
Shipping Knowledge Graph Management
Capabilities to Data Providers and Consumers

Omar Al-Safi∗, Christian Mader†, Ioanna Lytra†‡, Mikhail Galkin†‡§, Kemele Endris‡,
Maria-Esther Vidal†, Sören Auer¶
∗RWTH Aachen University, Germany

omar.al-safi@rwth-aachen.de
†Fraunhofer IAIS, Germany

{Christian.Mader,Maria-Esther.Vidal}@iais.fraunhofer.de
‡Applied Computer Science, University of Bonn, Germany

{lytra,galkin,endris}@cs.uni-bonn.de
§ITMO University, Russia

¶German National Library of Science and Technology (TIB), Germany

soeren.auer@tib.eu

Abstract—The amount of Linked Data both open, made
available on the Web, and private, exchanged across companies
and organizations, have been increasing in recent years. This
data can be distributed in form of Knowledge Graphs (KGs), but
maintaining these KGs is mainly the responsibility of data owners
or providers. Moreover, building applications on top of KGs
in order to provide, for instance, analytics, data access control,
and privacy is left to the end user or data consumers. However,
many resources in terms of development costs and equipment are
required by both data providers and consumers, thus impeding
the development of real-world applications over KGs. We propose
to encapsulate KGs as well as data processing functionalities in a
client-side system called Knowledge Graph Container, intended
to be used by data providers or data consumers. Knowledge
Graph Containers can be tailored to the target environments.
We empirically evaluate the performance and scalability of
Knowledge Graph Containers with respect to state-of-the-art
Linked Data management approaches. Observed results suggest
that Knowledge Graph Containers increase the availability of
Linked Data, as well as efficiency and scalability of various
Knowledge Graph management tasks.

I. INTRODUCTION

In our increasingly digitized world, data sharing and ex-

change between organizations in value chains, research col-

laborations, or other cooperation scenarios play a pivotal role.

However, in many scenarios an effective and efficient data

sharing is blocked by the fact, that

• either the data provider loses control over her data after

shipping it to a cooperation partner – a partial mitigation

can only be an expensive and cumbersome legal and

contractual arrangement – or

• when keeping full control by only providing a remote

access interface to the users – often associated with high

latency –, query execution costs have to be fully covered

by the data provider (or some remuneration negotiated)

and it is hard to guarantee availability and performance

to the data user.

As we learned in numerous workshops with more than 50

partner companies of the Industrial Data Space Association1,
keeping some level of control over the data – called data
sovereignty – is a key requirement in industrial data sharing

scenarios and currently the main obstacle for establishing

data value chains in the industry. In many cases, cooperation

partners should only gain access to a well defined fragment or

usage access regime of the data. For example, a cooperation

partner in a customer bonus program, should be enabled to

access information about a specific customer (e.g., identified

by name or member id), but should not be allowed to re-

trieve other sensitive customer data, like email and mailing

addresses.

In physical value chains, containers play a key role in mate-

rial, component, half product, and product exchange. Contain-

ers in most cases fulfill the function to secure, condition (e.g.,

cool/warm), observe, or provide access to their containment.

In this work, we go the first step in the long term vision

of realizing the concept of Knowledge Graph Containers,
which is a key element in the Industrial Data Space reference

architecture [1]. In order to realize the concept, we develop an

approach which will allow for including data, security, access,

and query processing functionality in a single artifact – the

Knowledge Graph Container. Our approach is based on the

recently emerging light-weight virtualization techniques and

load balancing for scalable, high-performance query execution.

As a result, we provide a novel data sharing and access

paradigm, which balances costs and efforts differently between

data provider and consumer than prior solutions (such as

dumps, SPARQL endpoints, or Triple Pattern Fragments [2]).

It potentially enables controlling data access even after data

shipping, thus, it contributes to increased data sovereignty and,

consequently, it better fulfills the requirements of industrial

data value chains.

