

Vol. 44

Sebastian Adam

Incorporating Software
Product Line Knowledge into
Requirements Processes

Editor-in-Chief: Prof. Dr. Dieter Rombach
Editorial Board: Prof. Dr. Frank Bomarius

Prof. Dr. Peter Liggesmeyer
Prof. Dr. Dieter Rombach

FraunhoFer Verlag

V
o

l. 44 Seb
astian

 A
d

am
In

co
rp

o
ratin

g
 So

ftw
are Pro

d
u

ct Lin
e K

n
o

w
led

g
e in

to
 R

eq
u

irem
en

ts Pro
cesses

Ph
D

 Th
eses in

 Exp
erim

en
tal So

ftw
are En

g
in

eerin
gPh

D
 T

h
es

es
 in

 E
xp

er
im

en
ta

l S
o

ft
w

ar
e

En
g

in
ee

ri
n

gSoftware Engineering has become one of the major foci of Computer
Science research in Kaiserslautern, Germany. Both the University of
Kaiserslautern‘s Computer Science Department and the Fraunhofer
Institute for Experimental Software Engineering (IESE) conduct re-
search that subscribes to the development of complex software ap-
plications based on engineering principles. This requires system and
process models for managing complexity, methods and techniques
for ensuring product and process quality, and scalable formal meth-
ods for modeling and simulating system behavior. To understand the
potential and limitations of these technologies, experiments need to
be conducted for quantitative and qualitative evaluation and improve-
ment. This line of software engineering research, which is based on
the experimental scientific paradigm, is referred to as ‘Experimental
Software Engineering‘.
In this series, we publish PhD theses from the Fraunhofer Institute for
Experimental Software Engineering (IESE) and from the Software En-
gineering Research Groups of the Computer Science Department at
the University of Kaiserslautern. PhD theses that originate elsewhere
can be included, if accepted by the Editorial Board.

Editor-in-Chief: Prof. Dr. Dieter Rombach
Executive Director of Fraunhofer IESE and Head of the AGSE Group
of the Computer Science Department, University of Kaiserslautern

Editorial Board Member: Prof. Dr. Peter Liggesmeyer
Scientific Director of Fraunhofer IESE and Head of the AGDE Group
of the Computer Science Department, University of Kaiserslautern

Editorial Board Member: Prof. Dr. Frank Bomarius
Deputy Director of Fraunhofer IESE and Professor for Computer Sci-
ence at the Department of Engineering, University of Applied Sci-
ences, Kaiserslautern

ag Software engineering

ISBN 978-3-8396-0514-1

9 7 8 3 8 3 9 6 0 5 1 4 1

�����������	
�����	��
��������������
�	
���	
�
�������		

���������������� �����������������������

��������������� �������������������������
��������������� �!!����"���
������������������������

Contact:
Fraunhofer-Institut für Experimentelles Software Engineering (IESE)
Fraunhofer-Platz 1
67663 Kaiserslautern
Telefon +49 631 6800 - 0
Fax +49 631 6800 - 1199
E-Mail info@iese.fraunhofer.de
www.iese.fraunhofer.de

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliografic data is available in the Internet at <http://dnb.d-nb.de>.
ISBN: 978-3-8396-0514-1

D 386

�������	
�����
������������������������

Printing and Bindery:
Mediendienstleistungen des
Fraunhofer-Informationszentrum Raum und Bau IRB, Stuttgart

Printed on acid-free and chlorine-free bleached paper.

© by FRAUNHOFER VERLAG, 2013
Fraunhofer Information-Centre for Regional Planning and Building Construction IRB
P.O. Box 80 04 69, D-70504 Stuttgart
Nobelstrasse 12, D-70569 Stuttgart
Phone +49 (0) 711 970-2500
Fax +49 (0) 711 970-2508
E-Mail verlag@fraunhofer.de
URL http://verlag.fraunhofer.de

All rights reserved; no part of this publication may be translated, reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photo copying, recording or
otherwise, without the written permission of the publisher.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. The quotation of those designations in whatever way does not imply the conclusion that
the use of those designations is legal without the consent of the owner
of the trademark.

Incorporating Software Product Line
Knowledge into Requirements Processes

Beim Fachbereich Informatik

der Technischen Universität Kaiserslautern

zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

von

Dipl.-Inf. Sebastian Adam

Fraunhofer Institut für Experimentelles Software Engineering (IESE)

Technische Universität Kaiserslautern

Berichterstatter: Prof. Dr. H. Dieter Rombach

 Prof. Dr. Klaus Schmid

Dekan: Prof. Dr. Arnd Poetzsch-Heffter

Tag der Wissenschaftlichen Aussprache: 19.12.2012

D 386

 Acknowledgment

iii

Acknowledgment

In the first place, I would like to thank my parents, who offered me an excellent educa-

tion from the early days of my life. Although they made many sacrifices during the entire

time, they never complained but always encouraged me on my way.

Next, I would like to thank all the people who supported, accompanied, and empowered

me in doing my PhD during the last four years.

I thank my supervisors Prof. Dr. Dr. h.c. Dieter Rombach and Prof. Dr. Klaus Schmid for

their continuous advice and guidance, and Prof. Dr. Stefan Deßloch for accepting to take

over the chair of the dissertation committee.

Many thanks also go to my department head Dr. Marcus Trapp and my division head Dr.

Jörg Dörr for giving me fruitful feedback all the time. In this regard, I also thank Dr. Chris-

tian Webel for allowing me to do research in “his” large research projects ADiWa and

EMERGENT, and Dr. Dirk Muthig, who helped me in shaping my topic in 2008.

I would also like to thank all the other people at Fraunhofer IESE who made it possible for

me to work in such an inspiring, lively environment. In particular, I would like to thank

the people from the (former) requirements engineering group, namely Anne Heß, Nor-

man Riegel, Özgür Ünalan, and Michael Eisenbarth, who became friends rather than just

colleagues in the last years. The same holds true for my long-term student research assis-

tant Lena Karjalajnen.

Many thanks also go to all the other colleagues and students, especially those who sup-

ported me in my empirical study or in shaping my conceptual model. In this regard, I

would like to highlight Dr. Ralf Carbon, Dr. Matthias Naab, Dr. Andreas Jedlitschka, Dr.

Martin Becker and Jessica Jung for their advice. Furthermore, I would like to thank Mi-

chael Ehresmann from Insiders Technologies, who allowed me to conduct two case stud-

ies in his organization and who was a likeable contact right from the early days of my

work at Fraunhofer IESE.

For their support during my defense preparation, I thank again Dr. Jörg Dörr, Dr. Marcus

Trapp, Dr. Matthias Naab, and Dr. Jens Knodel. Further thanks go to Stephan Thiel and

Sonnhild Namingha for supporting me in publishing this thesis.

Finally, I would like to thank all the people in my private life who reminded me that there

is more to life than just research and work (even though not in the last months before

submission). In particular, I would like to thank my brother Philipp and all my friends from

home who accompanied me in the past, such as Stephan, Bianca, Jenni, Marc, Tina,

Silke, Carsten, Stefan, Patricia, Uwe, Manuela, and Jasmin.

 Abstract

v

Abstract

Almost every information system (IS) is nowadays assembled from existing assets instead

of being developed from scratch [SLS+09]. However, developing customer-specific sys-

tems with reuse in so-called application engineering (AE) projects is often less efficient

than expected [DSB05]. One important reason is that state of the art reuse approaches

are very inflexible when they have to cope with unforeseen requirements [PKG+08]. The

elicitation and negotiation of such requirements is not systematically supported yet

[ORR+09], and it heavily relies on experts to assure that these requirements are compati-

ble with the constraints and capabilities of the given reuse assets. In many cases, a tight

fit between requirements and reuse capabilities can therefore either not be achieved at

all or takes too much time, which reduces the overall development efficiency. Unfortu-

nately, approaches that solve this problem in a satisfactorily way do not exist yet.

To cope with this challenge, this thesis aims at improving the effectiveness of elicitation

by providing requirements engineers with better guidance on how to reconcile require-

ments with the capabilities and constraints of a reuse asset base. More precisely, re-

quirements engineers are systematically guided through the elicitation process, and made

aware of the reuse characteristics they have to consider there. As a result, requirements

that are hard to satisfy can be detected directly during elicitation sessions, and do there-

fore not need to be re-negotiated and reworked in tedious iterations.

However, making people aware of reuse characteristics is not easy, as communicating all

capabilities in terms of variability models (as commonly used) is hard due to the complexi-

ty of industrial reuse asset bases [RGD09] [ORR+09]. The unsolved, scientific problem to

be addressed by this thesis therefore deals with the question how knowledge about the

reuse asset base of a software product line (SPL) can be systematically extracted, and

incorporated into application engineering requirements (ARE) processes and supporting

artifacts. The computer science contribution of this work therefore comprises an algo-

rithmic, tool-supported method that guides the identification and translation of reuse

characteristics into suitable elicitation instructions. Hence, the thesis approach prescribes

different steps for the systematic analysis of a given SPL and the definition of correspond-

ing ARE processes. To make this happen, the approach is based on a conceptual model

that expresses the relationships between SPLs and ARE processes, as well as on an issue

model and an ARE instructions template that both formalize RE best practices.

While the feasibility of the approach was successfully tested in a case study, the ad-

vantages of elicitation instructions defined according to the thesis approach were shown

in a controlled experiment with students. Hence, an incorporation of reuse knowledge

into ARE processes is basically possible, and the usage of these processes during ARE can

increase the elicitation effectiveness significantly.

This dissertation describes the motivation, development, and evaluation of the depicted

approach as well as its components and related work. Finally, it gives an outlook on fu-

ture work that is worth to be done according to our experience made.

 Table of Contents

vii

Table of Contents

Acknowledgment .. iii
Abstract ... v
List of Figures .. xi
List of Tables ... xiii

1 Introduction ..1
1.1 Context ..1
1.2 Problem Statement ..4
1.3 Thesis Contribution ..8

1.3.1 Research Questions ... 10
1.3.2 Solution Idea ... 10
1.3.3 Research Objectives .. 12
1.3.4 Scientific and Practical Benefits 14
1.3.5 Assumptions and Limitations .. 15

1.4 Research Approach ... 17
1.5 Outline .. 19
1.6 Summary... 20

2 Foundation ... 21
2.1 Research Approach ... 22
2.2 Application Engineering .. 23
2.3 Reuse Asset Base ... 25

2.3.1 Product Line Architecture .. 25
2.3.2 Flexibility Classes and Assumptions 28

2.4 Development Strategy ... 30
2.4.1 Development Process .. 31
2.4.2 Decisions and Information Needs 33

2.5 RE Best Practices ... 35
2.6 Requirements in Application Engineering 37

2.6.1 Relevant Requirements.. 37
2.6.2 Anticipated Requirements ... 39
2.6.3 Elicited Requirements .. 40

2.7 Requirements (ARE) Process .. 42
2.8 Summary... 44

3 Related Work ... 47
3.1 Research Approach ... 47
3.2 Application Requirements Engineering 48

3.2.1 SARE ... 50
3.2.2 RED-PL .. 51
3.2.3 DOPLER-UCon .. 52
3.2.4 Assessment Summary ... 53

Table of Contents

viii

3.3 Requirements Process Tailoring ... 54
3.3.1 REPKB ... 55
3.3.2 REPI-IM ... 56
3.3.3 EVECR ... 57
3.3.4 DOPLER ... 58
3.3.5 MDE ... 59
3.3.6 Assessment Summary ... 59

3.4 Elicitation Instructions ... 60
3.5 Summary ... 61

4 A Template for ARE Instructions .. 65
4.1 Research Approach ... 66
4.2 Template Overview.. 67
4.3 ARE Instructions Template in Detail ... 68

4.3.1 Basic Structure .. 69
4.3.2 Implemented Elicitation Strategy 71
4.3.3 Single Instructions ... 77
4.3.4 Hints ... 86

4.4 Summary ... 91

5 An Issue Model for Information Systems 93
5.1 Research Approach ... 94
5.2 Model Overview .. 96
5.3 Model View in Detail ... 97

5.3.1 The Wider Environment .. 98
5.3.2 The Containing System View... 99
5.3.3 The System View ... 102
5.3.4 The Kit View ... 105

5.4 Summary ... 106

6 Tailoring ARE Instructions based on an SPL 109
6.1 Research Approach ... 109
6.2 Tailoring Overview... 111
6.3 Tailoring Steps in Detail ... 113

6.3.1 Characterization of Software Product Line 113
6.3.2 Identification of Architectural Element Types 115
6.3.3 Identification of Architectural Elements 117
6.3.4 Characterization of Supported Flexibility Classes 120
6.3.5 Identification of Flexibility Assumptions 124
6.3.6 Characterization of Development Phases 126
6.3.7 Identification of Development Activities 128
6.3.8 Elaboration of Decisions and Information Needs 132
6.3.9 Determination of Relevant Issues 136
6.3.10 Determination of Conceptual Relationships 140
6.3.11 Definition of ARE Elicitation Instructions 142

6.4 Summary ... 146

7 Evaluation .. 149

 Table of Contents

ix

7.1 Research Approach ... 149
7.2 Controlled Experiment .. 152

7.2.1 Goals and Hypotheses... 152
7.2.2 Study Design and Setup .. 154
7.2.3 Analysis .. 160
7.2.4 Threats to Validity ... 166
7.2.5 Interpretation and Implications 169

7.3 Case Study .. 170
7.3.1 Goals and Hypotheses... 170
7.3.2 Study Setup .. 171
7.3.3 Analysis .. 174
7.3.4 Threats to Validity ... 178
7.3.5 Interpretation and Implications 179

7.4 Summary... 180

8 Summary and Future Work .. 183
8.1 Contributions .. 183

8.1.1 Foundation ... 183
8.1.2 Methodological Approaches 184
8.1.3 Engineering Support ... 185
8.1.4 Empirical Evaluation .. 185

8.2 Open Issues and Future Work ... 186
8.2.1 Foundation ... 186
8.2.2 Methodological Approaches 187
8.2.3 Engineering Support ... 188
8.2.4 Empirical Evaluation .. 189

References ... 191

Appendix ... 199
Appendix A: Review Protocols .. 200
Appendix B: Requirements on ARE Instructions 203
Appendix C: ARE Instructions Generation Algorithm (VB Code) 204
Appendix D: Issue Section Generation Algorithm (Pseudo Code) .. 223
Appendix E: Experiment Material .. 225
Appendix F: Experiment Results .. 251
Appendix G: Case Study Material ... 259
Appendix H: Case Study Results ... 261
Appendix I: Project Analysis (State of Practice) 264
Appendix J: Calculation of Expected Improvements 266
Appendix K: Initial Issue List ... 267

Lebenslauf ... 269

List of Figures

xi

List of Figures

Figure 1. Big picture of product line engineering [Mut02] 2
Figure 2. Different distributions of requirements in an SPL 3
Figure 3. Typical application engineering phases [DSB05] 5
Figure 4. Low elicitation effectiveness in AE 6
Figure 5. Overall solution idea of thesis 12
Figure 6. Intended improvements in application engineering 15
Figure 7. Research V-Model for this this 20
Figure 8. Inputs and outputs of the thesis approach 21
Figure 9. Research approach for the foundation 23
Figure 10. High-level overview of application engineering 23
Figure 11. Core elements of a product line architecture 26
Figure 12. Core elements of a development process 31
Figure 13. Basic terms of requirements engineering 36
Figure 14. Origin of realizable and relevant requirements 38
Figure 15. Typical types of elicited requirements 41
Figure 16. Structure of requirements process and its interplay 43
Figure 17. Research approach for related work review 48
Figure 18. ARE instructions template within thesis approach 65
Figure 19. Research approach for ARE instruction template 66
Figure 20. Structure and dependency of elicitation instructions 69
Figure 21. Example of an issue section 71
Figure 22. Taxonomy of single (elicitation) instructions 78
Figure 23. Taxonomy of (elicitation) hints 86
Figure 24. Issue model within this approach 93
Figure 25. Research approach for issue model 95
Figure 26. Example of “Issue”, issue classes, and issues 96
Figure 27. The onion model according to [Ale05] 97
Figure 28. Wider environment view 98
Figure 29. Containing system view 100
Figure 30. System view 103
Figure 31. Kit view 106
Figure 32. ARE tailoring method within thesis approach 109
Figure 33. Research approach for tailoring approach 110
Figure 34. Activities and artifacts of the tailoring approach 112
Figure 35. Foundation of tailoring step 1 113
Figure 36. Screenshot of tailoring tool with example (step 1) 114
Figure 37. Foundation of tailoring step 2 115
Figure 38. Screenshot of tailoring tool with example (step 2) 117
Figure 39. Foundation of tailoring step 3 118
Figure 40. Screenshot of tailoring tool with example (step 3) 119
Figure 41. Foundation of tailoring step 4 121
Figure 42. Screenshot of tailoring tool with example (step 4) 123

List of Figures

xii

Figure 43. Foundation of tailoring step 5 124
Figure 44. Screenshot of tailoring tool with example (step 5) 126
Figure 45. Foundation of tailoring step 6 127
Figure 46. Screenshot of tailoring tool with example (step 6) 128
Figure 47. Foundation of tailoring step 7 129
Figure 48. Screenshot of tailoring tool with example (step 7) 132
Figure 49. Foundation of tailoring step 8 133
Figure 50. Screenshot of tailoring tool with example (step 8) 136
Figure 51. Foundation of tailoring step 9 137
Figure 52. Screenshot of tailoring tool with example (step 9) 139
Figure 53. Foundation of tailoring step 10 140
Figure 54. Screenshot of tailoring tool with example (step 10) 142
Figure 55. Foundation of tailoring step 11 143
Figure 56. Screenshot of tailoring tool with example (step 11) 146
Figure 57. Goal tree of the thesis contributions 149
Figure 58. Research approach for empirical studies 151
Figure 59. Questions and hypotheses in controlled experiment 154
Figure 60. Overall setting of experiment 155
Figure 61. Impression from an experiment session 159
Figure 62. Detailed procedure and data collection 160
Figure 63. Overall setting of case study 172

 List of Tables

xiii

List of Tables

Table 1. Assessment summary of existing ARE approaches 53
Table 2. Assessment summary of existing tailoring approaches 60
Table 3. Artifacts to be considered 77
Table 4. Assignment of participants to groups 156
Table 5. Statistical results of experiment 161
Table 6. Subjective assessment results from experiment 164
Table 7. Results of case study 175
Table 8. Subjective assessment results from case study 177
Table 9. Summary of evaluation results 181

 Introduction

 1

1 Introduction

“One must have learned a lot to know how to ask for
something that one does not know.”

Jean-Jacques Rousseau

This chapter motivates the context and topic of this thesis, and explains

its contributions and benefits. The chapter also presents the research ap-

proach as well as an outline of the remaining chapters.

1.1 Context

As a key concept for streamlining software development, reuse has re-

ceived much attention in recent years. In general, “reuse is a develop-
ment approach by which a system can be built from existing compo-
nents already described, carried out, tested and accepted in past experi-
ence” [GRT00]. In contrast to custom development, in which a system is

developed from scratch, reuse-based development therefore promises

higher productivity and shorter time to market. Especially in the area of

information systems (IS), which highly relies on these quality aspects, al-

most every system is therefore built in a reuse-based manner today

[SLS+09]. This holds mainly true for organizations that are focused on a

specific domain, as the reusability of existing artifacts is potentially high

in such a context [LJB98].

Among other approaches, software product lines (SPLs) are one promis-

ing concept for software reuse [DSB05], and are often considered the

most strategic and advanced form with the highest return on software

development investment [Mut02].

Definition – Software Product Line (SPL)

“A software product line is a set of software-intensive systems that share a
common, managed set of features satisfying the specific needs of a particular
market segment and that are developed from a common set of core assets in a
prescribed way.” [SEI08] [CN01]

Context

2

To make SPLs work, an important aspect is the separation of the phase

of domain engineering or family engineering (DE/FE) from the phase of

application engineering (AE) as shown in Figure 1.

Figure 1. Big picture of product line engineering [Mut02]

While the DE/FE phase aims at developing for reuse (i.e., at building up

an SPL’s reuse asset base addressing a certain scope), the AE phase aims

at developing concrete systems within the defined scope by reusing

these assets. Thus, we define AE according to Halmans and Pohl [HP03]

as follows:

Definition – Application Engineering (AE)

Application engineering is the phase of product line engineering in which indi-
vidual, customer-specific software products are developed by selecting and con-
figuring shared assets from an SPL’s reuse asset base.

However, as the customization possibilities during AE are restricted due

to several architectural decisions already made during DE/FE, the actual

development benefits during AE strongly depend on the degree to which

customer requirements are already addressed by the existing assets. In

this thesis, the requirements that may occur during an AE project are

therefore classified into explicitly anticipated, implicitly anticipated, and

non-anticipated requirements according to their anticipation during the

DE/FE phase1. While explicitly anticipated requirements are inexpensive

to satisfy because they are implemented as common or variable features

within the SPL already, implicitly anticipated requirements typically imply

additional development costs, as their details are not known upfront.

However, as their core characteristics have already been foreseen during

DE/FE, they are known to be basically feasible. In contrast, for non-

anticipated requirements, it is typically not possible to estimate their fea-

sibility or costs upfront, as neither their core characteristics nor their de-

tails were taken into consideration before the start of an AE project. In

1 As the definitions of these terms are based on other terms, we will formally define them in chapter 2.

Reuse Asset Base

Domain or Family Engineering

Application Engineering
F
e
e
d

b
a
ck

Scoping

Application Engineering
Application Engineering

 Introduction

 3

many cases, these requirements therefore do not fit the given SPL archi-

tecture and are very expensive or impossible to satisfy.

In each reuse-based development, all three types of requirements may

basically occur during an AE project, as no software system can typically

be developed by reusing already existing assets only [HPS08]. Of course,

the actual distribution of these requirements varies dramatically depend-

ing on the domain that is addressed as well as on the maturity of the re-

use asset base.

In Figure 2, we therefore introduce two classes of SPLs that result from

different distributions of customer requirements. The distribution on the

left side of the figure shows an (traditional) SPL in which most require-

ments that occur during its AE projects are explicitly anticipated. In this

case, the major part of a system can be implemented by configuration

rather than actual development only. We therefore call these SPLs con-

figurable SPLs. Most closed or embedded system SPLs belong to this

class.

Figure 2. Different distributions of requirements in an SPL

However, besides configurable SPLs, there are also SPLs in which the de-

gree of explicitly anticipated requirements is limited (see distribution on

the right side of the figure). In this class, the SPL architecture needs to be

flexible in order to also enable the efficient realization of many still un-

known requirements. We therefore call such SPLs flexible SPLs.

Definition – Flexible Software Product Line

A flexible software product line is a software product line for which it is either
not possible or not economic during DE/FE to explicitly anticipate most require-
ments that may occur in AE projects.

Even though such SPLs can basically occur in each system category, in-

formation system SPLs, in particular, belong to this class, as their devel-

opment has to cope with specific challenges that are not as prominent in

other system classes such as embedded systems. Two examples shall

serve to illustrate this fact.

Explicitly anticipated
(within predefined features)

Implicitly anticipated
(within architecture‘s flexibility)

Non-anticipated

to be elicited
from scratch

to be elicited
from scratch

configurable
SPL

flexible
SPL

Problem Statement

4

 Information system customers typically have very specific busi-

ness processes that have to be supported by software in order

to enable them to stand out from the competition. Due to the

combinatory explosion of potential process variants to be sup-

ported, explicitly anticipating them is not feasible. Hence, soft-

ware vendors can only anticipate them implicitly without defin-

ing them in detail.

 Information system customers often have a multitude of legacy

and proprietary systems with which a novel system should be in-

tegrated. In many cases, however, neither the existence of these

systems nor their detailed characteristics can be anticipated dur-

ing DE/FE. Hence, software vendors can just define basic adapter

types, but the implementation details cannot be determined be-

fore a detailed requirements analysis has taken place.

Thus, even though a multitude of common and configurable standard

functionalities can already be provided by an SPL’s reuse asset base,

many specific needs have to be addressed by additional development

during AE. Even in a mature medium-sized software organization, for in-

stance, we found that only about 60% of customer requirements are

explicitly known before an AE project starts (see Appendix I). Hence, a

complete scoping or domain-, respectively family, analysis is not feasible

here.

The next subsection introduces the practical problem that currently exists

during AE in such flexible SPLs in the area of information systems (IS).

1.2 Problem Statement

While much research effort has been spent on how to build up SPLs, the

AE phase has not received sufficient attention yet [PKG+08] [RGD07]

[RD07]. Thus, even though SPLs have been recognized as a key concept

for gaining a competitive advantage in development, building new appli-

cations based on an SPL is a still time-consuming and expensive task and

often not as easy as proclaimed [DSB05]. This holds especially true for

flexible SPLs in the IS area, which are in the focus of this thesis.

In order to enable a better understanding of the origin of this low effi-

ciency, the state of the art in AE is described below. Even if a commonly

accepted AE method is still missing [RGD09], many applied approaches

share the ideas of the generic process model described by Deelstra et al.

[DSB05]. This approach distinguishes an initial configuration phase and a

subsequent (tuning) iteration phase.

 Introduction

 5

In the initial configuration phase (see left side of Figure 3), a first version

of a system is built based on the already existing reuse assets. For that

purpose, the explicitly anticipated requirements of the SPL are instantiat-

ed with the customer by using variability models (VM), decision models,

or corresponding questionnaires. An example is a requirement concern-

ing the database to be connected. This requirement can typically be pre-

defined in such models, and is therefore easy to elicit and negotiate.

Thus, as these models make explicit what is already implemented, they

allow customers to state directly which predefined feature they would

like to have. A significant fit can therefore be achieved quite fast (see left

side of Figure 4).

Definition – Fit

The fit (or, more precisely, the realization fit) between customer requirements
and an SPL is the percentage of requirements within a set of elicited require-
ments that can be economically satisfied with this SPL.

However, the more implicitly anticipated or even non-anticipated re-

quirements must also be addressed in order to satisfy a customer, the

more tuning iterations with “from scratch” elicitation and development

are also needed [DSB05] [ORR+09] (see middle of Figure 3).

Figure 3. Typical application engineering phases [DSB05]

Unfortunately, existing SPL approaches are rather suited for configurable

SPLs, and therefore support only the configuration phase explicitly. Espe-

cially when they are to be used for unforeseen, customer-specific re-

quirements, they are very inflexible and insufficient [PKG+08]. Hence,

systematic alignment of such requirements with available assets is not

supported yet [ORR+09] [DS07] [GP07], leading to the situation that a

discussion of customer requirements during the tuning iterations bears

significant risks. Especially as selecting an SPL also means accepting a

certain set of (architectural) constraints, it becomes apparent that not all

customer requirements can be satisfied as initially stated. Rather, trade-

Application Engineering
Application Engineering

Application Engineering

System Development

Reuse Asset Base

Initial Configuration

Additional Development

Tuning
Iterations

Application Requirements Engineering (ARE)

Application
Need for
Application

Domain or Family Engineering

Problem Statement

6

offs between ideal requirements and rapid development must be made

in order to retain the profitability of the SPL [ORR+09] and to achieve the

best possible fit (which is usually lower than 100% (see Figure 4)).

However, achieving this best possible fit is hard because information

about the feasibility and the costs of implicitly anticipated and non-

anticipated requirements is neither formalized nor available in current

requirements engineering (RE) or SPL approaches (see related work in

chapter 3). An example is a business process with specific functional and

non-functional properties. In this case, information about its feasibility

cannot be represented in decision models or variability models upfront

because it is (as mentioned above) not possible to describe each poten-

tial process as a variant.

Figure 4. Low elicitation effectiveness in AE

Requirements elicitation and negotiation therefore often become an er-

ror-prone and project-delaying task, and still relies on SPL experts (e.g.,

architects) to predict the impact of requirements that can only be real-

ized with additional development [ORR+09]. In many IS projects, cus-

tomers are therefore allowed to state any requirements without major

restrictions during elicitation. As the resulting requirements may then

easily contravene the given architectural constraints or the development

needs, it is then often up to the AE team “to bridge the gap between
requirements and implementations” [BBG+00]. This leads to either a de-

creased degree of reuse or tedious rework, respectively re-negotiations.

The following example should illustrate this:

Motivating Example – Elicitation according to state of the art

A requirements engineer from an organization that develops customer-specific
information systems based on a comprehensive business process management
suite (BPMS) is eliciting requirements with stakeholders from a customer compa-
ny. For this purpose, the requirements engineer uses a questionnaire derived
from the variability model of the BPMS.
While the requirements concerning other variation points have already been

t

% Fit

100

Best possible fit

Achieved fit

Abortion point

Initial
configuration

phase

(Tuning)
iteration

phase

 Introduction

 7

elicited in previous elicitation sessions, the requirements engineer is now inter-
viewing the stakeholders with regard to the user administration system via which
the roles and rights should be imported in the BPMS (1). Based on the supported
variants defined in the variability model, he asks the stakeholders whether the
BPMS should import user data from Active Directory or another LDAP system.
The stakeholders confirm that they would like to import user data from their
Active Directory, but that it is also required that the business roles can additional-
ly be important from the ERP system. The requirements engineer looks at the
description of the BPMS, as this case is not covered in his questionnaire. The only
information he finds is that the SPL provides adapters to SAP via which certain
data can be imported, and he asks whether such a system is in place. The stake-
holders explain that they do not use SAP but a proprietary system, from which
data can only be manually exported as CSV files. The requirements engineer
informs the stakeholders that such an export mechanism should be feasible, as,
to his knowledge, CSV is a trivial data format with which the BPMS should be
able to cope.

However, when the requirements engineer presents the requirements elicited in
the last elicitation session to the development team, the SPL expert is not satis-
fied with the elicitation results at all (2). He informs the requirements engineer
that the BPMS does not include a mechanism to parse CSV files, because an
explicit design decision had been that XML should be the only exchange format
to be used. Furthermore, he tells that it is very costly to define mapping mecha-
nisms to cope with proprietary data structures and that it is complicate to com-
bine user data from different sources. The SPL expert therefore asks the require-
ments engineer whether it would be possible to reject or at least re-negotiate
this requirement, as otherwise 75.000 € extra costs and three months delivery
delay would be probably needed. The requirements engineer realizes that he did
not have the information about such constraints and that the information pro-
vided in the product description or the questionnaire were not sufficient in this
regard. Then, he schedules a new elicitation sessions with the stakeholders, in
which requirements concerning the user data management are re-negotiated
before requirements regarding the next aspect can be elicited (3).

As it can be seen in the example, the progress made towards the best

possible fit often decreases significantly during the iteration phase in

which customer-specific requirements are addressed (see right side of

Figure 4). O’Leary et al. [ORR+09] therefore propose minimizing devia-

tions from the explicitly anticipated requirements by convincing custom-

ers that an “80% solution” will also do. However, in domains that are

served by rather flexible SPLs, the missing 20% typically include those

requirements that are indispensable for realizing a customer’s competi-

tive advantage. Thus, avoiding them, as proposed by O’Leary et al., is

not a suitable option in this context, which also explains why (traditional)

configurable SPLs are not applicable here.

t

Requirements
Engineer,

Stakeholders
Requirements Engineer,

Development Team

Requirements
Engineer,

Stakeholders
Requirements Engineer,

Development Team

1) Elicitation 2) Feasibility Assessment 3) Re-Negotiation &
Elicitation

4) Feasibility Assessment

….

Thesis Contribution

8

When summarizing these findings, it becomes apparent that the non-

aligned handling of requirements in AE is a major reason why the actual

development efficiency is often lower than expected, even though it has

been recognized that the success of reuse mainly depends on how re-

quirements are treated [LLC04]. Especially when a high number of cus-

tomer requirements are implicitly anticipated or even non-anticipated,

the achievement of the best possible fit between customer requirements

and SPL characteristics during requirements elicitation in AE is either not

possible at all (i.e., the AE respectively the iteration phase ends before

the best possible fit is achieved) or takes too much time.

In this regard, the aforementioned project analysis at a successful medi-

um-sized software organization has shown that, on average, 28% of all

customer meetings in an AE project are only needed there because re-

quirements have to be renegotiated or clarified again (see Appendix I).

Thus, we define the practical problem to be addressed as follows:

Practical Problem

The practical problem to be addressed by this thesis is the low elicitation effec-
tiveness and, as a result, the slow achievement of the best possible fit between
customer requirements and SPL characteristics during an AE project in the con-
text of flexible SPLs.

1.3 Thesis Contribution

The overall goal of this thesis is to shorten the time to market in AE pro-

jects by achieving the best possible fit between customer requirements

and a given SPL faster.

To solve the practical problem mentioned above, the idea is to improve

the effectiveness of elicitation through better alignment of customer re-

quirements with SPL characteristics already during the elicitation ses-

sions. This means that the actual needs of the customers are used as a

starting point for requirements elicitation (instead of using predefined,

explicitly anticipated requirements, variability models, etc.), and that the

SPL capabilities and constraints are continuously taken into consideration

when these requirements are discussed. Only when these SPL character-

istics are sufficiently considered during the AE requirements phase does

the chance increase that the requirements will fit the SPL better, and will

not need to be reworked in tedious iterations. In particular, requirements

that are hard to satisfy can be detected and negotiated much earlier,

which reduces the number of costly rework cycles.

The practical contribution of this thesis is therefore the provision of

knowledge about a given SPL to AE requirements engineers in order to

guide their elicitation work towards requirements that can, to the great-

 Introduction

 9

est extent, be satisfied with a given SPL. Thus, by providing requirements

engineers with SPL knowledge, greater progress towards the best possi-

ble fit can be made during a specific elicitation session (i.e., higher elici-

tation effectiveness). A modification of the aforementioned example

should illustrate this:

Motivating Example – Elicitation according to the thesis approach

A requirements engineer from an organization that develops customer-specific
information systems based on a comprehensive business process management
suite (BPMS) is eliciting requirements with stakeholders from a customer compa-
ny. For this purpose, the requirements engineer uses a questionnaire according
to the thesis approach.
While the requirements concerning other topics of interest have already been
elicited in previous elicitation sessions, the requirements engineer is now inter-
viewing the stakeholders with regard to the user administration system from
which the roles and rights should be imported in the BPMS (1).
Based on his questionnaire, he asks the stakeholders which systems for user
management are currently in place and should be used for managing the users
of the BPMS. The stakeholders state that they would like to import user data
from their Active Directory, but that it is also required that the business roles can
additionally be important from the ERP system. Based on the information provid-
ed in his questionnaire, the requirements engineer then informs the stakeholders
that the connection of the Active Directory is supported by default, but that he
needs additional information regarding the ERP system. The stakeholders explain
that they do not use SAP but a proprietary system, from which data can only be
manually exported as CSV files.

The requirements engineer considers the information provided in the question-
naire regarding adapters to other systems. He finds the information that it is very
complicated to connect the customer’s ERP system because the BPMS only sup-
ports a XML exchange, and because the data mapping with proprietary systems
is very costly in general. The stakeholders accept his explanation and state that
an interface to Active Directory would be sufficient in a first step. Thus, the re-
quirement to connect the BPMS with the ERP system is rejected directly during
the elicitation session. The requirements engineer then proceeds with the elicita-
tion of a next class of requirements (2).

Based on this example, it becomes apparent that the roles that will bene-

fit from the results of this thesis are all the people involved in AE; at least

the AE requirements engineers, who are responsible for the elicitation of

customer requirements, and the SPL experts, whose explicit involvement

is needed today to make feasibility checks. This means that the SPL ex-

perts should not need to be contacted each time a customer states a re-

quirement that has not been explicitly defined upfront. Rather, the re-

t

Requirements
Engineer,

Stakeholders

Requirements
Engineer,

Stakeholders

1) Elicitation
& Negotiation

….

Requirements
Engineer,

Stakeholders

2) Elicitation
& Negotiation

3) Elicitation
& Negotiation

Thesis Contribution

10

quirements engineers should be informed well enough to make such an

assessment by themselves in most cases.

1.3.1 Research Questions

Making AE requirements engineers aware of SPL characteristics in order

to enable more effective elicitation is not an easy task. On the one hand,

communicating and representing all capabilities in terms of variability

models or decision models (as commonly used) is hard due to the com-

plexity of industrial SPLs [RGD09] [ORR+09]. On the other hand, if the

degree of explicitly anticipated requirements is limited (as is the case in

flexible SPLs in the IS area), a corresponding formalization is uneconomi-

cal or even impossible [DSB05].

The scientific problem to be solved by this thesis therefore deals with the

challenge of enabling requirements engineers to use knowledge about a

given SPL for guiding the elicitation and negotiation of customer re-

quirements during AE in flexible SPLs more effectively.

Thus, this thesis aims at answering the following research questions:

Research Question 1 – Extraction

How can knowledge about an SPL be systematically extracted and incorporated
into application engineering requirements (ARE) processes?

Research Question 2 – Representation

How can knowledge about an SPL be represented appropriately to AE require-
ments engineers in order to improve their elicitation and negotiation activities?

To answer these research questions, this thesis proposes the following

solution described in the next subsection.

1.3.2 Solution Idea

From a scientific point of view, this thesis aims at providing a tool-

supported method for the systematic and appropriate incorporation of

knowledge about an SPL into a state of the art RE process, respectively

supporting instructions.

To achieve this aim, an SPL built during DE/FE must be analyzed system-

atically. The computer science contribution of this thesis is therefore the

algorithmic identification and translation of knowledge about an SPL in-

to suitable application requirements engineering (ARE) instructions. For

this purpose, the tailoring method systematically guides method tailors

(i.e., persons that are responsible for defining methods and processes in

 Introduction

 11

an SPL organization) in analyzing an SPL’s reuse asset base, the selected

AE development strategy, and RE best practices for the addressed do-

main together with SPL experts. Based on this extracted knowledge, pre-

cise ARE instructions, which implement an algorithmic elicitation ap-

proach, are then automatically generated. In Figure 5, the overall solu-

tion idea is depicted graphically.

Regarding the tailoring inputs, the reuse asset base (including the archi-

tecture) is needed for supporting SPL experts in identifying the existing

SPL capabilities as well as the constraints of the underlying architecture.

The development strategy is additionally used for allowing the alignment

of the resulting ARE process with the intended development approach,

both from a thematic and from a chronological point of view. Finally, RE

best practices are taken as input for assuring that the ARE instructions

adhere to the state of the art.

The thesis approach aims at identifying and representing SPL characteris-

tics in a descriptive (i.e., constraint-based) way instead of reengineering

all requirements that are potentially feasible with an SPL. According to

the three alternatives for reusing domain-specific knowledge introduced

by Muthig [Mut02], we therefore propose a process-oriented rather than

product-oriented approach to express knowledge about an SPL. This

means that mainly knowledge about what the ARE process should look

like is reused rather than knowledge about the requirements and fea-

tures that have been explicitly defined during DE/FE. Hence, instead of

discussing feature models or decision models with a customer during an

elicitation session, we therefore propose a rather “traditional” require-

ments process, in which explicitly anticipated requirements, implicitly an-

ticipated requirements and non-anticipated requirements are elicited and

negotiated in an integrated manner. This notion is based on the work of

Guelfi and Perrouin [GP07], who propose that AE should not only rely

“on a fully dictated decision model”. Of course, the elicitation process

still has to be guided systematically based on the capabilities, constraints,

and information needs of a given SPL in order to achieve a good fit.

At this point, it is important to highlight that the approach presented in

this thesis has an influence on both the DE/FE phase and on the AE

phase. With regard to the target audience, the thesis therefore addresses

two different stakeholder groups (see Figure 5). During AE, the require-

ments engineers, who are responsible for the effective reconciliation of

requirements with SPL characteristics, are supported by means of ARE in-

structions as mentioned above. During DE/FE, however, the method tai-

lors, who are responsible for the creation of these instructions, are sup-

ported, as they get guidance on how to do this algorithmically. The sci-

entific contribution of this work can therefore be seen in the area of

DE/FE, while its practical implications are concerned with AE.

Thesis Contribution

12

Figure 5. Overall solution idea of thesis

In this regard, the tailoring approach should not be considered as an al-

ternative to any existing SPL approach, but rather as an enhancement to

bring more guidance into ARE. In particular, the approach does not re-

place the scoping or domain analysis. Rather, due to the aforementioned

problem of limited anticipation in the area of flexible SPLs, the approach

tries to analyze what an SPL is able to support beyond the scope of ex-

plicitly anticipated features. Of course, as this SPL analysis requires a

deep understanding of what an SPL looks like, it can only be done at the

logical end of DE/FE (see Figure 5).

1.3.3 Research Objectives

In order to realize the solution concept, this thesis deals with the follow-

ing research objectives, which are the subject of the remaining chapters.

These objectives are classified into foundations and models, methodo-

logical approaches, engineering support, and empirical evaluation.

Foundations and Models

Foundations and models are used to explain the conceptual world on

which the solution is built. In this thesis, two research objectives are con-

cerned with the foundations.

