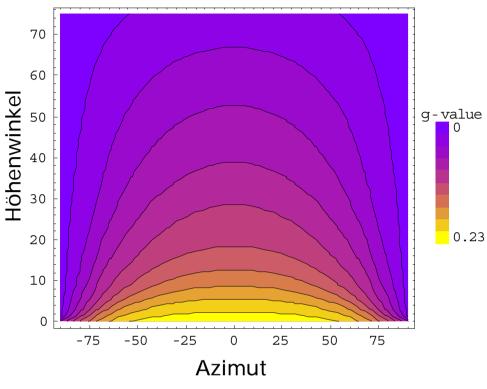
Maß für die Sonnenschutzwirkung: Der g-Wert

g-Wert abhängig von:

- Einstellung
- Einfallsrichtung
- Verglasungstyp und Sonnenschutzsystem
- Wind

g-Wert kann direkt im Kalorimeter gemessen werden.





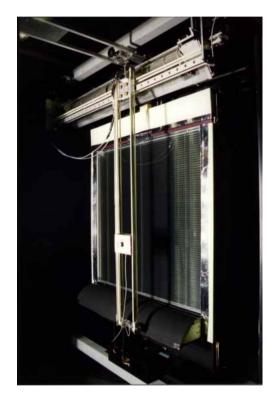
Thermisch-optisches Prüflabor

Thermische Charakterisierung

winkelabhängige g-Werte

Wie wird g bestimmt?

Zweifach- oder Dreifachverglasungen


- => Berechnung nach Norm DIN EN 410 / ISO 9050 früher: DIN67507 möglich und üblich
- => Normen gelten nur für senkrechten Lichteinfall
- => Optische Daten als Basis: Spektrale Vermessung der einzelnen Gläser

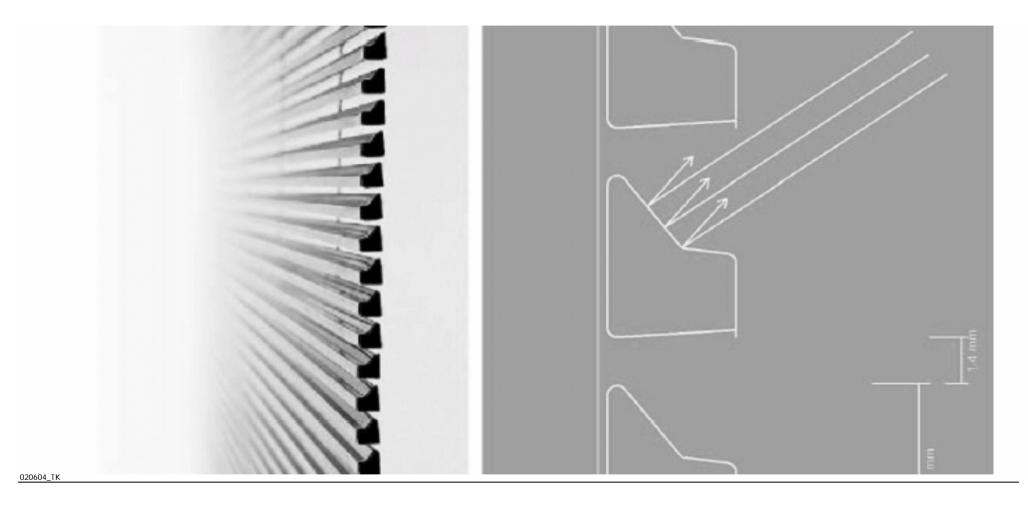
Sonderverglasungen, Sonnenschutz; Winkelabhängigkeit

- => kalorimetrische Absolutmethode ist für alle Typen geeignet
- => direkte Bestimmung des Solareintrags bei bestimmten Winkeln
- =>Berechnung nach prEN13363 ISO15099
- => Optische Daten als Basis: Sonnenschutz und Verglasung bzw. Scheiben (ISO)

Kalorimetrische Messungen sind wichtig zur Validierung von Modellen.