The main contributions of the current work include in

particular:

1http://industrialdataspace.org

9

2018 12th IEEE International Conference on Semantic Computing

0-7695-6360-0/18/$31.00 ©2018 IEEE
DOI 10.1109/ICSC.2018.00011

��������

��������	

���
����

���
���	

�������
��
�������
��

�
�����
����
���
���	

������

���
���

������

���
����

�����

���
����

�����

�
����	

������

�
����	

������
���
���	

�
�����

���
���

�
�����

������	

������

�����

������

����	

�������
��
����������

������
��������
��

������	

�������

������
��

���

������ �� �

����

���� ���

�����������

��� ������
�

����
�
��

 �����

�!����"��

����

�!�������

����� ���

��"��

�	 ����
�
��

����	�#	������

$�%	&'(

)��
����	

������	����� 	

*	����
����

��������
	
���	
�	�� �����	�#	

							�������+	��������������+					

							��������
������+	��������������+	

							�������������������� � �

���������������	���	������	��	

�����	
���	

���������������������	���	������	��				

�������������
������	���	��������������

�����������������	������	��		

					������������������

	

	
���

Fig. 1: Motivating Example. EHR_KG is a knowledge graph representing clinical data; it is composed of five knowledge

graphs: Patient, Patient_Record, Medical_History, Biopsy_Results, and Aggregated_Results. EHR_KG is distributed to Research

Institutes, Medical doctors, and Third-parties; access control and privacy policies state how portions of EHR_KG are accessed.

1) An approach for supplying data consumers with both data

and processing capabilities, while enabling functionality

for keeping control over the data and keeping efforts for

data provider and consumer low.

2) An architecture to support distribution and usage of

the approach supporting high-availability and scalability,

while minimizing effort for both data provider and user.

3) An empirical evaluation where the Knowledge Graph

Container approach is compared with state-of-the-art

approaches with focus on efficiency. Results suggest

that availability and scalability can be achieved without

impacting resource consumption significantly.

This solution can be, of course, used by both data providers

and consumers2.

The remainder of the article is structured as follows. We

motivate Knowledge Graph Containers using a real case

scenario in the medical domain in Section II. In Section III,

we introduce the problem tackled by the Knowledge Graph

Container approach formally, and in Section IV, we introduce

the Knowledge Graph Container Management System archi-

tecture. We perform an empirical evaluation of our approach

and report on the evaluation results in Section V. Finally, we

discuss the related work in Section VI and conclude with an

outlook on future work in Section VII.

2In the remainder of the paper, data providers and consumers can be both
users of the Knowledge Graph Container approach.

II. MOTIVATION

Data in the form of Knowledge Graphs can be distributed

to data consumers using different ways. For instance, data

providers may choose to provide data dump files or Web

interfaces with various data management capabilities to the end

users. The first alternative is usually related to high installation

and maintenance costs for the data consumers. In addition,

there is no way for the data providers to introduce restrictions

or any access control capabilities for the knowledge graphs

they share. The second alternative provides, on the one hand,

more flexibility to the data producer, on the other hand, the

processing of the individual client requests can become very

expensive in terms of CPU and memory and lead to scalability

and availability issues.

In Figure 1, we illustrate a scenario of distributing clinical

data to different end-users and organizations; various poli-

cies for accessing and processing this kind of sensitive data

are considered. The national health system in collaboration

with public hospitals produces big amounts of clinical data

reporting personal information about patients, patient records,

medical history, and biopsy results related to lung cancer; it

aims at publishing these data as a knowledge graph, in order

to support lung cancer research. However, sharing these data

with various stakeholders poses several restrictions: medical

doctors are allowed to access the whole datasets, while re-

search institutes are entitled to use part of the knowledge

graph, and other third-party organizations or users can use

10

����	�������
��

����	������
��

�
��
�
��
	

�
�
�
��
�
�

�����
�

����	�������
��

�������

����	����
������	�������
��

�����
�

,-��� ,-��! ,-���

Fig. 2: Examples of Knowledge Graph Containers (KGCs).
Three KGCs with different data processing functionalities.

KGC-a includes DBpedia and a query processing engine.

KGC-b consists of DrugBank, and two data processing compo-

nents: one for data curation and another for query processing.

KGC-c encapsulates DBpedia, and query processing, analytics,

and access control.

only aggregated functions on top of the data. These three

solutions have to be distributed to the data consumers or other

organizations that will play the role of data providers taking

into consideration the following requirements: (1) the national

health system and hospitals should keep control over the use

of data they share and (2) the solutions should scale to the

number of the end users. Until now, none of the approaches

for publishing, sharing, and managing knowledge graphs can

satisfy the aforementioned requirements.