 Conceptual ARE Model. This model provides the foundation for the

entire thesis work and explains how ARE processes are conceptually

related to an underlying SPL. By knowing these dependencies, we

can easily define which requirements have to be delivered by ARE in

order to instantiate an SPL effectively and efficiently.

 Issue Model. This model describes RE best practices in terms of the

issues to be discussed during elicitation in a certain domain. In the

context of this thesis, the issue model has been specialized for the IS

area.

Reuse Asset Base

ARE
Instructions
Document

ARE Tailoring

Development
Strategy

ARE Application
Elicited

Requirements

DE / FE AE

Method Tailor Requirements Engineer

ARE Instructions
Template

Is sue Model

Artifact

Tailoring
Tool

SPL Artifacts

Best Practice Artifacts

Legend: Process

SPL Expert

Database

 Introduction

 13

Methodological Approaches

Methodological approaches describe the utilization of the foundations in

order to answer the research questions. In this thesis, two objectives are

concerned with methodological approaches.

 ARE Instructions Template. This template provides a generic struc-

ture as well as a set of predefined text blocks for representing best

practices and important knowledge about an SPL to AE require-

ments engineers by means of algorithmic elicitation instructions.

 Tailoring Method. This method describes a clear sequence of algo-

rithmic activities to be carried out by method tailors during DE/FE in

order to derive ARE instructions from a given SPL. For this purpose,

the tailoring method makes use of the conceptual ARE model, the

best practice model, as well as the ARE instruction template.

Engineering Support

Engineering support aims at realizing the methodological approaches in

a way that enables their efficient use in practical settings. In this thesis,

one research objective is concerned with engineering support.

 Tailoring Tool. This tool (semi-)automates the execution of the tailor-

ing method by generating proposals for the results of different tai-

loring steps based on the results of a previous step. The main contri-

bution of the tool is the automatic creation of an ARE instructions

document based on the intermediate tailoring results.

Empirical Evaluation

Empirical evaluations are used to show the usefulness of the methodo-

logical approaches with regard to the research questions or the practical

problem. In this thesis, two research objectives are concerned with em-

pirical evaluations.

 Controlled Experiment. This study evaluates whether requirements

engineers using ARE instructions according to the methodological

approaches of this thesis are able to elicit requirements more effec-

tively than when using state of the art material.

 Case Study. This study evaluates the feasibility of the tailoring meth-

od in order to investigate whether ARE instructions can be effective-

ly defined based on a given SPL.

Thesis Contribution

14

1.3.4 Scientific and Practical Benefits

According to the aforementioned problems, research questions, and so-

lution idea, different benefits are expected for research and practice

when exploiting the results of this thesis (see Figure 7).

With regard to economic implications, which are probably the most im-

portant ones for justifying a dissertation in applied research, the thesis

aims to provide the following improvement:

Hypothesis 1 – Efficiency of Application Engineering

H1. An AE process using ARE instructions defined on the basis of the thesis ap-
proach has an at least 15% shorter time to market than an AE process using
state of the art instructions.

From an engineering point of view, this improvement should be made

possible by higher effectiveness in requirements elicitation. In this regard,

the thesis aims at achieving the following practical benefit:

Hypothesis 2 – Effectiveness of Elicitation

H2. ARE instructions defined based on the thesis approach enable requirements
engineers to achieve an at least 15% higher realization fit during an elicitation
session than when using other instructions.

Thus, when using the thesis approach, more requirements elicited during

an AE project will fit the SPL characteristics at a certain point in time

(e.g., the abortion point) than when using a state of the art approach2

(see Figure 6). As less rework (for either re-negotiations or costly imple-

mentations) is then needed, the overall efficiency of the AE phase in

terms of duration is expected to increase (see hypothesis 1).

Furthermore, knowing SPL characteristics and corresponding information

needs can also help to avoid both the unnecessary elicitation of require-

ments that are satisfied by default anyway (i.e., common features) and

the omission of requirements that must be known for instantiating the

SPL. Again, time and effort is expected to be saved. In Appendix J, the

calculation basis for the quantified hypotheses is shown.

2 In our study, we have combined a decision model approach according to PuLSE-I [BGM+00] with a top-down

elicitation approach according to TORE [PK04].

 Introduction

 15

Figure 6. Intended improvements in application engineering

However, in order to actually achieve this elicitation improvement, the

required knowledge must be made available to AE requirements engi-

neers. Thus, the incorporation of SPL knowledge into ARE instructions

must work effectively. The thesis therefore aims at providing the follow-

ing benefit:

Hypotheses 3 – Effectiveness of Tailoring

H3. An incorporation of SPL knowledge into ARE instructions is possible when
using the thesis approach, i.e., at least 80% of method tailors are able to suc-
cessfully create ARE instructions without major problems.

Finally, on the scientific level, the thesis clarifies the relationship between

SPLs and ARE processes, respectively corresponding instructions. To our

knowledge (see related work in chapter 3), such clarifications and expla-

nations have never been made before, which is why this thesis delivers a

novelty in this regard. However, a corresponding hypothesis is not for-

mulated, as this is demonstrated in a rather analytical way.

1.3.5 Assumptions and Limitations

The benefits mentioned above are not expected to be realized in every

AE context. This holds especially true for rather configurable SPLs that do

not need to cope with a multitude of implicitly anticipated or even non-

anticipated requirements. This thesis is therefore based on the following

assumptions, and intentionally accepts certain limitations:

1. High flexibility required. The SPLs to be addressed by this thesis are

characterized by a high degree of flexibility, i.e., the degree of ex-

plicitly anticipated requirements is limited due to technical or strate-

gic reasons. Nevertheless, the thesis does not aim at supporting the

case that a customer states requirements such as changes to the SPL

architecture at all costs because this does not play any role in the

highly competitive market that is to be served better through SPLs.

t

% fit

100

best possible fit

achieved fit

abortion point

Initial
configuration

phase

(Tuning)
iteration

phase

thesis approach

Thesis Contribution

16

Instead, the thesis is based on the assumption that one should insist

on a realizable scope, even if not all requirements need to be explic-

itly known upfront.

2. Planned flexibility and producibility. An assumption related to the

previous one is that the SPL architecture has been designed for flexi-

bility [Naa09] and producibility according to a certain development

strategy [Car08]. In this regard, a further assumption is that the ar-

chitecture is sufficiently specified in order to extract the required

knowledge. However, this thesis deals neither with the definition of

such a strategy nor with the design of a flexible architecture. In-

stead, it just helps to better exploit the corresponding potentials.

3. Human-based SPL analysis. An important assumption of this thesis is

that a fully automatic analysis of reuse asset bases or SPL architec-

tures is not appropriate in the addressed context. Instead, the thesis

requires that SPL experts (e.g., architects) are available who can ex-

haustively explain a given SPL and the constraints of the architecture

(see Figure 5). Otherwise, the thesis approach is not able to identify,

analyze and systematically incorporate important knowledge into

the requirements process. The thesis contribution is therefore not an

automatic SPL analysis, but a method for SPL experts to can exter-

nalize their SPL knowledge.

4. Human-based requirements elicitation. Similar to the previous as-

sumption, it is also assumed that the actual elicitation and negotia-

tion of requirements remains a human-based task. In this context,

however, the approach is not intended to support the “world’s best

requirements engineers”, but rather the majority of people who are

challenged with requirements elicitation in practice.

5. Stable requirements. The ARE instructions developed by the thesis

approach intentionally neglect the whole area of requirements man-

agement. Especially the handling of change requests is not covered,

even if the inherence of requirements changes is not put into ques-

tion. Consequently, the avoidance of “normal” rework is not the fo-

cus of this thesis.

6. Problem-driven elicitation. We assume that requirements in the con-

text of flexible SPLs have to be elicited in a problem-driven (top-

down) instead of reuse-driven (bottom-up) manner in order to satis-

fy the actual customer goals. In this regard, we also assume that

such a problem-driven elicitation implicitly assures a sufficient de-

gree of requirements completeness from a customer’s point of view.

 Introduction

 17

1.4 Research Approach

In this thesis, we applied a systematic research approach following the

design science research process [PTG+06]. As this process aims at ob-

serving the world and existing solutions, building new models, and vali-

dating them with regard to explicitly stated hypotheses, it can be consid-

ered as a scientific method according to the classification of Basili

[Bas93]. Below, the concrete procedure of how our research has been

carried out is described.

1. Identification and motivation. Before starting the thesis research, our

experience in many projects with Fraunhofer IESE’s industry custom-

ers was that it is an almost more difficult to specify requirements

that satisfy developers than to specify requirements that satisfy cus-

tomers [ADE09]. In many requirements specifications, we recognized

that design-relevant information is often missing, while superfluous

information is described extensively. The biggest issue, however, was

the observation that already existing components or concepts were

often not considered sufficiently when requirements were elicited.

The resulting fit problem between requirements and reusable assets,

especially in the IS context, was therefore selected as the practical

problem to be addressed. The feedback we got from the research

community, from software organizations, as well as from the litera-

ture (see chapter 3) has confirmed that this practical problem is ac-

tually important and solving it is worthwhile.

2. Objectives of a solution. In this step, the main objectives of a solu-

tion were derived from the problem definition. An important deci-

sion during this activity was the clear determination of what our ap-

proach should accomplish [PTG+06]. Based on the practical problem

identified before, we therefore started investigating the state of the

art in reuse-oriented RE. We quickly found that even recent ap-

proaches from the SPL area could not be used to solve the problem

because all assumed an explicit anticipation of requirements. We

therefore started sketching a novel solution. Our still rather high in-

experience in the related research areas supported this aim, as „ig-
norance of a topic makes it easier to think out of the box, and to
come up with a creative never-though-of solution” [Ber10]. Thus, we

departed from the traditional idea of building explicit requirements-,

domain-, variability-, or decisions models, and rather proposed the

usage of tailored SPL-aware requirements processes to enable re-

quirements engineers perform elicitation with better information on

their hands. This idea was fostered by the positive experience Doerr

et al. [DPK04] had made with requirements process tailoring based

on information needs. Concrete research questions and hypotheses

resulting from this notion were then derived.

Research Approach

18

3. Design and development. The actual design and development of the

artifacts that were needed to realize the solution idea started imme-

diately after the research questions had been defined. Among other

things, we elaborated the still abstract idea by defining the inputs,

outputs and basic activities of the tailoring approach. The presenta-

tion of our initial results to the RE community at a Doctoral Sympo-

sium [Ada10] and an SPL workshop [ADE+10] was met with moti-

vating acceptance and confirmed that we were on the right track.

During the last one and a half years of the thesis work, we then im-

proved all solution artifacts based on the feedback we had received

until then and the experience we had made during intermediate

studies. Based on this improved formalization, we developed a tool

that automated many parts of the tailoring approach.

4. Demonstration and evaluation. Regarding the demonstration and

evaluation of our work, we performed early and late studies. During

an early study, we were just interested to see whether a tailoring of

ARE processes was actually feasible as intended. Thus, we per-

formed a case study by using a draft version of the tailoring method

in a medium-sized software organization [ADE+10]. We found that

our tailoring idea was basically feasible and that the outcome in

terms of precise ARE instructions looked promising. However, the

experience made in this study challenged us to make significant im-

provements to the solution artifacts because the degree of formali-

zation as well as the consistency were not sufficient yet. At the end

of our thesis research, we then performed late studies. First, we let

practitioners from a medium-sized software organization as well as

from Fraunhofer IESE use the final tailoring method for developing

ARE instructions in order to validate the “effectiveness of tailoring”

hypothesis. Second, we performed a controlled experiment with 26

students in order to validate the “effectiveness of elicitation” hy-

pothesis. The results of the late studies confirmed our claims and de-

livered additional feedback that helped us in making final improve-

ments and identifying open issues for future research.

5. Communication. The aforementioned research activities and their re-

sults were communicated continuously to the research community

mainly in terms of scientific publications (e.g., [AD08], [ADE09],

[Ada10], [ADE+10], [Ada11], [Ada11b], [Ada11c], [RAG11], [Ada12],

[ARG+12]). However, besides the pure dissemination of the results,

communication with the research community was also a fruitful

means for the informal validation of our work, as important feed-

back was received both during the review of our papers and during

the presentation at conferences or workshops.

 Introduction

 19

1.5 Outline

In Chapter 2, basic terms and concepts are introduced and formalized.

The purpose of this chapter is twofold. First, the set of requirements to

be of actual interest in an AE project is defined. Second, the conceptual

relationships between an SPL and ARE processes are elaborated and

formalized. This chapter therefore provides the foundation for the defini-

tion of the methodological approaches of this thesis.

Chapter 3 provides an overview of related work and investigates its

strengths and weaknesses. For this purpose, related work both with re-

gard to the practical problem and with regard to the research contribu-

tions has been considered. The purpose of this chapter is to give some

insights about existing approaches, accepted notions, as well as also

problematic and open issues.

In Chapter 4, a template for ARE instructions is introduced and formal-

ized. This formalization is based on best practices from the literature,

own previous work, as well as RE experts’ input. The chapter precisely

defines what the outcome of the thesis tailoring approach should look

like, and which form of knowledge representations is appropriate for

guiding the elicitation in an (almost) algorithmic manner.

In Chapter 5, an issue model for RE in the IS area is introduced. This

model reflects the topics to be typically discussed in IS projects and is

therefore used for taking this “best practice” into account during tailor-

ing.

In Chapter 6, the core contribution of the thesis, i.e., the tailoring ap-

proach, is introduced and described in a formalized way. The purpose of

this tailoring approach is to provide a clear process that allows algorith-

mic reflection of SPL knowledge in ARE instructions according to the

template introduced in chapter 4. In this context, a supporting tool is al-

so presented.

The evaluation of the entire solution is part of Chapter 7. In particular,

the design and setup of our late studies, as well as their results and im-

plications are presented.

The thesis closes with a brief summary and an outlook on future work in

Chapter 8.

Summary

20

1.6 Summary

Besides software product lines (SPL) in which a high number of require-

ments can be fulfilled by just configuring the reuse asset base, there are

SPLs in which the degree of explicitly anticipated requirements is limited.

This is especially the case for information systems (IS), which must fulfill a

multitude of very specific requirements in order to enable a customer to

stand out from the competition.

In these flexible SPLs, however, the typical benefits concerned with reuse

are often fewer than expected. One important reason is the fact that the

achievement of the best possible fit between customer requirements and

SPL characteristics during application engineering (AE) either does not

work at all or takes too much time. This is caused by the insufficient

knowledge requirements engineers typically have regarding the given

SPL.

Thus, in order to increase the fit between requirements and reuse capa-

bilities, information about an SPL must be considered better by AE re-

quirements engineers during elicitation. The central contribution of this

thesis is a tailoring approach that systematically incorporates knowledge

about an SPL into a state of the art requirements process. Hence, the re-

quirements process for the AE phase and its guiding artifacts are tailored

based on the capabilities, constraints, and information needs caused by a

given SPL. The corresponding application requirements engineering

(ARE) instructions then assure that the actual elicitation in AE can recon-

cile customer requirements with SPL characteristics more effectively, and

especially in a constructive rather than an analytical way. This finally re-

sults in higher efficiency of AE projects (see Figure 7).

Figure 7. Research V-Model for this this

This thesis describes the scientific components of this concept as well as

their evaluation. In particular, a conceptual ARE model, an ARE instruc-

tion template, an ARE tailoring method, a supporting tool, and an issue

model will be introduced in the subsequent chapters.

PP: Low AE
efficiency due to
low elicitation
effectiveness

SP: No externalized
SPL knowledge for
requirements
engineers

ARE Tailoring Approach

H1: Higher AE
efficiency

H3: Effectiveness of
Tailoring

H2: Higher elicitation
effectiveness

 Foundation

 21

2 Foundation

“Those who want to build high towers,
have to linger long at the base.”

Anton Bruckner

As shown in the solution idea (see section 1.3.2), this thesis provides an

approach that aims at improving the effectiveness of requirements elici-

tation through tailored ARE processes. To make this happen, the thesis

tailoring approach takes an SPL’s reuse asset base, a development strat-

egy according to which systems should be derived, and RE best practices

as input. Based on this product- and process-oriented knowledge, AER

instructions are then generated, which are finally used for eliciting cus-

tomer requirements in a concrete AE project. This logical input-output

sequence is again depicted in Figure 8.

Figure 8. Inputs and outputs of the thesis approach

This chapter clarifies the elements within the input and output artifacts

of the thesis approach as well as their conceptual relationships. The pur-

pose of this chapter is to explain which requirements should be the focus

of an ARE process and how this process depends on the characteristics

of a given SPL. The resulting conceptual ARE model then acts as a foun-

dation for the methodological approaches of this thesis introduced in

later chapters.

To make this happen, the following questions are answered below:

 How are ARE processes integrated into the AE phase?

 Which product knowledge about the SPL is important for deriv-

ing ARE processes?

Reuse Asset Base

ARE
Instructions
Document

ARE Tailoring

Development
Strategy

ARE Application
Elicited

Requirements

DE / FE AE

Method Tailor Requirements Engineer

ARE Instructions
Template

Is sue Model

Artifact

Tailoring
Tool

SPL Artifacts

Best Practice Artifacts

Legend: Process

SPL Expert

Database

Research Approach

22

 Which process knowledge about the development strategy is

important for deriving ARE processes?

 Which RE best practice knowledge is important when deriving

ARE processes?

 Which types of requirements must be elicited in an ARE process

in order to fit a given SPL?

 Which elements must be part of an ARE process and corre-

sponding instructions?

 How are ARE processes and corresponding instructions concep-

tually related to the aforementioned artifacts?

The subsections below answer each question one by one. However, it

has to be noted that we will only introduce elements that are actually

required for the thesis approach. This means that, for instance, a full-

fledged description of an SPL and its detailed concepts will not be given,

as far as these concepts are not needed for defining ARE processes also.

2.1 Research Approach

The foundation has been developed in several iterations throughout the

entire phase of the thesis research (see Figure 9).

In a first step, basic literature mainly from the RE and SPL communities

was analyzed in order to identify the central concepts in these two areas.

However, as many notions in literature were just “common sense” and

not further formalized or explicitly described there, considering tacit ex-

pert knowledge was also an important input for the development of the

thesis foundation. This tacit knowledge was mainly elicited via intensive

discussions with requirements-, architecture-, and SPL experts at Fraun-

hofer IESE.

Based on this input as well as on experience from previous research, we

consolidated the gathered knowledge (step 1). As a result of this step, a

first version of the conceptual ARE model was developed.

During a couple of subsequent iterations, this model was then checked

for completeness and consistency (step 2). This was done in two differ-

ent ways. On the one hand, the results were discussed with the afore-

mentioned experts at Fraunhofer IESE as well as with an external supervi-

sor. Their feedback was carefully analyzed and incorporated into a novel

version of the model. On the other hand, completeness and consistency

were checked by using the foundation during the development of the

 Foundation

 23

other thesis components. In particular, the development of the actual

tailoring method, the ARE instructions template, and the corresponding

tailoring tool was an excellent means to challenge the existing founda-

tion. Hence, besides expert feedback, insights gathered during these re-

search steps were incorporated into an adapted version (step 3).

Figure 9. Research approach for the foundation

During the last months of thesis research, no incompleteness or incon-

sistency was detected anymore and the work converged towards a sta-

ble model. In particular, the model enabled us to align all thesis compo-

nents seamlessly without any workarounds or deviations.

2.2 Application Engineering

To illustrate the role of ARE processes within AE, a high-level overview is

given in Figure 10 using the UML notation [OMG11]. As introduced by

Deelstra et al. [DSB05], and as depicted in Figure 3, RE and development

(often denoted as product derivation) are explicitly distinguished here.

Figure 10. High-level overview of application engineering

Legend:

Research Activity

Artifact / Result

Literature Tacit
Knowledge

Own
Experience

(1)
Consolidation

Foundation

(2) Consistency
& Completeness

Check

Expert
Feedback

(3) Adaptation

Application Engineering

24

The reason for this separation is that development processes in AE are

often less generic than in single system development. Rather, they are

focused on concrete activities that are needed to derive a customer-

specific system from a given SPL via the instantiation of product line ar-

chitectural elements. In this context, we define development processes

and requirements processes according to other authors as follows:

Definition – Development Process

A development process is a structured set of activities, work products, roles, and
tools aimed at the development of a customer-specific information system based
on an SPL’s reuse asset base and a set of requirements. [Mut02][Car11]

Definition – Requirements Process

A requirements process is a structured set of activities, work products, roles, and
tools for creating, validating and maintaining requirements that are needed as
input for a development process. [SS97][Dav93]

According to these definitions, the development process implies that the

customer requirements for a new system are sufficiently known. Thus,

the requirements process is responsible for elaborating requirements that

specify what each individual system to be derived from the SPL should

look like. We define a requirement and, for the sake of completeness,

the other elements of Figure 10 as follows:

Definition – Requirement

A requirement is an information about a characteristic or capability a system
must have, or about a characteristic of the usage environment a system must
consider in order to satisfy a stakeholder goal.

Definition – System

“A system is a set of components interacting with each other to satisfy some
global objectives.” [Lam09]

Definition – SPL Specification

An SPL specification is the official statement of what to implement in an SPL and
therefore contains a complete description of the anticipated variable and com-
mon SPL capabilities from a customer’s point of view.

However, even though the requirements process and the development

process could be completely decoupled when the focus is only on the

exchange of requirements, the intent to highly benefit from an SPL ap-

proach makes it indispensable to align the two processes more systemat-

ically (see chapter 1). This means that the requirements process must be

strongly oriented on the development process, as otherwise the re-

quirements process cannot assure that only requirements that are of ac-

 Foundation

 25

tual value for development are elicited. In order to find out how such an

ideal alignment should look, a deeper look into the reuse asset base and

the development strategy must be taken.

2.3 Reuse Asset Base

A reuse asset base is a logical repository containing all artifacts of an SPL

that are potential subject for reuse. Besides compiled components and

source code modules, a reuse asset base may also include artifacts such

as requirements specifications, architectural designs, process descrip-

tions, development guidelines, etc. In the context of this thesis, however,

the reuse asset base is only investigated for the purpose of extracting

product-oriented knowledge, i.e., for extracting the current capabilities

and constraints of the SPL (see section 1.3.2). Hence, only product-

oriented artifacts are of interest here.

2.3.1 Product Line Architecture

The core artifact to be analyzed in order to understand what an SPL is

able to do is the product line architecture. Basically, a software architec-

ture is the “structure of a system, which comprises software elements,
the externally visible properties of these elements (capabilities), and the
relationships among them” [BCK03]. A product line architecture is then

defined as follows.

Definition – Product Line Architecture (PLA)

“A product line architecture is the generic software architecture for all systems in
an SPL providing variation mechanisms that support the diversity among these
systems.” [NC07]

A central goal of a product line architecture is the description of the

common and variable elements in the SPL, and their interconnections

[Gom04]. In contrast to single system architectures, a product line archi-

tecture therefore addresses explicit variability aspects, and comprises cor-

responding possibilities in this regard. Furthermore, each product line ar-

chitecture constrains both the solution space and the problem space that

can be addressed by systems derived from the SPL.

In Figure 11, we have elaborated the core elements and related concepts

of a product line architecture based on existing literature and expert dis-

cussions. According to this figure, each SPL has a product line architec-

ture, which is a specific kind of software architecture as mentioned

above. As each software architecture comprises a set of architectural el-

ements [RW05], a product line architecture is also composed of corre-

sponding parts, which we call product line architectural elements below.

Reuse Asset Base

26

Figure 11. Core elements of a product line architecture

According to Rozanski and Woods [RW05], we define them as follows:

Definition – Product Line Architectural Element

A product line architectural element is a fundamental piece of software from
which the systems derived from an SPL are (recursively) constructed.

In the context of this thesis, we do not analyze architectural elements

further (see Carbon [Car11] for such an analysis). Rather, we consider

them as a piece of software that provides either business-oriented func-

tionality (e.g., specific components for processing incoming documents),

or infrastructure-oriented capabilities for crosscutting, technical, or gen-

eral concerns (e.g., database, workflow engine, adapters).

However, as architectural elements may address very different things,

architectural element types are needed to classify and to define the valid

entities of which a system should consist. This is especially important

when using an SPL, as otherwise there is no assurance that a consistent

set of elements is used in the different systems derived from it.

 Foundation

 27

Definition – Architectural Element Type

“An architectural element type is a class of architectural elements recurring in
software architectures that follow a certain architectural style.” [Car11]

In the S3 reference architecture for service-oriented IS [Ars+07], for in-

stances, service, service components, adapters, business processes, port-

lets, and the like are proposed as the main architectural element types to

be used. Hence, the architectural elements in a concrete system derived

from an SPL that is built upon this architectural style realize these specific

architectural element types.

However, on the level of both architectural element types and product

line architectural elements, many important details that constitute the

actual system behavior are still open. Thus, each architectural element

needs an internal realization to become real. We define these realiza-

tions as follows:

Definition – Architectural Element Realization

An architectural element realization is a concrete implementation of an architec-
tural element with specific functional and non-functional characteristics.

For instance, a product line architectural element “database system”

could be realized by either a MySQL or an Oracle database with signifi-

cant differences in the functional characteristic “query power”. In tradi-

tional SPL terminology, architectural element realizations therefore re-

flect the variants of a certain architectural element.

Independent of the architectural element type to which they belong and

their realizations, product line architectural elements can be classified

further. As the separation of common and variable characteristics is a

basic concept in product line engineering [MA02], product line architec-

tural elements can also be classified in this way. We therefore make the

following distinction in this thesis:

 Definition – Variable Architectural Element

A variable architectural element is a product line architectural element that is
either optional in the systems derived from the corresponding SPL or that may
have different architectural element realizations in these systems.

Definition – Common Architectural Element

A common architectural element is a product line architectural element that is
mandatory in all systems derived from the corresponding SPL and that has al-
ways the same architectural element realization.

In the aforementioned example, the database system is a variable ele-

ment because the concrete realizations may vary between certain sys-

Reuse Asset Base

28

tems. However, if an architectural element is a variable architectural el-

ement or a common architectural element is typically a strategic decision

made during DE/FE and not further formalized in this thesis. Especially

scoping (see [Sch03]), which aims at “deciding in which parts of a prod-
uct systematic reuse is economically useful” [JKL+06], provides a first de-

cision in this regard, even if concrete architectural elements are not dis-

cussed yet during the scoping phase.

Variabilities in an SPL are typically further distinguished into optionalities

and alternatives, where alternatives also cover multiple choices [MA02].

To address these notions, we categorize variable architectural elements

into optional architectural elements, alternative architectural elements,

and optional alternative architectural elements.

Definition – Optional Architectural Element

An optional architectural element is a variable architectural element that does
not need to be included in each system derived from the corresponding SPL. By
default, an optional architectural element is always realized with the same archi-
tectural element realization.

Definition – Alternative Architectural Element

An alternative architectural element is a variable architectural element whose
architectural element realizations may vary between the systems derived from
the corresponding SPL.

Definition – Optional Alternative Architectural Element

An optional alternative architectural element is a variable architectural element
that is both optional and alternative, i.e., it does no need to be included in each
system, but if it is included, its realization may vary between the systems.

Following these definitions and considering the fact that each product

line architectural element is unique within a system, it becomes apparent

that the multiple-choice concept cannot be realized on the level of a sin-

gle product line architectural element. Rather, additional architectural el-

ements of the same architectural element type are needed in this case,

where each element is realized differently. If, for instance, a system

should use different database systems (multiple choice), there would be

more than one database element in the derived system architecture.

2.3.2 Flexibility Classes and Assumptions

As specific architectural elements may occur in an AE project, a product

line architecture must be able to cope with architectural elements and

corresponding realizations not anticipated explicitly during DE/FE. The

decision about whether this is (economically) feasible or not, mainly de-

 Foundation

 29

pends on the flexibility classes the architecture supports. In the context

of this thesis, we define a flexibility class as follows:

Definition – Flexibility Class

“A flexibility class is an aggregated set of coherent flexibility requirements a
software architecture should be able to deal with.” [NM10]

A flexibility class therefore describes what can be added or modified in a

concrete AE project at which costs. In particular, based on our explicit

distinction between architectural element types and product line archi-

tectural elements in this thesis, flexibility classes can cover changes on

the entire architecture as well as changes on the detailed implementa-

tion. Thus, we introduce the flexibility of extending new elements from

the flexibility of modifying existing elements here:

Definition – Extension Class

An extension class is a flexibility class that enables the addition of customer-
specific architectural elements of a certain architectural element type including
corresponding architectural element realizations.

Definition – Modification Class

A modification class is a flexibility class that enables the creation or modification
of new architectural element realizations for a product line architectural element.

An example of a modification class could be that a foreseen database

system interface has to be re-implemented in an alternative way in order

fit a proprietary application. An example of an extension class would be

the development of additional database system interfaces, as the prod-

uct line architecture only comprises one database interface by default.

Thus, when a product line architecture supports a set of flexibility clas-

ses, architectural elements are expected to be (easily) modifiable or ex-

tensible during AE, even if these elements or realizations were not antic-

ipated explicitly during DE/FE.

However, implementing any desired requirement is not always possible,

as some realizations may require the architecture to be changed signifi-

cantly. Only architectural element realizations that do not require such

changes are considered to be (economically) feasible when using an SPL.

If, for instance, a selected element realization cannot guarantee a certain

response time, the entire communication mechanism of the architecture

might not work. As already mentioned, a product line architecture there-

fore constrains both the solution space and the problem space that can

be addressed with an SPL.

Development Strategy

30

In order to keep the flexibility within a (economically) feasible scope,

flexibility classes therefore make certain assumptions about the require-

ments that should be satisfied. We define an assumption as follows:

Definition – Assumption

“An assumption is a proposition about customer requirements that may have a
detrimental effect on the development effort when not coming true.” [RR99]

Assumptions state the limitations of the supported flexibility. In the ex-

ample of a certain work place to be supported, an assumption could be

that all work places have broadband Internet access. Thus, assumptions

allow determining the set of implicitly anticipated requirements in a de-

scriptive manner, and also help to decide under which conditions a non-

anticipated requirement is (economically) feasible or not. In this regard,

we distinguish hard and soft assumptions here.

Definition – Hard Assumption

A hard assumption is an assumption from which it is known upfront that it will
cause (economic) non-feasibility in every case of not coming true.

Definition – Soft Assumption

A soft assumption is an assumption for which it is not known upfront whether it
will always cause (economic) non-feasibility when not coming true.

2.4 Development Strategy

While the reuse asset base and the product line architecture are consid-

ered as the primary sources for extracting product-oriented SPL

knowledge (i.e., capabilities and constraints), the development strategy

is seen as the main driver for process-oriented SPL knowledge.

In general, a development strategy describes how a software organiza-

tion intends to develop systems based on a given SPL during AE projects.

Hence, we define this strategy as follows:

Definition – Development Strategy

A development strategy is a generic plan of action including basic principles of
how an SPL organization would like to build systems during AE.

A development strategy could, for instance, describe that systems should

be developed layer by layer, or that systems should be developed incre-

mentally, where a specific business process to be reflected in the system

could define a specific development increment [Car11].

 Foundation

 31

2.4.1 Development Process

In most cases, the development strategy is implicitly manifested in the

development process, and documented as a production plan that de-

scribes how applications are to be developed by reusing assets from the

SPL [CN01]. Thus, the inputs, activities, roles, and outputs when deriving

customer-specific systems are clearly defined.

However, as the product line architecture constrains the development of

a system, an efficient development process should always be derived

from the given architecture instead of being defined in a (traditional)

phase-oriented way [Car11]. This means that development processes

should not be defined using generic practices according to different

software engineering disciplines (e.g., requirements analysis, designing,

coding, etc.), but should be based on concrete tasks to be applied in or-

der to assemble or implement the product line architectural elements in

a project. Thus, the product line architecture is an important driver for

the determination of the development process and its detailed activities.

Figure 12. Core elements of a development process

Based on the literature and expert discussions, we therefore elaborated

the core elements and concepts that are either part of a development

process or related to it (see Figure 12). As already mentioned above, the

purpose of the development process is the production of customer-

specific systems by making use of an SPL’s reuse asset base. For this

purpose, the development process should be closely aligned with the

Development Strategy

32

product line architecture in order to streamline the development activi-

ties in this regard.

Just like any other process, a development process also comprises an or-

dered set of activities with responsible roles that are organized in se-

quential phases reaching different milestones.

Definition – Development Phase

“A development phase is a fixed period of time wherein certain development
activities are performed.” [Car11]

Definition – Development Activity

A development activity is a procedure that creates an intermediate result rele-
vant for the overall development of a system.

Definition – Role

“A role is a class of persons based on a logical set of their responsibilities, rights,
and tasks.” [Poh07]

Definition – Milestone

“A milestone is a scheduled event to measure progress.” [IEEE98d]

As an architecture should define the work to be done in a development

process [Car11], we classify development activities based on the product

line architectural element or the architectural element types with which

an activity is concerned. Thus, we distinguish the development activities

that may occur in an AE development process into inclusion, instantia-

tion, redevelopment, extension, and miscellaneous activities as follows.

Definition – Inclusion Activity

An inclusion activity is a development activity in which an optional architectural
element is reused in the architecture of a derived system.

Definition – Instantiation Activity

An instantiation activity is a development activity in which an existing architec-
tural element realization of an included variable architectural element is reused
for implementing this element in a derived system.

Definition – Redevelopment Activity

A redevelopment activity is a development activity in which a new or modified
architectural element realization is created for a product line architectural ele-
ment included in a derived system.

 Foundation

 33

Definition – Extension Activity

An extension activity is a development activity in which a specific architectural
element of a certain architectural element type is created from scratch including
the development of a corresponding architectural element realization in a de-
rived system.

Definition – Miscellaneous Activity

A miscellaneous activity is a development activity that deals with a task to be
done during a development process, except for inclusion, instantiation, redevel-
opment, and extension.

The concrete alignment of development activities with architectural ele-

ments is discussed in a later section of this thesis (see section 6.3.7).

2.4.2 Decisions and Information Needs

As in each software development project, AE projects also require crea-

tivity and human-based decision making in order to perform the afore-

mentioned development activities properly. Decisions therefore play an

important role in software development and need to be supported in the

best possible way.

Definition – Decision

“A decision is a choice made between alternatives in a situation of uncertainty.”
[BC12]

Hence, decisions typically answer “what should I do” questions and de-

termine a (future) behavior. In the context of AE, decisions are typically

concerned with the overall question of what should be done in order to

derive a customer-specific system from a given SPL. Based on the afore-

mentioned development activities, we introduce the following decisions

to be made in a development process:

Definition – Whether Decision

A whether-decision is a decision that determines either whether or not a certain
optional architectural element is needed in a derived system, or whether or not a
common architectural element has to be implemented in a customer-specific
way.

Definition – Which Decision

A which-decision is a decision that either determines an existing architectural
element realization that should be reused in a derived system for implementing
an alternative architectural element, or a decision that determines architectural
elements of a certain architectural element type that are additionally needed.

Development Strategy

34

Definition – How Decision

A how-decision is a decision that determines how a specific architectural element
realization for a certain architectural element should look.

The concrete alignment of decisions with affected architectural elements

is discussed in a later section of this thesis (see section 6.3.8). However,

all these decisions have in common that they depend on the required

characteristics a certain architectural element (realization) must provide

in order to fulfill the customer requirements. If, for instance, a certain

complexity of queries is required, only database realizations whose prop-

erty “query power” can assure the required value may be chosen.

Thus, for being able to make a decision, information must be available in

order to know what a customer actually wants or needs. To decide

whether an interface is needed, for instance, one has to know with

which external applications the system is supposed to interact. Further-

more, to decide how to implement this interface, additional information

concerning the data structures, etc. is needed. Hence, each decision

causes information needs that must be satisfied before the decision can

be made. We therefore define an information need as follows:

Definition – Information Need

An information need is the necessity to have information about a certain issue in
order to be able to make a decision.

Information needs typically occur when there is a gap between the avail-

able information and the information that is indispensable to provide a

correct solution. The simplest information need (which is often the one

used in traditional ARE) is the need to know which possible architectural

element realization (i.e., variant) a stakeholder wants. However, as cus-

tomers typically know what they want, but not what they really need

[Dav93], decision-making is usually more complex, and requires addi-

tional information about the system context and the intended use. For

example, deciding which database system should be used depends on

information about required response time, required query functions, da-

ta to be stored, as well as organizational information about budget, ex-

isting licenses, etc. Thus, each information need is concerned with a cer-

tain element of the real world, which we denote as an issue:

Definition – Issue

An issue is an inherent element that is either part of a system or part of the
system’s usage environment.

 Foundation

 35

2.5 RE Best Practices

While the reuse asset base and the product line architecture are sources

for product-oriented SPL knowledge, the development strategy has been

introduced as a source for extracting process-oriented SPL knowledge.

However, even though these sources are indispensable for deriving an

ARE process that is able to fit the SPL, it is important not to neglect best

practices that have been established in RE independent of the underlying

development approach.

In general, best practices can cover both actual practices in terms of

methods, techniques, or activities, and recommendations regarding what

to elicit and how to proceed in a logical order. While the former type of

best practices is the subject of almost every textbook on RE (e.g., Som-

merville and Sawyer [SS97], or Robertson and Robertson [RR99]), the lat-

ter aspect is rather neglected in research but of special interest in this

thesis. The reason is that we aim to establish problem-driven elicitation

in ARE (see section 1.3.2), which means that we have to prescribe the

order of issues to be discussed in an ARE process.

Basically, in each software development project, requirements form the

basis for communication, contracting, development, integration, and

maintenance, but also for employee satisfaction or rationalization

[Rup07], and “are the things you should discover before starting to build
your product” [RR99]. Even if there is no universal definition of require-

ments [Wie05], “requirements (basically) express the needs and con-
straints placed on a product that contribute to the solution of some real
world problem” [Swe04]. Hence, requirements are descriptions of what a

“product must do or a quality that a product must have” [RR99] in order

to achieve a certain goal. As mentioned in one of the previous subsec-

tions, the purpose of a requirement is the specification of a system.

By means of intensive expert discussions, we have elaborated the inter-

connections of the concept “requirement” with other important con-

cepts in RE (see Figure 13). According to this figure, the source of a re-

quirement is a stakeholder who has a certain goal to be satisfied by a

system. In this thesis, we use these terms as follows:

Definition – Stakeholder

“A stakeholder is a person or organization who will be affected by a system or
who has a direct or indirect influence on a system’s requirements.” [KS98]

Definition – Goal

A goal is a target state in the future that is worthwhile being achieved or kept
and whose satisfaction requires the cooperation of a system and its environment.
[Lam04] [Rup07]

RE Best Practices

36

In contrast to other approaches, mainly from the area of goal orientation

(see, for instance, the work of Lamsweerde [Lam04]), goals are explicitly

not considered as requirements in this thesis. Rather, they describe an in-

tended state that is to be achieved when a system is put in place.

Figure 13. Basic terms of requirements engineering

Regarding its content, a requirement is always concerned with an issue

according to the aforementioned definition. These issues cover function-

al and non-functional system aspects (e.g., human system activities), but

also elements of the usage environment for which a system must be de-

signed in order to provide appropriate support (e.g., users, work places,

devices, data, business processes, etc.). An example of a requirement

concerned with the issue “human system activity” could be: “The system
must support the purchase of a ticket that should work as follows: […]”.

Hence, each requirement addresses an issue that has to be supported or

implemented by the system; in this example the concrete human system

activity “Buy Ticket”.

For each kind of issue, there is typically a stakeholder (group) that can

provide information about the details of an issue. This is indispensable

when defining the corresponding requirements. Furthermore, each issue

and its related requirements can be described with certain notations

(e.g., BPMN for business processes) in order to provide more clarification

than just spoken words. Thus, notations to be used for clarifying re-

quirements and issues are also a certain kind of best practice.

Definition – Notation

A notation is a series of signs or symbols used to represent quantities or ele-
ments in a specialized system [FD12].

Furthermore, as issues reflect elements of the real world, there are rela-

tionships among them, which may influence the order in which different

issues should be discussed in an ARE process. The knowledge about

 Foundation

 37

these relationships can therefore be seen as another kind of best practice

to consider. Based on the work of Goknil et al. [GKB08] [VMT07], the

following relationships between issues are distinguished in this thesis:

Definition – Contain (Relationship)

A contain relationship is a relationship between issues that expresses that the
contained issue is a structural part of the containing issue [GKB08].

Definition – Require (Relationship)

A require relationship is a relationship between issues that expresses that the
required issue is not a structural part of the requiring issue but needed for (cor-
rectly) fulfilling, implementing, or executing these instances [GKB08].

Definition – Influence (Relationship)

An influence relationship is a relationship between issues that expresses that the
existence of the influenced issue is affected by the existence of the influencing
issue [VMT07].

Definition – Specialize (Relationship)

A specialize relationship is a relationship between issues that expresses that the
specialized issue is a specific type of the specializing issue enabling a classifica-
tion of different issues.