Weiße Jalousie in Kombination mit einer Sonnenschutzverglasung

Einfallswinkel	0°
Lamellenstellung	geschlossen
g-Wert Kalorimeter	0.20
g-Wert DIN EN410	0.16
Abweichung DIN EN410	19%



Solar control / External venetian blind s_enn

Solar control / External venetian blind s_enn

Solar Control

External venetian blind combined with glazing

glazing type	α_s [°]	$\gamma_{\rm f}$ [°]	$g_{ m tot,calorimeter}$	$g_{\rm tot,eq.(26)}$
heat mirror	0	0	0.16 ± 0.02	0.16
heat mirror	45	0	0.02 ± 0.02	0.04
solar control	0	0	0.10 ± 0.02	0.12
solar control	45	0	0.01 ± 0.01	0.04

Analyse des Gebäudeverhaltens

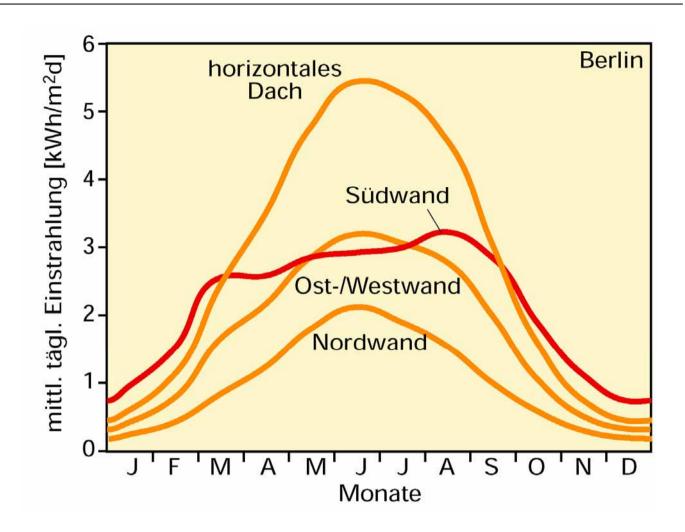
Physikalisches Modelle für Sonnenschutz, Blendschutz + Tageslichtversorgung

(Validierung durch Messungen!)

Typische Wetterdaten für Standort und Orientierung

Festlegung von verschiedenen Regelstrategien

Berechnung von Stundenmittelwerten


(g-Wert, mittlere Leuchtdichte, Beleuchtungsstärke,...)

Analyse der Häufigkeitsverteilung

thermische Gebäudesimulation (Raumtemperaturen, Energieverbrauch)

Einstrahlung: Jahresverlauf

Quelle: Wuppertal-Institut

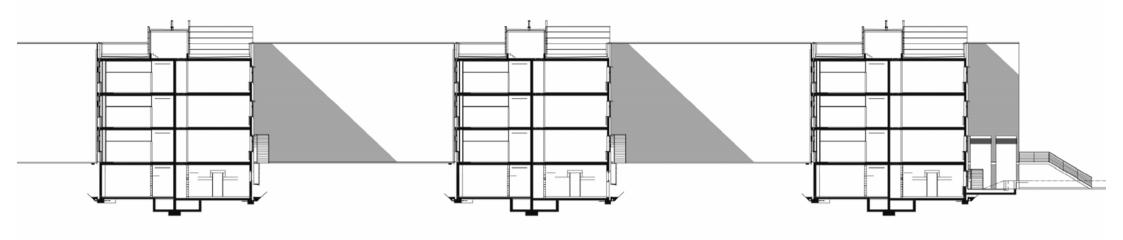
Analyse des Gebäudeverhaltens

Physikalisches Modelle für Sonnenschutz, Blendschutz + Tageslichtversorgung

(Validierung durch Messungen!)

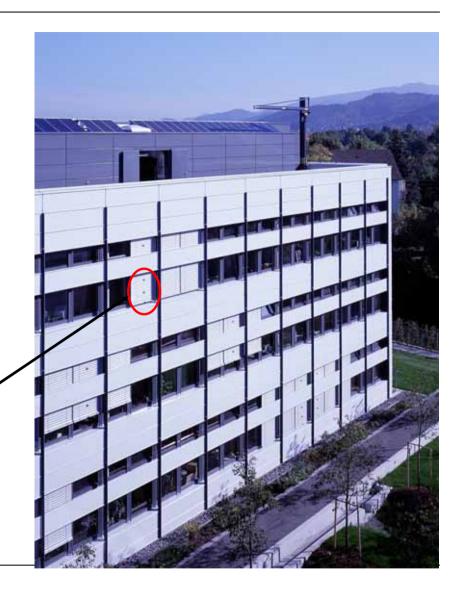
Festlegung von verschiedenen Regelstrategien

Berechnung von Stundenmittelwerten


(g_{eff}, mittlere Leuchtdichte, Beleuchtungsstärke,...)