III. PROBLEM STATEMENT

a) Knowledge Graph Containers (KGCs): a KGC en-

capsulates both (i) a knowledge graph and (ii) executable logic

to perform knowledge management tasks over the knowledge

graph. Thus, a KGC allows for shipping knowledge man-

agement from providers a means to support data consumers

in making use of their data. For example, it is possible to

embed data retrieval interfaces such as REST or SPARQL

endpoints into a KGC. Furthermore, this method also gives

data providers control over the usage of the data represented

in a knowledge graph. Services embedded in KGCs can make

use of, e.g., token-based authentication mechanisms so that

access can be granted or withdrawn after a KGC has been

transferred to the data consumer. Formally, a Knowledge

Graph Container (KGC) corresponds to a pair KGC=〈D,En〉,
where D is a knowledge graph represented in the RDF data

model, and En is a knowledge management engine able

to execute knowledge management tasks over D. Figure 2

illustrates various knowledge management tasks that can be

encapsulated in a KGC, and presents three different KGCs:

i) KGC-a is composed of DBpedia and a query processing

engine; ii) KGC-b provides not only query processing over

DrugBank but also data curation tasks; and iii) KGC-c also

encapsulates DBpedia, a query engine, and components for

access control and data analytics.

b) The Knowledge Graph Container (KGC) Ap-
proach: The KGC approach provides data consumers not only

with knowledge graphs, but also with knowledge management

engines able to execute different knowledge management tasks

TABLE I: Notation. Symbols used in the Knowledge Graph

Container Approach

Symbols Description
KGC=〈D,En〉 KGC encapsulating knowledge graph D and a knowledge

management engine En
SKGC Set of KGCs
KMT t1,. . . ,tm sets of knowledge management tasks
F (.) Cost of evaluating a knowledge management task
LA A load assignment of knowledge management tasks at

KGCs
(KGCj ,KMTj) Load assignment of knowledge management tasks in

KMTj to a KGC KGCj

F (.) Cost of the load of a KGC
F(.) Maximum load cost among KGCs in a load assignment

over these knowledge graphs, e.g, access control, curation, or

query processing. Moreover, the Knowledge Graph Container

approach comprises load-balancing techniques able to adjust

knowledge management to the computational resources avail-

able at a data consumer site. The following definitions state

the core concepts required to formulate the problem tackled

by the KGC approach; Table I summarizes the notation used

to formalize the KGC approach.
c) Load Assignment of Knowledge Management

to KGCs: Given SKGC={KGC1,. . . ,KGCn} and

KMT={t1,. . . ,tm} sets of KGCs and knowledge management

tasks, respectively. A function F : KMT → R, such that,

F (tj) represents the cost of executing task tj . For instance, in

KGC-c of Figure 2, SKGC corresponds to a set of replicas

of KGC-c, i.e., KGCs that all have both the same DBpedia

knowledge graph and knowledge management tasks KMT;

KMT is composed of an engine able to perform query

processing, data analytics, and access control over DBpedia.

Moreover, values of F (.) correspond to estimates of the cost

of executing any of these tasks by the knowledge management

engine of KGC-c, e.g., execution time, CPU usage, or I/O

operations.

Knowledge management tasks in KMT are assigned to

KGCs in SKGC; we name this assignment a load assignment.
Formally, a load assignment LA is defined as follows:

• LA is a set of pairs representing knowledge management

tasks in KMT assigned to KGCs, i.e.,

LA = {(KGCj ,KMTj) | KGCj ∈ SKGC and

KMTj ⊆ KMT} (1)

where each (KGCj ,KMTj) represents that knowledge

management tasks in KMTj are executed at a KGC

KGCj in a sequential order and only one at a time. We

call (KGCj ,KMTj) a KGC load assignment in the load

assignment LA.