To sum up, the issues with which requirements can be concerned, their

relationships, the stakeholders who can provide information about them,

and the notations that are suitable for their clarification should be de-

scribed explicitly in order to serve as concrete “RE best practices” input

for the thesis tailoring approach. For this purpose, we have developed an

issue model that covers the typical elements of interest in the IS area (see

chapter 5).

2.6 Requirements in Application Engineering

2.6.1 Relevant Requirements

As shown above, information needs describe the necessity of having in-

formation about certain issues in order to make decisions during the de-

velopment process. We call the issues with which an information need is

concerned “relevant issues”, and consider them as those for which re-

quirements must be elicited before a certain development phase can

start. In particular, all other issues do not need to be addressed in a re-

quirements process, as the requirements concerned with them only con-

Requirements in Application Engineering

38

tain information that does not influence any decision at all. Hence, we

define a relevant issue as follows:

Definition – Relevant Issue

A relevant issue (for a certain development process) is an issue with which at
least one information need is concerned (in this development process).

However, besides information needs, the relationships between issues

may also determine whether a certain issue is relevant or not (see right

part of Figure 14). If, for instance, business objects have been deter-

mined as a relevant issue according to the aforementioned definition,

business activities may also be relevant, as (due to a potential “require”-

relationship) concrete business objects could not be identified without

knowing the business activities for which these objects are needed.

Furthermore, it is apparent that the relevance of an issue with regard to

the development process does not imply that all requirements concerned

with this issue are also (economically) feasible. Rather, the feasibility of a

requirement depends on the flexibility and the existing elements of the

product line architecture, the way systems should be developed accord-

ing to the intended development strategy, as well as the technology

used for this development. For instance, when the best possible realiza-

tion of the architectural element “database system” only supports a re-

sponse time of 0.1 seconds for non-nested queries, requirements that

ask for 0.01 seconds are not feasible within the given SPL scope, as oth-

erwise the entire architecture would have to be adapted.

 Figure 14. Origin of realizable and relevant requirements

In Figure 14, we have therefore integrated some parts of the views pre-

sented above in order to show how different elements from the reuse

 Foundation

 39

asset base and from the development strategy influence the feasibility of

requirements in an AE project. In this regard, we define a realizable re-

quirement as follows:

Definition – Realizable Requirement

A (economically) realizable requirement is a requirement whose satisfaction does
not require a violation of the product line architecture, any principles of the
development strategy, or the constraints of the development technology used.

We define a realizable requirement in this way because a violation of a

product line architecture, a strategic principle, or a technical constraint

will usually result in unjustifiable extra costs and significant project delay.

Thus, as an SPL intentionally aims to avoiding high costs and delays, only

realizable requirements shall be accepted during AE in order to actually

benefit from this approach.

When combining the notion of relevant issues with the notion of realiz-

able requirements, it is apparent that a development process should ide-

ally only get realizable requirements that are concerned with relevant is-

sues as input. Requirements that are realizable but do not affect any de-

cision are unnecessary for development, while requirements that are not

realizable but concerned with a relevant issue are problematic. Thus, in

the best case, only relevant requirements should be elicited in AE.

Definition – Relevant Requirement

A relevant requirement is a realizable requirement that is concerned with a rele-
vant issue.

2.6.2 Anticipated Requirements

In SPLs, feasibility is often related to anticipation. In rather configurable

SPLs, for instance, almost all (explicitly) anticipated requirements are al-

ready satisfied by corresponding realizations during DE/FE.

However, as introduced in chapter 1, AE must also deal with implicitly

anticipated requirements and non-anticipated requirements. Below, we

now introduce these terms, and also explain their relationship to the sets

of requirements known from traditional product line engineering such as

common requirements, variable requirements, and specific requirements.

Definition – Explicitly Anticipated Requirement

An explicitly anticipated requirement is a realizable requirement that has been
explicitly addressed by product line architectural elements or corresponding
realizations during the DE/FE phase already.

Requirements in Application Engineering

40

Definition – Implicitly Anticipated Requirement

An implicitly anticipated requirement is a realizable requirement that is not an
explicitly anticipated requirement, but that belongs to a supported flexibility class
and fulfills all given assumptions.

Definition – Non-Anticipated Requirement

A non-anticipated requirement is a requirement that is neither an implicitly antic-
ipated requirement nor an explicitly anticipated requirement.

Definition – Common Requirement

A common requirement is an explicitly anticipated requirement that is satisfied in
each system that is derived from an SPL by default.

Definition – Variable Requirement

A variable requirement is an explicitly anticipated requirement that is not a
common requirement, i.e., it is only satisfied in some derived systems.

Definition – Specific Requirement

A specific requirement is a requirement that is not an explicitly anticipated re-
quirement, i.e., either an implicitly anticipated requirement or a non-anticipated
requirement.

According to these definitions, anticipated requirements are always real-

izable requirements because their anticipation during the DE/FE phase

has led to architectural constructs that support their economic satisfac-

tion. An anticipated requirement that is not feasible does not exist ac-

cording to these definitions. However, a non-anticipated requirement

does not automatically imply that it is not feasible. Rather, non-

anticipated requirements can be non-realizable and incidentally realiza-

ble as well.

2.6.3 Elicited Requirements

While the aforementioned sets of requirements just cluster the infinite

space of requirements that may occur during an AE project, the intersec-

tions of these requirements with typical elicitation results (called elicited

requirements) are discussed below. The purpose of this discussion is to

explain the practical problem of this thesis more formally.

In Figure 15, a complete and disjunctive classification of elicited require-

ments is shown.

 Foundation

 41

Figure 15. Typical types of elicited requirements

Below, we define these types and explain their implications on the de-

velopment process.

Definition – Problematic Requirement

A problematic requirement is a non-realizable requirement that has been elicited
in a requirements process.

Definition – Unnecessary Requirement

An unnecessary requirement is a realizable but non-relevant requirement that
has been elicited in a requirements process.

Definition – Valuable Requirement

A valuable requirement is a relevant requirement that has been elicited in a re-
quirements process.

According to these definitions, problematic requirements can only be re-

quirements that were not anticipated during DE/FE and that are not inci-

dentally realizable. Problematic requirements typically result from not

considering the SPL characteristics and thus, from giving stakeholders

too much freedom when defining their requirements. However, as state

of the art approaches only distinguish between explicitly anticipated re-

quirements and specific requirements, detecting problematic require-

ments during a requirements process is not systematically possible yet.

Besides problematic requirements, unnecessary requirements can often

be found in practice as well. The term “unnecessary” implies that the

requirements are not needed because they address, for instance, only el-

ements that are included in all developed systems by default anyway

(common architectural elements). Unnecessary requirements therefore

provide information that no one on the developer side needs. Thus, the

elicitation and specification of these requirements is wasted project ef-

fort. However, state of the art approaches typically also elicit those re-

quirements because they follow generic best practices, and are not fo-

cused on the actual information needs of a certain development process.

Realizable Requirements

Relevant
Requirements

Elicited
Requirements

Problematic

Requirements

Unnecessary

Requirements

Valuable Requirements

Requirements (ARE) Process

42

Valuable requirements are finally those elicited requirements that are ac-

tually important for a development process: they are needed for making

decisions and feasible within the given SPL scope. However, the exist-

ence of valuable requirements in a system specification does not imply

that all decisions can actually be made. Thus, omitted requirements

(missing requirements) are another class of requirements that may affect

the efficiency of AE. Basically, requirements can be missing with regard

to the satisfaction of customer goals and with regard to the fulfillment

of the developers’ information needs. However, as we make the assump-

tion that a problem-driven elicitation approach has been chosen and that

this approach is able to assure goal satisfaction (see section 1.3.5) implic-

itly, missing requirements are only defined from the development per-

spective here. In particular, when developers do not get all information

they actually need for making decisions, they have to make their own as-

sumptions or perform re-elicitation, both with risks for the project.

Definition – Missing requirement

A missing requirement is a relevant requirement that has not been elicited in a
requirements process, but that is needed for satisfying an information need in
the development process because no elicited requirement is able to satisfy this
need.

2.7 Requirements (ARE) Process

In the previous subsections, both the elements of the input artifacts for

the tailoring, and the possible results of an ARE process have been elab-

orated. As we now know which product- and process-oriented SPL

knowledge and RE best practices have to be reflected, and are aware of

what the ideal outcome of an ARE process should be, we can now intro-

duce the elements of an ARE process in this section.

As introduced in Figure 10, AE includes both a development process and

a requirements process, which are basically aligned via the production

and consumption of requirements. The purpose of the requirements

process is therefore the provision of a set of requirements that must exist

for development. To make this happen, a requirements process has to

prescribe all activities that are necessary for the elaboration of these re-

quirements (see Figure 16). Hence, this process will have a similar struc-

ture as the development process introduced before.

 Foundation

 43

Figure 16. Structure of requirements process and its interplay

In this analogy, we define requirements phase and requirements activity

as follows:

Definition – Requirements Phase

A requirements phase is a fixed period of time wherein certain requirements
activities are performed.

Definition – Requirements Activity

A requirements activity is a procedure that creates a set of requirements con-
cerning a certain issue that is relevant for development.

While the activities and phases of the development process are mainly

driven by the product line architecture as well as the underlying devel-

opment strategy, the activities and phases of the requirements process

are determined by the development phases and the information needs

that exist within these phases.

Thus, even if each requirements process is instantiated at the beginning

of an AE project, it is a continuous “no end” [RR99] activity and, due to

the above-mentioned product orientation, not just a front-end step that

ends when development starts. Rather, the development phases deter-

mine different phases of the requirements processes, while the infor-

mation needs of the development phases define the issues to be ad-

dressed in each of them (see Figure 14 and Figure 16).

Summary

44

To illustrate this procedural view, the above-mentioned database exam-

ple is taken again. During a development phase “Infrastructure setup”,

which is assumed to be the first development phase according to a given

development strategy (e.g., “Install the infrastructure components be-

fore starting to implement the business logic”), the role “database engi-

neer” has to perform the development activity “integrate database sys-

tem”. Hence, before the development phase “Infrastructure setup” can

start, a requirements phase must be finished in which relevant require-

ments for the database integration were elicited.

Besides the relevant issues, the SPL characteristics must also be consid-

ered explicitly in each requirements activity in order to achieve this aim.

In particular, the consideration of SPL characteristics is indispensable to

initiate negotiation or specific analysis as soon as the expectations of a

customer seem to contravene the given constraints. However, whether

these SPL characteristics have to be considered in the form of an SPL

specification or in the form of simple assumptions (see Figure 16) de-

pends on the anticipation of requirements concerning these issues (i.e.,

explicitly anticipated vs. implicitly anticipated). In chapter 4, which deals

with the definition of an ARE instructions template, we will explain un-

der which circumstances which artifact should be chosen.

2.8 Summary

When developing ARE processes, different artifacts must be considered

for extracting the required product-oriented and process-oriented SPL

knowledge as well as RE best practices. In this chapter, we have there-

fore elaborated the elements of these artifacts and their relationships,

which are a prerequisite for systematically developing the actual thesis

approach in chapter 6.

Regarding product-oriented knowledge, the flexibility classes and their

assumptions, in particular, have been identified as being important in an

ARE process. However, to elaborate them in a systematic manner, the

elements and element types with which they are concerned must first be

clarified in the given product line architecture.

With regard to process knowledge, the decisions and information needs

within the intended development process have been recognized as ele-

ments affecting ARE. However, to identify them, the development activi-

ties have to be processed systematically first, which again requires strong

consideration of the product line architecture. This is because the devel-

opment activities do not depend on generic tasks only, but mainly on the

product line architectural elements that have to be instantiated in an AE

project.

 Foundation

 45

In the context of RE best practices, the notion of issues has been intro-

duced as an important concept. Issues describe the inherent elements of

the real world with which requirements are concerned. Knowing them

and their relationships is therefore a crucial basis for deriving logical elici-

tation sequences. In chapter 5, an issue model for IS is therefore intro-

duced.

Regarding the requirements that exist in the context of AE, different sets

have been defined. In this context, relevant requirements have been

identified as the requirements which an ARE process should strive to

elaborate ideally, as these requirements are feasible and relevant for

making development decisions. Hence, when eliciting a complete set of

relevant requirements only, no rework or re-negotiation should be need-

ed.

An ARE process that is able to achieve these requirements in a construc-

tive manner must therefore include activities that address all issues with

which an information need is concerned. Furthermore, the assumptions

that are made on these issues, as well as explicitly anticipated require-

ments from the SPL specification have to be considered in the corre-

sponding activities. In chapter 4, an ARE instructions template is intro-

duced that supports the reflection of this procedure.

However, before introducing these solution components, we will first

analyze related work in the next chapter.

 Related Work

 47

3 Related Work

„We often see something for hundred or thousand
times before we really see it for the first time.”

Christian Morgenstern

This chapter gives an overview of related work, both with regard to the

underlying practical problem of this thesis and with regard to its research

questions. The purpose of this chapter is to show which similar ap-

proaches have already been proposed, and to which degree they are

able to meet the goals of this thesis.

3.1 Research Approach

The related work described in this chapter has been identified and ana-

lyzed according to the systematic literature review approach proposed by

Kitchenham [Kit04]. Thus, the first step was the definition of a review

protocol defining the review goals, review questions, search strategy, as

well as the exclusion and assessment criteria3 (see Appendix A). Accord-

ing to these protocols, the questions to be answered by the literature re-

view were:

1. Which work exists that aims at providing effective RE for the AE

phase?

2. Which work exists that aims at providing effective tailoring or

reengineering of RE processes?

3. Which work exists that aims at providing effective guidance for

requirements elicitation (in interviews)?

In order to answer these questions, the defined and tested search strings

were applied on the digital libraries IEEE Xplore, ACM, and Science Di-

rect (step 2). The reason for using only these libraries was that they in-

3 The assessment criteria were derived from the goals of the thesis introduced in chapter 1.

Application Requirements Engineering

48

clude most of the relevant work in the RE area and also cover, for in-

stance, the LNCS proceedings from Springer in which many related pa-

pers are published. Thus, a direct search at Springer Link or other sources

was not necessary. Unfortunately, we found that many hits did not ad-

dress the context we were looking for. Thus, by reading the publications’

abstracts and titles, and comparing them with the exclusion criteria de-

fined in advance, many proposed papers were sorted out directly.

In a third step (step 3), the remaining papers were then read and classi-

fied into basic papers (describing more general issues regarding the top-

ics of interest), and candidate papers (describing a real approach ad-

dressing one of the research questions). The candidate papers were then

investigated according to the defined assessment criteria (see Appendix

A) and briefly summarized. Wherever possible, we used assessments

from existing literature reviews and did not analyze each paper from

scratch. In a fourth step, we then checked the reference sections of the

aforementioned papers in order to find further resources that might be

interesting (step 4). Furthermore, suitable papers and books that were

found by chance during other research activities were also taken into

consideration. These new hits were then also investigated according to

the defined criteria.

Figure 17. Research approach for related work review

However, this chapter does not claim to provide a complete literature re-

view even though corresponding methods were applied. Rather, this

chapter aims at providing an initial basis for understanding how the the-

sis fits into, respectively may enhances the state of the art.

3.2 Application Requirements Engineering

In this section, we will attempt to describe existing work aimed at

providing effective RE for the AE phase.

Paper
Summaries &
Assessments

(1) Review
Planning

Review
Protocols

(2) Initial
Search &
Filtering

Filtered
Search
Results

(3)
Class ification
& Assessment

(4) Search of
Referenced
Resources

Legend:

Research Activity

Artifact / Result

 Related Work

 49

While much research effort has been expended on how to build SPLs

during DE/FE, the AE phase has not received sufficient attention yet

[PKG+08] [RGD07] [RD07]. Especially for ARE, only some initial work ex-

ists so far. Thus, even a systematic literature review on RE for SPLs done

by Alves et al. [ANA+10] in 2009 does not discuss any ARE method, even

though this topic was not explicitly excluded.

In the literature review of Rabiser et al. [RGD09], which investigated the

state of the art in product derivation, this underrepresented role of ARE

was also noted. With regard to the scope of this thesis, especially the fol-

lowing issues were identified as being unresolved in the 13 AE ap-

proaches addressed in their review:

 Inadequate knowledge. Application requirements engineering

heavily relies on SPL expert involvement as the tacit knowledge

regarding supported variability / flexibility and available reusable

assets can hardly be captured completely in explicit models. In

the Kobra approach [ABB+02], for instance, it is mentioned that

the requirements engineers “should lead the discussion to en-
sure that the information needed for the cost-effective instantia-
tion is obtained.” However, as elaborated in the review done by

Bühne et al. [BHL+06], existing approaches do not sufficiently

explain how requirements engineers should be provided with

the required knowledge beyond the predefined variants.

 Weak RE support. Even though it is widely acknowledged that

many (non-explicitly anticipated) requirements may arise during

AE, capturing and aligning these requirements with existing SPL

capabilities is a difficult task. In particular, customers are too

much influenced by predefined SPL requirements instead of be-

ing enabled to state their real needs and wishes [DS07]. This is

mainly caused by the fact that negotiation and elicitation sup-

port (i.e., guidance) is still weak. It is therefore difficult to predict

the costs of customer-specific requirements [ORR+09] and to as-

sure a consistent specification [DS07] at the same time.

In most existing AE approaches, the need for RE is just highlighted with-

out any information on how this should be done (e.g., [DSB05]). Basical-

ly, only the tasks of communicating the variability (see, e.g., [HP03]), se-

lecting variants, specifying the system requirements, and supporting

trade-off decisions are typically proposed as being important in this con-

text [Poh07]. In the COVAMOF [SDH06] or PuLSE-I [BGM+00] approach,

for instance, it is even assumed that the customer requirements are al-

ready available and that they have been elicited “like it is done in single
systems” [BGM+00]. Thus, these AE approaches do not include RE at all.

Due to the low availability of ARE approaches, we have therefore only

found three publications that seem to address ARE sufficiently. In order

Application Requirements Engineering

50

to assess their suitability for the problems to be solved by this thesis, the

following criteria were checked:

Problem Orientation. Does the approach support problem-oriented elicitation?

Elicitation and Negotiation. Does the approach include elicitation and negoti-

ation activities?

Customer-specific Requirements. Does the approach explain how to deal with

customer-specific requirements beyond the predefined variants?

Customization. Is the approach customizable based on the given reuse asset

base?

Validation. Has the approach been empirically validated?

Precision. Does the approach provide precise guidance?

Applicability. Is the approach applicable for information systems?

Below, we briefly summarize and assess each of these approaches.

3.2.1 SARE

The “Scenario-based Application Requirements Engineering” approach

(which we denote as SARE due to a missing official abbreviation4) pro-

posed by Bühne et al. [BHL+06] is quite a comprehensive approach for

the development of application-specific requirements specifications. The

approach is based on a variability model (VM) with associated usage sce-

narios and covers the elicitation, negotiation, documentation and valida-

tion of requirements in AE projects. While the VM is used to guide the

elicitation and communicate the basic variants of the SPL, the associated

scenarios are used to give customers an idea of the later usage when a

certain variant will be implemented.

The entire RE process according to this approach works as follows: Initial

stakeholder requirements are elicited in a first step. Based on this, the

requirements engineers instantiate a scenario via the VM and communi-

cate this scenario (and related requirements) back to the stakeholders. If

the scenario fulfills their expectations, the selected variants are docu-

mented. Otherwise, the delta is recorded and used for a subsequent ne-

gotiation step. During this negotiation, the requirements engineers pro-

pose alternative variants to the stakeholders, who are then asked to

make a trade-off decision. This means that the stakeholders either ac-

cept a certain alternative or insist on a customer-specific solution. The

corresponding evaluation results (e.g., impact on costs or time) are then

estimated and communicated by the requirements engineers. After elici-

4 If no official abbreviation exists, we will introduce our own abbreviations in this thesis.

 Related Work

 51

tation and negotiation, the finally agreed requirements are then docu-

mented and validated. In these steps, the VM and the predefined scenar-

ios are used again.

As the entire ARE process is driven by the VM (and not by problems or

goals to be solved, respectively achieved) the approach is rather solution-

than problem-oriented. However, elicitation and negotiation are clearly

supported, and the handling of customer-specific requirements is also

addressed explicitly. Furthermore, as both the VM as well as the associ-

ated scenarios are part of the underlying SPL, the approach is customi-

zable in this regard. However, the preciseness of the approach, at least

in the available publication, is very low. Guidelines for requirements en-

gineers that support them in performing the elicitation, negotiation,

documentation and validation activities are not mentioned in the paper.

Finally, the approach has been developed, applied, and validated in the

context of automotive systems only. Thus, it is not possible to claim that

it is also applicable in the IS area.

3.2.2 RED-PL

The RED-PL approach proposed by Djebbi and Salinesi [DS07] aims at de-

riving consistent application requirements from an SPL requirements

model during AE projects. However, in contrast to SARE, the approach

explicitly aims to provide users with the possibility to express their real

needs and wishes using traditional RE techniques. These needs are then

matched with SPL capabilities, followed by a corresponding negotiation

step.

The entire RE process according to this approach works as follows. In a

first step, requirements are elicited from customers using any kind of

traditional (top-down) approach. These requirements are then matched

with SPL requirements. Based on defined constraints between these SPL

requirements, an optimal and consistent set of application requirements

is derived. If conflicts exist between customer requirements and (prede-

fined) SPL requirements, negotiation and (re-)elicitation take place. Thus,

these three activities are performed in an iterative manner.

As the approach explicitly aims at consuming requirements that have

been elaborated using traditional RE techniques, it seems to support

problem-oriented elicitation. Thus, the approach is apparently able to

deal with customer-specific requirements. However, as the actual elicita-

tion is not part of the approach, and only the matching and negotiation

(called arbitration) steps are supported and elaborated in the available

publication, the entire ARE process cannot be customized based on a

given SPL. As a consequence, no precise guidance is provided either, at

least not for the elicitation activities.

Application Requirements Engineering

52

The RED-PL approach has been validated in an industrial case study in

the medical device domain. It is therefore not possible to claim that it is

also applicable in the IS area.

3.2.3 DOPLER-UCon

The DOPLER-UCon approach proposed by Rabiser and Dhungana [RD07]

aims at integrating product configuration and RE in AE. For this purpose,

the approach comprises a tool-supported method that covers all steps of

product derivation ranging from the enhancement of VMs with sales-

relevant knowledge via product simulation to product deployment. With-

in the approach, requirements elicitation and negotiation activities are

closely intertwined with product configuration and simulation.

The entire RE process according to this approach works as follows: In a

first step, initial requirements are taken from customers and used for

pre-configuring and simulating an application. This simulation gives the

customers the opportunity to directly review the proposed solution and

provide corresponding feedback. Based on this feedback, changes to the

configuration are then made or additional wishes and requirements are

elicited from scratch, if necessary. During this refinement, the develop-

ment engineers are responsible for checking which of these customer-

specific requirements a) can be realized with the existing assets, b) will

imply additional development, or c) are not feasible at all. The tool sup-

ports these tasks by tracking influence relationships to existing assets

and decisions. The negotiated and agreed set of requirements is finally

documented and taken as input for the actual application development

and deployment.

As the approach starts with product configuration and simulation and

offers the possibility to elicit and negotiate customer-specific require-

ments only on demand, it is basically not a problem-oriented approach.

Rather, a specialized VM (called derivation model) is the driver of the re-

quirements process. Even though the approach explicitly addresses and

supports the elicitation and negotiation of customer-specific require-

ments, how this should be done is not clearly explained, at least not in

the available publication. However, as the approach takes a tailored VM

of a given SPL as input, it is highly customizable in this regard. In particu-

lar, the approach can be tailored not only based on SPL characteristics,

but also based on the specific characteristics of a certain customer pro-

ject.

The DOPLER-Ucon approach has been validated in plant automation pro-

jects. Thus, it is not possible to claim that it is also applicable in the IS ar-

ea.

 Related Work

 53

3.2.4 Assessment Summary

In this section, the assessed approaches are briefly summarized (see Ta-

ble 1).

Pr
o

b
le

m
 o

ri
en

ta
ti

o
n

El
ic

it
at

io
n

 a
nd

 n
eg

o
-

ti
at

io
n

C
u

st
om

er
-s

p
ec

if
ic

re

q
u

ir
em

en
ts

C
u

st
om

iz
at

io
n

V
al

id
at

io
n

Pr
ec

is
io

n

A
p

p
lic

ab
ili

ty

SARE - + + + + - ?

RED-PL + O + O + - ?

DOPLER-Ucon - + + + + - ?
+: fulfilled, O: partially or implicitly fulfilled, -: not fulfilled, ?: unclear

Table 1. Assessment summary of existing ARE approaches

Even though all considered ARE approaches support the handling of cus-

tomer-specific requirements, elaborating them in a problem-oriented

(and state of the art) manner is not common yet. Similar to approaches

that do not deal with RE at all, state of the art ARE is typically organized

around predefined decision-, feature-, and domain models rather than

being focused on the actual needs to be addressed.

Furthermore, the existing ARE approaches have only been developed and

applied for embedded systems so far. Thus, it is unclear whether the

concepts proposed by these approaches also work for IS.

Finally, the preciseness of the considered ARE approaches is very low –

similar to most approaches in single system development. Thus, they just

describe what has to be done without explaining how. Clear instructions

describing how elicitation and negotiation can be performed concretely,

for instance, are not given. As the corresponding publications also do

not mention the existence of more precise method guidelines, we as-

sume that the approaches are actually not described precisely to allow

successful execution by non-experts. This is interesting insofar as Rabiser

et al., for instance, mentions that better “guidance and support are
needed to increase efficiency and to deal with the complexity of applica-
tion engineering” [RGD07].

Elaborating and aligning real customer requirements with the capabilities

of a given SPL and finding a compromise between reuse and customer

satisfaction is therefore an ARE problem that has not be resolved satis-

factorily yet. Hence, this thesis tries to provide a solution for this aim.

Requirements Process Tailoring

54

3.3 Requirements Process Tailoring

In this section, we try to identify existing work that aims at providing ef-

fective tailoring or reengineering of RE processes. In this regard, ap-

proaches that tailor RE processes by incorporating domain-specific pro-

cess knowledge as well as those that tailor RE processes by incorporating

domain-specific product knowledge are considered. While the former

capture knowledge in decisions or tasks to be made, the latter capture

knowledge in artifacts to be reused explicitly during a process [Mut02].

Basically, “every project needs a different RE process for the simple rea-
son that every project is different“ [RR99]. Therefore, RE processes

should always be tailored to their actual usage context and strongly indi-

vidualized with regard to “the type of applications being developed, the
size and culture of the companies involved, and the software acquisition
processes used” [Som05]. Tailoring must therefore deal with determining

how a process will produce the deliverables especially by whom, in

which order, in which form, at which location, and with which quality

gates, in order to meet certain context characteristics5.

In the context of SPLs, AE processes are typically guided and supported

by tailored production plans defined during the DE/FE phase. A produc-

tion plan describes how applications are developed from the core assets

of an SPL and is a guide for application engineers [CN01]. However, as

production plans remain very informal and merely describe the inputs,

activities, roles and outputs when deriving products from an SPL, they do

not provide precise guidance on how to perform individual steps, at least

not within ARE. In particular, specific knowledge that is important for

the early phases such as sales or RE is not captured and represented in

them [RGD07].

In particular, checking and assuring completeness remains a huge chal-

lenge also in a tailored requirements process, as completeness is consid-

ered to be the most difficult specification characteristic in RE [ZG03]. Es-

pecially because “we cannot specify everything” and need only specify

“what the developers cannot guess” [Lau02], absolute completeness is

neither necessary nor justifiable from an economic point of view. Hence,

tailoring must also deal with determining the information that is actually

required for later project steps, and assure that ideally, only this infor-

mation is actually elicited during an RE process. For the same reason,

feasibility issues must also be considered. This means that tailoring does

not only have to deal with determining required information, but also

with identifying (technical) constraints that limit the solution space to be

addressed.

5 A good overview of software process tailoring approaches in general is given by Alegria et al. [ABQ+11].

 Related Work

 55

Thus, with regard to ARE processes, no specific tailoring approaches exist

yet. Indeed, we have identified many publications that aim at reengi-

neering requirements from legacy systems or related documentations as

input for DE/FE. However, reengineering or tailoring approaches for ARE

processes were not found. Below, we have therefore only listed publica-

tions that deal with RE tailoring or requirements reengineering outside

the area of SPLs. In order to assess their suitability for the problems to be

solved by this thesis, the following criteria were checked:

Requirements Process. Does the approach lead to a requirements process?

Best Practices. Does the approach incorporate and reflect state of the art RE

and consider best practices (process knowledge)?

Information Needs. Does the approach address the incorporation and reflec-
tion of information needs (process knowledge)?

Development Strategy. Does the approach consider the development strategy
(process knowledge)?

Capabilities and Constraints. Does the approach address the incorporation
and reflection of existing capabilities and constraints (product knowledge)?

Validation. Has the approach been empirically validated?

Precision. Does the approach provide precise guidance or even automation

support?

Applicability. Is the approach applicable for information systems?

Below, we briefly summarize and assess each of these approaches.

3.3.1 REPKB

The methodology for RE process development based on an RE process

knowledge base (REPKB) proposed by Jiang et al. [JEF04], provides a

framework that aims at developing most suitable RE processes for a giv-

en context. For this purpose, the approach comprises a process

knowledge base containing knowledge about experience, templates,

best practices, etc. Furthermore, a decision support system based on

case-based reasoning, a process development methodology, and evalua-

tion models are provided.

The entire tailoring process according to this approach works as follows.

In a first step, the characteristics of a certain project or development sit-

uation are identified. These characteristics and constraints determine the

selection of RE process building blocks, templates, and techniques as

well as the guidelines for the actual process development when using

the case-based reasoning component. The recommended entities found

Requirements Process Tailoring

56

in the knowledge base are then presented to the method tailors, who

then compare the different alternatives. Based on the decisions made,

the selected process building blocks or templates (reference processes)

are then combined in order to develop a suitable RE process. This pro-

cess is finally evaluated and stored as a new template in the REPKB.

As the goal of this approach is the definition of RE processes, and the

process template as well as the process building blocks (e.g., activities,

techniques, etc.) reflect best practice in this regard, the first two assess-

ment criteria are apparently fulfilled. However, the approach does not

include any step that deals with the incorporation and reflection of in-

formation needs existing in a given (project) context. With regard to the

development strategy, the approach provides no specific support either.

The consideration of project context characteristics may partially address

this aim. However, it is not done explicitly, and at least no alignment of

RE process steps and development process steps is performed. In addi-

tion, with regard to the incorporation and reflection of reuse capabilities

and constraints, the approach does not provide any guidance. The pro-

cess building blocks dealing with reuse are not further explained.

The REPKB approach is not limited to a certain domain and is therefore

also applicable for IS. Furthermore, it seems to be validated, even though

only an informal case study has been published. Precise guidelines for

process definition, process tailoring, as well as technique selection are

mentioned as being available.

3.3.2 REPI-IM

The RE process improvement based on an information model proposed

by Doerr et al. [DPK04], which we abbreviate with REPI-IM here, provides

an approach for the tailoring of (existing) RE processes based on the re-

sponsibilities and information needs of the involved people. The idea is

to define an information model that captures the documents created

and used by the project stakeholders, and to derive the RE process based

on the exchange of these documents. Furthermore, the approach allows

determining the content a document should have, and, thus, the elicita-

tion and specification activities that are needed in a process.

The entire tailoring according to this approach works as follows. In a first

step, the typical stakeholders involved in a project are identified and de-

scribed. Furthermore, an initial identification of problems within the cur-

rent RE process takes places. In a two-day workshop, these problems are

then elaborated together with the identified stakeholders. Furthermore,

a first information model is created, which explains which requirements

are provided by whom on which level of abstraction. Taking into account

the existing problems, this initial information model is then redefined. In

particular, responsibilities and exchange relationships are defined, and

the document details (e.g., the required content, quality criteria, etc.) are

 Related Work

 57

defined. These decisions then result in a clear definition of document

templates, process flows, tasks, and responsibilities within the RE pro-

cess.

As the approach deals with the improvement of RE processes, the first

assessment criterion is apparently fulfilled. Best practices are not consid-

ered in the approach, except for those practices that are already imple-

mented in an organization that uses this approach. Rather, REPI-IM aims

at improving the quality of the documents as well as their exchange rela-

tionships. The development strategy is only implicitly covered by consid-

ering how documents are exchanged today. Capabilities and constraints

that might restrict the feasibility of requirements are not explicitly elabo-

rated in the approach either. Only procedural aspects and specification

quality criteria are incorporated into the document templates.

The approach has been successfully applied in the smart traffic domain.

However, the general nature of the approach seems to allow its usage

for IS, too. Unfortunately, the precision of the approach is low, and suc-

cess appears to depend mainly on the skills of the workshop moderator.

3.3.3 EVECR

The approach for extracting viewpoints for eliciting customer require-

ments based on an analysis of specification change records proposed by

Aoyama et al. [AUY+07] provides a concept for deriving elicitation

checklists. The motivation for this work is that existing elicitation guide-

lines are not precise enough to gather all information that is important

for avoiding misconceptions, which often lead to late change requests.

Previous change requests should therefore be analyzed in order to de-

termine check items that should be considered more thoroughly when

eliciting and describing requirements in future projects.

The entire tailoring process according to this approach works as follows.

In a first step, existing change requests are rephrased in order to increase

their understandability, also for third parties. Then the reasons for the

change request are analyzed and validated, if necessary (a typical reason

is that some aspects of the system environment were not considered suf-

ficiently during elicitation). In the third step, the process in which the

reasons for the changes occurred should be identified. If this is an elicita-

tion activity, then the viewpoint (i.e., the issue in the terminology of this

thesis) that was discussed in it must be determined. If this is a design ac-

tivity, then the implementation aspect (e.g., a certain component) is

identified. Based on the identified reasons for the change, check items

are defined and annotated to the viewpoints in order to provide more

guidance. Requirements engineers are then better informed about the

questions to ask or the facts to consider when eliciting the correspond-

ing requirements.

Requirements Process Tailoring

58

Even though this approach deals with requirements elicitation, it does

not lead to requirements processes, but just to a list of check items to be

used during elicitation. In this regard, the approach does not include

best practices either, as it only changes the artifacts to be used in elicita-

tion. Hence, the existing (best) practices that are already applied in the

organization may remain stable, which also holds true for the develop-

ment strategy. Even though the approach does not elaborate all infor-

mation needs to be satisfied, it identifies and addresses those infor-

mation needs that have not been satisfied sufficiently before. With re-

gard to the incorporation of capabilities and constraints, the approach

does not mention any support. However, besides check items related to

information needs, check items could theoretically also refer to con-

straints against which the requirements must be checked.

The approach has been validated by means of a simulation, but not in a

real project so far. As it comes from the IS area, it is apparently applica-

ble there. The precision of the approach is, as far as the publication can

tell, low.

3.3.4 DOPLER

The approach for adapting and augmenting variability models (VM),

which is part of the DOPLER framework proposed by Rabiser et al.

[RGD07], aims at providing more information to people involved in early

phases (sales and ARE) of an AE project. For this purpose, the VM of a

given SPL should be pruned to the actually relevant size, while additional

knowledge is incorporated in order to provide sales people with better

information. In particular, guidance and hints should be added to each

decision a sales person or requirements engineer has to make. This

should support them in explaining the consequences of a certain re-

quirement to their customers. Furthermore, the approach aims to pro-

vide additional sales recommendations when interacting with the cus-

tomer.

The entire tailoring process according to this approach works as follows.

In a first step, the VM is considered in order to see what the supported

variabilities currently are. In a second step, the roles in the AE project are

defined in order to determine their responsibilities with regard to the de-

cisions to be made. Then, pre-defined products that may be a good basis

for the discussion with a customer should be selected. Based on this, the

whole VM should be pruned down to those variation points that are po-

tentially of actual interest for a certain customer. Finally, the model is en-

riched with additional knowledge and proper guidance in order to sup-

port the sales people or requirements engineers in the best possible way

when discussing the variation points with the customers.

The DOPLER approach does not really result in an RE process but pro-

vides information that can be used in it. Hence, the approach does not

 Related Work

 59

incorporate best practice in this regard either. The information needs of

the developers are also not addressed, and the development strategy is

not considered. However, with regard to capabilities and constraints, the

approach tries to incorporate them and reflects them on a non-technical

basis. So far, these constraints and capabilities are only based on the ex-

plicitly anticipated variants described in the VM.

The approach was introduced in the domain of plant automation, but no

validation is described. Whether it is applicable for IS is also unclear. The

precision of the steps is very low. In particular, it remains completely un-

clear how the required sales knowledge should be extracted and incor-

porated.

3.3.5 MDE

The model-driven engineering-based (MDE) approach proposed by

Alegria et al. [ABQ+11] is not specifically intended for RE processes, even

though a case study is presented in this context. The idea of this ap-

proach is to use concepts from model-driven engineering and variability

modeling when instantiating project-specific processes. As a basis for

this aim, organizational processes must be defined with explicit variabili-

ties, and context models have to be created for each project setting.

A prerequisite for making this approach work is that a general process

model and transformation rules have been defined upfront. This can ei-

ther be a reference process for a certain development discipline (e.g., RE)

or for a certain organization. Thus, only the context model has to be de-

fined individually for each concrete project or development context.

As this tailoring approach is a generic one, it may also result in RE pro-

cesses for IS. However, due to this generality, a reference process that

comprises best practices is not part of the approach. Furthermore, the

technical rather than methodological nature of the approach also ne-

glects the incorporation and reflection of information needs, develop-

ment strategies, as well as capabilities and constraints. With regard to

the precision of the approach, there is a divided result. On the one hand,

the approach is precise enough to automatically generate processes. On

the other hand, the steps such as the definition of the context model are

not clearly described, at least not in the available publication.

The approach has been validated in the context of industrial RE process-

es and has therefore been proven to work.

3.3.6 Assessment Summary

In this section, the assessed approaches are briefly summarized (see Ta-

ble 1).

Elicitation Instructions

60

R
eq

u
ir

em
en

ts
 P

ro
ce

ss

B
es

t
Pr

ac
ti

ce
s

In
fo

rm
at

io
n

 N
ee

ds

D
ev

el
o

p
m

en
t

St
ra

te
-

g
y

C
ap

ab
ili

ti
es

 a
n

d
 C

o
n

-
st

ra
in

ts

V
al

id
at

io
n

Pr
ec

is
io

n

A
p

p
lic

ab
ili

ty

REPKB + + - O - + + +

REPI-IM + - + O - + - +

EVECR O - O O O O - +

DOPLER - - - O O ? - ?

MDE + - - - - + O +
+: fulfilled, O: partially or implicitly fulfilled, -: not fulfilled, ?: unclear

Table 2. Assessment summary of existing tailoring approaches

The investigated approaches dealing with the tailoring of RE processes

(or, at least, of supporting artifacts) are all validated and seem to be ap-

plicable for IS.

However, it can be seen that most of them take neither the actual in-

formation needs of subsequent development roles nor the existing capa-

bilities or constraints into consideration. The development strategy ac-

cording to which systems should be developed is not explicitly addressed

either and rather assumed to be met implicitly.

With regard to RE best practices, only one of the assessed approaches

makes use of corresponding “building blocks”, while the others do not

take into account best practices beyond those already implemented. Fur-

thermore, the precision of most approaches is low; hence, the success

when applying them mainly depends on the persons who carry them

out.

Incorporating and representing important process and product

knowledge into an RE process is therefore still an insufficiently supported

task, even outside the SPL area. Hence, this thesis tries to provide a bet-

ter solution in this regard.

3.4 Elicitation Instructions

In this section, we try to identify existing work that aims at providing ef-

fective guidance for requirements elicitation in interviews.

Basically, requirements elicitation “is the process of discovering the re-
quirements for a system by communication with customers, users and
others who have a stake in the system development.” [SS97]. However,

elicitation does not only mean asking people what they would like to

 Related Work

 61

have, but also finding out what they really need in order to solve their

problems. Thus, problem orientation was also taken as an assessment

criterion for the ARE approaches described above.

Even though there are many different techniques for requirements elici-

tation (see, for instance, [Lau02] for an overview), the most important

and most straightforward one is still the interview [LW00]. Davis et al.

[DDH+06] have even shown that interviews are probably the most effec-

tive way of elicitation. For interviews, even analyst experience does not

appear to be a relevant factor. Of course, a prepared set of questions

(closed interview) should be available in order to provide appropriate

guidance.

However, the search and even the manual browsing for elicitation / in-

terview instructions or guidelines in the aforementioned digital libraries,

the Internet, or respective conference proceedings did not return any

approaches that explain how to proceed concretely during an elicitation

session. Even though the search terms (see Appendix A) led to many

“hits”, existing publications typically mention only very generic issues (if

at all), such as “come prepared to the interview” and do not really pro-

vide strategies, guidelines, or even detailed statements on how to pro-

ceed. So far, there are only guidelines that explain how to transcribe the

elicited requirements in a certain format, or how to derive requirements

from goals or vice versa (see, for instance, [RSB98]).