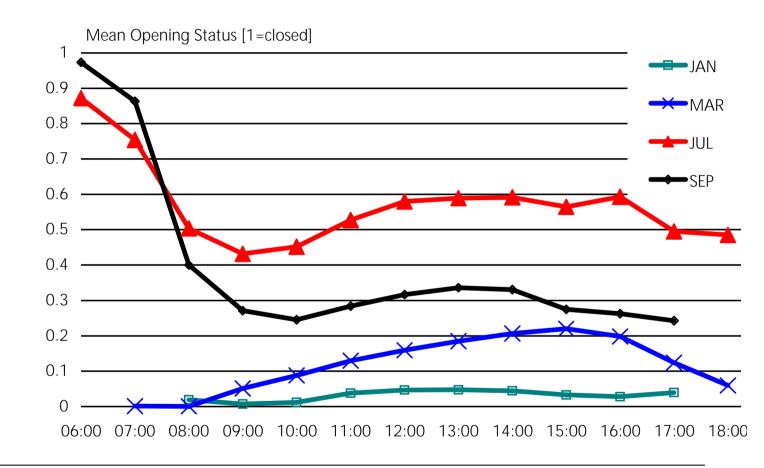
Analyse der Häufigkeitsverteilung

thermische Gebäudesimulation (Raumtemperaturen, Energieverbrauch)



Sonnenschutz: Nutzerverhalten

12 Räume mit ~30 Nutzern


Messung:

- Anwesenheit
- Ein/Ausschalten von Grundbeleuchtung und Arbeitsplatzleuchten
- Beleuchtungsstärke
- Sonnenschutz mit einer CCD-Kamera
- Wetter
- Raumtemperaturen

Sonnenschutznutzung: Tagesprofile

Regel-Strategie »Cut-Off«

Analyse des Gebäudeverhaltens

Physikalisches Modelle für Sonnenschutz, Blendschutz + Tageslichtversorgung

(Validierung durch Messungen!)

Typische Wetterdaten für Standort und Orientierung

Festlegung von verschiedenen Regelstrategien

Berechnung von Stundenmittelwerten

(geff, mittlere Leuchtdichte, Beleuchtungsstärke,...)

Analyse der Häufigkeitsverteilung

thermische Gebäudesimulation (Raumtemperaturen, Energieverbrauch)

Effektiver g-Wert

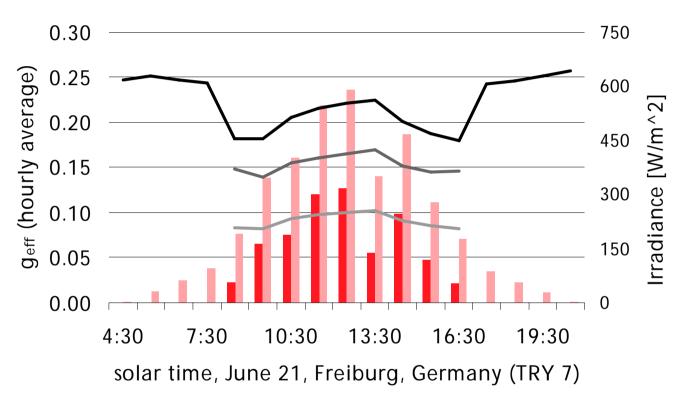
(Stundenmittelwert/Monatsmittelwert)

$$g_{eff} = \frac{\sum solare\ Gewinne}{\sum\ einfallende\ Strahlung}$$

$$g_{eff,\,sunshading\,\,active}^{monthly} = \frac{\sum solar\,\,gains\,\,when\,\,system\,\,active}{\sum incident irradiance\,\,when\,\,system\,\,active}$$

Solar control / Monthly effective g-value

External white stainless steel blind s_enn combined with heat mirror glazing $g_{tot}(0^{\circ}) = 0.17$!


orientation	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
south	0.08	0.06	0.06	0.05	0.06	0.06	0.06	0.06	0.06	0.06
west	0.08	0.07	0.07	0.07	0.07	0.06	0.07	0.07	0.07	0.07
north	-	-	-	0.06	0.07	0.07	0.07	0.07	0.07	-

Hourly effective g-values for south-oriented facade

internal venetian blind with "Genius" slats, $g_{DGU} = 0.31$

- Irradiance vertical, direct
- Irradiance vertical, global
- geff blind retracted
- geff, slats horizontal (cut-off)
- -geff, blind closed