• F(.) is the cost of a KGC load assignment in LA, i.e., the

cost of evaluating all the knowledge management tasks

assigned to a KGC in LA. F((KGCj ,KMTj)) corresponds

to the sum of the costs of evaluating all knowledge

management tasks in KMTj , i.e.,

F((KGCj ,KMTj)) =
∑

t∈KMTj

F (t) (2)

11

• F(.) represents the cost of evaluating the load assignment
LA, and is defined as the maximum cost of the KGC load
assignments in LA, i.e.,

F(LA) = MAX(KGCj ,KMTj)∈LAF((KGCj ,KMTj)) (3)

Consider a set SKGC={KGC1,KGC2,KGC3} with three

replicas of KGC-c in Figure 2, and set KMT={t1,t2,t3,t4} of

four knowledge management tasks. A load assignment LA of

knowledge management tasks in KMT to KGCs in SKGC is

the following:

LA = {(KGC1, {t1, t2}), (KGC2, {t3}), (KGC3, {t4})} (4)

Because knowledge management tasks assigned to a KGC,

e.g., KGC1, are executed sequentially and only one at a time,

F(KGC1,{t1,t2}) corresponds to the sum of the cost F (.) of t1
and t2. However, KGCs in SKGC are executed concurrently;

thus, the cost of F(LA) is the maximum cost of F(.) for the

KGC assignments in LA.

d) Load-Balancing in the KGC Approach: The KGC

approach attempts to identify in a set SLA, a load assignment

LA with minimal cost F(.). This load-balancing problem is

defined as the following optimization problem:

argmin
LA

F(LA) = {LA |LA ∈ SLA and

∀LA’ ∈ SLA, F(LA) ≤ F(LA’)}
(5)

The problem of KGC load-balancing is NP-complete even

for two KGCs [3]. We devise an implementation of the

KGC approach able not only to ship knowledge graphs from

data providers to data consumers, but also knowledge man-

agement functionality. The KGC approach provides a KGC

management platform (KGC Manager) to be installed by data

consumers. The KGC management platform is able to manage

different replicas of a KGC. Moreover, the KGC management

platform balances the load of knowledge management tasks

across replicas of a KGC, thus providing a practical solution

to the problem of KGC load-balancing defined in Equation 5.

IV. THE KNOWLEDGE GRAPH CONTAINER MANAGEMENT

SYSTEM ARCHITECTURE

A. Managing Knowledge Graph Containers

A Knowledge Graph Container (KGC) Manager is a system

able to realize the control and execution of KGCs at a data

producer or consumer environment. Various implementations

of KGC Managers are possible depending on the available

resources of the data consumer, and the purpose for which the

knowledge graph will be used. For instance, if a data consumer

has limited hardware resources, she may configure a light-

weight KGC Manager with a single instance of a KGC. If

scalability is needed, she may utilize a KGC Manager capable

of creating multiple replicas of a single KGC on multiple

nodes so that load, e.g., CPU, memory, or network, can be

distributed across these nodes. Likewise, implementations of

KGC Managers may provide additional security and access

control features.

�������	
��

��	�	�

���
���
��

����	�	���

�������

�	���

���� ������

�
&

�������

�
.

�
'

�
/

��

�
(

� ��

�
0

�����	��

' /

����������������

1���	

��������

����
���
��	

����������

�
'

�
&'

�
(

�
0

�
/

�
.

Fig. 3: Knowledge Graph Container Manager. It consists of
a Replication Controller for creating multiple replicas (KGC 1-

3) based on a KGC Image, a Load Balancer for distributing the

incoming knowledge management tasks to a cluster of hosts,

and a Monitoring component for logging resource usage and

issuing alerts.

We focus on a KGC Manager tailored for scalability and

availability; Figure 3 depicts the components of this KGC

Manager. Given a KGC or KGC image, and a set of client

tasks, the KGC Manager creates several replicas of the KGC

image to distribute and balance the load of the tasks. Internally,

the KGC Manager consists of three components, a Load Bal-
ancer, a Replication Controller, and a Monitoring component.

a) Load Balancer: Provides a solution to the problem

of load-balancing defined in Equation 5. The Load Balancer

receives a set of tasks {t1,. . . ,tn} and distributes these tasks

across a set of replicas of KGCs of a KGC image, in a way

that the cost F(.) of answering all tasks is minimized. Cost can

correspond, for instance, to total query execution time, total

CPU usage, or I/O operations. The Load Balancer implements

a Greedy algorithm that follows a round robin scheduling and

assigns a task to the KGC with least current load.
b) Replication Controller: Creates a desired number

K of KGC replicas from a KGC Image and deploys them

to the data producer or consumer environment. A replication

controller ensures that up to K replicas are up and available

always. Thus, a task load can be distributed and balanced

across the replicas. An estimate of available resources is

utilized to determine the number of replicas that can be

maintained by the data producer or consumer environment.