Even though we know that there is some work in other disciplines such

as social science or journalism dealing with systematic interviews, we did

not find any publication that fulfilled our inclusion criteria (see Appendix

A). In particular, we found no resource in which a concrete guideline for

elicitation was presented (apart from very generic or example guidelines

often shown in RE textbooks, such as in [LW00]). Neither did we find

templates or strategies on how to structure an interview guideline, at

least for the purpose of requirements elicitation. Thus, in contrast to the

previous section, an assessment of existing work according to defined

criteria is not possible.

3.5 Summary

Knowing the state of the art in a certain area is a prerequisite for sound

research. In this chapter, existing work that is either related to the practi-

cal problem of this thesis or to its concrete research questions has there-

fore analyzed.

In the area of application requirements engineering (ARE), only a few

approaches exist so far. While AE (or product derivation) is still an under-

researched topic in the SPL community, ARE has received even less atten-

tion. The few existing approaches in this area still lack sufficient precision

Summary

62

in terms of clear how-to instructions. Furthermore, they do not promote

problem-oriented elicitation either. This means that the variability or de-

cision models of the underlying SPL are the driver for requirements de-

velopment rather than the actual problems or goals of a customer. An-

other observation is that all existing ARE approaches have just been

evaluated in the embedded domain so far. Whether they are also appli-

cable for IS remains unclear.

A novel approach like the one to be developed by this thesis should

therefore provide more precise guidance on how to perform (problem-

oriented) RE in AE. Furthermore, the approach should be developed for

and evaluated with IS in order to provide suitable support here. In this

regard, however, it is important that the approach does not neglect es-

tablished SPL concepts such as variability or decision models, but rather

tries to integrate them wherever possible.

In the area of RE process tailoring, a couple of approaches were found.

However, only one approach explicitly addresses information needs as

input for tailoring. Its idea of taking the responsibilities of development

roles as a trigger for the identification of information needs is a promis-

ing concept to be further investigated in this thesis.

With regard to capabilities and constraints, no approach deals with the

systematic incorporation and reflection in RE processes. Even though the

idea of using change requests (“bad experience”) as a means for identi-

fying items to be considered during elicitation is basically suitable in this

regard, it is not within the scope of the analyzed approach yet. However,

for this thesis, this notion might be interesting. The development strate-

gy according to which systems should be developed is not explicitly ad-

dressed by the considered approaches either and is rather assumed to be

met implicitly. The same holds true for RE best practices, which are only

considered explicitly by one assessed approach. This approach is also the

only one that provides precise guidance for the tailoring process. All oth-

er approaches are very informal and highly rely on the involved people.

The approach to be developed by this thesis must therefore provide

much more precision and automation support. The experience made by

[ABQ+11] that automatic generation of processes based on the elicited

context characteristics is possible is a fruitful insight in this regard. Fur-

thermore, RE best practices, the defined development strategy, as well as

the given capabilities and constraints must be explicitly addressed. So far,

this is apparently not the state of the art, yet.

In the area of elicitation guidance, no related work was found. Even

though it is indispensable to prepare and use questions and guidelines to

manage an elicitation session, no existing work describes what such

guidelines / instructions should look like. Some RE textbooks provide ex-

amples of interview questions, but neglect to investigate more thorough-

 Related Work

 63

ly how such questions or instructions should guide requirements engi-

neers through an interview.

The approach to be developed by this thesis should therefore explain

what elicitation instructions should look like and how they should be in-

stantiated based on the characteristics of a given SPL. For this purpose,

recapitulating and formalizing practical elicitation experience seems to

be the preferred research strategy rather than combining non-tested

ideas. In the next chapter, this thesis will therefore introduce a template

for elicitation instructions suitable for the context of ARE, and in the fol-

lowing chapter the tailoring approach will be presented.

At this point, it has to be noted that systems built based upon compo-

nents off the shelf (COTS) would also have been an important area for

related work. However, these approaches are not sufficient either, as

they just deal with the selection [Alv03] or adaptation [AFC+05] of COTS

components, and do not provide any guidance on how requirements are

to be elicited and negotiated in order to fit existing assets.

 A Template for ARE Instructions

 65

4 A Template for ARE Instructions

“Who does not forbid doing the wrong, command it.”
Marcus Aurelius

As already described in the solution idea (see section 1.3.2), the overall

purpose of this thesis approach is to tailor ARE instructions based upon

an SPL’s reuse asset base, the intended development strategy, and RE

best practices in order to provide requirements engineers with better

knowledge about a given SPL.

Figure 18. ARE instructions template within thesis approach

To support this aim, this chapter introduces a template for ARE elicita-

tion instructions including a set of predefined text blocks. The purpose of

this chapter is to explain what ARE instructions should look like ideally in

order to improve the elicitation and negotiation activities of require-

ments engineers. In particular, the chapter explains how SPL knowledge

can be represented in an appropriate way in order to provide infor-

mation about capabilities and constraints. Thus, the resulting template

provides a consolidation of RE best practices and can therefore be used

as input for the automatic generation of ARE instructions during tailoring

(see Figure 18).

Reuse Asset Base

ARE
Instructions
Document

ARE Tailoring

Development
Strategy

ARE Application
Elicited

Requirements

DE / FE AE

Method Tailor Requirements Engineer

ARE Instructions
Template

Is sue Model

Artifact

Tailoring
Tool

SPL Artifacts

Best Practice Artifacts

Legend: Process

SPL Expert

Database

Research Approach

66

4.1 Research Approach

For the definition of a template for ARE elicitation instructions (we de-

note them as ARE instructions in the following), different research steps

were carried out (see Figure 19).

In a first step (step 1), hypothetic requirements regarding the content

that ARE instructions should provide were derived from the foundation

described in chapter 2. As we assumed this model to be complete (at

least for the purpose of this thesis), we also assumed the derived hypo-

thetic requirements to be complete in this regard. Furthermore, based

upon a precise elicitation instructions document that we had developed

some years ago in an industry project at Fraunhofer IESE [ARC08], we

additionally derived a couple of hypothetic requirements regarding the

general “nature” of elicitation instructions beyond their content. The

reason for additionally using this document was that it had enabled

people with low RE experience to perform rather good elicitation merely

by following the described procedure. In addition, we performed a litera-

ture review, but we found that similar work has not been proposed yet

(see section 3.4).

In a second step, we then performed a survey with eight experienced re-

quirements engineers in order to elicit their requirements on ARE instruc-

tions (step 2). The survey was done by means of a questionnaire with

open and closed questions. The open questions were used to gain new

insights about the desired contents and properties of suitable ARE in-

structions. The closed questions (using the scale “totally disagree, …, to-

tally agree”) were used to get confirmation for the hypothetic require-

ments identified before. In this context, a hypothetic requirement was

considered as confirmed if the median in the answers was at least “ra-

ther agree”, and the minimum was not lower than “neither agree nor

disagree”.

Figure 19. Research approach for ARE instruction template

Foundation Industrial
Elicitation
Instruction

Own
Experience

(1)
Requirements

Derivation

Hypothetic
Requirements

(2) Expert
Survey

Confirmed
Requirements

(3) Template
Definition

Literature

Instruction
Template

(4) Validation Feedback &
Findings

(5) Final
Adaptation

Legend:

Research Activity

Artifact / Result

 A Template for ARE Instructions

 67

Based on the confirmed requirements (see Appendix B), the template

was then developed in a third step (step 3). A central task here was the

definition of text blocks (called “phrases”) intended to provide the re-

quired information. In order to choose appropriate formulations and de-

termine rules regarding a meaningful order, we recapitulated, discussed,

and formalized the aforementioned industrial elicitation instructions with

which we had made good experience in a previous project. In a couple

of iterations, and in close alignment with the development of the tailor-

ing approach (see chapter 6), a tool for automatically generating con-

crete ARE instructions based on the template was then developed. Dur-

ing this development, we continuously increased the precision and cor-

rectness of our template.

In order to finally validate the template, a two-step evaluation approach

was used (step 4). During a first study, eight RE experts used and re-

viewed an exemplary ARE instructions document according to the tem-

plate in order to check whether it is basically applicable and useful. Dur-

ing a second study, which was also the final evaluation of the entire the-

sis (see chapter 7), 13 students used another ARE instructions document

according to this template for eliciting requirements in a controlled ex-

periment. The findings of both evaluations were used to make final ad-

justments to the template (step 5).

4.2 Template Overview

Requirements elicitation is an essential activity in RE. However, while elic-

itation practices and techniques as well as the thematic aspects (see issue

model in chapter 5) are widely documented in the literature, concrete in-

structions on how to actually perform requirements elicitation are un-

derrepresented in current work (see in section 3.4). Instead, most “ap-
proaches that address requirements development usually lack sufficiently
precise and prescriptive instructions” [CA07], which is why these activi-

ties still depend on the persons carrying them out rather than on the se-

lected techniques.

In order to make elicitation in AE more independent of the person filling

the role of the requirements engineers, the use of precise and (almost)

algorithmic ARE instructions is therefore proposed in this thesis. These

instructions should support AE requirements engineers in achieving a

good set of requirements by enabling them to ask the right questions in

the right order, and to initiate appropriate reactions when requirements

seem to contravene the given SPL. Thus, if AE requirements engineers

have such instructions, they are expected to perform the elicitation more

effectively, even though not all customer requirements were explicitly

anticipated during DE/FE already. This is especially important for rather

flexible SPLs in which not all requirements can be documented upfront.

ARE Instructions Template in Detail

68

To realize this notion, ARE instructions have to describe the issues for

which requirements have to be elicited, in which order, and which as-

sumptions must be considered during this elicitation. In contrast to the

decision model or feature model questionnaires traditionally applied in

AE, the really necessary requirements can then be systematically derived

based on the given business problems (problem-oriented requirements).

Thus, requirements that are already part of the SPL and those which are

not are addressed in an integrated manner. For this purpose, a con-

straint-based rather than an enumerative description of the SPL is pro-

vided as part of the ARE instructions document. This notion also ad-

dresses the challenge that an explicit variability expression is often lim-

ited in rather flexible SPLs.

For defining the structure and content of such ARE instructions, re-

quirements on ARE instructions were elicited from RE experts. These re-

quirements basically state that an ARE instructions document should

provide sound descriptions for an “ideal” elicitation sequence including

predefined templates, input and output definitions (i.e., the issues to be

elicited) as well as domain-specific questions. Furthermore, the instruc-

tions should make clear which stakeholders are to be involved when dis-

cussing a certain issue. Finally, the instructions should provide infor-

mation when finished and provide support for handling typical pitfalls,

especially with regard to technical or economic constraints.

Of course, we are aware that ARE instructions that fulfill these require-

ments are basically very rigid, and that it may be complicated to keep all

of them in mind during real customer conversations. However, we do

not expect the ARE instructions to be used straightforward. Lauesen

[Lau02], for instance, stresses that an elicitation instruction “must not be
followed point by point, and that the requirements engineers should ra-
ther follow the interviewee. However, it is important not to get side-
tracked.” Thus, we consider ARE instructions (even though they are algo-

rithmically formulated) as an abstract process to follow, or even just as a

mnemonic to advise requirements engineers about necessary elicitation

activities and the constraints that must be considered.

4.3 ARE Instructions Template in Detail

This section explains how an ARE instructions document may reflect im-

portant information about a certain SPL and RE best practices. For this

purpose, we first introduce the overall structure of the template before

defining the elicitation strategy to be reflected in it. In a third step, single

elicitation instructions that provide clear statements to requirements en-

gineers on what to do will then be elaborated. Furthermore, hints are

provided that give information about important aspects requirements

engineers should be aware of during elicitation.

 A Template for ARE Instructions

 69

4.3.1 Basic Structure

The overall purpose of an ARE instructions document is to guide the re-

quirements process, respectively the requirements elicitation, which is

the focus of this thesis. Thus, the general structure of envisioned elicita-

tion processes must be covered appropriately in an ARE instructions doc-

ument.

As already shown in chapter 2, a requirements process basically consists

of requirements phases in which several requirements activities are per-

formed. The requirements activities within a requirements phase elabo-

rate the requirements that are needed before a corresponding develop-

ment phase can start. Each requirements activity addresses exactly one

(relevant) issue and may consider the SPL specification or certain assump-

tions in order to adhere to the given SPL.

Figure 20. Structure and dependency of elicitation instructions

In order to provide appropriate support, the template of an ARE instruc-

tions document (see left part of Figure 20) therefore reflects this struc-

ture of a requirements process. Thus, for each requirements phase with-

in a requirements process, an elicitation instruction (i.e., an ARE instruc-

tions document) should provide a corresponding milestone section. The

purpose of a milestone section is to collect all instructions for the re-

quirements activities that must be performed in the corresponding re-

quirements phase. The idea behind this structuring is that requirements

concerning different issues are typically needed at different points in

time during subsequent development (see section 2.4.1). If, for instance,

a phase “business analysis” is part of a requirements process, the corre-

ARE Instructions Template in Detail

70

sponding milestone section has to guide all requirements activities that

are needed to elaborate business-relevant issues such as business goals,

business objects, business rules, business processes, etc., as otherwise

the related development phase cannot start. Each milestone section is

further subdivided into issue sections concerning one specific issue (e.g.,

one section for business processes, one for business objects, …). Thus, a

requirements activity always deals with the elicitation of requirements

regarding one specific class of elements.

Within each issue section, concrete guidance on how to elicit and ana-

lyze requirements concerning a specific class of issues is then given. For

this purpose, an issue section (see Figure 21 for an example) contains

precise phrases (i.e., single instructions and hints), which are organized

into so-called instruction blocks. While the phrases comprise concrete

statements for the requirements engineers on what to do or what to

consider, the instruction blocks group these phrases in order to align dif-

ferent sub-activities such as asking, describing, classifying, clarifying, etc.

more logically.

Instruction blocks are either for-each instruction blocks or single instruc-

tion blocks. Whether a for-each or a single instruction block is chosen

depends on the relationship an issue has to other issues, respectively the

issues’ singularity. For instance, the instruction “Ask the stakeholders the
following question: Which organizational units are performing this busi-
ness process? (at least one)” may be replicated several times, as there is

typically not only one business process for which the performing units

are to be identified. Thus, by using a for-each instruction block, this sin-

gle instruction can be embedded into a loop such as “For each business
process identified before: …”.

Through this hierarchical separation using milestone sections, issue sec-

tions, and instruction blocks, an ARE instructions document provides a

modularized structure that allows making breaks. Breaks can be made,

for instance, after all requirements concerning a certain issue class have

been elicited (i.e., after each instruction section), or after all require-

ments for a certain milestone have been covered (i.e., after each mile-

stone section).

 A Template for ARE Instructions

 71

Figure 21. Example of an issue section

4.3.2 Implemented Elicitation Strategy

As a hierarchical structure does not specify the order of sections, blocks,

and phrases, this subsection introduces the elicitation strategy according

to which different issues should be processed ideally during an ARE pro-

cess. This proposal is based upon the concepts expressed in the concep-

tual ARE model (see chapter 2), as well as additional notions explained

below.

The basic idea of this thesis regarding an elicitation strategy is to consid-

er requirements processes as algorithms that prescribe a systematic and

repeatable way on how the issues of interest should be processed within

ARE. In this regard, especially the relationships between the relevant is-

sues as well as the development phases prior to which certain issues

must be discussed are important for determining the concrete way of

elicitation. Based on the conceptual ARE model from chapter 2, we list a

set of principles to be reflected in an ARE instructions document:

6. Elicitation Section for System Function

Definition: An atomic reaction (i.e., state change or response) of the system under development that

is triggered by an external stimulus, e.g., an environmental change, or an explicit request of a user or

an external system.

Invite and involve a (group of) process participantss to an elicitation session in order to discuss

requirements concerning System Functions.

Important hint: Be aware that a set of System Functions is already implemented by default and need

not to be elicited again. Consider the list of these System Functions in the SPL specification and break

discussions immediately as soon as stakeholders start asking for the collection of these common

requirements. Additional requirements are of course allowed.

For each System Activity:

Ask the stakeholders the following question: Which System Functions are realizing this

System Activity (*)?

Collect the identified System Functions in a corresponding list (if not yet done) and add a

link to the related System Activity.

For each System Use Case:

Ask the stakeholders the following question: Which System Functions are invoked by this

System Use Case (*)?

Collect the identified System Functions in a corresponding list (if not yet done) and add a

link to the related System Use Case.

Ask the stakeholders the following question: Which (additional) System Functions are required?

Collect the identified System Functions in a corresponding list (if not yet done).

Consider the set of predefined System Functions in the SPL specification.

For each System Function identified so far:

Motivate the stakeholders to select a best fitting System Function from the SPL specification

and map it accordingly. If the required System Function is not covered sufficiently in the SPL

specification, describe this System Function especially with regard to logic from scratch.

Important hint: If the stakeholders require specific System Functions that are not covered in

the SPL yet, inform them about high extra costs (even if the given constraints are hold).

ARE Instructions Template in Detail

72

 Ask only for requirements concerning Relevant Issues, as all oth-

er issues do not influence any Decision during AE anyway.

 Consider the Development Phases and their relationships in or-

der to determine the order of the Requirements Phases.

 Consider the Relationships between Relevant Issues in order to

define a detailed order of the Requirements Activities.

 Consider the Relationships between Relevant Issues in order to

see whether one requirement may influence another one.

 Involve appropriate Stakeholders as they can provide infor-

mation about the Relevant Issues.

 Consider the existing Assumptions made with regard to the Rel-
evant Issues in order to know what is feasible and what is not.

 Consider the Explicitly Anticipated Requirements already de-

scribed in the SPL Specification in order to avoid re-eliciting eve-

rything from scratch.

From these principles, it becomes apparent that the order of milestone

sections, issue sections, instruction blocks, and concrete phrases within

an instruction block mainly depends on the relevant issues, respectively

their relationships with other elements of the conceptual ARE model. In

this regard, the order of milestones sections, for instance, can be deter-

mined very easily because only the simple sequential order of require-

ments phases must be reflected. This sequential order holds even true if

a certain requirements phase is performed iteratively.

Rule 1 – Order of Milestone Sections

The milestone sections within an ARE instructions document occur in the same
sequential order as the corresponding requirements phases in the ARE process.
Thus, if requirements phase 1 is the predecessor of requirements phase 2, then
the milestone section that guides requirements phase 1 is the predecessor of the
milestone section that guides requirements phase 2.

Besides the order of milestone sections, the order of issue sections can

also be determined in this way; namely by simply considering the order

of the requirements activities.

However, determining the order of requirements activities (respectively

the order in which certain issue classes have to be discussed) requires

thorough consideration of the conceptual relationships among the rele-

vant issues they address. This is much more difficult, as the order may

depend on more than one relationship here. For instance, when discuss-

 A Template for ARE Instructions

 73

ing business activities, it must be considered that these activities have re-

lationships to business processes, business objects, business roles, and

business rules. Finding a meaningful order that avoids discussing one is-

sue several times is therefore a challenging task. In order to cope with

this problem, we have therefore developed the following algorithm (see

rule 2). The basic idea of this algorithm is that all issues of a certain class

that depend from issues of another class (e.g., via “contained in” rela-

tionships) should not be discussed before all these issues have been dis-

cussed also. Otherwise fly backs might be necessary, which could lead to

a loss of control within the elicitation process. Thus, all independent is-

sues should be addressed first, before the dependent issues are to be

processed in a depth-first way. In this regard, depth-first means that the

specializing and contained issues are addressed first, followed by re-

quired or influenced issues. The goal of this strategy is to minimize con-

text switches. For instance, when discussing business activities, it makes

sense to proceed with a classification (specialization) of these activities

rather than with a discussion of the system functions required by them.

Rule 2 – Order of Requirements Activities (i.e., Issue Sections) within a
certain Requirements Phase (i.e., Milestone Section)

1) Discuss in a random order all issues that do not have any relationship to an-
other issue.

2) Discuss in a random order all issues that are not required by, not contained in,
not influenced by, and not a specialization of another issue. If there is none,
discuss at least those issues in a random order that are influenced by an already
discussed issue, but have no further required / contained / influenced / specializa-
tion relationships.

3) Discuss all issues that are required by, contained in, influenced by, or a special-
ization of an already discussed issue, and that are neither required by, contained
in, influenced by, nor a specialization of an issue that has not been discussed yet.
If there is more than one, discuss them in the following suborder:

1) issues that specialize an already discussed issue

2) issues that are contained in an already discussed issue

3) issues that are required by an already discussed issue

4) issues that are influenced by an already discussed issue.

If there is more than one issue in each suborder, discuss them in the order in
which the specialized / containing / requiring / influencing issue has appeared.
Adapt the order continuously and repeat this procedure until all issues related to
a certain milestone have been discussed.

By organizing an ARE instructions document according to these rules, it

is easy to recognize when finished, respectively when a certain milestone

ARE Instructions Template in Detail

74

has been reached successfully (fulfills requirement R.S.4 of elicitation in-

structions shown in Appendix B, i.e., “make clear when elicitation is fin-
ished”). In particular, when developing ARE instructions based upon

these rules, it can be constructively assured that all requirements are

available before the elicitation of related requirements starts.

Of course, there is a risk that the order of milestone sections may con-

travene the required order of issue sections. If, for instance, business ob-

jects should be discussed in an early requirements phase, but the busi-

ness processes in which they are required are discussed in a late phase, a

conflict exists that must be resolved. However, we will deal with appro-

priate conflict resolution during tailoring (see chapter 6) and not in this

chapter.

Regarding the order of phrases and the embedding of instruction blocks

within an issue section, a clear strategy has also been defined. Here, we

basically propose two different principles:

Principle 1 – Consideration of Relationships

The requirements concerning a certain issue are elicited by considering their
relationships to the already elicited requirements of another issue.

Principle 2 – Identification before Definition

Requirements concerning a certain issue are identified before being defined in
detail.

The rationale for the first principle is that we assume that stakeholders

can name requirements concerning a certain issue better when they con-

sider the context of this issue. For instance, asking which role is respon-

sible for a certain business activity will probably lead to a more reliable

answer than when letting stakeholders enumerate all roles in isolation.

The rational for the second principle is that we assume that it is more ef-

fective and efficient to let stakeholders’ minds wander instead of inter-

rupting them with another question.

Thus, each issue section should first contain the phrases that aim at iden-

tifying and collecting all requirements concerning the issue without de-

fining them in detail. For instance, before the characteristics of the busi-

ness processes to be supported are elaborated, an initial list of all these

processes has to be developed first. At the beginning of each issue sec-

tion, one or more instruction blocks should therefore be implemented,

where each instruction block covers one (contained in or required by) re-

lationship the issue class of interest has to another issue. For instance, a

business object that is required by business processes and business activi-

ties would have two instruction blocks reflecting these relationships. In

this regard, an issue’s relationships and the corresponding instruction

 A Template for ARE Instructions

 75

blocks should be covered in the following order for applying the depth-

first approach consistently.

Rule 3 – Order of Instruction Blocks that express Relationships

The instruction blocks concerning the related issues within an issue section occur
in the same sequential order as the issue sections of the related issues in the ARE
instructions document. Thus, if the issue section of related issue 1 is the (direct
or indirect) predecessor of the issues section of related issue 2 in the ARE instruc-
tions document, the instruction block that concerns related issue 1 is the prede-
cessor of the instruction block that concerns related issue 2.

Whether a for-each instruction block or a single instruction block is cho-

sen depends on the cardinality, respectively the singularity, of the related

issue class. In a normal case, a for-each instruction block is chosen to

implement a relationship; a single instruction block is only used if the re-

lated issue is a singleton. Examples of a singleton issue are the system to

be developed, the project in which the system is developed, or the physi-

cal environment of the system.

In addition to the instruction blocks covering the relationships, a further

single instruction block is to be used if requirements concerning the issue

class of interest may exist without having a relationship. An example is a

user role that does not use the system for performing certain business

activities, but that is responsible for administrative tasks, which might

not be explicitly discussed. Furthermore, an additional for-each instruc-

tion block can also be introduced when a decomposition of collected is-

sues is necessary to complete the identification of corresponding re-

quirements.

The idea of identifying requirements concerning a certain issue through

the iterative consideration of requirements concerning related issues al-

lows achieving a high degree of completeness in a constructive manner.

Thus, besides knowing whether all relevant issues have been discussed,

requirements engineers can also get good indications of whether the

corresponding requirements have been elicited completely (fulfills R.S.4,

i.e., “make clear when elicitation is finished”). Of course, the identifica-

tion of requirements through the consideration of related requirements

implies that the considered set of related requirements is complete. This

prerequisite can only be fulfilled if all issue sections dealing with the elici-

tation of requirements concerning a related issue are finished before an-

other issue is discussed.

In order to finish each issue section, the requirements concerning the is-

sue class of interest (relevant issue) identified and collected before must

therefore be described, visualized, or reused. Thus, after all requirements

concerning the issue class of interest have then been collected in the

aforementioned instruction blocks, a single instruction block that may

contain several hints or visualization instructions is now included in the

ARE Instructions Template in Detail

76

issue section. The purpose of this block is to inform about possible con-

straints that should be considered when describing each requirement in

more detail. Each issue section then closes with an instruction block that

contains individual instructions for describing, classifying, or selecting the

requirements. Whether a for-each or single instruction block is chosen

depends again on the singularity of the issue class of interest.

Regarding the selection and instantiation of concrete phrases within an

issue section, the properties of the issue to be discussed, respectively the

properties of its related issues, have to be taken into consideration. The

most important properties in this regard are the status of an issue and

the degree of freedom provided by the underlying SPL. While the former

expresses whether and how many instances an issue class may have

(normal = n, singleton = 1, abstract = 0), the latter expresses whether

requirements concerning an issue class are already predefined in the SPL,

respectively restricted by the SPL architecture or strategy. In Figure 21,

for instance, the degree of freedom states that a couple of system func-

tions are already covered in the SPL specification, but that additional,

customer-specific system functions may be specified too. Hence, corre-

sponding hints and single instructions that inform requirements engi-

neers about this fact are included in the issue section.

In this regard, we define and apply the following rule with regard to the

consideration of different artifacts based on the degree of freedom.

Rule 4 – Artifacts to Consider

1) If all requirements concerning an issue class are common within the SPL any-
way, no consideration of SPL characteristics is necessary during ARE, of course.

2) If the requirements concerning an issue class are all variable (i.e., explicitly
anticipated), only the SPL specification in which these requirements are described
needs to be considered.

3) If all requirements concerning an issue class are not explicitly anticipated, i.e.,
if they are implicitly anticipated or even non-anticipated, the assumptions, if any,
made by the flexibility classes have to be considered.

4) In all hybrid forms, assumptions and the SPL specification both need to be
considered, for instance, if a set of requirements concerning an issue class is
implemented as a commonality, while further requirements concerning this issue
class may be added specifically due to certain flexibility classes,.

This rule is also depicted as a decision table (see Table 3). Hence, de-

pending on whether requirements concerning a certain issue are explicit-

ly anticipated (either as a common or as variable requirement), assump-

tions, or the SPL specification, or both have to be considered during the

corresponding requirements activity. In this regard, we intentionally ex-

clude the case that requirements should be elicited for an issue for which

all related requirements are common anyway.

 A Template for ARE Instructions

 77

Requirements concerning issue are … Requirements activity has to
consider…

common variable specific Assumptions SPL specification
y (no activity necessary)

 y c

 y c

y y c

y y c c

 y y c c

y y y c c
y: requirements (will) exist, c: artifact must be considered

Table 3. Artifacts to be considered

In Appendix D, we present an algorithmic description for determining all

internals of the issue sections according to the aforementioned explana-

tions more clearly. This algorithm is based on the rules and principles

mentioned above. In particular, this pseudo code explains (in a simplified

manner) under which conditions (based on the attributes or relationships

of a relevant issue), a certain single instruction or hint is incorporated in-

to the instructions document. The refined implementation of this algo-

rithm, which also takes technical aspects regarding the correct genera-

tion of ARE instructions into consideration, is shown in Appendix C.

In the next subsections, we will now introduce these single instructions

and hints and explain the conditions under which they are displayed in

an ARE instructions document.

4.3.3 Single Instructions

Based on the confirmed hypothetic requirements on elicitation instruc-

tions (see Appendix B) as well as the elements in our conceptual AE

model (see chapter 2), we have identified a set of eight single elicitation

instructions to be part of the ARE instructions template (see Figure 22).

The overall purpose of these instructions is to support the requirements

elicitation through the provision of predefined actions that are typically

needed in this context.

The concrete text blocks for each instruction are based on the formula-

tions used in an industrial elicitation instructions document developed

some years ago at our institute (see research approach in section 4.1).

We used these formulations as a basis because this document had ena-

bled people with low RE experience to perform rather good elicitation

merely by following the contained instructions. However, in order to fit

the thesis context, slight modifications were needed in order to provide

information that was not provided by the industrial document.

ARE Instructions Template in Detail

78

Figure 22. Taxonomy of single (elicitation) instructions

Below, we describe each single instruction including its purpose and the

idea it implements in more detail.

4.3.3.1 Involving Instruction

The purpose of this instruction is to involve the stakeholders that are

needed for a certain elicitation step (fulfills R.C.3, i.e., “name the re-
quired stakeholders”). This instruction is used for assuring that the right

stakeholder group is available when requirements concerning a certain

issue are discussed, as only these people are assumed to be able to pro-

vide the required information (see Figure 20). Indeed, the concrete

stakeholders to be involved cannot be predefined upfront and must typi-

cally be identified together with a contact person of the customer organ-

ization in each AE project. However, the skills these stakeholders should

have can be determined in advance based on the issue class to be dis-

cussed. If, for instance, the business processes are of interest, line man-

agers, but probably not IT people, are an important stakeholder group to

be involved.

Thus, the involving instruction is aligned with the issue class of interest

(relevant issue), which is the only variation factor besides the stakeholder

group. The resulting template for involving instructions then looks as fol-

lows:

Template 1

Invite and involve a (group of) <stakeholder group> to an elicitation session in
order to discuss requirements concerning <issue class of interest>s.

Example: “Invite and involve a (group of) line managers to an elicitation
session in order to discuss requirements concerning the business pro-
cesses.”

 A Template for ARE Instructions

 79

4.3.3.2 Identifying Instruction

The purpose of this instruction is to find out what a stakeholder actually

wants or needs. As Davis et al. [DDH+06] have shown that interviews are

probably the most effective way of elicitation, this instruction prompts

requirements engineers to actively pose direct questions to the stake-

holders. However, as this instruction just aims at identifying require-

ments without defining them in detail, only “which”-questions should

be used here. Furthermore, “in order to avoid prejudicing the stakehold-
ers’ answers, context-free questions should be used” [LW00], i.e., infor-

mation about a possible solution should not be part of an interview

question. The identifying instruction is based on our notion of relevant

issues and is therefore needed to fulfill requirement R.C.1 in Appendix B

(i.e., “name the issues to be discussed”).

Thus, for each relevant issue, at least one identifying instruction exists, as

this instruction aims at identifying all requirements that concern a certain

issue (see Figure 20). In this regard, the instruction implements our elici-

tation strategy to identify requirements through the consideration of (al-

ready identified) requirements whose issues have a relationship to the is-

sue currently being discussed. For instance, when a set of business pro-

cesses has already been identified, the next identifying instruction could

ask for the organizational units that perform these business processes.

The assumption behind this strategy is that stakeholders can name re-

quirements concerning a certain issue better when they consider the

context of this issue (i.e., the conceptual relationships). In this example,

clear orientation on the business processes may help to elicit the involved

organizational units more easily, and maybe also more completely than

pure enumeration of all possible units in a greenfield manner. Hence, as

the relationships between issues are explicitly considered by this instruc-

tion, requirement R.C.12 (i.e., “inform about dependencies”) regarding

elicitation instructions is also fulfilled implicitly.

The variation factors that determine the actual formulation of an identi-

fying instruction include the issue class of interest (relevant issue) for

which requirements are to be identified, other relevant issues related to

this issue class, and their relationships including their cardinality. The re-

sulting templates for identifying instructions look as follows:

Template 1

Ask the stakeholders the following question: Which <issue class of interest>s are
<relationship> this <referencing issue class> (<cardinality>)?

Template 2

Ask the stakeholders the following question: Which (additional) <issue class of
interest>s are required?

ARE Instructions Template in Detail

80

The first template should be used when an issue is in a relationship with

another issue discussed before. The second template is (additionally)

chosen when a requirement concerning the issue class of interest can al-

so exist without having a relationship to a requirement that concerns a

related issue. According to the elicitation patterns of Scheinholtz and

Wilmont [SW11], we use moderately open, neutral, primary interview

questions when following this instruction template. This means that the

posed question allows considerable freedom with only a certain amount

of restrictions, while no overt direction is given by the requirements en-

gineer.

Example (T1): “Ask the stakeholders the following question: Which or-
ganizational units are performing this business process? (at least one)”

Example (T2): “Ask the stakeholders the following question: Which (addi-
tional) organizational units are required?”

In this concrete example, only template 1 makes sense. As there is typi-

cally not only one business process for which the related units can be

identified in this case, this instruction must be replicated several times as

part of a for-each instruction block as introduced above.

4.3.3.3 Collecting Instruction

The purpose of this instruction is to collect all identified requirements in

an enumerative manner. Collecting instructions are needed for quick and

temporary documentation (mainly in terms of bullet lists or short notes)

in order to handle the mass of gathered information efficiently during an

elicitation session. However, collecting instructions just focus on the

enumeration of requirements in terms of keywords without describing

any details. In the organizational unit example above, for instance, col-

lecting instructions would ask for an enumeration of the names of all

units to be supported without noting details such as responsibilities, etc.

This notion to focus only on enumeration reflects our elicitation strategy

that the details for each requirement should not be defined before a

quite stable set of requirements has been achieved. The reason is that in-

terrupting inquiries regarding certain details can be reduced in this way,

which is especially worthwhile when stakeholders are currently going to

let their minds wander. Furthermore, we experienced that a detailed de-

scription provided only once and late during an elicitation session is a

fruitful means to avoid the complete definition of requirements that are

later discarded anyway. One step during collecting, which is important, is

the recording of relationships to other requirements, as otherwise late

reconstruction might cause costly inquiries.

The variation factors for the collecting instruction are similar to the varia-

tion factors of the identifying instruction; namely the issue class of inter-

est for which requirements are to be collected (relevant issue) and the is-

 A Template for ARE Instructions

 81

sues related to this issue. The resulting templates for collecting instruc-

tions therefore look as follows:

Template 1

Collect the identified <issue class of interest>s in a corresponding list (if not yet
done) and add a link to the related <referencing issue class>.

Template 2

Collect the identified <issue class of interest>s in a corresponding list (if not yet
done).

The second template is chosen when a requirement is collected that has

no relationship to another requirement, or for which the relationship is

just a specialize- or influence-relationship (see Figure 13), as we consider

these relationships important for elaborating requirements rather than

for understanding. In contrast, the first template is recommended in all

other cases.

Example (T1): “Collect the identified organizational units in a correspond-
ing list (if not yet done) and add a link to the related business process”.

Example (T2): “Collect the identified organizational units in a correspond-
ing list (if not yet done).”

4.3.3.4 Describing Instruction

While identifying and collecting instructions focus on gathering require-

ments without defining any details, the purpose of describing instruc-

tions is exactly to elicit and record this information. Describing instruc-

tions should therefore help requirements engineers to motivate the

stakeholders to provide detailed information about a requirement ac-

cording to the attributes of the issue the requirement is concerned with.

This instruction therefore fulfills the requirement on ARE instructions to

inform requirements engineers about all the concrete details to be elicit-

ed (addresses R.C.4, i.e., “name the details to be elicited”).

In the organizational unit example, for instance, describing instructions

prompt requirements engineers to elaborate all details of interest such as

the responsibilities of the organizational unit, its size, etc. However, as

already mentioned, the elicitation of such details makes only sense if a

stable set of requirements has already been achieved.

The variation factors that determine the actual formulation of a describ-

ing instruction are again similar to the previous ones and include the is-

sue class of interest (relevant issue) for which requirements are to be de-

scribed, the attributes of this issue, the issues related to this issue, and

ARE Instructions Template in Detail

82

the corresponding relationships. The resulting templates for describing

instructions look as follows:

Template 1

Ask the stakeholders the following question: Could you please describe this
<issue class of interest> especially with regard to <attributes of issue class of
interest>?

Template 2

Ask the stakeholders the following question: Could you please describe the
<issue class of interest> <relationship> this <referencing issue class> especially
with regard to <attributes of issue class of interest>?

The first template is chosen when all requirements concerning a certain

issue have already been collected and should now be described in more

detail. Similar to identifying instructions, an iteration over all require-

ments is necessary here. In contrast, the second template is recommend-

ed when no separate collection has taken place, as in a case where only

one requirement is related to another one. If, for instance, a business

process could only be performed by exactly one organizational unit, re-

quirements engineers can be guided to directly ask for the details of this

unit according to template 2. Thus, depending on this cardinality, re-

spectively on the singularity of an issue, the aforementioned example

can lead to two different describing instructions.

Example (T1): “Ask the stakeholders the following question: Could you
please describe this organizational unit especially with regard to respon-
sibilities, size, …”.

Example (T2): “Ask the stakeholders the following question: Could you
please describe the organizational unit performing this business process
especially with regard to responsibilities, size, …”.

Apparently, the point of reference must fit in both cases in order to

choose the right instruction template. We describe the rules for integrat-

ing each single instruction in the overall elicitation instruction in Appen-

dix D.

4.3.3.5 Classifying Instruction

The purpose of this instruction is to support the classification of require-

ments into more specific groups. Classifying instructions are needed

when requirements concerning an abstract (super) issue (e.g., business

activity) have been collected. The rationale for this instruction is based

upon the observation that requirements concerning different issues are

sometimes identified and collected in an integrated way, but need to be

 A Template for ARE Instructions

 83

separated before they can be described in detail. When identifying and

collecting the (abstract) business activities within a business process, for

instance, no distinction is typically made as to whether these activities

are pure human activities, system-supported activities, or system-

automated activities. However, as in software development only system-

supported and system-automated activities are typically of interest, a cor-

responding distinction must be made before proceeding further.

The variation factors for classifying instructions include the (super) issue

class of interest (relevant issue) as well as the list of issues that specialize

the former one. The resulting template for classifying instructions looks

as follows:

Template 1

Discuss with the stakeholders if this <issue class of interest> is a <list of special-
ized issues> and categorize it accordingly.

Example: “Discuss with the stakeholders if this business activity is a hu-
man activity, a system-supported activity, or a system-automated activity
and categorize it accordingly”.

4.3.3.6 Visualizing Instruction

In elicitation sessions, requirements are often visualized using certain no-

tations because visualization helps to clarify details or relationships much

better than just spoken words (see element “notation” in Figure 13). The

visualizing instruction therefore aims at motivating requirements engi-

neers to use graphical representations during elicitation sessions.

The variation factors for visualization instructions include the notation to

be used and the issue class of interest (relevant issue) whose require-

ments are to be visualized. Hence, the resulting templates look as fol-

lows:

Template 1

Draw a <specific notation> to clarify the details of this <issue class of interest>.

Template 2

Draw a <specific notation> to clarify the interplay between all <issue class of
interest>s.

The first template should be used when details about a single require-

ment are to be visualized. A prominent example is the visualization of a

business process (flow) by using an event-driven process chain. The sec-

ond template should be used when the interplay between all require-

ARE Instructions Template in Detail

84

ments concerning a certain issue is of interest. A prominent example

here is an organization chart in which the dependency between all or-

ganizational units is reflected.

Example (T1): “Draw an event-driven process chain to clarify the details
of this business process.”

Example (T2): “Draw an organization chart to clarify the interplay be-
tween all organizational units.”

4.3.3.7 Decomposing Instruction

The purpose of this instruction is to prompt requirements engineers to

decompose hierarchical structures in order to elaborate the included re-

quirements. The rationale for decomposing instruction is based upon the

fact that the issues, with which requirements are concerned are some-

times too coarse-grained to provide sufficient information for develop-

ment. This instruction is therefore needed for dealing with issues that

have contain-relationships with themselves. A prominent example is an

organizational unit, which can be recursively decomposed into other or-

ganizational units.

The variation factor for decomposing instructions only includes the issue

class of interest (relevant issue). Hence, the resulting template looks as

follows:

Template 1

Decompose the hierarchy of this <issue class of interest> until no further de-
composition is possible. Collect the identified <issue class of interest>s in a corre-
sponding list (if not yet done) and add a link to the parent <issue class of inter-
est>.

Example: “Decompose the hierarchy of this organizational unit until no
further decomposition is possible. Collect the identified organizational
units in a corresponding list (if not yet done) and add a link to the parent
organizational unit.”