Frequency distribution of g_{eff} for south-oriented facade

Internal white/grey venetian blind [closed slats], $g_{DGU} = 0.38$

g_{eff}	number of hours
0.11	0
0.12	1
0.13	5 9
0.14	9
0.15	18
0.16	34
0.17	74
0.18	70
0.19	118
0.20	152
0.21	364
0.22	83
0.23	16
0.24	0

June 21 - September 21, Frankfurt, Germany (TRY 6)

Frequency distribution of g_{eff} for south-oriented facade

Internal white/grey venetian blind [closed slats], $g_{DGU} = 0.38$

g_{eff}	number of hours
0.11	0
0.12	1
0.13	5
0.14	9
0.15	18
0.16	34
0.17	74
0.18	70
0.19	118
0.20	152
0.21	364
0.22	83
0.23	16

0

In Frankfurt on southoriented facades, there are typically 34 hours with $g_{eff} = 0.16$

June 21 - September 21, Frankfurt, Germany (TRY 6)

ISE Fraunhofer _{Institut}

Solare Energiesysteme

0.24

Frequency distribution of geff for south-oriented facade

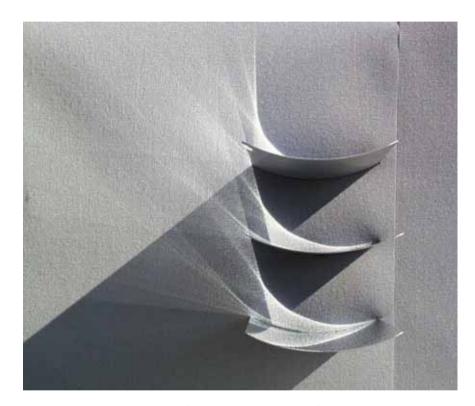
Internal white/grey venetian blind [closed slats], $g_{DGU} = 0.38$

g_{eff}	number of hours
0.11	0
0.12	1
0.13	5
0.14	9
0.15	18
0.16	34
0.17	74
0.18	70
0.19	118
0.20	152
0.21	364
0.22	83
0.23	16
0.24	0

In Frankfurt on southoriented facades, there are typically 34 hours with $g_{eff} = 0.16$

max. effective hourly g-value: 0.23

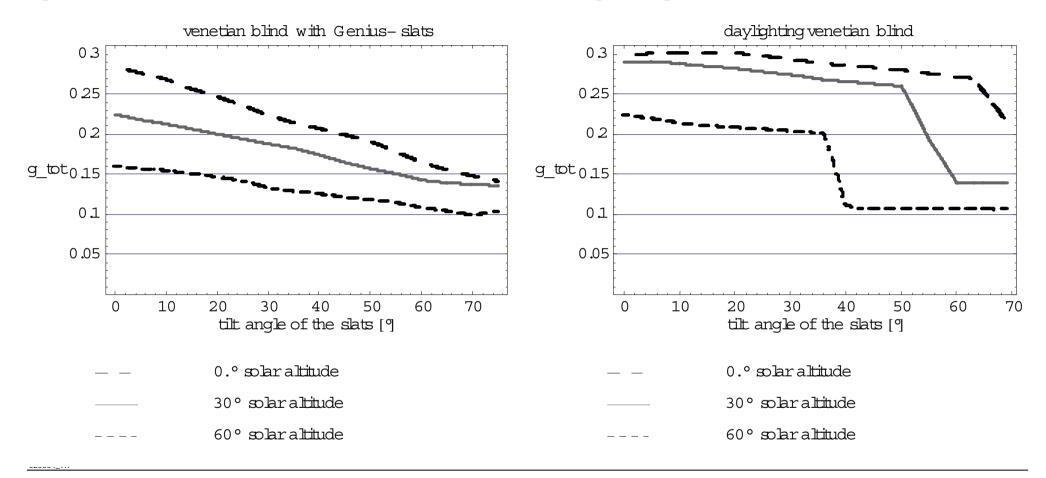
June 21 - September 21, Frankfurt, Germany (TRY 6)