If a replica fails, a new replica is created according to the

estimate of available resources. Once the KGC Manager is

shut down, all managed replicas are also shut down.

c) Monitoring: Logs resource usage and alerts data con-

sumers in case of unexpected situations, e.g., whenever a KGC

replica crashes. As such, these logs have a separate storage and

lifecycle independent of a replica. Thus, accessibility of the

application logs can be ensured for a period of time in order

12

����� !��� ��������"����#

$����%��!
��

���

$ ���	

�����
��
��	&

	�������

���

���	

�

$ ���	

�����
��
��	'

�

$ ���	

�����
��
��	(

�

Fig. 4: Creation and Distribution of Knowledge Graph
Containers. Data owners (left side) create and make available

KGC Images, as well as push them to the KGC Image

Registry. On the data provider or consumer side (right side),

a KGC Manager pulls a KGC image from the Registry and

creates a KGC replica.

to query or analyze the logs, regardless of the lifecycle of the

replicas of a KGC image.

B. Creation and Distribution of Knowledge Graph Containers

As shown in Figure 4, data owners create KGC Images

and push them to a KGC Image Registry where they are

afterwards available for retrieval. Each KGC Image is built

from an Image Description, KGC=〈D,En〉, where the owner

states: i) a knowledge graph D that the image will contain,

and ii) a knowledge management engine En. In order to make

use of a KGC Image, the data consumer needs to retrieve and

install a KGC Manager (see Figure 3), which will pull the

KGC Image from the KGC Image Repository and create a

replica of the KGC image. When a KGC is started, the data

consumer can start invoking the KGC knowledge management

engine En against the knowledge graph D, e.g., to execute

queries, enforce access control policies, or perform curation

over the knowledge graph.

V. EMPIRICAL EVALUATION

In our empirical evaluation, we focus on a specific type of

KGCs: KGC that contains a knowledge graph together with
query processing capabilities. In particular, we empirically

study the efficiency of the KGC approach in processing

SPARQL queries against DBpedia dataset. We compare its

performance to the DBpedia public endpoint3 and a Triple

Pattern Fragment (TPF) [2] client. For this, we use a testbed of

24 queries4 with different levels of complexity and selectivity

against DBpedia version 2016-04. In addition, we study the

benefits of the KGC Manager, i.e., the Load Balancer and

the Replication Controller in the distribution of the workload

to multiple KGCs, when an increasing number of queries

from different users arrive to the system concurrently. The

experimental configuration is as follows:

3http://dbpedia.org/sparql
4https://github.com/omarsmak/Linked-Data-Containers

A. Implementation

We implemented the KGC architecture on top of the

Docker5 ecosystem. The KGC Image generation and provi-
sioning process on the data provider side involves three stages:

1) Build: The first stage is to build a KGC (Docker) base

Image that is tailored to hold data of a specific type and

includes an appropriate data processing engine for this

data type. In this work, we use DBpedia version 2016-

04 as the knowledge graph, and a SPARQL endpoint

(Virtuoso) as knowledge management engine.

2) Ingestion: In the second stage, the data provider extends

the KGC base Image from the first step by adding the

actual dataset(s) that should be published, resulting in the

final publishable KGC Image. This stage is performed by

using the Docker build engine.

3) Registration: In the third stage, the newly created KGC

Image is pushed to the data provider’s KGC Image

Registry, in our implementation to the Amazon EC2

Container Registry6.

We developed a RESTful service in Python 3.7 that per-

forms the last two steps by only requiring data owners to

select the knowledge graph to be published. Selection of

the appropriate KGC base image, creation of the publishable

KGC Image, and uploading of the KGC Image Registry are

performed by the service7.

For implementing the KGC Manager, we used Rancher
Cattle8 along with Rancher UI9, which is a Docker container

orchestration engine that provides a large set of features

such as container management, host management, auto scal-

ing, container monitoring, and operations across containers.

Rancher provides a docker-compose like configuration tool

called Rancher-compose, which helps KGC to deploy con-

tainers on the hosts according to the appropriate scheduling

polices, such as port conflicts and host tagging.