4.3.3.8 Selecting Instruction

The purpose of the selection instruction is to foster the reuse of explicitly

anticipated requirements wherever possible. This instruction prompts re-

quirements engineers to consider the SPL specification and variability

model (see Figure 20), and to motivate the stakeholders to choose ex-

plicitly anticipated requirements instead of allowing them to state re-

quirements from scratch. In particular, when configuration is the pre-

ferred strategy for AE, selecting instructions are necessary. In cases

 A Template for ARE Instructions

 85

where several features have already been incorporated in the reuse asset

base, selecting available implementations instead of reinventing them al-

so makes sense. An example is the selection of certain adapters to data-

bases, ERP systems, web servers, etc., for which a repeated definition of

requirements is costly.

However, a systematic identification and collection of requirements using

the aforementioned instructions is also needed in such a strongly reuse-

oriented case. If, for instance, a set of existing functions were to be pre-

sented to stakeholders without investigating which tasks they will per-

form with the system to be derived from the SPL, it is quite likely that

they would choose functions they will never use and vice versa. Thus,

our approach tries to assure that the elaborated requirements reflect

what the stakeholders actually need, and not only what they believe they

need.

The variation factors for selecting instructions include the issue class of

interest, and the attributes of this relevant issue. The resulting templates

for selection instructions look as follows:

Template 1

Let the stakeholders select the best fitting <issue class of interest> from the SPL
specification and map it accordingly. Reject all elicited <issue class of interest>s
that cannot be mapped.

Template 2

Motivate the stakeholders to select the best fitting <issue class of interest> from
the SPL specification and map it accordingly. If the required <issue class of inter-
est> is not covered sufficiently in the SPL specification, describe this <issue class
of interest> especially with regard to <attributes of issue class of interest> from
scratch.

Template 1 is to be used when only explicitly anticipated requirements

concerning a certain issue are allowed to be stated. In contrast, template

2 should be used when explicit reuse of SPL requirements is mandatory

wherever possible, but additional requirements are also welcome. The

adapters above are a good example of this latter case. When appropriate

adapters already exist, it does not make sense to redefine them. Howev-

er, if additional adapters are needed and also possible due to the archi-

tecture’s flexibility, the elicitation of corresponding requirements must be

supported, of course.

Example (T1): “Let the stakeholders select the best fitting adapter from
the SPL specification and map it accordingly. Reject all elicited adapters
that cannot be mapped.”

ARE Instructions Template in Detail

86

Example (T2): “Motivate the stakeholders to select the best fitting
adapter from the SPL specification and map it accordingly. If the required
adapter is not covered sufficiently in the SPL specification, described this
adapter especially with regard to … from scratch.”

4.3.4 Hints

While the aforementioned instructions support the requirements elicita-

tion through the predefined description of single actions that are typical-

ly needed, the hints contain information that requirements engineers

should be aware of. This is especially needed to avoid the elicitation of

non-fitting, superfluous, or missing requirements and thus serves to ac-

celerate the alignment of customer requirements with SPL characteris-

tics. As an example, knowledge about the commonalities in the reuse as-

set base is important to avoid elicitation of unnecessary requirements.

The single instructions introduced in the previous section are widely in-

dependent of the development context in which they are used. Even

though they have a strong focus on the relevant issues, they are not spe-

cifically focused on a given SPL, except for the selecting instruction. In

particular, information about the feasibility of requirements is not re-

flected in the single instructions yet. Thus, an explicit consideration of

the SPL characteristics that goes beyond the SPL specification is neces-

sary to avoid violating the product line architecture.

As already introduced and also required by the requirements on ARE in-

structions (see Appendix B) ARE instructions must therefore provide in-

formation about restricted issues (R.C.8), the corresponding assumptions

(R.C.9), and the technical aspects that basically influence feasibility

(R.C.10). Without this information, the requirements engineers cannot

systematically assure that the capabilities of an SPL are actually met.

Figure 23. Taxonomy of (elicitation) hints

In this subsection, we therefore explain how additional knowledge about

an SPL can be incorporated into and represented in the elicitation in-

structions in order to fulfill the requirements on ARE instructions to be

specific for a certain development or project context (R.N.4) and to re-

flect technical constraints in a non-technical way (R.N.11). We address

this with the notion of hints (see Figure 23), which complement single

 A Template for ARE Instructions

 87

instructions. Similar to single instructions, these hints have also been de-

rived from the properties and relationships of relevant issues according

to the conceptual ARE model as well as from the elicited requirements

on ARE instructions. Below, we describe each hint including its purpose

and the idea it implements in more detail.

4.3.4.1 Assumption Hint

The assumption hint is probably the most important hint to reflect SPL

characteristics and constraints in ARE instructions without the need to

specify all possible requirements in an explicit manner. Assumption hints

describe the assumptions the product line architecture makes about a

certain issue in order to exploit the supported flexibility (see Figure 20).

The purpose of this hint is therefore the description of the constraints a

requirement must meet so that it can be assessed as being realizable by

requirements engineers during elicitation already. Hence, this hint fulfills

the RE experts’ requirements R.C.5 (i.e., “name the criteria against which
requirements have to be checked”), R.C.8 (i.e., “inform whether re-
quirements are restricted by architecture”), and R.C.9 (i.e., “name the
properties that a requirement must fulfill”) from Appendix B. For in-

stance, when specific documents should be automatically processed by a

system, assumptions could constrain the number of pages or the number

of words these documents may contain. As assumption hints describe

limitations to the “internals” of a requirement and not just its name,

they must be combined with describing instructions.

The variation factors of this hint include the issue class of interest (rele-

vant issue) on which assumptions are defined as well as the constraints

that result from these assumptions. The resulting template for assump-

tion hints looks as follows:

Template 1

Important hint: Be aware that there are constraints defined for <issue class of
interest> requirements. Hence, the <issue class of interest>s stakeholders may
ask for are restricted as follows: <constraints>. If the stakeholders require some-
thing that contravenes these constraints, inform them about possible (significant)
extra costs and tell them that an expert check must be done before you can
accept this requirement.

Template 2

Important hint: Be aware that there are constraints defined for <issue class of
interest> requirements that are hard! Hence, the <issue class of interest>s stake-
holders may ask for are restricted as follows: <constraints>. If the stakeholders
require something that contravenes these constraints, inform them that this is
not possible technically.

ARE Instructions Template in Detail

88

It is evident that the first template is used for soft assumptions, while the

second template is used when an assumption is hard and therefore not

negotiable.

Example (T1): “Important hint: Be aware that there are constraints de-
fined for document requirements. Hence, the documents stakeholders
may ask for are restricted as follows: pages<10, words<10000. If the
stakeholders require something that contravenes these constraints, in-
form them about possible (significant) extra costs and that an expert
check must be done before you can accept this requirement.”

Example (T2): “Important hint: Be aware that there are constraints de-
fined for document requirements. Hence, the documents stakeholders
may ask for are restricted as follows: pages<10, words<10000. If the
stakeholders require something that contravenes these constraints, in-
form them that this technically not possible.”

In this context, however, it must be noted that constraints can not only

restrict the direct properties of an issue. Constraints can also describe

that only a limited set of existing functions is to be used, for instances,

when defining a business activity.

Additional example: “Important hint: Be aware that there are constraints
defined for the business activity requirements. Hence, the business activi-
ties, stakeholders may ask for, are restricted as follows: only functions
provided by services described in the SPL specification may be invoked.
….”

4.3.4.2 Influence Hint

The purpose of this hint is to inform about influence-relationships that

exist between different issues, and that may also apply to the corre-

sponding requirements (addresses R.C.12, i.e., “inform about dependen-
cies”). This hint is needed for considering issues that are not related in a

“hard” sense, i.e., not via contain-, require- or specialize-relationships

(see relationships in Figure 13). An example here is a project goal that

may influence certain quality characteristics of a system. An influence

hint should therefore provide information about a possible impact an-

other requirement might have on a requirement to be elicited.

The variation factors include the issue class of interest (relevant issue) for

which requirements should be elicited and a list of issues that have an in-

fluence-relationship to this issue. The resulting templates for influence

hints look as follows:

 A Template for ARE Instructions

 89

Template 1

Important hint: Consider especially the <influencing issue>s when determining
the <issue class of interest>s.

Template 2
Important hint: Consider especially the < influencing issue>s when classifying the
<issue class of interest>s.

It is evident that the first template is used together with identifying or

describing instructions, while the second template complements classify-

ing instructions, if necessary.

Example (T1): “Ask the stakeholders the following question: Which qual-
ity characteristics are required for the system function? (at least one).
Important hint: Consider especially the project goals when determining
the quality characteristics.”

Example (T2): “Discuss with the stakeholders if this business activity is a
human activity, system-supported activity, or system-automated activity
and categorize it accordingly. Important hint: Consider especially the
project goals when classifying the business activities.”

4.3.4.3 Commonality Hint

The purpose of the commonality hint is to provide information about re-

quirements that are implemented by default anyway in order to proac-

tively avoid unnecessary elicitations (addresses R.C.7, i.e., “name the re-
quirements that are implemented by default”). In contrast to the avoid-

ance of an entire elicitation step based upon a classification of an issue

as “not being relevant”, the commonality hint is used for all relevant is-

sues for which a set of common requirements is already described in the

SPL specification (see Figure 20), but which may also include additional

and still unknown requirements. Commonality hints are therefore typi-

cally combined with collecting instructions.

The variation factor for this hint is only the issue class of interest (rele-

vant issue). The resulting template for commonality hints looks as fol-

lows:

Template 1

Important hint: Be aware that a set of <issue class of interest>s is already imple-
mented by default and need not be elicited again. Consider the list of these
<issue class of interest>s in the SPL specification and break off discussions im-
mediately as soon as stakeholders start asking for the collection of these com-
mon requirements. Additional requirements are, of course, allowed.

ARE Instructions Template in Detail

90

Example: “Collect the identified adapters in a corresponding list (if not
yet done) and add a link to the related partner systems. Important hint:
Be aware that a set of adapters is already implemented by default and
need not be elicited again. Consider the list of these adapters in the SPL
specification and break off discussions immediately as soon as stake-
holders start asking for the collection of these common requirements.
Additional requirements are, of course, allowed.”

4.3.4.4 Selection Hint

The purpose of the selection hint is also to support SPL alignment by

considering an SPL specification during a certain requirements activity

(see Figure 20). However, in contrast to assumption hints, selection hints

directly aim at considering predefined requirements in the SPL specifica-

tion and are therefore to be used together with selection instructions.

The variation factor of this hint includes the issue class of interest (rele-

vant issue) to which existing requirements in the SPL specification con-

cern. The resulting template for selection hints looks as follows:

Template 1

Important hint: Consider the set of existing <issue class of interest>s in the SPL
specification.

Example: “Important hint: Consider the set of existing adapters in the
SPL specification.”

4.3.4.5 Flexibility Hint

The purpose of the flexibility hint is to provide information about possi-

ble extra costs when stakeholders require specific extensions or modifica-

tions (see flexibility classes in Figure 11) even though reuse candidates

are already there. Flexibility hints are therefore used together with some

selection instructions.

The variation factor of this hint includes the issue class of interest (rele-

vant issue) to which existing requirements in the SPL specification con-

cern as well as the amount of basic costs when exploiting the desired

flexibility. The resulting template for selection hints looks as follows:

Template 1

Important hint: If the stakeholders require specific <issue class of interest>s that
are not covered in the SPL yet, inform them about <amount> extra costs even if
the mentioned assumptions are kept.

 A Template for ARE Instructions

 91

Example: “Important hint: If the stakeholders require specific adapters
that are not covered in the SPL yet, inform them about high extra costs
even if the mentioned assumptions are kept.”

4.3.4.6 Documentation Hint

As introduced in chapter 2, there are relevant issues that are actually rel-

evant for development, and those that are only implicitly relevant for the

elaboration of the former. The purpose of documentation hints is to in-

form requirements engineers which requirements are worth to spend ef-

fort on the description of corresponding details. If for instance, human

activities in a business process are only important for the identification of

system functions, but not needed to make any decision during develop-

ment, a complete description of the corresponding requirements is un-

necessary.

The variation factor for a documentation hint is therefore the name of

the (only implicitly) relevant issue class of interest. The resulting template

for documentation hints looks as follows:

Template 1

Important hint: It is not necessary to elicit or describe details about <issue class
of interest>s.

Example: “Important hint: It is not necessary to elicit or describe details
about human activities”.

4.4 Summary

In order to make AE requirements engineers aware of the capabilities

and constraints of a given SPL as well as about RE best practices, corre-

sponding process and product knowledge must be provided during elici-

tation. Unfortunately, existing work that deals with requirements elicita-

tion still depends on the persons who carry them out rather than on the

selected elicitation techniques (see related work in section 3.4).

In this section, we have therefore motivated and introduced a template

for ARE instructions that prescribes the structure and content such in-

structions should have in order to support requirements engineers bet-

ter. This template comprises eight types of instructions as well as six

types of hints in order to provide repeatable guidance on what to do and

what to consider during requirements elicitation in AE projects.

The template has been derived from our conceptual ARE model intro-

duced in chapter 2 and fulfills a set of requirements that were (addition-

Summary

92

ally) stated by RE experts. With regard to these requirements (see Ap-

pendix B), the template provides clear procedural guidance that allows

achieving a high degree of completeness and reproducibility. For this

purpose, the template provides sound descriptions for an “ideal” elicita-

tion sequence and makes clear which stakeholders are to be involved at

which point in time. Finally, it provides information when finished on dif-

ferent levels of abstraction and support for negotiation through the pro-

vision of explicit knowledge about SPL characteristics.

With regard to the actual elaboration of requirements, the template im-

plements an algorithmic elicitation strategy according to which all re-

quirements concerning a certain issue are identified by covering the con-

ceptual relationships this issue has to other issues. This step reflects the

idea that requirements are likely much easier to identify if they are con-

sidered in their context instead of letting stakeholder enumerate them in

isolation. Then, as soon as all requirements have been identified in this

way, the details of each requirement are elicited according to the attrib-

utes of the underlying issue. If applicable, reusable requirements from

the SPL specification, or existing assumptions are also considered in this

step. Finally, the relationships of the currently discussed issues to other

issues, which have not been discussed yet, are then used to initiate the

recursive identification of requirements. Through this systematic itera-

tion, an algorithmic guidance is provided for requirements engineers.

However, even though the ARE instructions according to this template

recommend a detailed process, requirements engineers are free to fol-

low them. Thus, we consider the instructions rather as an abstract pro-

cess.

In contrast to existing AE approaches, our strategy aims at aligning re-

quirements with SPL characteristics immediately during elicitation. This

has the advantage that the fit between customer requirements and SPL

characteristics can be increased constructively. Nevertheless, ARE instruc-

tions according to this template might not be considered as an alterna-

tive to existing AE approaches, but rather as a complement. In particular,

an ARE instructions document does not replace the use of predefined,

variable requirements or corresponding variability-, respectively decision,

models. In contrast, wherever such artifacts exist, the ARE instructions

document integrates them via a selecting instruction. Thus, the ARE in-

structions aim at guiding the core elicitation process, but allow embed-

ding more specific approaches whenever needed. Furthermore, the in-

volvement of SPL experts is still possible when using ARE instructions ac-

cording to the introduced template. The difference to existing work is

that requirements engineers are informed under which conditions these

experts have to be contacted. Thus, expert involvement can be reduced.

However, ARE instructions according to this template must be developed

for each individual SPL in order to provide an actual benefit in AE. Chap-

ter 6 therefore deals with the question of how ARE instructions can be

derived from an SPL in a systematic and repeatable manner.

 An Issue Model for Information Systems

 93

5 An Issue Model for Information Systems

“Only a fool believes to learn from his experiences.
I prefer to learn from the experiences of others to avoid

own mistakes from the outset.”
Otto von Bismarck

As already described in the solution idea (see section 1.3.2), the overall

purpose of this thesis approach is to tailor ARE instructions based on an

SPL’s reuse asset base, the intended development strategy, and RE best

practices that are suitable in the addressed domain.

Figure 24. Issue model within this approach

To support this aim, this chapter introduces an issue model for RE in the

IS area, as this system class is a representative example for flexible SPLs.

The purpose of this chapter is to provide a list of topics to be discussed

during elicitation there. Hence, besides the aforementioned template,

the resulting model then acts as another RE best practices consolidation

that forms a fourth input for the tailoring approach (see Figure 24).

However, similar to other reference models, this issue model does not

claim to be perfect in every context either. It addresses typical settings

when an IS should be introduced, but needs to be tailored to the specific

development context by using the tailoring approach shown in the next

chapter.

Reuse Asset Base

ARE
Instructions
Document

ARE Tailoring

Development
Strategy

ARE Application
Elicited

Requirements

DE / FE AE

Method Tailor Requirements Engineer

ARE Instructions
Template

Is sue Model

Artifact

Tailoring
Tool

SPL Artifacts

Best Practice Artifacts

Legend: Process

SPL Expert

Database

Research Approach

94

5.1 Research Approach

The development of the issue model described in this chapter was quite

similar to that of the conceptual ARE model (see chapter 2). Thus, in a

first step, existing work was consolidated (step 1). For this purpose, we

analyzed the most popular specification standards IEEE 830-1998

[IEEE98a], IEEE 1233-1998 [IEEE98b], IEEE 1362-1998 [IEEE98c], and the

Volere Template [RR99] and extracted all issues (respectively issue clas-

ses) mentioned in them by considering the nouns in the tables of con-

tents. Furthermore, a couple of industrial requirements specifications

from Fraunhofer IESE’s customers, as well as the following methodologi-

cal frameworks were also considered in order to enhance and challenge

the initial set of issue classes: ARIS House [Sch01], Zachman Framework

[Hay03], and Rational Unified Process [Kru00]. The reason for choosing

exactly these approaches was that they are widely accepted (and not just

academic) frameworks for developing IS. However, in contrast to the

specification standards, issue classes were extracted here by using the

nouns of the conceptual framework elements (e.g., business process). In

the same way, the TORE framework [PK04] [ADE+09] was analyzed. The

reason for using this approach developed at our institute was to assure

good integration with our previous work.

In the more than 190 issue classes obtained from these resources, re-

dundancies and synonyms were eliminated by using the open card sort-

ing technique [UG12] based on the definitions of the issue classes. Fur-

thermore, classes that were already part of our conceptual ARE model

(e.g., goals, stakeholders, etc.) or that did not classify issues according to

our definition were sorted out. Thus, we deleted motivations, problems,

background, justifications, goals, visions, expected impacts and effects,

project-related issues, support and accompanying services, and aspects

of the solution space that are typically also contained in the aforemen-

tioned standards. The reason was that these “issues” are not needed for

elaborating the required capabilities of an IS. Based on RE textbooks

such as [Rup07] as well as on experience gathered in previous research,

the relationships between the 29 remaining issue classes (see Appendix

K for the initial version of the list) were then determined. For this pur-

pose, we considered all issue class pairs one by one and checked wheth-

er there was a contain-, require-, specialize-, or influence-relationship

among them.

Finally, in order to logically arrange the issue classes, we assigned each

issue class to one of the four circles of Alexander’s onion model [Alex05].

The reason for using this model as a classification scheme was that its

circles are suitable means for putting issues in the right place within the

context of an IS, even though this model was initially only proposed for

classifying stakeholders. To make this assignment, we used the definition

of each circle as proposed by Alexander and decided for each issue class

whether the corresponding issues are part of the system to be devel-

 An Issue Model for Information Systems

 95

oped, part of its direct usage environment, part of the overall business to

be support, or part of the wider business environment. As a result, a first

version of the issue model was developed.

Figure 25. Research approach for issue model

In a couple of subsequent iterations, this model was then checked for

completeness and consistency (step 2). This was done in two different

ways. First, the model was discussed with four experts from the RE

group at Fraunhofer IESE. Their feedback and ideas, which were partially

based on a consideration of the V-Model XT [BI12] and the Fraunhofer

IESE’s SOE Model [ANT10], were incorporated into an improved version

of the model. Second, completeness and consistency was checked by as-

sessing concrete ARE instructions documents generated by our tailoring

tool (see chapter 6) based on an untailored version of the issue model.

Based on these instructions, the involved experts could easily check

whether the reflected issue classes and relationships actually covered a

realistic elicitation scenario when defining an IS. Thus, besides direct

feedback on the model, ideas and observations that emerged during the

assessment of the generated ARE instructions were also iteratively incor-

porated into an adapted version of the issue model (step 3).

Similar to the development of the conceptual ARE model, this model was

therefore also developed in several cycles (see Figure 25). These itera-

tions assured that our work converged towards a stable model in the last

month of thesis research.

Standards &
Frameworks

Industrial
Specifications

Own
Experience

(1)
Consolidation

Conceptual
Issue Model

(2) Consistency
Completeness

Check

Expert
Feedback &

Ideas

(3) Adaptation

Legend:

Research Activity

Artifact / Result

Model Overview

96

5.2 Model Overview

From a model theory point of view, the issue model bridges the gap be-

tween the element “issue” introduced in the conceptual ARE model (see

chapter 2), and concrete real-world elements (e.g., “a business travel

process”) with which an AE project deals. Thus, the issue model contains

a set of classes for whose instances requirements typically need to be

elicited in an IS project. The reason for addressing issue classes and not

concrete issues is that such a model would require a comprehensive do-

main analysis (and anticipation), which can never be complete, at least

not in the context of flexible SPLs (see chapter 1).

Hence, to illustrate the contribution of the issue model, Figure 26 shows

an example of how the meta-class “Issue”, concrete issue classes such as

“business process” and “business object”, and corresponding issues

(i.e., actual elements of a system or its environment) are arranged within

the MOF stack [OMG12]. According to this figure, the issue model is log-

ically assigned to the class level (M1) and therefore comprises important

issue classes and their conceptual relationships that might be important

in an IS project. This idea is based on the observation that many com-

monalities exist in RE for IS, even though “there is no best way to devel-
op enterprise systems” yet [Gul04].

Figure 26. Example of “Issue”, issue classes, and issues

In particular, the RE literature (see, for instance, [Rup07]) as well as state

of the art development methodologies like the Rational Unified Process

[Kru00] have proposed quite similar processes for RE in this area. In par-

ticular, the incremental-iterative approach as depicted in the spiral model

of Sommerville [Som04], the onion model of Alexander [Ale05], or the

idea of separating domain- and product requirements by Lauesen

[Lau02], are three concepts that are implicitly or explicitly part of many

Meta

M2

Class

M1

Object

M0

 An Issue Model for Information Systems

 97

requirements approaches today. Especially the latter notion is important

because it has been recognized that even systems that fulfill their (prod-

uct-level) requirements often do not fully satisfy their stakeholders if

their goals and tasks have not been understood sufficiently [Lau02].

Thus, the consideration of business issues is nowadays widely accepted

and practiced in RE for IS [ST05] [GD07], as knowing the business con-

text is a prerequisite to develop systems that address the actual business

needs [GD07].

However, a conceptual foundation is still rare in this regard. Existing ap-

proaches are rather informal and often lack a conceptual foundation.

Nevertheless, the idea of using conceptual models to clarify aspects of

the world to be addressed by an engineering method is not new and is

the state of the art in method tailoring [JJM09]. However, to our

knowledge, no model exists yet that provides a foundation like the issue

model described in this chapter.

5.3 Model View in Detail

This section introduces the elements of the reference model and explains

the impact of this model on a meaningful elicitation sequence when fol-

lowing the elicitation strategy as proposed in section 4.3.2. To introduce

this model in a stepwise manner, we use the views according to Alexan-

der’s onion circles [Ale05] (see Figure 27), which allow a thematic scop-

ing of the issue classes to be considered in different elicitation phases.

Figure 27. The onion model according to [Ale05]

In this regard, we start with the wider (business) environment view, fol-

lowed by the containing (business) system view, the system view (i.e.,

Kit
(information

system)

Containing system (business)

System (usage environment)

Wider environment (business environment)

Business Role

Role

User Role

Model View in Detail

98

the IS in its actual usage environment), and finally the kit view, in which

system internals are discussed.

5.3.1 The Wider Environment

The wider environment view reflects the environment of an organization

that should be supported by an IS, and therefore contains the issues that

are necessary for scoping the boundaries of a project.

Based on our aforementioned research approach, we have elaborated

the issue classes that are relevant in the wider environment (see Figure

53). The root of this view is a project in which an IS should be developed

or introduced. In such a project, at least one business area (e.g., travel

management) for which this system may be relevant is typically consid-

ered.

In this regard, the provided business services of the addressed business

areas must be known in order to understand what the actual business is

about. Business services mainly result from the need of an organization

to satisfy external stimuli such as a customer request or an incoming in-

voice. Hence, all external business events that trigger the considered

business areas to react must be known in order to derive corresponding

business services (sometimes denoted as business use cases) [RR99]. An

appropriate means for the identification of these events is the investiga-

tion of the interactions between the considered business area and its ex-

ternal partners [WJR+07], which we denote as business roles in this the-

sis. However, besides business events and business services also given

regulations must also be considered, as they are relevant for determining

how a business area may (re)act.

Figure 28. Wider environment view

The reason for starting a requirements elicitation with such a rather

business-oriented analysis is the observation that the motivation for an IS

can only be made clear if the actual business is well understood

[KAP+04].

 An Issue Model for Information Systems

 99

Below, we define these issue classes as follows:

Definition – Project

“A project is a planned set of interrelated tasks to be executed over a fixed peri-
od and within certain cost and other limitations in order to achieve a result.”
[BC12]

Definition – Business Area

A business area is a part of an organization’s operation that is responsible for a
certain market segment, respectively for a certain kind of services and goods, or
locations, domains, etc. [BC12]

Definition – Business Event

A business event is an external stimulus that triggers a business area to react.

Definition – Business Role

A business role is a role outside a business area that interacts with the business
area.

Definition – Business Service

“A business service is a useful work performed by a business area with value for
a business role.” [ANT10]

Definition – Regulation

A regulation is a given law or standard that can have an impact on the structure
or behavior of a business area.

According to the elicitation strategy recommended by this thesis (see

section 4.3.2), a meaningful elicitation order of the issues described in

this view could look like this: In a first step, project details would be elic-

ited and clarified. Then, the business areas that are in the scope of the

project would be described, before the interacting business roles, the

business events handled, and the relevant regulations would be ad-

dressed. The definition of the wider environment would finally close with

the definition of the business services that are provided by the business

areas for the business roles identified before.

5.3.2 The Containing System View

The containing system view reflects the internals of the business area

and therefore contains the issues that are necessary for defining the in-

ternal business organization to be supported by an IS. However, this

view just describes the organizational context of an IS, but not the direct

Model View in Detail

100

work environment in which this system will be actually operated and

used.

In Figure 29, we have elaborated the issue classes that are relevant in the

containing system. The roots of this view are all the issues from the wid-

er environment that require the business area to do something internally.

In particular, the business services (e.g., travel booking) provided by the

business area and the business events to be handled in the business area

(e.g., request for reporting) are important in this regard. However, be-

sides the pure business-related triggers, the introduction of the planned

IS itself also requires internal reactions. Thus, the planned system admin-

istration is considered as an additional root here as well.

For each of these issues, at least one business process that is needed for

reacting (e.g., travel application process, monthly report generation pro-

cess, etc.) shall exist. Each business process, which is a specific kind of a

business activity, can either be decomposed recursively into further (sub-)

business processes (e.g., travel booking) or merely comprise elementary

business activities (e.g., approve travel application) depending on its level

of abstraction. Business activities can be performed either by roles (e.g.,

project managers) or real organizational units (e.g., sales departments),

which can also be decomposed recursively.

Figure 29. Containing system view

Furthermore, business processes and elementary business activities use

business objects (e.g., travel applications, tickets, etc.) as input and out-

put while considering business rules that may govern their execution. A

specific kind of elementary business activity are human activities that are

performed by a role without any system support.

 An Issue Model for Information Systems

 101

Below, we define the issue classes of this view as follows:

Definition – System Administration

System administration is the whole set of tasks required for managing the users,
assets, and data of an information system.

Definition – Business Activity

A business activity is a work step with clearly identified inputs and outputs that
ends in a stable state with value for the business.

Definition – Business Process

A business process is a business activity that comprises a specific ordering of
other business activities across time, people, and places.

Definition – Business Object

“A business object is an entity that is handled in or affected by business process-
es.” [SGD+01]

Definition – Business Rule

A business rule is a rule that guides the behavior of an organization. Business
rules can either be facts, restrictions (rights and duties), enablers (conditional
actions), conclusions (conditional facts), or (conditional) calculations [Wie05].

Definition – Elementary Business Activity

An elementary business activity is an atomic business activity that is performed
by a single role or system.

Definition – Human Activity

A human activity is an elementary business activity that is performed by exactly
one role without any system support.

Definition – Organizational Unit

An organizational unit is a structural part of an organization that is responsible
for a certain area of tasks and topics.

Definition – Role

“A role is a class of real world persons based on a logical set of their responsibili-
ties, rights, and tasks.” [Poh07]

According to the elicitation strategy recommended by this thesis (see

section 4.3.2), a meaningful elicitation order of the issues described in

this view could look like this: First of all, the planned system administra-

Model View in Detail

102

tion would be discussed in order to complete the root elements that are

needed for the elaboration of the internal procedures. Then, for each

root element, the corresponding business processes would be defined

and decomposed before their included elementary business activities

would be elaborated and classified on the leaf level. For the business

processes and elementary business activities, the in- and outgoing busi-

ness objects would then be identified before the business rules would be

determined. The elicitation of business-related issues would finally close

with the elaboration and annotation of roles and corresponding organi-

zational units to the process and activities.

5.3.3 The System View

The system view according to the corresponding circle in Alexander’s on-

ion model reflects the immediate work environment in which an IS is

used, both from a technical and from an organizational perspective. It

therefore clarifies the issues that are needed for describing a system’s in-

teractions with its environment.

In Figure 30, we have therefore elaborated all issue classes that are rele-

vant for the system. Hence, once an overview of the addressed business

areas using the issues of the aforementioned views has been obtained,

the concrete expectations with respect to an IS must be defined next.

These expectations can be derived from certain business processes

[GD07] or from more strategic aims investigated before. At any rate,

without clear statements about the business case of an IS, there will exist

no basis for determining what the functional scope of the system should

be, respectively which parts of the analyzed business processes should be

supported or even automated [CFM+02].

In order to define the desired degree of process automation, the system

view introduces two further subtypes of elementary business activities,

namely system activities (e.g., auto-reply to incoming email) and human

system activities (e.g., book hotel). While the former are performed by a

system without any human intervention, human system activities are per-

formed by user roles from different workplaces (e.g., office) via certain

UI areas (e.g., travel application form). These activities define the con-

crete way of how user roles will perform certain steps in a business pro-

cess by using an IS. They are therefore often considered appropriate

means for deriving user requirements (often denoted as use cases

[Coc00]), as they describe the intended usage rather than solution-

oriented system features [Poh07].

However, besides users, partner systems (e.g., SAP) can also interact with

a system depending on the system’s operation mode (e.g., normal

mode, recovery mode, maintenance mode, …). Thus, the interoperation

with external partner systems must also be considered [CFM+02], as al-

most no IS is running in isolation today. This holds especially true for

 An Issue Model for Information Systems

 103

workflow-oriented IS that aim at automating the execution of business

processes by integrating all involved (legacy) applications and users in a

holistic manner. Hence, determining the system boundaries, i.e., decid-

ing what is already covered by existing partner systems, requires special

attention. The system-system interactions (e.g., synchronization of em-

ployee data) and the involved interfaces are therefore important, as in-

teraction data are exchanged (e.g., employee data) between the system

and its environment via these interfaces as well as the UI areas.

Figure 30. System view

However, due to the critical nature of IS in organizations, non-functional

aspects must also be considered as early as possible [ST05]. Besides

cross-cutting quality characteristics (in particular those concerning relia-

bility, performance, security, and usability), the technical infrastructure

components that are already in place (e.g., existing server hardware,

etc.), the physical environment in the backend, (e.g., climate and risk of

natural disasters, etc.), the workplaces from which the system will be in-

voked, and the intended usage profile (e.g., 10000 users between 9 a.m.

and 5 p.m.) must therefore be analyzed.

Below, we define the issue classes of this view as follows:

Definition – Human System Activity

A human system activity is an elementary business activity that is performed by a
user with a system.

Model View in Detail

104

Definition – System Activity

A system activity is an elementary business activity that is performed by exactly
one system without any human involvement.

Definition – UI Area

A UI area is a logical part of a system’s user interface that allows users to interact
with the system in order to carry out certain human system activities.

Definition – User Role

A user role is a role that interacts with a system.

Definition – Workplace

A workplace is a place where a user role works with the system.

Definition – Partner System

A partner system is an external system already available or to be introduced in a
parallel project with which the system under development should interact.

Definition – System-System Interaction

A system-system interaction is an interaction sequence between systems for
automatically exchanging data.

Definition – System Interface

A system interface is an endpoint provided by the system under development to
be invoked by partner systems.

Definition – Partner System Interface

A partner system interface is an endpoint provided by a partner system through
which another system can interact with the partner system.

Definition – Operation Mode

An operation mode is a specific state of a system in which a certain (sub)set of
capabilities (system functions, quality characteristics) is available.

Definition – Usage Profile

A usage profile is a quantitative description of how a system will be used.

Definition – Interaction Data

Interaction data are (parts of) business objects that are exchanged via an inter-
face or a UI area.

 An Issue Model for Information Systems

 105

Definition – Physical Backend Environment

A physical backend environment is the location in which a system or certain
components are deployed.

Definition – Technical Infrastructure Component

A technical infrastructure component is a piece of external information technol-
ogy (hardware, software, operation system, middleware, network, etc.) whose
services are used by a system to run.

Definition – Cross-cutting Quality Characteristics

A cross-cutting quality characteristic is a non-functional property of a system that
concerns the system as a whole

According to the elicitation strategy recommended by this thesis (see

section 4.3.2), a meaningful elicitation order of the issues described in

this view could like this: In a first step, the technical infrastructure com-

ponents and the physical backend environment would be discussed be-

fore the intended operation modes and usage profile would be elaborat-

ed. Then, the partner systems and their system-systems interactions with

the system to be introduced would be identified. Based on these results,

the required system interfaces and partner system interfaces could be

analyzed. In a next step, the user roles for the human system activities

within the already analyzed business processes would be determined, in-

cluding the identification of their workplaces. The UI area to be used in

these human system activities as well as all interaction data would then

be defined accordingly. The elicitation of issues concerned with the sys-

tem environment would close with the definition of crosscutting quality

characteristics that are also needed to satisfy the stakeholders.

5.3.4 The Kit View

The kit view according to Alexander’s onion model reflects the internal

issues of the actual system under development to the extent that these

issues are already relevant during RE. This view therefore clarifies the is-

sues that need to be known when designing the internals of a system.

However, this view does not deal with actual system elements, as it

merely aims at addressing the requirements that may exist on their reali-

zation.

In Figure 31, we elaborated the issues that are relevant in the kit, at least

from an RE point of view. The roots of this view are the human system

activities and the system activities introduced above. For both activities,

system functions exist that realize (parts) of these activities. During the

development of these functions, realization policies have to be consid-

ered. In particular, realization policies may also influence the UI style ac-

cording to which the user interface of a system has to be designed.

Summary

106

Thus, the pure usage-oriented approach that has existed so far is now

complemented with realization-specific issues.

Figure 31. Kit view

Below, we define these issues as follows:

Definition – System Function

A system function is an atomic reaction (i.e., state change or response) of a
system that is triggered by an external stimulus, e.g., an environmental change,
or by an explicit request of a user or an external system.

Definition – Realization Policy

A realization policy is a constraint for the development of the system under de-
velopment including security policies, desired architecture styles, COTS or open
source to be used, development activities, and development technology.

Definition – UI Style

A UI style is the look and feel or appearance of the user interface respectively the
representation rules to be followed.

According to the elicitation strategy recommended by this thesis (see

section 4.3.2), a meaningful elicitation order of the issues described in

this view could look like this: First, the system functions would be de-

rived based on the human system activities or the system activities identi-

fied before. Then, realization policies and, in particular, requirements

concerning the UI style would be elaborated in order to provide develop-

ers with corresponding design constraints.

5.4 Summary

Issues define the elements for which requirements have to be elicited in

order to specify a software system. However, as requirements processes

for IS are basically different from requirements processes for other kinds

of systems (e.g., embedded systems) [NE00], the issues to be discussed in

this domain are very specific and cannot be covered by abstract (meta-)

models such as those proposed by [GKB08], [CDS+05], [VMT07],

 An Issue Model for Information Systems

 107

[WW92], or [AHH11]. However, models such the BPMN specification

[OMG12b], the Soffer-Wand ontology [SW04], or the reference models

by Scheer [Sch95], which discuss specific business issues in all details, are

also no alternative, as they neglect important aspects that are necessary

for RE.

In this chapter, an issue model for RE in the IS area has therefore been

introduced. The model describes the issues that are typically relevant in

IS projects and the relationships among them. As it provides a formalized

description of the conceptual world to be discussed during elicitation, it

therefore acts as a forth input for our tailoring approach (see chapter 6).

In particular, the issues described in the model reflect the elements with

which both SPL constraints and information needs can be concerned.

This means that different knowledge about an SPL can be assigned di-

rectly to a certain issue in order to provide requirements engineers with

this knowledge in a corresponding elicitation step. Furthermore, the

conceptual relationships among issues defined in the model allow de-

termining a meaningful elicitation sequence based on the rules intro-

duced in section 4.3.2.

However, even though we carefully elaborated the issues using an itera-

tive approach, we are aware that the concrete information needs in a

certain development context and, thus, the actually relevant issues, may

vary. Especially when systems are built in a reuse-based way, decisions

will affect which issues are relevant and which are not (see chapter 2).

Furthermore, the point in time at which a certain issue must be discussed

is not fixed either. For instance, it may be possible that very technical is-

sues such as the existing infrastructure components must be known ear-

lier in a certain context than the business processes. Thus, it is important

to know that the elicitation sequences recommended above are only

meaningful within one view. The overall processing order of issues can

therefore differ significantly when the issue model has been tailored. In

this case, only the relationship stereotypes must still be considered, as,

for instance, a contained issue cannot be discussed before a containing

issue has been discussed. Thus, this issue model cannot be used out-of-

the-box.

The next chapter therefore introduces the ARE tailoring approach and

explains how the issue model is used respectively adapted for addressing

the actual information needs of an SPL organization. The initial issue

model as presented here is an indispensable input for this aim, as it re-

flects established elicitation procedures. If method tailors know about

these, they are not likely to violate best practices when defining tailored

ARE instructions.

 Tailoring ARE Instructions based on an SPL

 109

6 Tailoring ARE Instructions based on an SPL

“Tailors are the smartest people because they take
measures over and over again, rather than relying on

old information.”
George Bernard Shaw

As already described in the solution idea (see section 1.3.2), the overall

purpose of this thesis approach is to tailor ARE instructions in an effec-

tive and systematic manner in order to provide requirements engineers in

AE with better knowledge about a given SPL.

Figure 32. ARE tailoring method within thesis approach

To support this aim, this chapter introduces the main methodological

and engineering contribution of this thesis, namely the actual tailoring

method and its tool support (see Figure 32). Hence, the purpose of this

chapter is to present an algorithmic approach that allows method tailors

(i.e., people that are responsible for defining methods and processes in

an SPL organization) to extract and incorporate important process and

product knowledge from an SPL into an ARE process as well as support-

ing artifacts.

6.1 Research Approach

The tailoring approach described in this chapter was developed in paral-

lel to other thesis components such as the conceptual ARE model de-

scribed in chapter 2 and the ARE instruction template described in chap-

ter 4, as these components are strongly intertwined.

Reuse Asset Base

ARE
Instructions
Document

ARE Tailoring

Development
Strategy

ARE Application
Elicited

Requirements

DE / FE AE

Method Tailor Requirements Engineer

ARE Instructions
Template

Is sue Model

Artifact

Tailoring
Tool

SPL Artifacts

Best Practice Artifacts

Legend: Process

SPL Expert

Database

Research Approach

110

In a first step (step 1), an initial version of the conceptual ARE model was

therefore used to identify and describe the basic steps of the tailoring

approach (see Figure 33). To make this happen, we created a diagram

that contained all elements of the conceptual ARE model except those

elements that will be a work result of the AE phase (e.g., requirements,

system, …). The reason for excluding these elements was based on the

intention of the tailoring approach to develop ARE instructions. Thus, el-

ements that will be created during AE can apparently not be processed

during the upstream tailoring that has to take place during DE/FE. Fur-

thermore, we also removed all classification elements and all “satellite”

elements that just provide optional information about an element of ac-

tual importance (e.g., the SPL specification as a means for documenting

the software product line). The graph of the remaining elements was

then recursively processed by following the elements’ relationships start-

ing with the element “Software Product Line”. This processing basically

included the definition of simple tailoring instructions in the form of

“Analyze the <related element> <association> the <current element>”,

e.g., “Analyze the Product Line Architectural Elements that are part of
the Product Line Architecture”. These statements were then manually

consolidated into more meaningful steps, and extended with additional

explanations in order to increase the preciseness of guidance. The con-

crete foundation of each tailoring step within the ARE model is described

in the corresponding subsections below.