Fraunhofer Institut
Solare Energiesysteme

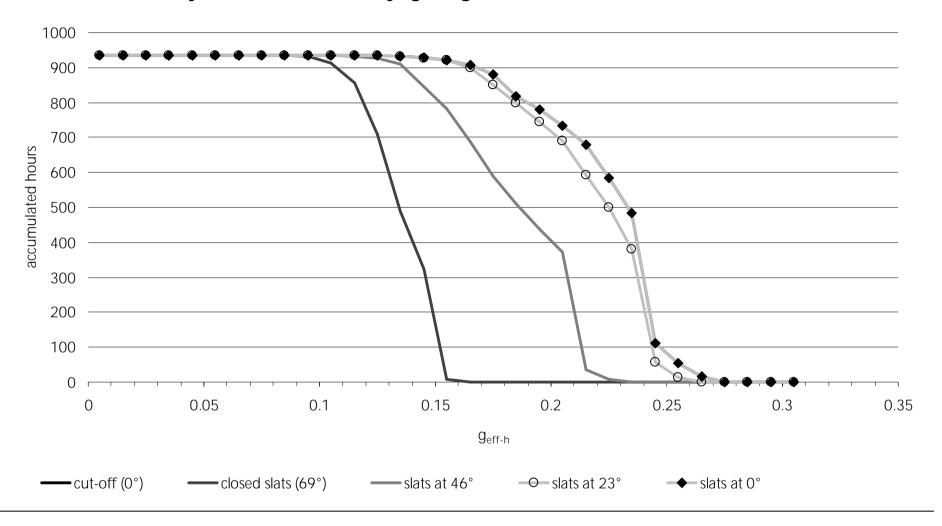
Solar control

g_tot for two different internal venetian blinds combined with a solar control glazing

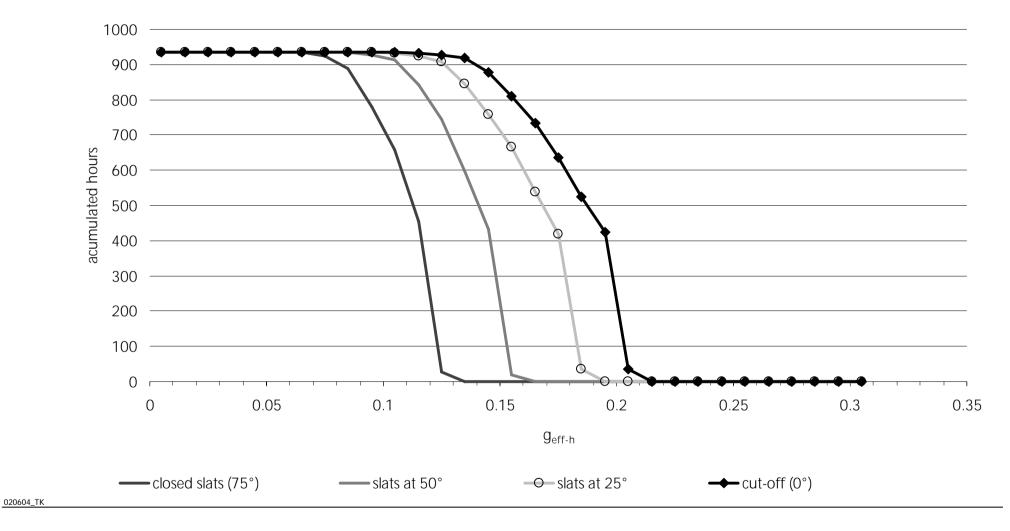
Copyright: Hüppelux (Hüppe Genius)



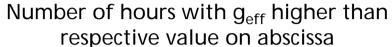
Copyright: Warema (daylighting blind)

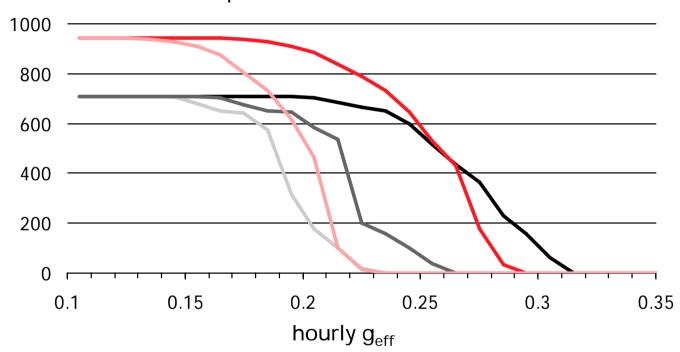

Solar control

g_tot for internal venetian blinds combined with glazing



Performance analysis of an internal daylighting blind


Performance analysis of an internal venetian blind with 'Genius' slats


Fraunhofer Institut
Solare Energiesysteme

Cumulated frequency distribution of geff

internal white/grey venetian blind, $g_{DGU} = 0.38$

Danke fürs Zuhören!