For Load Balancing, we stick to the default Rancher con-

figuration which is using HAProxy10 and the roundrobin11

balancing strategy.

B. Infrastructure

Evaluation experiments are executed on Amazon Elastic
Compute Cloud (EC2). We installed KGC Manager on a

dedicated machine of type m4.large which comes with 2 CPU

cores of 2.3 GHz and 8GB of RAM. For the cluster of hosts,

we used four machines of type m4.xlarge which comes with

4 CPU cores of 2.3 GHz and 16GB of RAM; we made sure

that multiple containers can run on this type of machine. To

download and package our test dataset into a KGC image, we

5https://www.docker.com/
6https://aws.amazon.com/ecr/
7Code is available at https://bitbucket.org/omarsmak/ids_container
8https://github.com/rancher/cattle
9http://rancher.com/
10http://www.haproxy.org/
11http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#4.

2-balance

13

(a) Throughput (results/sec) on Cold Cache (b) Throughput (results/sec) on Warm Cache

Fig. 5: Throughput (results/sec) on Cold and Warm Cache. DBpedia public SPARQL endpoint, a single KGC, and a TPF

client are compared for a Benchmark of 24 queries over DBpedia version 2016-04. For queries in KGC run in cold cache, the

results for the public SPARQL endpoint correspond to the minimum throughput values measured whenever queries are run the

first time. For queries in KGC run in warm cache, the results for the public SPARQL endpoint correspond to the maximum

throughput values measured after running each query 20 times.

used a machine of type m4.2xlarge that comes with 8 CPU

cores of 2.3 GHz and 32GB of RAM.

C. Metrics

a) Execution Time: Elapsed time between the submis-

sion of the query to KGC and the arrival of all answers. Time

corresponds to absolute wall-clock system time as reported by

the Python time.time() function.

b) Throughput (results/sec): Number of answers per

second returned by successfully processed queries.

c) Throughput (queries/sec): Number of requests per

second arrived at the system and processed successfully.

d) Inverse Error Percentage (Inv.Error): Inverse of the

percentage of requests that fails with an error, i.e., Inv.Error

corresponds to 100-ErrorPercentage.

e) Received KB/sec: Number of Kilobytes per second

returned by successfully processed queries.

f) Sent KB/sec: Number of Kilobytes per second arrived

at the system. We report on the inverse value, i.e., Inv.Sent

KB/sec= 1
SentKB/sec .

g) Avg.Bytes: Average amount of data measured in

Bytes that is received during the execution of all the requests.

h) CPU Usage: Percentage of time CPU spent running

the query processing processes of KGC; this does not include

any process related to Linux kernel. The percentage corre-

sponds to the percentage reported by the native Linux top12

command.

i) Block I/O Read: Number of bytes read operations per

second from disk by the processes of KGC. This corresponds

to Block I/O metric that is reported by docker stats13 command.

D. Results and Discussion

Figure 5a and Figure 5b report on the throughput (results

per sec in log scale) of the DBpedia public endpoint, a single

KGC, and a TPF client for our testbed of 24 queries (Q1–Q24),

run on both cold and warm caches. In particular, we execute

the SPARQL queries 20 times and compare the maximum

12https://linux.die.net/man/1/top
13https://docs.docker.com/engine/reference/commandline/stats/

and minimum throughput values measured. In general, both

DBpedia public endpoint and KGCs perform better than TPFs

by one to two orders of magnitude. We observe that in the case

of cold cache, KGC outperforms DBpedia public and TPFs for

20 of the 24 queries, while the throughput of KGC in warm

cache is better or comparable to the DBpedia public endpoint

in the majority of the queries. Only for selective queries like

Q6 (9), Q7 (19), and Q8 (16) DBpedia endpoint is significantly

better while for some of the less selective queries such as

Q1 (222.820), Q12 (335.454), and Q15 (117.571) KGC is the

winner. However, the public endpoint of DBpedia is not able to

return all results of the non-selective queries since the number

of returned answers is restricted to 10.000; therefore, KGC is

producing more complete results.