Figure 33. Research approach for tailoring approach

The resulting tailoring approach was then applied in an early feasibility

study (step 2), where we tried to derive an ARE instruction by elaborat-

ing SPL knowledge with people from a medium-sized software company.

Based on the experience made during this study, an improvement of the

tailoring method took place (step 3). However, as the tailoring method

had to be aligned with the underlying foundation, an adaptation of the

Foundation

Instruction
Template

(1) Initial
Definition of

Approach

Initial
Tailoring
Approach

(2, 5) Study Observations
& Experience

(3, 6)
Adaptation &

Alignment

Revised
Tailoring
Approach

(4, 7) Tool
Development

& Test

Legend:

Research Activity

Artifact / Result

 Tailoring ARE Instructions based on an SPL

 111

conceptual ARE model was done first. Based on the improvements in-

corporated in this model, more formalization could then be added in the

tailoring steps also, which made the entire tailoring approach more accu-

rate. The improved versions of the tailoring approach and of the underly-

ing ARE model were then aligned with the ARE instructions template in

its initial version. During this task, misalignments occurred, which made

it necessary to slightly adapt all three thesis components again.

In the next step, a tool was developed for (semi-) automating or at least

facilitating the steps of the tailoring method (step 4). During this devel-

opment, the tailoring steps were again made more precise, either to be

implemented in software or to provide better guidance to the tool users.

The resulting tool was then used with fictitious examples to test the cor-

rectness of the implemented algorithms. Besides the actual tailoring ap-

proach, the ARE instructions template, respectively the conceptual ARE

model, was also slightly adapted when a need for correction was recog-

nized.

The tested tool as well as a fictitious example were then used by two ex-

perienced software architects and two requirements engineers at Fraun-

hofer IESE as well as by a person from industry in order to derive an ARE

instructions document (step 5). The feedback we received from this case

study (see evaluation in chapter 7) with regard to the tool-supported ap-

proach was used to identify required adaptations (step 6 and 7) to be

addressed in future work (see chapter 8).

6.2 Tailoring Overview

While the reuse asset base provides the product knowledge of the SPL,

the development strategy and the RE best practices provide knowledge

about the processes of an SPL organization. Thus, the tailoring approach

aims at addressing the incorporation of SPL knowledge holistically and

does not merely focus on product reuse as most other approaches do.

However, as shown by Carbon [Car11], products and processes are

closely intertwined, at least in an ideal development setting. This means

that the elements of a given architecture may influence the processes

regarding how to develop systems in an efficient manner. The tailoring

approach introduced here therefore takes this dependency into consid-

eration and tries to align certain development activities with the underly-

ing architectural elements wherever possible. Therefore, the tailoring

steps dealing with the extraction of process knowledge strongly depend

on the underlying product base.

Based on the conceptual ARE model described in chapter 2, the tailoring

approach to be performed by method tailors during DE/FE therefore pro-

cesses the aforementioned inputs as follows (see Figure 34). In the first

step, basic information is extracted from the SPL specification in order to

Tailoring Overview

112

characterize the systems to be derived from it during AE projects. In the

second and third steps, the architectural elements, respectively the archi-

tectural element types, are then extracted from the product line architec-

ture. These elements and types are used for characterizing the flexibility

classes that are supported in step four. In step five, the assumptions

made by these flexibility classes are then elaborated taking into consid-

eration the development strategy and product line architecture. Fur-

thermore, the issue model that reflects RE best practices (see chapter 5)

is used to align the assumptions from the solution space with elements

(i.e., issues) of the problem space.

Figure 34. Activities and artifacts of the tailoring approach

Based on the development strategy, the development phases in which a

customer-specific system should be developed are then characterized in

step six, before the contained development activities are identified in

step seven for each of these phases. As the development process is

strongly aligned with the product line architecture, the extracted archi-

tectural element types, architectural elements, and flexibility classes are

considered here.

In step eight, these development activities are used to elaborate the de-

cisions to be made in them as well as the corresponding information

needs. In step nine, the information needs are used for determining the

relevant issues to be discussed during an ARE process. Again, the best

practices reflected in the issue model are taken into consideration. This

list of relevant issues as well as the relationships described in the issue

model are then used to determine the conceptual relationships between

M
e

th
o

d
 T

a
il

o
r

(1) Characterization

of Software Product

Line

(2) Identification of

Architectural

Element Types

(3) Identification of

Architectural

Elements

(4) Characterization

of Supported

Flexibil ity Classes

[SEMI-AUTOMATED]

(5) Identification of

Flexibil ity

Assumptions

(6) Characterization

of Development

Phases

(7) Identification of

Development

Activities

[SEMI-AUTOMATED]

(8) Elaboration of

Decisions and

Information Needs

[SEMI-AUTOMATED]

(9) Determination of

Relevant Issues

[SEMI-AUTOMATED]

(10) Determination of

Conceptual

Relationships

[SEMI-AUTOMATED]

SPL Specification Product Line Architecture

Development

Strategy

Reference Issue Model

(11) Definition of

ARE Elicitation

Instructions

[AUTOMATED]

AERE Instruction Template SPL Characterization Architectural Element Types Architectural Elements Flexibil ity Classes Assumptions

Relevant IssuesConceptual Relationships Information Needs Development Activities Development Phases

ARE Instructions Document
Legend:

Tailoring

Activity Artifact

 Tailoring ARE Instructions based on an SPL

 113

the issues of interest in step ten. In step eleven, these issues, their rela-

tionships, the assumptions concerned with them, the SPL characteristics

extracted in the first tailoring step, as well as the ARE instructions tem-

plate (see chapter 4) are finally used to create an ARE instructions docu-

ment. These instructions are then ready to use in AE projects.

6.3 Tailoring Steps in Detail

In this subsection, the eleven aforementioned steps of the tailoring ap-

proach are introduced in detail. For each step, we describe the purpose

and the rationale, the underlying foundation from chapter 2, algorithmic

guidance on how method tailors should perform this step, as well as the

automation support provided so far.

6.3.1 Characterization of Software Product Line

Purpose. In this step, the basic characteristics of systems derived from a

given SPL are described. The purpose of this step is to understand the

general nature and intention of these systems in order to get an aware-

ness for the target group, the application domain, and the benefits these

systems may have for potential customers in an AE project. Thus, this

step aims at extracting the informal background information AE re-

quirements engineers should have when eliciting requirements for such

systems.

Foundation. The foundation of this tailoring step is the class “Software

Product Line” within the underlying model introduced in chapter 2 (see

Figure 35). According to this model, the systems to be developed in AE

projects are derived from a given SPL, which is documented in a corre-

sponding SPL specification.

Figure 35. Foundation of tailoring step 1

Input. SPL specification.

Procedure. In order to characterize the SPL for which specific ARE in-

structions should be tailored, information has to be extracted from the

SPL specification. Thus, the following procedure has to be applied in this

tailoring step:

Tailoring Steps in Detail

114

Tailoring Step 1 – Analyze the software product line on which the appli-
cation engineering should be based.

To do so, describe the systems to be derived from the software product line
according to the following questions:

 What is the main purpose of these systems?

 Which business domain or market segment is addressed?

 Who are the typical customers?

 Who are the typical end users?

 What are the benefits these systems provide to their audience?

 How are these systems typically integrated into their usage environ-
ment?

 Which main constraints and limitations do these systems have?

To extract this information, consider the SPL specification in which the software
product line is documented. If you cannot find the required information here,
feel free to interview an SPL expert.

Output. SPL characterization.

Figure 36. Screenshot of tailoring tool with example (step 1)

Rationales. The reason for asking exactly these questions is based on

the observation that the corresponding answers allow people to get a

basic understanding of the characteristics of a software system or a

 Tailoring ARE Instructions based on an SPL

 115

component [FGM07]. The reason for carrying this step out manually is

that today’s software systems are not described in a semantic way,

which would allow extracting this knowledge automatically from either

code, architectural documentation, or the requirements [Joh10].

Tool Support. Due to the aforementioned reason, the support of the

tailoring tool for this step (see Figure 36) is limited to the description of

the aforementioned procedure as well as to the provision of documenta-

tion possibilities.

6.3.2 Identification of Architectural Element Types

Purpose. In this step, all architectural element types that are used in the

product line architecture are identified and characterized. The purpose of

this step is to determine the classes of elements of which both the SPL

and also all derived systems are basically composed. Thus, this step de-

fines the valid element types to be used during development, which

helps to identify the actual architectural elements, which are already part

of the product line architecture, more systematically in the next step.

Furthermore, an awareness of valid architectural element types is also

needed to support systematic determination of possible customer-

specific extensions. This means that for each architectural element type it

is checked whether new architectural elements of this type may be spe-

cifically extended in a certain AE project or not. However, both the de-

termination of such allowed extensions and the identification of already

existing architectural elements are not part of this tailoring step yet, and

will be covered in some of the following ones.

Foundation. The foundation of this tailoring step is the class “Architec-

tural Element Type” within the underlying model introduced in chapter 2

(see Figure 37). According to this model, each software product line has

a product line architecture comprising different product line architectural

elements. The product line architectural elements realize certain architec-

tural element types that are (only) allowed in the product line architec-

ture. Thus, learning about these architectural element types is the pre-

requisite to understand the product line architecture.

Figure 37. Foundation of tailoring step 2

Tailoring Steps in Detail

116

Input. Product line architecture.

Procedure. In order to identify the architectural element types, the

product line architecture has to be analyzed. Thus, the following proce-

dure has to be applied in this tailoring step:

Tailoring Step 2 – Analyze the architectural element types that are al-
lowed in and by the product line architecture.

To do so, describe the architectural element types according to the following
questions:

 What is the name of the architectural element type?

 What is the common purpose of the architectural elements belonging
to the architectural element types?

To extract this information, consider the product line architecture in which the
architectural element types are defined. If you cannot find the required infor-
mation here, feel free to interview an SPL expert. To get an idea of what archi-
tectural element types might be, consider reference architectures typically used
in the domain addressed by the SPL.

Output. (List of) architectural element types.

Rationales. The reason for asking only these two questions is that the

architectural element types are just to be used as an anchor for the iden-

tification of architectural elements and extension classes that are of

higher value for the creation of ARE instructions. Thus, knowing which

architectural element types exist is sufficient for achieving the goal of the

tailoring approach.

The reason for this manual extraction is that architectures in today’s

software systems are documented in very different ways. Furthermore,

as the scientific contribution of this work is not in the area of architec-

ture analysis or reengineering, providing algorithms that extract architec-

tural element types automatically was not within its scope. However, as

future work (see chapter 8), it would be a good idea to integrate this

step with upfront architecture analysis, for example based on SAVE

[DKL09].

Tool Support. For the reason mentioned above, the support of the tai-

loring tool for this step (see Figure 38) is limited to the description of the

aforementioned procedure as well as the to the provision of documenta-

tion possibilities.

 Tailoring ARE Instructions based on an SPL

 117

Figure 38. Screenshot of tailoring tool with example (step 2)

6.3.3 Identification of Architectural Elements

Purpose. In this step, all product line architectural elements that realize

the architectural element types identified before are identified and char-

acterized. The purpose of this step is to understand of which concrete

elements the given product line architecture is currently composed. Thus,

the common and variable architectural elements are recursively extracted

from the product line architecture. This is a prerequisite for the identifi-

cation of required system instantiation activities as well as possible cus-

tomer-specific modifications in later tailoring steps. However, neither the

determination of such allowed modifications nor the identification of re-

lated system instantiation activities are part of this tailoring step yet and

will be addressed in some of the following ones.

Foundation. The foundation of this tailoring step is the class “Product

Line Architectural Element” within the underlying model introduced in

chapter 2 (see Figure 39). According to this model, product line architec-

tural elements realize the aforementioned architectural element types

and are either common architectural elements or variable architectural

elements within the product line architecture. Variable architectural ele-

ments can be further distinguished into optional, alternative, and op-

tional alternative architectural elements. All product line architectural el-

ements have in common that they may be composed of other product

line architectural elements.

Tailoring Steps in Detail

118

Figure 39. Foundation of tailoring step 3

Input. Product line architecture, (list of) architectural element types.

Procedure. In order to identify the architectural elements, the product

line architecture has to be analyzed again. Thus, the following procedure

has to be applied in this tailoring step:

Tailoring Step 3 – Analyze the product line architectural elements that
are part of the product line architecture.

1. For each architectural element type identified before, describe the product
line architectural elements according to the following questions. Start at the
highest decomposition level.

 What is the name of the product line architectural element?

 What is the architectural element type of the product line architectural
element?

 What is the purpose of the product line architectural element?

 Is the product line architectural element an alternative within the de-
rived systems (i.e., can it be implemented differently)?

 Is the product line architectural element an optional within the derived
systems (i.e., does it need to be part of all derived systems)?

 In which parent product line architectural element is the product line

 Tailoring ARE Instructions based on an SPL

 119

architectural element included?

2. For each alternative architectural element identified in the first step (only for
alternatives!), recursively decompose this element into its child elements and
answer the above questions again for each identified child element.

For extracting this information, consider the product line architecture in which
the architectural elements are defined. If you cannot find the required infor-
mation here, feel free to interview an SPL expert.

Output. (List of) architectural elements.

Rationales. The reason for asking these questions is the need to know

for which purpose a certain product line architectural element is needed

and how it is embedded in the overall product line architecture. Fur-

thermore, the questions concerning variability and optionality are indis-

pensable to elaborate corresponding decisions and information needs in

a later tailoring step. In this regard, we consider variability and optionali-

ty as being orthogonal (see section 2.3.1 for definitions

Figure 40. Screenshot of tailoring tool with example (step 3)

The reason for recursively decomposing only alternative elements is

based on the fact that the sub-elements of the non-alternative product

line architectural elements are always implemented in the same way and

do therefore not influence any decision made during AE. Thus, these el-

ements will not lead to certain information needs that must be known

for tailoring an ARE process based on the SPL.

Tailoring Steps in Detail

120

Finally, the reason for manually extracting the product line architectural

elements is the same as for the architectural element types before.

Tool Support. Due to the aforementioned reason, the support of the

tailoring tool for this step (see Figure 40) is limited to the description of

the aforementioned procedure as well as the to the provision of docu-

mentation possibilities. However, as already mentioned, a combination

with architecture analysis tools could be meaningful future work.

6.3.4 Characterization of Supported Flexibility Classes

Purpose. In this step, the flexibility classes that are supported by the

product line architecture are identified and characterized. The purpose of

this step is to understand which customization possibilities are provided

by the given SPL beyond the scope of the variabilities already predefined

during the DE/FE phase. Thus, possible extensions and modifications that

are either technically or strategically allowed are determined, including

an estimation of their costs. This means that for each product line archi-

tectural element identified before, it is decided whether this element

may also be realized in a novel and still unknown manner during an AE

project or not. Furthermore, for each architectural element type, it is de-

cided whether still unforeseen architectural elements of this type may be

individually added during an AE project or not. Both aspects are im-

portant for if only the predefined variants are considered. The characteri-

zation of supported flexibility classes is therefore the key tailoring step

for making AE requirements engineers aware of the capabilities of the

SPL, respectively its enhanced customization possibilities. However, the

determination of the assumptions that must hold in order not to contra-

vene the architecture or the intended development strategy when ex-

ploiting these flexibilities is not part of this tailoring step, and will be ad-

dressed in the next one.

Foundation. The foundation of this tailoring step is the class “Flexibility

Class” within the underlying model introduced in chapter 2 (see Figure

41). According to this model, flexibility classes are either extension clas-

ses concerning architectural element types or modification classes con-

cerning architectural elements. They are enabled by architectural ele-

ments that provide possibilities for extending further elements or modify-

ing the realization of existing ones.

 Tailoring ARE Instructions based on an SPL

 121

Figure 41. Foundation of tailoring step 4

Input. Product line architecture, (list of) architectural element types, (list

of) architectural elements.

Procedure. In order to identify the flexibility classes, the product line ar-

chitecture must therefore be analyzed again. The following procedure

describes how to perform this tailoring step:

Tailoring Step 4 – Analyze the flexibility classes that are enabled by the
product line architectural elements.

1. For each product line architectural element identified before, determine
whether there is a modification class concerned with it.

2. For each architectural element type identified before, determine whether
there is an extension class concerned with it.

3. Describe all elaborated flexibility classes according to the following ques-
tions:

 What is the name of the flexibility class?

 What is the purpose of the flexibility class (e.g., the extension of new
business process components)?

 What is the average development effort for creating a new artifact (i.e.,
an architectural element or its realization) when exploiting the flexibility
class (1 = low, 2 = medium, 3 = high)?

 What is the average impact on other architectural elements when ex-
ploiting the flexibility class (1 = low, 2 = medium, 3 = high)?

 Which product line architectural element enables the flexibility class?

Tailoring Steps in Detail

122

 With which product line architectural element or which architectural el-
ement type is the flexibility concerned?

To extract this information, consider the product line architecture in which the
architectural elements are defined. If you cannot find the required information
here, feel free to interview an SPL expert.

Output. (List of) supported flexibility classes.

Rationales. The reason for asking these questions is the need to provide

AE requirements engineers with sound information about possible ex-

tensions and modifications, their rationales (i.e., the enabling architec-

tural elements), and their exploitation costs. This step therefore requires

the prediction of development and integration costs by a means of

sound architectural analysis. Thus, product line architects should be in-

volved in this step. Cost estimations based on architectural impact analy-

sis are beyond the scope of this work, but are interesting for future re-

search (see chapter 8).

Nevertheless, we consider it to be sufficient to give only coarse cost es-

timations (low, medium, high) to stakeholders during an elicitation ses-

sion. This means that we assume that it is not important to directly state

concrete monetary costs or delivery delays when a modification or exten-

sion request is stated. Rather, when stakeholders insist on a requirement

even though they have been informed about the coarse dimension of its

impact, a detailed estimation can still be done afterwards.

Furthermore, the reason to extract flexibility classes from the architecture

is based on the assumption that an architecture enables changes that go

beyond those expressed in an explicitly-anticipated variability model

(VM).

Tool Support. While tool support was limited to the provision of in-

structions and documentation possibilities in the previous steps, a higher

degree of automation support is achieved here (see Figure 42). Before

displaying the instructions and forms for this tailoring step, the tool au-

tomatically generates a proposal for all possible extensions and modifica-

tion classes based on the architectural element types and product line

architectural elements identified before. Thus, for each architectural el-

ement type, the tool generates an extension class using the following

template:

Name: <architectural element type name> Extension

Purpose: to enable the realization of customer-specific <architectural element
type name>s not covered in the SPL so far.

Furthermore, for each alternative architectural element, the tool gener-

ates a modification class using the template:

 Tailoring ARE Instructions based on an SPL

 123

Name: <architectural element name> Modification

Purpose: to enable a customer-specific realization of the <architectural element
name> for the case that its already foreseen variants are not sufficient.

Finally, for each common architectural element or optional architectural

element (that is not an alternative), the tool generates a modification

class as follows:

Name: <architectural element name> Replacement

Purpose: to enable the replacement of the unique <architectural element
name> with a customer-specific implementation, if required.

Thus, when applying this tailoring step by using the tool support, meth-

od tailors must still enter the costs and enabling product line architectur-

al elements for each flexibility class (see Figure 42). Of course, the auto-

matically generated list of flexibility classes should first be reduced to

those classes that are actually supported.

A further tool support in this step is that the isolated estimations for the

development of artifacts when exploiting a flexibility class and for the in-

tegration within the entire architecture are automatically combined into

one “price”. For instance, when the development and the impact were

both estimated as being “high”, the overall costs when exploiting the

corresponding flexibility class will be “very high”.

Figure 42. Screenshot of tailoring tool with example (step 4)

Tailoring Steps in Detail

124

6.3.5 Identification of Flexibility Assumptions

Purpose. In this step, the assumptions that must hold in order to exploit

the aforementioned flexibility classes are determined. The purpose of this

step is to understand under which circumstances customer-specific re-

quirements can be economically realized (even though not anticipated

before) without contravening the product line architecture or the in-

tended development strategy. Thus, the set of implicitly anticipated re-

quirements to be supported by the given SPL is declaratively prescribed

through these assumptions. This means that for different issues of the

application domain, properties are defined that must be fulfilled in order

to allow corresponding requirements to be economically feasible. This is

important for aligning the capabilities and constraints of a given SPL with

elements to be discussed and processed during ARE. The identification of

flexibility assumptions is therefore the key step for making AE require-

ments engineers aware of given SPL constraints.

Foundation. The foundation of this tailoring step is the class “Assump-

tion” within the underlying model introduced in chapter 2 (see Figure

43). According to this model, assumptions are always concerned with an

issue, and are either hard assumptions (that must hold) or soft assump-

tions (that should hold). Assumptions are made by one or more flexibility

classes, but their rationales is typically the risk of violating the product

line architecture when exploiting these flexibility classes without any re-

strictions.

Figure 43. Foundation of tailoring step 5

Input. Product line architecture, development strategy, (list of) support-

ed flexibility classes, reference issue model.

Procedure. In order to identify the flexibility assumptions that must hold

in order to be able to exploit the aforementioned flexibility classes with-

out contravening the product line architecture or development strategy,

the following procedure has to be applied:

 Tailoring ARE Instructions based on an SPL

 125

Tailoring Step 5 – Analyze the assumptions that are made by the flexibil-
ity classes.

For each flexibility class identified before, describe the assumptions that must
hold in order to not contravene the product line architecture or development
strategy according to the following questions:

 What exactly does the assumption express / constrain?

 Why does the assumption exist and why must it hold?

 Is the assumption a hard assumption (that is known to always lead to
economic unfeasibility when it does not hold) or a soft assumption?

 Which issue (to be realized or supported by a derived system) is affect-
ed by this assumption?

To extract this information, consider the product line architecture, the develop-
ment strategy, as well as the issue model introduced in chapter 5. If you cannot
find the required information here, feel free to interview an SPL expert.

Output. (List of) assumptions.

Rationales. The reason for asking these questions is the need to under-

stand the assumptions the SPL makes about the requirements that might

be stated during AE projects. Particularly to allow AE requirements engi-

neers to know which requirements are basically feasible and which are

not (without prescribing all requirements in advance), the assumptions

must be clearly stated and, in particular, aligned with the issues with

which requirements can be concerned. For instance, when eliciting re-

quirements concerning business processes, assumptions that are made

with regard to business processes can be directly taken into considera-

tion. To negotiate convincingly, it is furthermore important for AE re-

quirements engineers to know why these assumptions must hold. Oth-

erwise, stakeholders will probably not be willing to accept when a re-

quirement is put into question. In this regard, it is also important to

elaborate whether an assumption is hard (mandatory) or soft (desired

but not mandatory). Thus, all aforementioned questions aim at gathering

this information.

This step therefore again requires a sound knowledge of the product line

architecture, but also of the development strategy. An important source

for determining the assumptions are the technologies, protocols, tools,

standards, and regulations or policies on which the SPL is based, or from

which customer-specific systems should be derived during an AE project.

For instance, when using a product line architectural element “Business

Process Designer”, which implements the BPMN standard, a correspond-

ing assumption concerning the issue “Business Process” would be that

the business processes are modeled in BPMN and not in another nota-

tion. Thus, product line architects as well as technology experts should

Tailoring Steps in Detail

126

be involved in this step in order to externalize the existing assumptions

and assess whether they are hard or soft. In future work, it would be in-

teresting to see to which degree it is possible to derive the assumptions

from the used technologies automatically (e.g., by processing meta-

information provided by tools or components). Furthermore, it would be

an interesting enhancement to implement algorithms that automatically

detect the issues with which an assumption is concerned, as we have

found it to be challenging for practitioners to make this alignment when

doing the tailoring for the first time. However, both of those extension

possibilities are beyond the scope of this work.

Tool Support. In contrast to the previous step and due to the afore-

mentioned reason, the tool support (see Figure 40) is limited to the de-

scription of the aforementioned procedure as well as the to the provision

of documentation possibilities.

Figure 44. Screenshot of tailoring tool with example (step 5)

6.3.6 Characterization of Development Phases

Purpose. In this step, the development phases in AE projects according

to the underlying development strategy and process are identified and

characterized. The purpose of this step is to understand how customer-

specific systems based on the given SPL are basically developed, config-

ured, and integrated. Thus, the increments and milestones according to

which customer-specific systems are built are determined and described.

Based on this, development activities and corresponding information

needs can then be identified in later steps. The characterization of devel-

opment phases is therefore important for elaborating until which point

 Tailoring ARE Instructions based on an SPL

 127

in time (milestone) during AE the different issues have to be discussed in

order to gather all information that is needed to perform the develop-

ment activities of the next phase. However, the elaboration of these ac-

tivities and information needs is not part of this step, and will be cover in

the next two steps.

Foundation. The foundation of this tailoring step is the class “Develop-

ment Phase” within the underlying model introduced in chapter 2 (see

Figure 45). According to this model, development phases are parts of a

development process with a defined order. Development phases are de-

termined by the underlying development strategy for AE. Milestones,

where certain results are achieved, mark the end of a phase.

Figure 45. Foundation of tailoring step 6

Input. Development strategy.

Procedure. In order to characterize the development phases according

to which customer-specific systems should be derived from the given

SPL, the following procedure has to be applied:

Tailoring Step 6 – Analyze the development phases determined by the
development strategy.

To do so, describe the development phases determined by the development
strategy according to the following questions:

 What is the name of the development phase?

 What is the purpose of the development phase?

 Which milestone is reached at the end of the development phase?

 Is the development phase carried out several times in an AE project
(i.e., is it iterative)?

 Which development phase is the predecessor of the development
phase?

To extract this information, consider the development strategy according to
which systems should be developed (i.e., configured, installed, extended, etc.) in
an AE project. If you cannot find the required information here, feel free to in-
terview an SPL expert.

Tailoring Steps in Detail

128

Output. (List of) development phases.

Rationales. The reason for asking these questions is the need to under-

stand what is done in different development phases and which separat-

ing milestones exist. The elaboration of this information is a prerequisite

to finding out which requirements must be available at which point in

time during an AE project.

Tool Support. As this tailoring step is very informal, the tool support

(see Figure 46) is again limited to the description of the aforementioned

procedure as well as the to the provision of documentation possibilities

in this step.

Figure 46. Screenshot of tailoring tool with example (step 6)

6.3.7 Identification of Development Activities

Purpose. In this step, the development activities to be performed during

AE are identified and described. The purpose of this step is to under-

stand how a customer-specific system is to be developed concretely

based on the given SPL. Thus, all activities that are needed to instantiate

the predefined variabilities, or that are needed to extend, respectively

modify, the system when exploiting the supported flexibility classes are

determined. This step is a prerequisite for being able to elicit the infor-

mation needs that have to be satisfied through ARE processes in order to

allow effective and efficient system development. In particular, without

knowing the concrete responsibilities of the development roles, it is hard

 Tailoring ARE Instructions based on an SPL

 129

to elaborate the corresponding information needs systematically. Thus,

we also apply the idea of information-oriented RE [SLS+09] for the elab-

oration of information needs in this context. However, the elicitation of

these needs is not part of this tailoring step.

Foundation. The foundation of this tailoring step is the class “Develop-

ment Activity” within the underlying model introduced in chapter 2 (see

Figure 47). According to this model, each development activity is part of

a development phase performed by exactly one role and arranged in a

defined order. Each development activity is either an inclusion activity,

instantiation activity, extension activity, redevelopment activity, or a mis-

cellaneous activity depending on the architectural element respectively

architectural element type it is concerned with. The development activi-

ties are closely aligned with the product line architecture and therefore

determined (to a large degree) by the result of the previous tailoring

steps.

Figure 47. Foundation of tailoring step 7

Input. (List of) development phases, (list of) supported flexibility classes,

(list of) architectural element types, (list of) architectural elements.

Procedure. In order to identify the concrete development activities that

have to be performed in order to instantiate and extend a customer-

specific system based on the given SPL, the following procedure has to

be applied:

Tailoring Step 7 – Analyze the development activities that are part of the
development phases.

1. For each optional architectural element identified before, determine the
inclusion activity that is concerned with it.

2. For each alternative architectural element identified before, determine the

Tailoring Steps in Detail

130

instantiation activity that is concerned with it.

3. For each product line architectural element identified before with which a
modification class is concerned, determine the redevelopment activity that is
concerned with it.

4. For each architectural element type identified before with which an exten-
sion class is concerned, determine the extension class.

5. Describe all elaborated development activities according to the following
questions:

 What is the name of the development activity?

 What is the purpose of the development activity?

 Who (which role) is responsible for doing the development activity?

 To which development phase does the development activity belong?

 With which product line architectural element or which architectural el-
ement type is the flexibility concerned?

 Is the development activity optional (i.e., does the activity need to be
done in every case)?

6. For each development phase, identify and describe further (miscellaneous)
activities that exist in this phase according to the questions listed above.

To extract this information, consider the extracted architectural elements, the
architectural element types, the flexibility classes, and the development strategy
or process. If you cannot find the required information here, feel free to inter-
view an SPL expert.

Output. (List of) development activities.

Rationales. The reason for asking these questions is the need to under-

stand how the product line architecture and its supported flexibility clas-

ses influence the derivation of customer-specific systems during AE.

Thus, the questions aim at providing information about the roles and

their tasks within the development process. This is a prerequisite to elab-

orating corresponding information needs in the next step. However, as

many steps that are determined by the aforementioned algorithm are of-

ten not explicitly documented in software organizations, the involvement

of development experts is recommended here.

Tool Support. In contrast to most of the previous steps, in this tailoring

step a higher degree of automation support is achieved (see Figure 48).

Before displaying the instructions and forms for this tailoring step, the

tool automatically generates a proposal for all possible development ac-

 Tailoring ARE Instructions based on an SPL

 131

tivities based on the architectural element types, the product line archi-

tectural elements, and the flexibility classes identified before. Thus, in-

structions 1-4 of this tailoring step are performed automatically.

For each optional architectural element, the tool therefore generates a

development activity using the following template:

Name: Include <optional architectural element name>

Purpose: to add the <optional architectural element name>, if required.

For each alternative architectural element, the tool generates a develop-

ment activity as follows:

Name: Instantiate <alternative architectural element name>

Purpose: to instantiate the <alternative architectural element name> (i.e., to
configure the best fitting realization).

For each product line architectural element with which a modification

class is concerned, the tool then generates a development activity ac-

cording to the following template:

Name: Develop new realization of <product line architectural element name>

Purpose: to develop a new realization of the <product line architectural element
name> if the existing ones are not sufficient to meet customer needs.

In contrast to the other development activities, these development activi-

ties are set to “optional” by default because these activities only need to

be carried out when the customer requirements cannot be fulfilled with

existing variants. Thus, the information needs resulting from these activi-

ties also do not need to be satisfied in each case. This leads to a dynamic

adaptation of the ARE process at runtime.

Finally, for each architectural element type with which an extension class

is concerned, the tool therefore generates a development activity using

the following template:

Name: Develop new <architectural element type name>s

Purpose: to add new <architectural element type> elements and corresponding
realizations, if required.

Tailoring Steps in Detail

132

Figure 48. Screenshot of tailoring tool with example (step 7)

Thus, when applying this tailoring step by using the tool support, meth-

od tailors only need to enter the responsible roles and the development

phases to which the activities belong. Of course, the automatically gen-

erated list of development activities should first be checked to see

whether it reflects the actual development process correctly. At this

point, it has to be kept in mind that in most development processes the

activities are not modeled in such a fine-grained way, even though they

all exist.

6.3.8 Elaboration of Decisions and Information Needs

Purpose. In this step, the concrete decisions to be made during the de-

velopment of a customer-specific system and the corresponding infor-

mation needs are elaborated. The purpose of this step is to understand

the information that is required by the responsible roles regarding cer-

tain issues in order to perform their development activities. Thus, for

each development activity identified before, it is determined which con-

crete decisions are made during this activity when producing the corre-

sponding outcome. Then, for each decision, the information that must

exist for this decision to be made deterministically is elicited from the de-

cision-making role. This is a prerequisite to determining the set of rele-

vant issues that have to be actually covered during an ARE process later

on. In particular, all issues with which no information need is concerned

can be left out. The same holds true for details (e.g., attributes) of an is-

sue. However, the determination of the issues to be discussed and their

 Tailoring ARE Instructions based on an SPL

 133

concrete details is not part of this step. This step just elaborates the in-

formation needs without consolidating them yet.

Foundation. The foundation of this tailoring step are the classes “Deci-

sion” and “Information Need” within the underlying model introduced

in chapter 2 (see Figure 49). According to this model, one or more deci-

sions are made during a development activity (and indirectly during the

corresponding development phase) by the responsible role (decision

maker). Decisions are either how-decisions, whether-decisions, or which-

decisions, depending on the architectural element or architectural ele-

ment type with which they are concerned. All decisions have in common

that they cause information needs that must be satisfied in order to

make these decisions in a deterministic way. Similar to assumptions, in-

formation needs are therefore concerned with (relevant) issues. This

means that information about these issues is required for making deci-

sions during AE.

Figure 49. Foundation of tailoring step 8

Input. (List of) development activities, reference issue model.

Procedure. In order to elaborate the decisions to be made during the

development of customer-specific systems and the corresponding infor-

mation needs that must be satisfied by ARE, the following procedure has

to be applied:

Tailoring Step 8 – Analyze the decisions that are made during the devel-
opment activities as well as the corresponding information needs.

1. For each inclusion activity identified before, determine the corresponding
whether-decision concerning the affected optional architectural element.

2. For each instantiation activity identified before, determine the correspond-
ing which-decision concerning the affected alternative architectural ele-
ment.

Tailoring Steps in Detail

134

3. For each re-development activity identified before, determine the corre-
sponding how-decision concerning the affected product line architectural
element.

4. For each re-development activity identified before that deals with the re-
development of a common architectural element, determine the corre-
sponding whether-decision concerning this common architectural element.

5. For each extension activity identified before, determine the corresponding
how-decision and the which-decision concerning the affected architectural
element type.

6. For each miscellaneous activity identified before, determine the correspond-
ing decisions to be made in this activity.

7. Describe all elaborated decisions according to the following questions:

 Which question is to be answered by the decision?

 Which role is making the decision?

8. For each elaborated decision, determine the information needs that must be
satisfied in order to be able to make the decision deterministically.

9. Describe all elaborated information needs according to the following ques-
tions:

 What is the concrete information need (question to be answered)?

 With which issue is the information need concerned?

 What is to be known about the issue (details, attributes, …)?

To perform this step, interview the roles that are responsible for the extracted
development activities. When assigning the information needs to a certain issue,
also consider the issue model introduced in chapter 5. If you cannot find the
required information there, feel free to interview an SPL expert.

Output. (List of) information needs.

Rationales. The reason for asking these questions is the need to under-

stand which information is needed in the development process in order

to derive a customer-specific system from the given SPL. Without this in-

formation, an ARE elicitation instruction cannot be tailored, as it is not

clear about which issues a discussion with the stakeholder is needed.

However, as it is typically not appropriate to just interview the develop-

ment roles which information they need, the decisions to be made by

them must be identified first. The underlying assumption is that devel-

opment roles can list their concrete information needs better and espe-

cially more completely when they imagine a concrete development situa-

 Tailoring ARE Instructions based on an SPL

 135

tion and the decisions they have to make there. Thus, the elaboration of

information needs is strongly related to an analysis of the affecting deci-

sions during development.

Tool Support. As decision-making is a highly human-based process, we

currently see no opportunity to provide a higher degree of formalism as

described above. Nevertheless, this tailoring step is well supported by the

tailoring tool (see Figure 50). Hence, before displaying the instructions

and forms for this tailoring step, the tool automatically generates a pro-

posal for all possible decisions based on the aforementioned develop-

ment activities. In particular, instructions 1-5 (and for most parts also in-

struction 7) are completely automated based on the results of previous

tailoring steps.

Thus, for each inclusion activity, the tool generates a whether-decision

using the following template:

Question: Do I have to include the <name of optional architectural element
related to the inclusion activity> or not?

For each instantiation activity, the tool generates a which-decision using

the following template:

Question: Which existing realization of the <name of variable architectural
element related to the instantiation activity> should I take?

Furthermore, for each redevelopment activity, the tool generates a how-

decision using the following template:

Question: How do I have to develop the customer-specific realization of the
<name of product line architectural element related to the re-development activ-
ity>?

If a re-development activity is concerned with a common architectural

element, the tool additionally generates a whether-decision as follows:

Question: Do I have to replace the common <name of common architectural
element related to the re-development activity> with a customer-specific realiza-
tion?

Finally, for each extension activity, the tool generates both a which-

decision and a how-decision using the following templates:

Question: Which additional, customer-specific <name of architectural element
type related to the extension activity>s do I have to develop?

Question: How do I have to develop the customer-specific <name of architec-
tural element type related to the extension activity>s?

Tailoring Steps in Detail

136

In this regard, the tool also automatically sets the roles that are responsi-

ble for decisions, using the roles that are responsible for the develop-

ment activities from which the decisions are derived.

Thus, when applying this tailoring step by using the tool support, meth-

od tailors can focus on the elaboration of information needs. In this re-

gard, the generated list of decisions, which only needs to be extended

manually for the decisions to be made in the miscellaneous activities,

provides an instrument for guiding the information need elicitation sys-

tematically.

Figure 50. Screenshot of tailoring tool with example (step 8)

6.3.9 Determination of Relevant Issues

Purpose. In this step, the issues that have to be discussed during ARE in

order to satisfy all information needs of the development roles are de-

termined. The purpose of this step is to understand for which issues re-

quirements have to be elicited during ARE, until which milestone, and

with the consideration of which assumptions and existing SPL capabili-

ties. Thus, this step consolidates all the relevant SPL information extract-

ed in the previous tailoring steps, and extends this information with ad-

ditional knowledge either from best practices or further SPL assets. For

instance, the stakeholder roles to be involved when discussing a certain

issue, or suitable elicitation and specification techniques are extended.

Furthermore, information about reusable requirements concerning the

 Tailoring ARE Instructions based on an SPL

 137

relevant issues is added (if existing) in order to make these assets directly

accessible during the ARE process.

Foundation. The foundation of this tailoring step is the class “Relevant

Issue” within the underlying model introduced in chapter 2 (see Figure

51). According to this model, relevant issues are determined via the in-

formation needs in the AE development process and must be discussed

before the start of the first development phase in which these infor-

mation needs exist. Relevant issues are to be discussed with certain

stakeholders, and to be described with certain notations. The SPL specifi-

cation may already contain reusable requirements concerning a relevant

issue (explicitly anticipated requirements). However, in order to address

non-explicitly anticipated (relevant) requirements as well the aforemen-

tioned assumptions that are concerned with the relevant issues must

hold in order to satisfy these requirements with the calculated costs.

Figure 51. Foundation of tailoring step 9

Input. (List of) information needs, reference issue model, specification.

Procedure. In order to determine the relevant issues to be discussed

during ARE as well as additional information concerned with them, the

following procedure has to be applied:

Tailoring Step 9 – Analyze the issues with which the information needs
are concerned.

1. Determine the issues with which the information needs identified before are
concerned. Remove duplicates, if necessary.

2. Describe all elaborated issues according to the following questions:

 What exactly does the issue express?

 Which details need to be known about this issue?
To answer this question, consider the details required in the identi-
fied information needs concerned with the issue.

Tailoring Steps in Detail

138

 What are the costs for realizing specific requirements concerning
the issue?
To answer this question, consider the flexibility classes whose as-
sumptions are concerned with the issue. Take the costs of the flex-
ibility class with the highest costs.

 Until the beginning of which development phase must the issue be
discussed?
To answer this question, consider the development activities in
which decisions are made and whose information needs are con-
cerned with the issue. Take the development phase of the earliest
development activity that leads to an information need concerned
with the issue.

 Which degree of freedom is provided by the SPL for requirements
concerning the issue (only commonalities, only predefined variants,
only specific requirements, predefined variants and specific re-
quirements, commonalities and specific requirements, commonali-
ties and predefined variants, commonalities and predefined vari-
ants and specific requirements)?
To answer this question, consider the SPL specification and analyze
whether there are reusable requirements concerning the issues de-
scribed in it. If the answer is yes, analyze whether these require-
ments are common or variable within the SPL and select a suitable
degree of freedom.

 Do requirements concerning the issue need to be documented in a
system specification during ARE?
To answer this question, just check whether there are information
needs concerned with the issue. If the answer is yes: mark “to be
documented”.

 Which stakeholders can provide information about requirements
concerning the issue?

 Which technique / notation should be used to additionally clarify
the requirements concerning the issue?

 What is the conceptual type of the issue (normal class, singleton,
abstraction)?

3. Recursively determine the issues that are needed to elicit requirements con-
cerning the aforementioned issues. To do so, include the requiring, influenc-
ing, or containing issues of the already identified issue in the issue model, as
well as the issues of which the already identified issues are a specialization.
Answer the aforementioned questions for each identified issue.

To perform this step, consider especially the extracted information needs as well
as the issue model introduced in chapter 5 and the SPL specification. If you can-
not find the required information there, feel free to interview an SPL or RE ex-
pert.

 Tailoring ARE Instructions based on an SPL

 139

Output. (List of) relevant issues.

Rationales. The reason for asking these questions is the need to consol-

idate and concentrate all elaborated information about the SPL. As issues

are the drivers for the ARE process and are the things to be developed

with the stakeholders, all important SPL information has to be aligned

with them.

Tool Support. As this tailoring step is quite tedious, but highly relies on

already extracted information, it is automated to a very high degree (see

Figure 52). Hence, before displaying the instructions and forms for this

tailoring step, the tool automatically generates a proposal for all relevant

issues based on the results of the previous tailoring steps and the issue

model introduced in chapter 5. To make this happen, the tool first gath-

ers all issues mentioned during the previous steps, and then enhances

the corresponding issue descriptions with information provided by the is-

sue model or previous steps. Thus, all instructions of this tailoring step

are – as far as the issues are already part of the issue model – automati-

cally executed.

Figure 52. Screenshot of tailoring tool with example (step 9)

Thus, when applying this tailoring step by using the tool support, meth-

od tailors can focus on the elaboration of issues that are not covered in

the issue model so far (which should be an exceptional case). Further-

more, only the degree of freedom has to be adapted manually, as an au-

tomatic analysis of the SPL specification is not part of this thesis. Finally,

the method tailors should check the techniques and stakeholders to be

Tailoring Steps in Detail

140

involved, as these entries are only recommendations copied from the is-

sue model, and should add additional information, e.g., references to

certain technique descriptions or time estimations for elicitation sessions.

6.3.10 Determination of Conceptual Relationships

Purpose. In this step, conceptual relationships that exist between the

relevant issues are identified. The purpose of this step is to understand

how the issues to be discussed during ARE depend on each other in or-

der to define a meaningful elicitation sequence. Thus, this step deals

with clarifying whether there are require, contain, influence, or specialize

relationships between the aforementioned issues. In this regard, conflict-

ing relationships that may lead to deadlock situations during ARE are

identified and resolved, if necessary. To make this work efficient, best

practices should be applied in this step.

Foundation. The foundation of this tailoring step is the class “Relation-

ship” within the underlying model introduced in chapter 2 (see Figure

53). According to this model, each relevant issue may have a relationship

with another relevant issue that is either a contain, influence, require, or

specialize relationship. The relationships, however, do not depend on the

given SPL but are rather inherent in the real world.

Figure 53. Foundation of tailoring step 10

Input. (List of) relevant issues, reference issue model.

Procedure. In order to determine the conceptual relationships among

the relevant issues, which is a prerequisite to defining a meaningful elici-

tation sequence, the following procedure has to be applied:

Tailoring Step 10 – Analyze the relationships that exist between relevant
issues.

1. Identify the relationships that exist between each pair of issues identified
before.

2. Describe all elaborated relationships according to the following questions:

 Tailoring ARE Instructions based on an SPL

 141

 What is the multiplicity of the first issue within the relationship?

 What is the name of the relationship?

 What is the multiplicity of the second issue within the relationship?

 What is the type of the relationship (contain, require, specialize, in-
fluence)?

3. Check whether there are conflicts between the relationships and the order
of the development phases to which the issues are assigned.
To do so, look for relationships in which the containing, influencing, requir-
ing, or specialized issue is assigned to a later development phase than the
contained, influenced, required, or specializing issue in this relationship.

4. Resolve all identified conflicts.
To do so, either delete the relationship or reassign an issue in a conflicting
relationship to the same development phase as its related issue.

To perform this step, consider the issue model introduced in chapter 5 as well as
the set of relevant issues determined before. If you cannot find the required
information here, feel free to interview an SPL or RE expert.

Output. (List of) conceptual relationships.

Rationales. The reason for asking these questions is the need to under-

stand how the issues to be discussed during ARE are related. Without

this information, neither a meaningful elicitation sequence nor clear elici-

tation instructions can be defined. Particularly as we aim at eliciting re-

quirements in the context of their related requirements (see chapter 4),

knowing these conceptual dependencies is a prerequisite.

Tool Support. As a pairwise check of issues to identify potential rela-

tionships is tedious work, we aim at reusing RE best practices formalized

in the issue model here (see chapter 5). The tailoring tool therefore au-

tomates the determination of conceptual relationships to a very high de-

gree (see Figure 54). In particular, before displaying the instructions and

forms for this tailoring step, the tool automatically copies all relationships

that exist between the issues identified before from the issue model. Fur-

thermore, the tool automatically detects the aforementioned conflicts

and displays them on screen.

Thus, when applying this tailoring step by using the tool support, meth-

od tailors can focus on the elaboration of relationships between issues

that are not covered in the issue model so far (which should be an ex-

ceptional case). Otherwise, only the resolution of conflicts has to be

done manually, as this requires clear trade-off decisions that cannot be

made by the tool.

Tailoring Steps in Detail

142

Figure 54. Screenshot of tailoring tool with example (step 10)

6.3.11 Definition of ARE Elicitation Instructions

Purpose. In this step, ARE elicitation instructions are created based on

the identified and relevant issues, their relationships, the assumptions

concerned with them, as well as the development phases for which they

are important. The purpose of this step is to reflect important product

and process knowledge about the given SPL and RE best practice in pre-

cise elicitation instructions. Thus, this steps deals with the incorporation

of the extracted information into the ARE instruction template intro-

duced in chapter 4.

Foundation. The foundation of this tailoring step is the class “Elicitation

Instruction” within the underlying model introduced in chapter 2 (see

Figure 55). According to this model, an elicitation instruction is com-

posed of milestone sections that contain issue sections, which are com-

posed of instruction blocks containing phrases.

 Tailoring ARE Instructions based on an SPL

 143

Figure 55. Foundation of tailoring step 11

Input. ARE instruction template, SPL characterization, (list of) assump-

tions, (list of) relevant issues, (list of) conceptual relationships.

Procedure. In order to generate a precise elicitation instruction based on

all the information extracted and consolidated before, the following pro-

cedure has to be applied:

Tailoring Step 11 – Create an elicitation instruction document that guides
the requirements process.

1. Create a document in which the elicitation instructions should be described.

2. Create an overview description about the SPL and the systems to be derived
from it. To do so, use the information extracted in the first tailoring step.

3. Exclude all issues that should not be addressed in the elicitation instructions.
To do so, exclude the issues that are a) singletons and not to be document-
ed, b) abstract without having a relationship (except for being specialized),
c) not to be documented, but being specialized without having other rela-
tionships.

4. Identify all issues that are optional. To do so, identify all issues that are only
caused by an information need that only depends on a development activity
that is optional.

5. Bring the development phases identified before into a sequential order by
considering the predecessor relationships.

Tailoring Steps in Detail

144

6. For each development phase identified before:

a. Create a milestone section and include a description of the pur-
pose of this phase.

b. Filter those issues that are to be discussed before this development
phase starts.

c. For each filtered issue that has no relationship to another issue,
create an issue section.

d. For each filtered issue that is not required by, not contained in, not
influenced by, and not a specialization of another issue, create an
issue section. If there is none: Create an issue section at least for
the issues that are influenced by an already discussed issue, but
that have no further required / contained / influenced / specializa-
tion relationships.

e. For each filtered issue that is required by, contained in, influenced
by, or a specialization of an issue already included in the elicitation
instruction, and that is neither required by, contained in, influ-
enced by, nor a specialization of an issue that has not been includ-
ed yet, create an issue section. If there is more than one, create
the issue sections in the following order:

i. Issue sections for issues that specialize an already includ-
ed issue

ii. Issue sections for issues that are contained in an already
included issue

iii. Issue sections for issues that are required by an already
included issue

iv. Issue sections for issues that are influenced by an already
included issue.

If there is more than one issue in each sub-order, create the corre-
sponding issues section in the order in which the specialized / con-
taining / requiring / influencing issue has appeared.

f. Go back to (5e) until all issues related to the development phase
have been incorporated into the elicitation instruction document in
terms of issue sections.

7. For each issue section incorporated in the elicitation instruction document:

a. Include a description of the corresponding issue.

b. Include an involvement hint that names the stakeholders to be in-

 Tailoring ARE Instructions based on an SPL

 145

volved when discussing requirements concerning the issue.

c. If there are already common requirements concerning the issue in
the SPL, include a commonality hint that informs about this fact.

d. If the issue is not abstract and is influenced by other issues, include
an influence hint that informs about other requirements to consid-
er when defining requirements concerning the issue.

e. Identify related issues that contain or require the issue.

f. For each containing or requirement issue, include an identifying
and collecting instruction in order to elicit requirements concerning
the issue based on other requirements.

g. Include an identifying and collecting instruction in order to elicit
further requirements concerning the issue.

h. If an issue has a contain-relationship to itself, include a decomposi-
tion instruction.

i. If an issue has a require-relationship to itself, include an identifying
and collection instruction.

j. If a technique / notation is defined for the issue, include a visuali-
zation hint that informs about how to clarify the requirements
concerning the issue in a graphical manner.

k. If assumptions are concerned with the issue, include an assump-
tion hint that informs about which assumptions must hold in order
to not contravene the SPL.

l. If there are already predefined variable requirements for the issue
in the SPL, include a selection hint that informs about this fact.

m. If requirements concerning the issue should not be documented,
include a documentation hint that informs about this fact.

n. If the issue is optional, include the conditions under which the re-
quirements concerning the issue have to be documented. To do
so, copy the conditions from the optional development activities
that have caused the optionality of the issue.

o. If the issue is to be documented and not abstract, include a de-
scribing instruction in order to assure that corresponding require-
ments are specified.

p. If the issue is to be documented and abstract, include a classifying
instruction in order to assure that corresponding requirements are
processed correctly.

Summary

146

q. If the reuse of requirements concerning the issue is mandatory, in-
clude a selecting instruction that assures this reuse.

To perform this step, consider the tailoring results of the previous steps as well as
the ARE instruction template introduced in chapter 4. If you cannot find the
required information here, feel free to interview an SPL or RE expert.

Output. ARE instructions document.

Rationales. In this final tailoring step, no further information has to be

extracted from the SPL and no decisions have to be made. Rather, all the

information gathered so far in the previous tailoring steps is algorithmi-

cally processed and translated into ARE elicitation instructions using the

text blocks and template introduced in chapter 4. Hence, the reason why

the aforementioned procedure is as presented, is based on the rules de-

fined in this template.

Figure 56. Screenshot of tailoring tool with example (step 11)

Tool Support. While the tool support in the other tailoring steps was

limited to some sub-steps, this final step is automated completely (see

Figure 56). Thus, when applying this tailoring step by using the tool sup-

port, method tailors only need to start the transformation algorithm. An

ARE instructions document is then generated within a few seconds. The

source code for the document generation is shown in Appendix C.

6.4 Summary

In order to make AE requirements engineers aware of the capabilities

and constraints of a given SPL, corresponding process and product

 Tailoring ARE Instructions based on an SPL

 147

knowledge must be extracted and incorporated into the ARE process, re-

spectively supporting instructions.

In this chapter, a systematic approach for such an incorporation of SPL

knowledge into an ARE process has therefore been introduced. This tai-

loring approach prescribes eleven steps that should be performed se-

quentially in order to extract SPL knowledge in a systematic and repeat-

able manner. In this regard, the approach explains how knowledge

about the product line architecture, the development strategy for AE, as

well as RE best practices has to be combined in order to provide AE re-

quirements engineers with precise and helpful elicitation instructions. For

this purpose, the tailoring approach makes use of the conceptual ARE

model introduced in chapter 2 and explains how the elements of this

formal model have to be processed.

However, even though we systematically derived the tailoring steps from

this model and even though we were able to provide very precise and

algorithmic guidance for these steps, the degree of automation is still

limited. The reason for this is not a missing formalization, but the fact

that a fully automated extraction of SPL knowledge would require a se-

mantic description of all SPL artifacts such as the product line architec-

ture or the development strategy. Both in practice and in academia, this

precondition is not fulfilled and will probably not be for a long time.

Thus, most knowledge about a given SPL can only be extracted from in-

formal documents or SPL experts in a human-based way. Nevertheless,

we consider the proposed tailoring approach as a valuable computer sci-

ence contribution, as it formalizes this procedure in a way that allows an

algorithmic (even though not completely automated) performance. In

particular, all tailoring tasks that rely only on information gathered in a

previous tailoring step are automated in the current version of the tailor-

ing tool. Thus, the more tailoring progresses, the higher the degree of

automation in the remaining tailoring steps is.

With regard to the state of the art in product line engineering, it is im-

portant to note that the tailoring approach does not aim at replacing any

established practices there. Rather, this tailoring approach is intended to

enhance the externalization of knowledge about an SPL after this SPL

has been built. Thus, the tailoring approach should be integrated at a

very late phase in DE/FE, i.e., when many design decisions and imple-

mentations have been done. In particular, the tailoring approach requires

a stable product line architecture, a clear development strategy and

technology decisions as input. Thus, doing the tailoring during an early

phase, such as during scoping or domain analysis, is not possible.

The tailoring approach therefore aims at externalizing the knowledge

about the capabilities and constraints of an SPL beyond the explicitly an-

ticipated scope defined during the early scoping and domain analysis

phase. While this is probably not needed in configurable SPLs, it is an in-

dispensable means for benefiting from an SPL approach in domains that

Summary

148

require a significant degree of flexibility. As this is mainly the case in IS,

the RE best practices used during tailoring have to be defined for this

context. In the previous chapters, we have therefore introduced the RE

best practices to be considered there.

 Evaluation

 149

7 Evaluation

“It is meaningless to say: We do our best.
 We must be able to do what is necessary.”

Winston Churchill

This chapter describes the evaluation of the thesis approach. Thus, the

purpose of this chapter is to investigate the benefits and limitations

when using the approach in order to enable practitioners and scientists

to better estimate the potential improvements when using the approach

in their context.

7.1 Research Approach

As research always involves gaining a deep understanding of the effects

of a solution [Bas93], the approach for the final evaluation was closely

aligned with the overall research process described in section 1.4. Thus,

based on the elaborated problem statement, goals describing the in-

tended benefits from a practical and a scientific point of view were de-

fined in the first step.

Figure 57. Goal tree of the thesis contributions

As depicted in Figure 57, the practical and overall aim of this thesis was

to shorten the time to market in AE projects by achieving the best possi-

PG. The time to market in AE projects is shorted due to
faster achievement of the best possible fit between

customer requirements and SPL characteristics.

SG. Requirements engineers are enabled to use sound
knowledge about an SPL for performing requirements

elicitation much more effectively.

SSG1. Knowledge about
an SPL can be

extractedsystematically .

SSG2. Knowledge about
an SPL can be represented

appropriately.

PG: practical goal, SG: scientific goal, SSG: scientific subgoal

Research Approach

150

ble fit between customer requirements and SPL characteristics (PG) fast-

er. Based on this, the derived scientific goal dealt with enabling require-

ments engineers to use sound knowledge about an SPL for performing

requirements elicitation much more effectively (SG). As two scientific

sub-goals in this regard, SPL knowledge was to be extracted systemati-

cally from a given SPL (SSG1), and to be represented appropriately to re-

quirements engineers during AE (SSG2).

For each of these four goals, hypotheses were defined that expressed

the quantifiable benefits that this thesis intended to achieve (step 1).

These hypotheses are (as shown in chapter 1 already):

Hypothesis 1 – Efficiency of Application Engineering (addresses PG)

H1. An AE process using ARE instructions defined on the basis of the thesis ap-
proach has an at least 15% shorter time to market than an AE process using
state of the art instructions.

Hypothesis 2 – Effectiveness of Elicitation (addresses SG)

H2. ARE instructions defined on the basis of the thesis approach enable require-
ments engineers to achieve an at least 15% higher realization fit during an elici-
tation session than when using other instructions.

Hypothesis 3 – Effectiveness of Tailoring (addresses SSG1)

H3. An incorporation of SPL knowledge into ARE instructions is possible when
using the thesis approach, i.e., at least 80% of method tailors are able to suc-
cessfully create ARE instructions without major problems.

Hypothesis 4 – Suitability of Representation (addresses SSG2)

H4. ARE instructions defined on the basis of the thesis approach suitably repre-
sent SPL-related product and process knowledge.

For each hypothesis, it was then decided whether this hypothesis should

be evaluated explicitly in a final study, evaluated implicitly in immediate

feedback loops during method development, or not be evaluated at all

during this thesis research (step 2). In this regard, we also determined

which study type (controlled experiment vs. case study vs. survey) should

be applied for investigating each hypothesis.

According to this analysis, the effectiveness of elicitation (H2) and the

suitability of representation (H4) were planned to be evaluated in a joint

controlled experiment with an integrated survey (see section 7.2). The

reason was that these two hypotheses were the only ones that could be

evaluated in a controlled setting. In particular, a single case study, at

least for H2, would not have been sufficient for providing convincing evi-

dence, as there would have been too many threats to validity.

 Evaluation

 151

However, for evaluating the effectiveness of tailoring (H3), we chose an-

other approach. As we had checked the basic feasibility and (semi-) au-

tomation of the tailoring approach during method development already

(see chapter 6), we were interest to see whether the tailoring approach

is applicable by practitioners in industry rather than investigating certain

effects in a controlled setting. Thus, the corresponding hypothesis was

planned to be evaluated by a case study (see section 7.3).

The hypothesis regarding an improved AE efficiency (H1) was not evalu-

ated at all as part of the thesis research. On the one hand the external

validity of such a controlled experiment would have been too to provide

convincing conclusions. On the other hand, performing a case study

would have required too much time, as real AE projects often take

months or even years. We will therefore deal with this in the future.

Thus, a controlled experiment and a case study were carried out for the

purpose of validating the thesis contributions (step 5). For both studies,

sub-hypotheses and metrics were derived, and the material and setup

were prepared carefully (step 3). By discussing and improving the study

designs with experimentation experts and RE experts in several iterations,

a proper evaluation was constructively assured (step 4). Thus, the studies

are expected to have sufficient quality to challenge their results. The en-

tire research approach for preparing, executing, and analyzing the stud-

ies is shown in Figure 58.

Figure 58. Research approach for empirical studies

Problem
Statement

(1) Goal &
Hypothesis
Definition

Goals &
Hypotheses

(2) Study
Determination

List of
Studies

(3) Study
Preparation

Material &
Setup

(4) Expert
Discuss ions

(5) Study
Executions

Results

Legend:

Research Activity

Artifact / Result

Controlled Experiment

152

7.2 Controlled Experiment

In this section, a controlled experiment for evaluating the effectiveness

of elicitation (H2) as well as the suitability of representation (H4) is pre-

sented. Besides the goals and hypotheses of the study, its design and

setup, its results and threats to validity, as well as its implications for re-

search and practice are described.

7.2.1 Goals and Hypotheses

According to the GQM approach [BCR94], the main goal of this experi-

ment was to analyze two elicitation approaches for the purpose of com-

parison with regard to elicitation effectiveness from the viewpoint of re-

quirements engineers in the context of a controlled experiment with stu-

dents. Thus, the goal was to know which approach allows performing

more effective elicitation when using a given SPL. Below, we introduce

the underlying research questions and one-side hypotheses of the exper-

iment, as well as their related metrics (in brackets). However, we omit

the corresponding null hypotheses, as they just state the opposite.

All hypotheses are based on the main research question RQ2.M, which

asks whether requirements elicitation in ARE is more effective when us-

ing ARE instructions according to this thesis than when using a tradition-

al ARE approach because this was the underlying hypothesis for the en-

tire experiment. As elicitation is basically the process of communicating

with stakeholders to determine requirements [CA07], this research ques-

tion was broken down into two sub-questions and related hypotheses.

RQ2.1: “Does our ARE approach enable requirements engineers to com-
municate more effectively with stakeholders than when using the tradi-
tional ARE approach?”

As effective communication includes the exchange of relevant, complete,

and correct information, we expect that requirements engineers using

our ARE approach will:

 H2.11 ask for more relevant information (#asked relevant ques-

tions)

 H2.12 ask for less irrelevant information (#asked irrelevant ques-

tions)

 H2.13 provide more correct information to stakeholders (# cor-

rectly answered stakeholder questions / # posed stakeholder

questions)

 Evaluation

 153

 H2.14 need less SPL expert involvement (# elicited requirements

marked as “to be checked by SPL experts“)

than requirements engineers using the instructions of the traditional ARE

approach. Thus, these hypotheses deal with a bidirectional exchange of

information, which is indispensable for eliciting and discussing require-

ments in a competent way. This ultimately allows stakeholders to feel

better understood and more convinced, especially when requirements

have to be negotiated.

RQ2.2: “Does our ARE approach enable requirements engineers to
achieve better results (i.e., requirements) than when using the traditional
ARE approach?”

According to the taxonomy of elicited requirements described in section

2.6.3, we expect in this regard that requirements engineers using in-

structions according to this thesis will:

 H2.21 elicit fewer unnecessary requirements (# accepted common

requirements / # initially stated common requirements)

 H2.22 elicit fewer problematic requirements (# accepted prob-

lematic requirements / # initially stated problematic require-

ments)

 H2.23 achieve a higher satisfaction fit (# accepted realizable re-

quirements / # initially stated requirements)

 H2.24 achieve a higher realization fit (# accepted realizable re-

quirements / # accepted requirements)

than requirements engineers using traditional ARE.

Figure 59 summarizes the research questions and related hypotheses. In

this regard, we consider the research questions to be answered with

“yes” if at least one hypothesis on the corresponding leaf level is con-

firmed and the opposite of all other related sub-hypotheses (which state

that the traditional ARE is better in a certain metric) is not confirmed.

Furthermore, as we would also check the hypothesis regarding the suit-

ability of representation (H4) during this experiment, an additional re-

search question was:

RQ4.1: “Is the representation of ARE instructions defined according to the
thesis approach perceived as being suitable to support elicitation?”

Here, we expect that requirements engineers using instructions accord-

ing to this thesis will:

Controlled Experiment

154

 H4.11 perceive the instructions as easy to read (# participants

who share this perception / # participants)

 H4.12 perceive the instructions as easy to use (# participants who

share this perception / # participants)

 H4.13 feel supported well in finding important information quick-

ly (# participants who share this perception / # participants)

In this regard, we consider the research question to be answered with

“yes” if the values of the three metrics are higher than 75% each. The

reason is that a statistical test is not possible here, as we are just inter-

ested in investigating a non-comparative statement.

Figure 59. Questions and hypotheses in controlled experiment

7.2.2 Study Design and Setup

Based on the study goals, the hypotheses, and the related metrics, the

controlled experiment was designed and prepared. Below, we describe

the details of the experimental setup and how we constructively avoided

as many threats to validity as possible.

7.2.2.1 Participants (Subjects)

The participants in the experiment were 26 (NG=13) computer science /

software engineering students (four female, 22 male) from the University

of Kaiserslautern, Germany enrolled in the RE lecture in the winter term

2011 / 2012. Five of them were bachelor students, while the others were

RQ2.M: Higher
Effectiveness

RQ2.1: Better
Communication

H2.11 More
Relevant

Questions

H2.12 Fewer
Irrelevant
Questions

H2.13 More
Correct

Information

H2.14 Fewer
Expert

Involvement

RQ2.2: Better
Results

H2.21 Less
Unnecessary

Requirements

H2.22 Fewer
Problematic

Reuqirements

H2.23 Higher
Satisfaction Fit

H2.24 Higher
Realization Fit

 Evaluation

 155

enrolled in the master course. The participants were 23.9 years old on

average, and participated voluntarily in the experiment. They were not

informed about our hypotheses or study goal beforehand, nor were they

informed about the experimental group to which they were assigned.

Regarding their background, ten participants had gathered RE experi-

ence outside the RE lecture as well. However, only four participants had

made more than three interviews for the purpose of elicitation already;

the average was 0.8 interviews. Their self-assessed English competency

on a scale of 1 (very good) to 5 (very bad) was good (1.8) on average,

and only six participants mentioned that their knowledge of English was

just medium (3). Regarding SPL engineering knowledge, 15 participants

mentioned that they were aware of the basic concepts. However, no

participant had had practical experience with SPLs before.

7.2.2.2 Experimental Design

In order to investigate the hypotheses H2 and H4 including their sub-

hypotheses, the experiment was designed as a control group study (see

Figure 60). The method group (MG) used a tailored ARE instructions

document according to the thesis approach. In contrast, the control

group (CG) used traditional ARE instructions according to a variability

model (VM)-based ARE approach combined with a TORE [PK04],

[ADE+09] guideline. This meant that for each explicitly anticipated varia-

tion point, the possible variants and their requirements were communi-

cated to the stakeholder by using closed questions with predefined an-

swer possibilities. In contrast, for non-explicitly anticipated, a “tradition-

al” requirements elicitation without any consideration of SPL constraints

took place from scratch. Thus, the control group was equipped with

state of the art material, whereas the method group was equipped with

our novel approach. In addition, the SPL specification in which the main

SPL features and the product line architecture were described was also

handed out to the participants of both groups.

During the experiment, both groups performed fictitious but controlled

elicitation interviews in order to gather requirements. The participants’

performance was measured using the aforementioned metrics in order

to enable statistical comparison.

Figure 60. Overall setting of experiment

Method Group (MG)

Control Group (CG)

Requirements MetricsSPL Specification

Integrated AERE Instruction

Traditional AERE Instruction

Controlled Experiment

156

Each participant was randomly assigned to one group (see Table 4). As

far as possible, we tried to assign the participants to the groups alter-

nately based on their arrival to the experiment. This was the preferred

strategy, as we did not know the participants before and considered

their commitment to a certain time slot as random.

However, in order to assure equal distribution of RE-experienced and less

RE-experienced participants in both groups (and to avoid corresponding

threats to validity), their RE background was taken into consideration for

finally making the assignment. Thus, the information about elicitation

and interview experience provided in the pre-questionnaires was used

for balancing the groups. A statistical test even showed that no signifi-

cant difference regarding RE experience between the two groups could

be confirmed. However, additional balancing of the participants accord-

ing to their awareness of basic SPL concepts was not possible, as only six

participants had both RE experience and SPL awareness at the time. In

section 7.2.4, we discuss how this fact influenced the results.

 MG CG
Subjects 13 13

Subjects in master course 11 10

Average age 23.3 24.5

Average # of interviews performed before 0.9 0.7

Average language competency 1.8 1.8

more RE experienced subjects 6 4

SPL-aware subjects 10 5
MG: method group, CG: control group

Table 4. Assignment of participants to groups

7.2.2.3 Material

For the execution of the experiment, as well as for data collection and

analysis, different artifacts were used. Participants of both groups re-

ceived a pre-questionnaire about their personal background, an SPL

specification (ten pages long) of a fictitious SPL, study instructions, and a

post-questionnaire. These were the same for both groups and did not al-

low drawing conclusions about the group to which the participants were

assigned. The post-questionnaire contained “agreement” questions on a

5-point Likert scale and open questions to which free answers could be

provided. The participants in the method group additionally got ARE in-

structions according to the thesis approach (seven pages long), while the

participants in the control group received TORE-based elicitation instruc-

tions including a VM-based questionnaire (four pages long).

At this point, it has to be noted that the material provided to both

groups artificially contained the same information about the underlying

SPL, which was explicitly checked and approved by an independent ex-

pert. The material differed only in how this information was represented

(i.e., directly integrated into the elicitation instructions vs. distributed in

 Evaluation

 157

in the SPL specification) and the strategy according to which the elicita-

tion had to be done. In this context, “artificially” means that the material

of the control group was supplemented with information typically not

contained in such material. For instance, state of the art SPL specifica-

tions describe possible variants of a certain variation point as explicit

enumerations or as a mathematical range, but contain typically no addi-

tional information on architectural constraints, for instance. Thus, the

material of the control group was augmented by such information in or-

der to make it more comparable.

The elicitation instructions of the control group were also made very pre-

cise in order to provide proper guidance to the (less experienced) partici-

pants in both groups. The reason for artificially adjusting the material

was again to increase the groups’ comparability in order to minimize cor-

responding threats to validity.

Besides the material for the participants, material was also needed for

the fictitious stakeholder and the observer (see description of procedure

above). Thus, based on a sample solution derived from the SPL specifica-

tion, an observer checklist with 64 check criteria (e.g., “Does the partici-
pant ask for user roles (yes / no)?”, “Does the participant give the right
answers to stakeholder questions regarding additional costs (yes / no)?”,

etc.) was prepared. This checklist was aligned with a list of 27 prepared

requirements and 12 interrupting questions (e.g., about additional costs)

with which the fictitious stakeholder was prepared in order to standard-

ize her behavior.

The material used in the experiment is included in Appendix E.

7.2.2.4 Experiment Procedure and Data Collection

In order to assure the success of the experiment, the entire design and

setup material was carefully analyzed by both RE experts and empirical

research experts at Fraunhofer IESE before the experiment was executed.

From an empirical point of view, it was checked whether the setup was

sound and whether important threats to validity were avoided construc-

tively. From an RE point of view, it was checked whether the material of

the control group was actually state of the art, not intentionally worse,

and equal with regard to its information content. After incorporating the

feedback received, a student assistant was coached in the list of pre-

pared requirements and interruption questions, as she had to play the

role of a stakeholder during the experiment. However, we took care not

to inform her about the study design or about our hypotheses.

In order to check whether the material was understandable for the par-

ticipants and the fictitious stakeholder and whether the scheduled

timeframe was sufficient, we then performed a pilot run with two

bachelor students. Thus, a pre-test with the method group’s material

Controlled Experiment

158

and one with the control group’s material was carried out. The observa-

tions made during these tests were used to ultimately improve the mate-

rial.

The actual experiment was conducted in November 2011 and was split

into 26 single sessions of 90 minutes each. Thus, the participants per-

formed the experiment individually, as it was neither meaningful nor or-

ganizationally possible to let multiple participants perform elicitation in-

terviews in parallel. In order to avoid the threat of one participant in-

forming other participants about the purpose, procedure, or material of

the study, the participants had to sign a non-disclosure agreement that

did not allow them to talk about the study with other people until the

end of the entire experiment. Furthermore, we used a pre-questionnaire

for getting data about their experience, and for assigning them to a suit-

able group.

After the group assignment, the participants received a package with the

experiment material. Each participant then had about 25 minutes to be-

come familiar with the material. In the second step, the participants

were asked to answer questions about the content of the material in a

questionnaire. The purpose of this step, which took around 10 minutes,

was twofold: First, the participants were to intensively work with the ma-

terial in order to note where to find certain types of information. Sec-

ond, this task allowed us to objectively compare which of the used mate-

rials enabled requirements engineers to know more about a given SPL.

In the third step, the actual experiment took place. The participants were

asked to perform an elicitation role-play in which the fictitious stake-

holder, played by a student assistant, had to be interviewed in English

using the provided material. English was chosen because 16 of the 26

students were not familiar with German, and because English was the

language used in the entire RE lecture anyway. The participants inter-

viewed the fictitious stakeholder by following the provided elicitation in-

structions and considering the SPL specification, if required. The fictitious

stakeholder stated the corresponding requirements that had been pre-

pared during study planning and that were aligned with an observer

checklist (see Figure 61). In this regard, we took care that the student as-

sistant who played the stakeholder was not aware of the group a partic-

ipant was assigned to. Thus, we tried to minimize manipulation threats

due to differences in her behavior.

Furthermore, the fictitious stakeholder posed interrupting questions to

the participants; for instance, about the feasibility and costs of certain

requirements. This was done in order to increase the representativeness

of the study, as an interview in practice is never just a one-way commu-

nication. Thus, the purpose of these interruptions was to check whether

the participants were able to provide sufficient information in order to

make the elicitation more realistic and convincing. However, the pre-

pared requirements and the interrupting questions depended on the be-

 Evaluation

 159

havior of the participants and were not posed anytime. For instance, in-

terrupting questions regarding additional costs were only posed when a

participant stated that there would be extra effort when implementing a

certain requirement.

Figure 61. Impression from an experiment session

The interview questions asked by the participants, their reaction to the

mentioned requirements, as well as the answers they gave to the stake-

holder’s questions were tracked by an observer (played by the thesis au-

thor) using the aligned observer checklist. The reason for using observa-

tions for data collection instead of the specified requirements was the

fact that the elicitation performance and not specification performance

was to be investigated. Furthermore, the likely heterogeneity in the qual-

ity of the specifications would have had such a high impact on the eval-

uation that no sound conclusion about the elicitation performance

would have been possible when using this indirection. However, the

threats to validity that resulted from this observation are discussed in

section 7.2.4.

By using the observer checklist, the aforementioned metrics could be

measured objectively. In this regard, the use of prepared requirements

and a corresponding observer checklist aimed at making the results more

comparable, which would otherwise have been a significant threat to va-

lidity. Furthermore, in order to avoid missing observations, the entire elic-

itation role-play was recorded using a voice recorder. The complete set-

ting of this role-play, which took about 30 minutes in both groups, is

shown in Figure 62.

In the last step of each study session, the participants were finally asked

to fill out a post-questionnaire in which they assessed the helpfulness of

the provided material for the interview.

Controlled Experiment

160

Figure 62. Detailed procedure and data collection

7.2.3 Analysis

Based on the measured data and the feedback gathered, a statistical

analysis was performed The procedure and its results are described in

this section.

7.2.3.1 Analysis Procedure

While data from the pre-questionnaire (e.g., age, interview experience,

etc.) were entered directly into the statistical tool SPSS (version 18), the

data gathered during observation (e.g., number of relevant questions

asked, number of questions answered correctly, etc.) were recounted

first in order to reduce the risk of measurement errors. Then, these data

were also entered into SPSS. The subjective, quantitative ratings accord-

ing to the Likert scale in the post-questionnaire were collected in MS Ex-

cel. The corresponding qualitative comments were listed in MS Word. In

this regard, all data was processed in an anonymous and confidential

way. For the quantitative observation data, descriptive statistics were cal-

culated using the SPSS tool. Furthermore, the distributions were ana-

lyzed using the Kolmogorov-Smirnov test in SPSS. This was done in order

to determine a suitable hypothesis test based on the different tests’ as-

sumptions regarding data distribution in an independent sample setting.

For most hypotheses, we used the t-test for equality of means, except

for those for which the Kolmogorov-Smirnov test had not confirmed

equal distribution between the groups. As this was the case for H2.12,

H2.13, and H2.22, we used an independent samples median test instead.

However, as the t-test is robust under violation of its assumptions

[Zim87], we used this test also for variables that had non-parametric (but

equal) distributions. An additional cross-check with the Mann-Whitney U

Participant

Fictitious
Stakeholder

Observer

interviews observes

Elicitation
Instruction

SPL
Specification

considersfollows

Prepared
Requirements
& Questions

Observer
Checklist

uses uses

aligned

has coached

 Evaluation

 161

test confirmed that the application of the t-test was actually valid for cal-

culating the same results. As all hypotheses were directional (e.g., “less,”

“higher”, …), we used the one-tailed results with α=0.05 in all hypothe-

sis tests.

7.2.3.2 Objective Measurement Results

In this subsection, the observation results are described (see Table 5).

 Mean SD t df p reject H0
H2.11: #asked relevant

questions

MG 17.6 2.22 0.99 23 0.166 no

CG 16.8 2.13

H2.12: #asked irrelevant

questions

MG 0.77 0.93 - 24 0.002 yes

CG 2.54 1.13

H2.13: # correctly an-

swered stakeholder

questions / # posed

stakeholder questions

MG 0.77 0.20 - 24 0.001 yes

CG 0.40 0.29

H2.14: # elicited re-

quirements marked as

“to be checked by SPL

experts“

MG 1.01 1.12 -1.32 24 0.100 no

CG 1.62 0.96

H2.21: # accepted

common requirements

/ # initially stated

common requirements

MG 0.62 0.36 1.42 24 0.084 no

CG 0.81 0.33

H2.22: # accepted

problematic require-

ments / # initially

stated problematic

requirements

MG 0.24 0.29 4.44 24 0.001 yes

CG 0.70 0.25

H2.23: # accepted

feasible requirements /

initially stated re-

quirements

MG 0.64 0.06 1.52 24 0.071 no

CG 0.59 0.08

H2.24: # accepted

feasible requirements /

accepted require-

ments

MG 0.92 0.09 - 24 0.003 yes

CG 0.83 0.07

SD: standard deviation, t: t-value, df: degrees of freedom, p: probability

Table 5. Statistical results of experiment

Regarding the first hypothesis, which states that participants using ARE

instructions according to this thesis are able to ask more relevant ques-

tions, we found that there seems to be no significant difference. While

participants of the method group asked 17.6 relevant questions on aver-

age, the participants of the control group asked 16.8 relevant questions

on average. With an effect size of d=0.37 and a significance of p=0.166,

this hypothesis can therefore not be confirmed (i.e., the corresponding

null hypothesis “no difference or fewer” cannot be rejected).

Controlled Experiment

162

In contrast, the hypothesis that participants using the thesis ARE ap-

proach are able to ask fewer irrelevant questions could be confirmed.

Here, a significant difference could be observed between the method

group and the control group. With d=1.71 and p=0.002, the corre-

sponding null hypothesis “no difference or more” can be rejected. The

test power was ~1.00 here.

In addition, the hypothesis that participants of the method group are

able to provide more correct information about an SPL to stakeholders

could be confirmed. While participants using our ARE instructions could

answer 77% of the posed stakeholder questions correctly, only 40% of

stakeholder questions were answered correctly by the control group par-

ticipants. With d=1.49 and p=0.001, the corresponding null hypothesis

“no difference or fewer” can thus be rejected also. The test power was

0.98 in this case.

However, even though the method group participants were able to pro-

vide more correct information on their own, there is no significant dif-

ference to the required expert involvement. While participants using the

thesis ARE approach marked 1.01 requirements as having to be checked

by SPL experts, members of the control group asked for 1.62 expert

checks. However, with α=0.05, this difference is not significant, and the

effect size d is only 0.52. Thus, the corresponding null hypothesis “no

difference or more” cannot be rejected.

Hence, as the method group was significantly better with regard to two

metrics and not worse in the other two metrics, we consider (according

to Figure 59) ARE instructions according to this thesis as better means

for communicating with stakeholders than the instructions of traditional

ARE approaches.

Regarding the first hypothesis concerning “better results”, which states

that participants using our ARE instructions elicit fewer unnecessary re-

quirements (i.e., requirements that are already implemented as com-

monalities within the SPL), we found that there seems to be no signifi-

cant difference. Indeed, participants of the method group only accepted

62% of the stated common requirements, while the members of the

control group accepted 81%. However, this difference is not significant

with α=0.05. With d=0.55 and p=0.084, this hypothesis can therefore

not be confirmed (i.e., the corresponding null hypothesis “no difference

or higher” cannot be rejected).

In contrast, the hypothesis that participants using the thesis ARE ap-

proach are able to elicit fewer problematic requirements could be con-

firmed. While the method group accepted 24% of the stated problemat-

ic requirements on average, the control group accepted 70% of the

stated problematic requirements. With d=1.73 and p=0.001, the corre-

 Evaluation

 163

sponding null hypothesis “no difference or more” can thus be rejected.

The test power was ~1.00 here.

With regard to the achievement of a higher satisfaction fit, there seems

to be no difference between the groups. The satisfaction fit measures

the degree to which a stakeholder’s initially stated requirements are ac-

cepted and feasible. While 64% of the initial stakeholder requirements

were accepted in the method group, the participants of the control

group accepted 59% on average. Thus, with α=0.05, this difference is

not significant, and the effect size is only 0.56. The corresponding null

hypothesis “no difference or lower” can therefore not be rejected.

Finally, with regard to the practical problem that motivated the thesis,

the last hypothesis is maybe the most important one and could be con-

firmed with p=0.003, d=1.12, and a test power of 0.87. In particular,

participants using ARE instructions according to this thesis could achieve

a 92% realization fit, while members of the control group only achieved

83% on average. This means that the degree of accepted requirements

that are economically feasible with a given SPL is significantly higher

when using the proposed approach than when using state of the art ap-

proaches. The corresponding null hypothesis “no difference or lower”

can therefore be rejected.

Thus, as the method group is significantly better with regard to two met-

rics and, already from a descriptive point of view, not worse in the other

metrics, we consider our ARE approach also more appropriate for achiev-

ing good results (i.e., requirements) than when using a traditional ARE

approach. As far as the experiment results can tell, requirements elicita-

tion in ARE is therefore more effective when using an ARE approach ac-

cording to this thesis than when using a traditional ARE approach. In

particular, with α=0.10, H2.21 and H2.23 would also be confirmed. The ag-

gregated data and initial analysis results are included in Appendix F.