Figure 6 reports on the performance of the KGC Manager

for one, two, three, and four KGCs. In particular, we compare

these four configurations, for different number of user requests

(i.e., 500 and 1000, respectively) with respect to Inv.Error,

Throughput (results/sec), Avg.Bytes, Received KB/sec, and

Inv.Sent KB/sec. Results suggest that considering more than

one KGC replica enhances the performance of the KGC

Manager if a large number of requests are posed.

Further, we study the resource consumption per KGC in

case of four KGC replicas. Figure 7 shows the block I/O

operations per KGC for a period of time of 2,5 hours, during

which random requests arrive at the system. If only one

KGC is serving requests the block I/0 operations for this

KGC are increasing while, as expected, the load per KGC

reduces when more KGC replicas are allocated by the Load

Balancer. Moreover, the same behaviour is observed for the

CPU usage, the CPU usage is shared among the KGC replicas

– as can be observed in Figure 8. The behavior exhibited by the

KGC Manager allows us to conclude that encapsulating both

knowledge graphs and knowledge management functionality,

as well as effectively balancing the load, provides a solution

for knowledge graph availability and scalability.

14

Fig. 6: Performance of KGC Manager. Performance is mea-

sured in terms: Inv.Error, Throughput (results/sec), Avg.Bytes,

Received KB/sec, and Inv.Sent KB/sec; higher values are

better. All the requests are submitted to the KGC Manager

with one replica (1 KGC), two replicas (2 KGC), three

replicas (3 KGC), and four replicas (4 KGC). (a) Results

when 500 requests are posed to the KGC Manager. (b) Results

when 1000 requests are posed to the KGC Manager. The

configuration with four replicas exhibits better performance.

VI. RELATED WORK

In the relational database world, the problem of efficient

data replication has been in a focus for years. While al-

most every commercial RDBMS provides (at least limited)

replication means, the academic community often aims at a

particular replication characteristic overlooking the query com-

pleteness. Therefore, there exist numerous replication control

techniques [4]. For instance, Cecchet et al. [5] propose C-
JDBC, a middleware management system for database repli-

cation. C-JDBC orchestrates replicas in one virtual database

and supports any RDBMS with JDBC access protocol. Lin et

al. [6] present SI-Rep, a middleware replica control mechanism

compatible with JDBC interface. Snapshot isolation preserves

data consistency and ensures fault tolerance of the replicated

collection. Similarly, we introduce efficient data replication

and management for Knowledge Graph Containers.

Research on containerized shipment of datasets is still

scarce. Arndt et al. suggest to containerize a knowledge

base with a SPARQL endpoint and distribute it as a docker

container to the data users [7]. Their methodology of Docker-

izing Linked Data can be considered as an implementation

of Knowledge Graph Containers. Still the aforementioned

method is not designed to scale up for Big Linked Data

applications with increased request load.

In addition to TPFs [2] and KBox [8], there exist approaches

that address containerizing of data independent of its format.

Such approaches often rely on physical data encryption in-

side a container. Lotspiech et al. [9] describe the cryptolope
technology to manage access rights in a digital library. The

technology employs encrypted data containers to which cus-

tomers are able to purchase access permission and leverage

its content by built-in query capabilities. Knowledge Graph

Containers can be extended using similar techniques to ensure

security and access control capabilities.

Sibert et al. [10] propose the DigiBox technology for e-

commerce that tackles rights protection, data security, and

interoperability in the scope of transaction data containers.

However, the outlined approaches offer a full data encryp-

tion model that impedes the information exchange between

data providers and consumers. Concentrating on the security

aspects, those approaches miss a detailed analysis of possible

impact on a company’s infrastructure, containers interaction,

and scalability that are covered by KGCs.

VII. CONCLUSIONS AND FUTURE WORK

In this article, we presented the first step on our long term

research agenda for fully realizing and evaluating the concept

of Knowledge Graph Containers. In this work, we concentrated

on the overall architecture employing light-weight virtualiza-

tion for easing deployment and load-balancing for scalability.

Efficiency of KGC approach was empirically compared with

state-of-the-art approaches for a specific type of KGCs: KGCs

containing a knowledge graph together with query processing

capabilities. In addition, the scalability of our approach was

evaluated. Empirical results suggest that the KGC approach

increases availability of knowledge graphs and Linked Data,

and provides a scalable and efficient platform to manage

knowledge graphs at the data consumer side.

We experimentally showed the performance of the KGC

approach for the query processing task over DBpedia; how-

ever, in the future, we plan to realize the KGC concept

for knowledge graphs represented in different formats (e.g.,

relational, graph data), but equipped with knowledge captur-

ing techniques to create their corresponding RDF knowledge

graphs on demand. Another focus of our future work – which

is not covered in the current article – will be experimenting

with different techniques for realizing data security and access

control, in order to ensure reliable usage guarantees and

sovereignty for data owners. Security and Access Control can

be seen as separate components, deployable in the KGCs.

We hope that ultimately the work towards KGC will con-

tribute to establishing significantly more data value chains in

the industry. As a result, shifting from the currently prevail-

ing centralized data silo business models to more federated

knowledge sharing business models will allow for leveraging

the benefits of digitization for a larger number of businesses

and in various business scenarios.

ACKNOWLEDGMENT

This project has received funding from the German BmBF

for the project InDaSpace, the EU Horizon 2020 R&I pro-

gramme for the Marie Skłodowska-Curie action WDAqua (GA

No 642795), and CSA BigDataEurope (GA No 644564).

REFERENCES

[1] B. Otto, S. Lohmann, S. Auer, J. Cirullies, and S. Wenzel,
“Reference Architecture Model for the Industrial Data Space,”
Fraunhofer Society, Tech. Rep., 2017. [Online]. Available: http:
//dx.doi.org/10.13140/RG.2.2.17352.11529

15

Fig. 7: KGC Block I/O Read. High KGC’s block I/O read operations when there is only one KGC executing queries.

Meanwhile the load reduces steadily when there are more KGC image replicas executing the same queries.

Fig. 8: KGC CPU Usage. High KGC’s CPU load when there is only one KGC executing queries. Meanwhile the load reduces

steadily when there are more KGC image replicas executing the same queries.

[2] R. Verborgh, M. V. Sande, O. Hartig, J. V. Herwegen, L. D. Vocht, B. D.
Meester, G. Haesendonck, and P. Colpaert, “Triple pattern fragments: A
low-cost knowledge graph interface for the web,” J. Web Sem., vol. 37-
38, pp. 184–206, 2016.

[3] J. M. Kleinberg and É. Tardos, Algorithm design. Addison-Wesley,
2006.

[4] E. Cecchet, G. Candea, and A. Ailamaki, “Middleware-based database
replication: the gaps between theory and practice,” in Proceedings of
the ACM SIGMOD International Conference on Management of Data,
Vancouver, BC, Canada, June 10-12, 2008, 2008, pp. 739–752.

[5] E. Cecchet, M. Julie, and W. Zwaenepoel, “C-JDBC: Flexible database
clustering middleware,” in USENIX Annual Technical Conference, no.
LABOS-CONF-2005-001, 2004.

[6] Y. Lin, B. Kemme, M. Patiño-Martínez, and R. Jiménez-Peris, “Middle-
ware based Data Replication providing Snapshot Isolation,” in Proceed-
ings of the ACM SIGMOD International Conference on Management of

Data, Baltimore, Maryland, USA, June 14-16, 2005, 2005, pp. 419–430.
[7] N. Arndt, M. Ackermann, M. Brümmer, and T. Riechert, “Knowledge

base shipping to the linked open data cloud,” in Proceedings of the
11th International Conference on Semantic Systems, SEMANTICS 2015,
Vienna, Austria, September 15-17, 2015, 2015, pp. 73–80.

[8] E. Marx, C. Baron, T. Soru, and S. Auer, “KBox - Transparently
Shifting Query Execution on Knowledge Graphs to the Edge,” in 11th
IEEE International Conference on Semantic Computing, ICSC 2017, San
Diego, CA, USA, January 30 - February 1, 2017, 2017, pp. 125–132.

[9] J. Lotspiech, U. Kohl, and M. A. Kaplan, “Cryptographic containers
and the digital library,” in Verläßliche IT-Systeme. Springer, 1997, pp.
33–48.

[10] O. Sibert, D. Bernstein, and D. V. Wie, “The DigiBox: A Self-Protecting
Container for Information Commerce,” in First USENIX Workshop on
Electronic Commerce, New York, USA, July 11-12, 1995, 1995.

16