7.2.3.3 Subjective Assessment Results

The subjective assessment results using the post-questionnaire were ana-

lyzed in order to get an idea of how the participants of both groups per-

ceived the used introductions. However, these findings were not statisti-

cally tested, as the underlying hypotheses were not comparative. Thus,

we mainly investigated whether the ARE instructions according to the

thesis approach are perceived as suitable, independent of whether the

traditional instructions are too.

In Table 6, we show the assessment results according to certain criteria

on a 5-point Likert scale ranging from “totally disagree (1)” to “totally

agree (5)”. The percentages indicate the number of participants who at

least “rather agreed” to a statement. Thus, especially information about

the reusable requirements, existing SPL constraints, and the progress of

Controlled Experiment

164

elicitation are perceived to be very well presented in ARE instructions ac-

cording to the thesis approach. The detailed participants’ ratings can be

found in Appendix F.

With regard to the three sub-hypotheses that aim at answering the re-

search question regarding the suitability of representation, we found

that about 85% of the method group participants perceived the instruc-

tions according to this thesis as easy to read (H4.11) and easy to use

(H4.12), which is why we consider these characteristics as fulfilled. How-

ever, only about 62% felt appropriately supported in finding important

information quickly (H4.13). Thus, we consider the research question RQ4
“Is the representation of ARE instructions defined on the thesis approach
perceived as suitable to support elicitation?” as only partially answered

with “yes”, even though the instructions are not worse than the other

ones.

Assessment Criterion MG CG
The elicitation instructions were helpful for performing

the interview

100% 100%

The elicitation instructions provided me clear how-to

guidance

85% 85%

The elicitation instructions informed me whether

requirements of a certain type could be reused

92% 31%

The elicitation instructions informed me about the

information which is relevant to be discussed

92% 92%

The elicitation instructions provided me with sound

knowledge about the given constraints

92% 46%

The elicitation instructions were easy to read 85% 85%

The elicitation instructions were easy to handle 85% 62%

The elicitation instructions provided me with good

indications to know when finished

85% 54%

The elicitation instructions supported me in finding

important information quickly

62% 69%

The elicitation instructions allowed me to deviate from

them, if necessary

54% 62%

I could answer all stakeholder’s questions by using the

information given in the instructions

54% 8%

The percentages indicate the number of participants who at least “rather agreed” to a statement.

Table 6. Subjective assessment results from experiment

Looking at the qualitative statements of the method group’s partici-

pants, it was appreciated that a clear order of steps and precise instruc-

tions were given. Furthermore, the participants highlighted that addi-

tional information such as definitions of issues, additional costs, or con-

straints were provided. However, there were also critical comments that

asked for better visual highlighting within the instruction text (e.g., im-

portant information such as constraints should be marked in bold, etc.).

Furthermore, examples and better meta-explanations about the instruc-

 Evaluation

 165

tions document itself should be given. Finally, the order of issues should

be better organized according to their level of abstraction.

7.2.3.4 Triangulation

During the interviews, the observer gathered several subjective impres-

sions that were not tracked systematically, as these impressions had not

been anticipated before. In order to get an empirical explanation for

them, we performed a triangulation, where we established relationships

between the objective observation data, the subjective assessment re-

sults, the qualitative comments of the participants, and the participants’

personal backgrounds.

In the method group, only one participant objectively performed much

worse than the other participants within this group. When considering

the post-questionnaire of this participant, understanding problems may

be a possible reason for this low performance. Interestingly, four other

participants of the method group also mentioned handling problems or

understanding problems in their post-questionnaires. However, when

considering their objective performance, these participants did not per-

form significantly worse than the average within the group. According to

their background, low English competency can be assumed as an expla-

nation why they felt they had problems, even though they did not actu-

ally have any when only their objective data are considered.

However, when triangulating the results of the control group, we recog-

nized another story. Here five participants mentioned handling problems

or understanding problems in their post-questionnaire, with four partici-

pants actually performing worse than the average of their group. Inter-

estingly, there were three other participants in the control group who al-

so performed badly, but who did not mention any problems in their

post-questionnaires. In order to identify what the actual problems might

have been, we considered the background of all lower-performing par-

ticipants. What most of them had in common was the fact that they had

already performed a couple of interviews before. Thus, we assume that

they had may have had different expectations regarding what an elicita-

tion session should look like, which was even partially confirmed by their

feedback statements in the post-questionnaire.

Hence, this triangulation confirmed the subjective impression of the ob-

server that the participants in the control group who claimed to have in-

terview experience did not precisely follow the instructions and tended

to invent their own questions for the stakeholder, but also to give their

own answers to the stakeholder’s questions. Nevertheless, when all RE-

experienced participants are removed from the sample, the confirmed

hypotheses remain unchanged, at least from a mathematical point of

view. Thus, it is not expected that the non-compliant participants in the

control group affected the experimental results significantly.

Controlled Experiment

166

7.2.4 Threats to Validity

7.2.4.1 Construct Validity

An important threat to construct validity is the mono-operation bias, as

the study was performed based on one fictitious SPL only. Even though

we assume the detected improvement tendency to be valid due to the

significant differences, the actual values of the metrics will probably

change when replicating the experiment in the context of another SPL.

Furthermore, social threats to construct validity may also exist. Possible in

this regard are especially evaluation apprehension and experimenter ex-

pectancies. Even though the participants were explicitly informed that

the material and not their personal performance was being evaluated,

most of them tried to look smart during the study. Thus, especially when

they did not find sufficient information in the material fast, which was

particularly the case in the control group, several participants tried to

bring in their previous knowledge and experience, or invent their own

questions and answers (e.g., about security, which was not a topic of in-

terest here). Furthermore, evaluation apprehension can also be a reason

why a couple of participants only gave information about the feasibility

of requirements when they were explicitly asked to make statements

about that. When replicating the experiment, the participants must

therefore be instructed better to adhere to the material.

With regard to experimenter expectancies, the possible threat that the

observer, who was the thesis author, influenced the results unintention-

ally (e.g., by a certain look, comment, or interruption) cannot be exclud-

ed. When replicating the experiment, we therefore recommend not hav-

ing an observer in the experiment room again. Instead, the observer

should sit behind a mirror glass or be replaced by video recording. How-

ever, for the fictitious stakeholder this threat does not apply, as she was

not informed about the participants’ group assignments and could, as

she confirmed, not distinguish the group’s elicitation style not even at

the end of the study.

7.2.4.2 Internal Validity

As the experiment was organized as single sessions, each participant did

the study during a different timeslot. Thus, each participant had another

history before the experiment started, which might have had an impact

on the results. For the same reason, there is a risk that the maturity of

the participants was different depending on which time of the day they

participated (e.g., early in the morning vs. late in the afternoon), even

though the distribution over a day was equal between the groups. Fur-

thermore, as the experiment was a highly human-based process, there is

a likely risk that the fictitious stakeholder as well as the observer

changed both their behavior and their attention during a day, and also

 Evaluation

 167

during the entire sequence of all sessions. In this regard, learning effects

for the fictitious stakeholder and the observer can also be assumed.

However, in the measured data, we cannot detect any difference be-

tween the participants at the beginning of the experiment and those at

the end. In particular, as most participants were assigned alternately to

the groups, all aforementioned threats are assumed to be balanced out.

With regard to material and instrumentation, no further threats were de-

tected either. Five members of the method group and six members of

the control group mentioned understanding or handling problems when

using the instructions (see discussion on triangulation above). However,

when statistical tests were run without these participants, the same hy-

potheses remain confirmed as when the full set of participants was used.

In addition, H2.21 (fewer unnecessary requirements) can also be con-

firmed with α=0.05 when these participants are left out.

The risk that one participant had informed other participants who came

to a later session was minimized through a non-disclosure agreement

that all participants had to sign. In particular, when considering the ex-

periment data, we did not find any evidence that later participants were

better prepared or informed than the early ones.

Even though we had an equal number of RE-experienced and less expe-

rienced people in both groups, there were twice as many people with

SPL knowledge in the method group than in the control group, which

may be a potential threat. However, when we compared only the SPL-

experienced people in both groups, or only the SPL-inexperienced peo-

ple, we found that only hypothesis H2.12 (fewer irrelevant questions) does

not hold anymore, while the other hypotheses remain unchanged. Fur-

thermore, hypothesis H2.23 (higher satisfaction fit) can additionally be

confirmed. Thus, we assume that the hypotheses H2.13 (more correct in-

formation), H2.22 (fewer problematic requirements), and H2.24 (higher real-

ization fit) are quite robust, while H2.12 (fewer irrelevant questions) and

H2.23 (higher satisfaction fit) tend to be influenced by the participants’

background.

7.2.4.3 Conclusion Validity

A basic threat to conclusion validity is the fact that the used metrics for

assessing the effectiveness of different elicitation approaches is based on

the same conceptual model on which the thesis approach is built. This

holds especially true for the notion of relevant and irrelevant questions.

In this context, it could not be evaluated whether success-critical re-

quirements will be missing when corresponding questions are left out

due to their classification as “irrelevant”. Hence, the thesis’ definition of

“relevance” must be taken in mind when interpreting the results.

Controlled Experiment

168

The reliability of measures can be considered as another threat to validity

as the performance metrics were measured by only one human observer

using manual recording tools (e.g., pen and paper), even though a voice

recorder was used in addition. This was especially a problem when the

fictitious stakeholder interrupted a participant too early, as this made it

sometimes hard to record whether a right answer was given or whether

a relevant question was posed. Thus, we recommend two actions when

replicating the experiment: first, to apply more reliable instruments for

observation, and second, to define clear rules for fictitious stakeholders

regarding interrupting questions.

While the statistical power of the confirmed hypotheses was very high

(up to ~1.00) and violations of statistical test assumptions were avoided

too, another possible threat to conclusion validity could be the hetero-

geneity of the participants. Especially as students typically differ signifi-

cantly in their performance, the variance in each group would probably

be lower if real requirements engineers were used. Thus, even though

we had problems recruiting practitioners, we recommend involving as

many as possible when replicating the experiment.

7.2.4.4 External Validity

Even though the elicitation interviews were made very realistic (e.g., by

the interrupting questions, etc.), there are threats to external validity.

The most important threat in this regard is probably the fact that all par-

ticipants were students. Indeed, precise approaches in requirements or

software engineering such as the instructions used are never intended to

support or even replace expert engineers. However, average engineers

who should be supported by a systematic approach are also no novices.

Again, we therefore recommend involving a group of real requirements

engineers in order to increase the external validity of the results.

Furthermore, elicitation sessions in practice are typically more complex

and more interactive, involving a multitude of people, workshop tech-

niques, etc. However, as such a setting cannot be replicated in a con-

trolled environment, we recommend performing additional case studies.

A final remark with regard to external validity is the fact that the tradi-

tional ARE approach used by the control group is a combination that

does not exist in this form yet (see related work in chapter 3). Thus, as

the control group worked with an approach that is already more ad-

vanced than the approaches currently used in reality, we assume that the

benefits when using our ARE approach may be even higher than shown

by this experiment. Of course, this hypothesis still has to be evaluated.

 Evaluation

 169

7.2.5 Interpretation and Implications

The results of the controlled experiment have shown that requirements

engineers can basically work more effectively in ARE when they use ARE

instructions according to the approach introduced in this thesis. In this

subsection, we would like to discuss the reasons and the implications

that these improvements may have.

The first significant improvement is that participants of the method

group asked 3.3 times fewer irrelevant questions than the participants of

the control group. The reason for this improvement is the fact that the

elicitation instructions according to the thesis approach were not just

“best practice” but individually tailored to the specific information needs

that had to be satisfied. Thus, questions regarding issues no one cares

about were not included. However, future work is needed to investigate

whether the requirements will be complete when just focusing on the

“relevant” questions according to the definition introduced in this thesis,

or whether critical requirements could be missing.

In this regard, it must also be noted that the time needed to perform the

interviews was almost equal in both groups. While the method group

needed 28.8 minutes, the control group needed 28.5 minutes on aver-

age. With an effect size of d=0.05 and p=0.46, the corresponding null

hypothesis “no difference” cannot be rejected. Thus, even though the

higher effectiveness achieved in the same amount of time indicates

higher efficiency in the method group, no absolute time savings could be

achieved when asking fewer irrelevant questions. Rather, the saved time

seems to be spent on discussing other issues in more detail.

The second and third significant improvements are that participants of

the method group elicited 2.92 times fewer problematic requirements

and achieved a 1.11 times higher realization fit than the control group

participants. The likely reason for these improvements is the fact that the

existing constraints are explicitly mentioned in corresponding places in

the method group’s ARE instructions. In the control group, in contrast,

feasibility constraints are only mentioned in the instructions for the ex-

plicitly anticipated requirements already, while all other constraints are

just described “between the lines” in the SPL specification. Apparently,

this direct representation of constraints in the elicitation instructions

seems to be more suitable. As an implication for practice, it is therefore

likely that better fitting requirements can be elicited when using the the-

sis approach. This realization fit improvement is then expected to also in-

crease the overall AE efficiency. However, as already mentioned in sec-

tion 7.1, this “efficiency of AE” hypothesis (H1) still has to be evaluated.

The last significant improvement is finally that participants of the method

group could correctly answer 1.93 times more stakeholder questions on

their own than participants of the control group. The reason for this im-

provement is the fact that process and product knowledge about an SPL

Case Study

170

is represented more appropriately in the ARE instructions according to

the thesis approach than in the material according to the state of the art.

The practical implication of this improvement is that requirements engi-

neers can discuss and negotiate in a more competent way. This probably

allows stakeholders to feel more convinced when their requirements are

put into question.

Another important result of this experiment is that the participants of

the method group did not perform worse in any metric than the partici-

pants of the control group. A likely explanation is the fact that our ARE

approach enhances the state of the art and does not replace it. Thus, it is

expected that requirements engineers using this approach can benefit

significantly without having any relevant drawbacks.

However, the representation of the ARE instructions was not considered

sufficiently suitable yet by the study participants. Thus, the qualitative

feedback given by them has to be incorporated into the ARE instruction

template in order to improve the subjective perception of the resulting

instructions. Furthermore, it has to be kept in mind that the thesis ap-

proach is intended for rather flexible SPLs, i.e., SPLs in which the degree

of explicitly anticipated requirements is limited. Thus, when highlighting

the benefits of the thesis approach, the results cannot be simply trans-

ferred to rather configurable SPLs in which almost every requirement can

only be satisfied by instantiating a predefined variability model (VM).

7.3 Case Study

While the previous section described a controlled experiment for evaluat-

ing the effectiveness of elicitation (H2) and the suitability of representa-

tion (H4) when using ARE instructions as proposed by this thesis, this sec-

tion introduces a case study for evaluating the effectiveness of the un-

derlying tailoring approach (H3). Besides the goal of the study, its design

and setup, its results and threats to validity, as well as its implications for

research and practice are described.

7.3.1 Goals and Hypotheses

According to the GQM approach [BCR94], the overall goal of this case

study was to analyze the thesis tailoring approach for the purpose of

evaluation with regard to effectiveness from the viewpoint of practition-

ers in the context of a two-phase case study. Thus, the goal was to know

whether the tailoring approach proposed by this thesis actually enables

different engineers to successfully derive ARE instructions when follow-

ing the tailoring approach proposed by this thesis. Below, we introduce

the underlying research questions and hypotheses of the case study, as

 Evaluation

 171

well as their related metrics (in brackets). However, for reasons of brevi-

ty, we omit the corresponding null hypotheses here.

All hypotheses are based on the main research question RQ3.M, which

asks whether engineers are able to tailor ARE instructions based on a

given SPL without major problems. As the ability to do something re-

quires both the understanding of what to do and the actual capability to

carry it out, we expect that most engineers using the tailoring approach

will

 H3.1 be able to successfully create an ARE instructions document

(# participants who successfully finish the tailoring / # all partici-

pants)

 H3.2 not need external help or explanations (# participants re-

quiring help / # all participants).

In this regard, we expect that at least 80% of the participants are able to

successfully create ARE instructions and that less than 20% of the partic-

ipants need help for this.

7.3.2 Study Setup

Based on the study goals, the case study was designed and prepared.

Below, we describe the details of the case study setup.

7.3.2.1 Participants (Subjects)

The participants in the case study, who participated voluntarily, were

two software architects and two requirements engineers from Fraunho-

fer IESE, as well as a development expert from a medium-sized German

software company dealing with the development of content recognition

systems. All participants were informed about our study goal. Regarding

their background, the person from the software company had more

than ten years of experience in different positions at his organization

(ranging from platform development to project management and RE in

customer projects). The two architects from Fraunhofer had around two

years of consulting and scientific experience, and the two requirements

engineers five, respectively nine, years of experience in their area. No

participant had knowledge about the tailoring approach before. For four

of the five participants, it was even the first time that they had to deal

with the adaptation of a requirements process at all. Regarding

knowledge of SPL engineering, all participants mentioned that they were

aware of the basic concepts, but not experts in this area.

Case Study

172

7.3.2.2 Case Study Design and Procedure

The case study was conducted in two phases (see Figure 63). In the first

phase, the software architects and requirements engineers from Fraun-

hofer IESE used the tool-supported tailoring approach of this thesis to

derive an ARE instructions document based on a fictitious SPL in the do-

main of business process applications. In the second phase of the study,

the same tool-supported tailored approach was used in a real software

organization to derive an ARE instructions document based on the soft-

ware platform on which customer-specific solutions are built there.

For the execution as well as for data collection and analysis, different ar-

tifacts were used. The Fraunhofer experts as well as the person from the

software organization both received the tailoring tool for guidance and

support throughout the tailoring process. Furthermore, both parties re-

ceived a tracking sheet for measuring and assessing the required effort,

the understandability, the applicability, the information sources used,

and the help required in each tailoring step. For gathering qualitative

feedback, the Fraunhofer experts additionally got a list of four open

feedback questions, while the person from the software company was

just asked to write down his personal impressions on a sheet.

Figure 63. Overall setting of case study

The first phase of the case study with the Fraunhofer experts was con-

ducted in summer 2011 and was split into four single sessions of 120

minutes each. Thus, the participants performed the tailoring individually,

as it was not organizationally possible to let all of them perform the tai-

loring in parallel. In order to avoid the threat that one participant in-

formed other participants about the material, the participants were kind-

ly asked not to talk about the material with their colleagues until the first

phase was over (a non-disclosure agreement was not used here).

In each session, the participants received the tailoring tool after we gave

them some initial information about the purpose of the study. Each par-

ticipant then used about 15 minutes to get familiar with the tool. During

this time, the participants carefully read the explanations on the screens

and clicked through the tool wizards. In order to provide some examples

and keep the study within a manageable time slot, the first three tailor-

ing steps (e.g., characterization of SPL, identification of architectural el-

ement types, and identification of architectural elements) had already

Phase 1

Phase 2

Tool-supported
Tailoring Approach

ARE Instructions ,
Metrics

Fictitious SPL

Real Platform

 Evaluation

 173

been performed by the thesis author before. Thus, these steps did not

have to be processed by the participants again.

In the second step, the participants then started with the actual tailoring.

Due to time reasons, there was no SPL specification handed out to the

participants as tailoring input. Rather, the thesis author played the role

of an SPL expert who was interviewed by the participants in order to ex-

tract the required SPL knowledge. In order to provide each participant

with the same knowledge, the thesis author used a fictitious SPL specifi-

cation as an information source. The given answers were entered into

the tool by the participants. At the end of each tailoring step, the under-

standability, the applicability, the help required as well as the time re-

quired were tracked, respectively assessed, by the participants using the

provided tracking sheet (see Appendix G).

After all tailoring steps had been completed, the participants were asked

to answer the four open questions to allow gathering their qualitative

feedback. Furthermore, they were asked to send us the database file of

the tailoring tool as well as the generated ARE instructions. These results

were then reviewed by the thesis author, who counted the elements

created in each tailoring step and checked (based on a sample solution)

whether there were wrong entries in the database or “strange” state-

ments in the generated instructions.

As a starting point for the second phase of the case study, which was

conducted between September 2011 and February 2012, a two-hour

kick-off meeting was performed with two employees from the afore-

mentioned software company. In this meeting, we presented the pur-

pose and the expected benefits of the tailoring approach as well as the

evaluation goal of our study. After then briefly explaining each tailoring

step, we started to perform the tailoring with a few examples in order to

make the company’s people familiar with the tailoring tool and its un-

derlying concepts. At the end of the meeting, the tool and a tracking

sheet were handed out to one employee of the company, who commit-

ted himself to apply the tailoring approach within the next month. In

parallel, five baseline questionnaires were handed out to different pro-

ject leaders in the company in order to get data about the effectiveness

and efficiency of RE in past customer projects (see Appendix I).

The filled-out database file of the tailoring tool, the tracking sheet, the

feedback sheet, and the baseline questionnaires were sent back to us by

the company a couple of months later. Again, these results were re-

viewed by the thesis author, who counted the elements created in each

tailoring step and checked whether there were wrong (respectively

strange) entries in the database or in the instructions.

Case Study

174

7.3.3 Analysis

Based on the analysis of the tailoring’s intermediate and final results as

well as of the gathered feedback, an analysis was performed. The analy-

sis procedure and its results are described in this section.

7.3.3.1 Analysis Procedure

In the first step, we used the database files of the participants’ tailoring

tools for generating the corresponding ARE instructions anew. We re-

viewed the resulting instructions carefully and looked for technical or

linguistic problems, or for meaningless or strange elicitation instructions

or hints. For each detected problem, we analyzed in which tailoring step

a corresponding mistake was made. We then counted and classified

these mistakes for each tailoring step, and tried to correct these mistakes

wherever possible in order to assess their impact on further tailoring

steps. However, whether the ARE instructions sufficiently reflected criti-

cal concepts of the underlying SPL was not checked, as this would have

required actual application of these instructions in a project.

The gathered data about mistakes were then entered into MS Excel, and

supplemented with the data provided regarding help required and time

required in a certain tailoring step. Furthermore, quantitative ratings

from the tracking sheets according to the Likert scale were collected in

MS Excel. Finally, the corresponding qualitative comments were listed in

MS Word. In this regard, all data was processed in a confidential way.

7.3.3.2 Objective Measurement Results

In this subsection, the measurement respectively review results of the en-

tire case study (i.e., both phases) are shown and explained (see Table 7).

In this context, we consider a mistake in the second column of Table 7 as

critical when it leads to meaningless, inconsistent, incomplete, or ambig-

uous elicitation instructions or hints. Linguistic or syntactical mistakes

that do not result in the aforementioned problems are not considered to

be critical. With regard to the last column, the numbers in brackets indi-

cate the time required by the person from the software organization,

while the numbers without brackets present the average of all partici-

pants. However, all findings were not suitable for the purpose of statisti-

cal hypothesis testing, as there were neither enough data points nor a

clear baseline against which the data could be compared. Thus, only the

raw analysis data are presented below.

In the ARE instructions created by the participants of the first phase (i.e.,

the Fraunhofer experts), only one critical mistake was recognized. In par-

ticular, two participants neglected to resolve existing conflicts between

 Evaluation

 175

conceptual relationships and development phase assignments of certain

issues (see corresponding step in section 6.3.10). Even though this mis-

take prevented the tool from generating the ARE instructions due to a

deadlock situation, it could be corrected within a few minutes and was

rather a technical than a conceptual problem.

Tailoring Step Partici-
pants

requiring
help from

author

Partici-
pants

making
critical

mistakes

Required
effort in
minutes
per ele-
ment

Characterization of Software Product

Line (SPL)
0 1

N/A

(30.00)

Identification of Architectural Element

Types
0 0

N/A

(12.00)

Identification of Architectural Elements
0 0

N/A

(4.50)

Characterization of Supported Flexibility

Classes
4 0

2.70

(8.57)

Identification of Flexibility Assumptions
3 1

5.80

(13.33)

Characterization of Development Phases
0 0

4.20

(15.00)

Identification of Development Activities
1 1

0.90

(1.76)

Elaboration of Decisions and Corre-

sponding Information Needs
1 1

1.80

(4.09)

Determination of Relevant Issues
1 0

3.70

(17.1)

Determination of Conceptual Relation-

ships
1 3

3.00

(13.33)

Definition of ARE Elicitation Instructions

(completely automated)
N/A N/A N/A

Table 7. Results of case study

In the ARE instructions generated by the participant from the software

company, more critical mistakes were recognized. The most important

problem was an inconsistency in the conceptual relationships that pre-

vented the tool from generating the ARE instructions due to a deadlock

situation. However, in contrast to a missing resolution of conflicts as by

the phase 1 participants, the reason here was that the participant did

not adhere to the best practice relationships expressed in the issue mod-

el, but tried to delete or redefine own relationships. Another critical mis-

take was that a couple of identical constraints were entered into the tai-

loring tool; once as a hard constraint and once as a soft constraint,

which did not make sense at all. A mistake with regard to the elabora-

tion of information needs was that the participant forgot to specify un-

der which conditions these information needs have to be satisfied. This

was critical insofar as the high flexibility of the underlying platform af-

fected the concrete information needs that may exist during runtime

(e.g., some information needs depend on a previous decision concerning

a variable architectural element). Finally, some information was not de-

Case Study

176

scribed in a format that fit the text blocks in which the information was

to be incorporated. This linguistic mistake led to ambiguous phrases in

some cases.

Regarding our hypothesis H3.1, which stated that 80% (four) of the par-

ticipants are able to successfully derive ARE instructions based on a given

SPL, we found that only 40% (two) of the case study participants were

actually able to do this straightaway (i.e., without rework). In most cas-

es, however, this was caused by a lack of conflict resolution in the “De-

termination of Conceptual Relationships” step, which resulted in dead-

lock situations during generation. Further steps in which critical mistakes

were made could only be found in the case of one participant from the

software organization. These steps were especially those in which the

solution space (mainly the SPL constraints or information needs) had to

be aligned with the problem space (i.e., the issues).

Regarding hypothesis H3.2, which claimed that less than 20% of the par-

ticipants need help for tailoring, we found that this was also not possible

at least in tailoring steps that dealt with flexibility classes and their as-

sumptions. Here, more than half of the involved peopled (four) needed

our support. The interpretation of the corresponding implications is dis-

cussed in section 7.3.5.

7.3.3.3 Subjective Assessment Results

The subjective assessment results (i.e., the assessment of understandabil-

ity and applicability as well as the qualitative feedback) were analyzed in

order to get an additional impression of how the participants of both

groups perceived the tailoring approach. Again, these findings were only

analyzed informally. Furthermore, we do not distinguish between the

phase 1 and the phase 2 participants here.

In Table 8, the assessment results for each tailoring step on a 5-point

Likert scale ranging from “totally disagree (1)” to “totally agree (5)” are

shown. The percentages indicate the number of participants who at least

“rather agreed” to a statement. An asterisk (*) marks the steps that

were experienced as being “easy”. The detailed ratings of each partici-

pant can be found in Appendix H.

While the tailoring steps dealing with development phases, development

activities, and relevant issues were easy to handle by most participants,

the identification of architectural elements, flexibility assumptions, in-

formation needs and conceptual relationships were perceived as rather

challenging. This is interesting insofar as most participants stated that

they indeed understood what they had to do, but experienced problems

when actually performing these steps.

 Evaluation

 177

Looking at the qualitative statements of the participants, they agreed

that the tailoring approach is basically easy to use, provides precise guid-

ance on how to extract SPL knowledge, does not require much pre-

knowledge in RE, and highly automates the representation of SPL

knowledge into ARE instructions. However, the participants mentioned

problems when matching solution and problem space, especially when

aligning flexibility class assumptions or information needs with corre-

sponding issues. In particular, while the architects mentioned that they

were totally unfamiliar with the concept of issues, the involved require-

ments engineers stated that they were unfamiliar with the concept of ar-

chitectural element types and architectural elements. Thus, explaining

these concepts better was required to make the tailoring approach bet-

ter applicable.

Tailoring Step I under-
stand what
I have to do

I can per-
form the

step with-
out prob-

lems
Characterization of Software Product Line (SPL)*

100% 100%

Identification of Architectural Element Types
80% 0%

Identification of Architectural Elements
60% 0%

Characterization of Supported Flexibility Classes
60% 60%

Identification of Flexibility Assumptions
60% 40%

Characterization of Development Phases*
80% 80%

Identification of Development Activities*
80% 80%

Elaboration of Decisions and Corresponding Infor-

mation Needs
80% 60%

Determination of Relevant Issues*
80% 80%

Determination of Conceptual Relationships
80% 60%

Definition of ARE Elicitation Instructions

 (completely automated)
N/A N/A

The percentages indicate the number of participants who at least “rather agreed” to a statement.

Table 8. Subjective assessment results from case study

In addition, the person from the software company mentioned that

some parts of the tailoring approach are hard to apply for software plat-

forms in which there is no clear separation between configuration and

additional development, e.g., when domain-specific languages are used.

Furthermore, he mentioned that in order to come up with a high-quality

ARE instructions document, the tailoring approach must be performed

twice, i.e., once for initially extracting the required SPL knowledge and

once for iterating the extraction results in order to reflect the SPL charac-

teristics best. This was also a reason why this person required much

Case Study

178

more time in each tailoring step than the rest of the participants. Fur-

thermore, he assessed the usability of the tailoring tool as improvable.

The raw data of the analysis are included in Appendix H.

7.3.4 Threats to Validity

7.3.4.1 Construct Validity

An important threat to construct validity is the mono-operation bias, as

the study was performed based on one fictitious SPL and one real prod-

uct platform only. Even though we assume the observed effectiveness to

be valid, replicating the study in other SPL organizations is needed in or-

der to provide more evidence for this claim.

Furthermore, while the participants in the first phase followed the tailor-

ing steps and interviewed a fictitious SPL expert as intended by the ap-

proach, the participant in the second phase acted in different roles. Be-

sides acting as the method tailor, he also took the role of an SPL expert

as well as working as a surrogate for further roles to be involved (e.g., in

the information need step) due to the low availability of these people.

When replicating the case study, the participating companies must be in-

structed to better distinguish the required roles in order to use the ap-

proach as intended.

Further threats to construct validity could be that the gathered subjective

statements were not always honest because the participants were in-

formed that the purpose of the study was to evaluate the results of a

PhD thesis. In addition, there is a possible risk that the thesis author in-

fluenced the results unintentionally when playing an SPL expert. We

therefore recommend not involving a person that already knows the tai-

loring method when replicating the study (no matter in which role).

7.3.4.2 Internal Validity

As the first phase of the study was performed in four single sessions,

there is a risk that the attention of both the participants and the ficti-

tious SPL expert varied depending on which time of the day the session

took place (e.g., early in the morning vs. late in the afternoon).

In the second phase of the study, which was done at a software compa-

ny, there was no control at all. In particular, as the tailoring was distrib-

uted over a period of months, there were probably many influencing fac-

tors that could have had effects on the results. Even if internal validity is

basically low in each case study, we therefore recommend performing

replicating studies within a defined time-slot, e.g., during a three-day

 Evaluation

 179

workshop, rather than distributing the tailoring steps over weeks in par-

allel to the daily business. In particular, the participants should work in

an atmosphere that allows them to work in a concentrated manner and

with the required accuracy.

7.3.4.3 Conclusion Validity

The reliability of measures can be considered as a threat to validity, as

the success of the tailoring performance was assessed based on the the-

sis author’s expert judgment, and the data regarding required time and

help were tracked by the participants themselves. Thus, we recommend

applying more reliable instruments for measurement to determine the

success / effectiveness in replicating studies.

Another threat to conclusion validity were the small sample size and the

corresponding impossibility to perform meaningful statistical analyses

such as descriptive statistics or hypothesis tests.

7.3.4.4 External Validity

The external validity of the study is basically high due to the involvement

of practitioners and an industry-size SPL. However, a threat to this validi-

ty might be the fact that the involved software company applies a plat-

form-oriented SPL approach (see [DSB05]) rather than a full-fledged

product line engineering approach as proposed in academic textbooks. If

feasible, an organization using such state of the art SPL engineering

methods should be involved when replicating this case study.

7.3.5 Interpretation and Implications

The results of the case study as well as the observations made during the

development of the tailoring approach have shown that different people

can basically incorporate SPL knowledge into ARE instructions when they

use the tailoring approach introduced in this thesis. However, as less

people than expected were able to successfully do this, this subsection

discusses the case study findings and their implications.

On average, all participants confirmed the statement that they always

knew what to do in the different tailoring steps, and they could perform

most steps without problems. The steps in which the participants felt

challenged were also those in which the critical mistakes were made. In-

terestingly, these steps (i.e., Identification of Flexibility Assumptions,

Elaboration of Decisions and Corresponding Information Needs, and De-

termination of Conceptual Relationships) are the ones that form the key

novelties of the thesis approach, as the reflection of assumptions or the

Summary

180

notion of information needs are the concepts that differentiate this the-

sis approach from existing ones.

Therefore, it is indispensable that these underlying core concepts as well

as the corresponding tailoring steps are explained comprehensively be-

fore the tailoring approach can be used effectively in practice. This claim

is supported by the observation that the participants in the first phase of

the case study, who could ask the thesis author for help directly, per-

formed better than the person from the software company who did the

tailoring offline and asked for help only once. We therefore pose the hy-

pothesis that the tailoring approach proposed by this thesis is basically

applicable, but not self-explanatory. Future work should therefore deal

with additional studies to evaluate the effectiveness of tailoring more

thoroughly. Furthermore, training and coaching as well as an improved

usability of the tool are seen as prerequisites before practitioners can ef-

fectively use the tailoring approach for creating individual ARE instruc-

tions based on a given SPL without help.

With regard to the effort needed by the software company to perform

the tailoring in the case study, we consider this investment as highly jus-

tified. The processed software platform consists of about 40 high-level

architectural elements of ten different types, supports 21 flexibility clas-

ses, and requires about 45 coarse-grained decisions to derive individual

software solutions. The overall effort for deriving ARE instructions from

this platform was 22.5 person-hours (~2.8 person-days). In past AE pro-

jects (see Appendix I), the average project size had been about 460 per-

son days, of which about 60 person-days (~13.0%) had been spent on

requirements activities. As the effort for requirements rework alone was

about 15 person-days in these project on average, we consider the effort

for tailoring as an investment that should pay off fast. However, the

evaluation of the actual efficiency improvements in AE projects is, as al-

ready mentioned, beyond the scope of this thesis and still has to be done

in order to assess this pay-off with the necessary evidence.

7.4 Summary

As research always involves gaining a deep understanding about the (in-

tended) effects of a solution [Bas93], a sound evaluation of the thesis

contributions is necessary. In this chapter, a controlled experiment for

evaluating the effectiveness of elicitation when using ARE instructions

according to this thesis as well as a case study for evaluating the effec-

tiveness of the thesis tailoring approach have been presented.

The results of the controlled experiment have shown that requirements

engineers can basically work more effectively in ARE when they use ARE

instructions according to the approach introduced in this thesis. In par-

ticular, less problematic requirements can be elicited in each elicitation

 Evaluation

 181

session, leading to faster achievement of a certain realization fit. Fur-

thermore, requirements engineers are able to inform stakeholders more

convincingly about the capabilities and constraints of a given SPL, which

also increases the effectiveness of the entire elicitation process.

However, even though objective effectiveness improvements can be

achieved with this thesis approach, the representation of the ARE in-

structions was not considered sufficiently suitable yet by the study partic-

ipants. Thus, their qualitative feedback has to be incorporated into the

ARE instructions template in order to improve the subjective perceptions

as well.

Hypotheses Confirmed
H1. Efficiency of Application Engineering (not tested)

H2. Effectiveness of Elicitation yes

H3. Effectiveness of Tailoring partially

H4. Suitability of Representation partially

Table 9. Summary of evaluation results

Of course, as elicitation effectiveness improvements can only be achieved

when these ARE instructions have been derived from the underlying SPL,

the effective creation of ARE instructions is an indispensable aim. The re-

sults of our case study carried out in this regard have shown that differ-

ent people are basically able to incorporate SPL knowledge into ARE in-

structions when they use the thesis tailoring approach. However, we

found that some of the tailoring steps are not self-explanatory and may

tempt people to make critical mistakes. Therefore, it is indispensable that

the underlying concepts as well as the tailoring steps are explained and

trained before the tailoring approach can be used successfully. Further-

more, the usability of the tool support should also be improved in order

to make the tailoring easier for method tailors in practice.

However, as the incorporation of the evaluation findings into the thesis

components will not be done as part of this thesis anymore, it should be

addressed in future work. The next chapter therefore summarizes the

achievements of this thesis and lists interesting ideas for possible or even

required research activities.

In this regard, future work should particularly deal with the impact of the

thesis approach on AE efficiency, as this is surely the most relevant in-

formation for practitioners. So far, only the effectiveness of elicitation

has been evaluated. Hence, it is still interesting to see which impact this

effectiveness may have on development efficiency in AE project.

Table 9 summarizes the findings of our studies.

 Summary and Future Work

 183

8 Summary and Future Work

“You should not try to foresee the future,
but to enable it.”

Antoine de Saint-Exupery

This chapter describes the contributions of this thesis and gives an out-

look on future work. The purpose of this chapter is to explain the novel-

ties that now exist and the research directions that could be followed.

For this purpose, the chapter first summarizes the achievements of the

thesis with regard to foundation, methodological approaches, engineer-

ing support and empirical evaluation, and then lists possible enhance-

ments in these areas.

8.1 Contributions

8.1.1 Foundation

In this thesis, a conceptual ARE model (see chapter 2) and an issue mod-

el (see chapter 5) were developed in order to provide a solid basis for the

development of other thesis components. For this purpose, we first de-

fined and clarified important terms in the area of ARE. In particular, the

notion of “relevant requirements” has been introduced in order to high-

light that not all requirements are actually useful when developing new

systems in a reuse-based way.

In order to guide ARE processes towards the elicitation of these relevant

requirements, the conceptual ARE model clarifies how the relevance of

requirements can be determined in the context of a certain SPL. Fur-

thermore, the model explains how ARE processes are conceptually relat-

ed to an SPL, and how SPL characteristics influence requirements elicita-

tion steps. In particular, the interplay between a product line architec-

ture, a development strategy, RE best practices and concrete ARE pro-

cesses is formalized in this model, which allows aligning these concepts

in product-oriented and process-oriented manner.

Contributions

184

However, as the conceptual ARE model does not describe any content to

be discussed in an ARE process, we also developed an issue model for IS

that acts as a consolidation of RE best practices in this area. The purpose

of this model is to provide basic knowledge about the typical topics for

which requirements have to be elicited there. In particular, the issue

model acts as an input for our tailoring approach (see chapter 6), as it

describes the elements of the problem space with which constraints or

information needs of an SPL organization can basically be concerned.

8.1.2 Methodological Approaches

The methodological approaches described in this thesis deal with the

question of how SPL knowledge can be systematically extracted and rep-

resented to AE requirements engineers. For this purpose, we developed

an ARE instructions template (see chapter 4) and a tailoring method (see

chapter 6).

The ARE instructions template provides a generic structure as well as an

elicitation strategy, and a set of predefined text blocks for representing

both best practices and important knowledge about an SPL to require-

ments engineers in a suitable manner. The basic idea implemented in

this template is to perform requirements elicitation in an algorithmic

way. This means that each issue, with which requirements can be con-

cerned, is processed in a repeatable order and manner. To make this

happen, the template structures elicitation instructions documents in the

same way as the intended ARE processes are structured. Thus, for each

phase of an ARE process, a corresponding section must exist within an

ARE instructions document. Furthermore, for each issue to be discussed

during a phase of the ARE process, a corresponding sub-section has to

be defined. In these sub-sections, concrete instruction statements and

hints are then provided, which support requirements engineers in elicit-

ing all requirements concerning one specific issue. Hence, these instruc-

tions and hints provide algorithmic guidance to the requirements engi-

neers regarding the elicitation activities to be done and the information

that must be considered.

The second methodological approach developed by this thesis is the tai-

loring method. This approach describes a clear sequence of activities to

be carried out by method tailors during the DE/FE phase in order to de-

rive ARE instructions from a given SPL. For this purpose, the tailoring ap-

proach prescribes eleven algorithmic steps that precisely explain how

knowledge about the product line architecture, the intended develop-

ment strategy, as well as RE best practices has to be extracted and com-

bined in order to provide AE requirements engineers with precise and

helpful elicitation instructions according to the aforementioned tem-

plate. We consider this tailoring approach as a valuable and especially

novel computer science contribution, as it formalizes this procedure in a

way that allows an (semi-)automated performance.

 Summary and Future Work

 185

8.1.3 Engineering Support

To support the aforementioned methodological approaches, a tailoring

tool has been introduced in this thesis. The purpose of this tool is to as-

sure that the thesis approach can be leveraged in practical settings, as

otherwise it might be too tedious and time-consuming.

The tailoring tool was developed as a Visual Basic application based on

MS Access 2010. It provides a wizard to guide method tailors in collect-

ing information about a given SPL, and it (semi-) automates the tailoring,

as it generates proposals for the results of different tailoring steps based

on the results of previous steps wherever possible. Thus, when using the

tool for tailoring, method tailors only need to enter information that the

tool cannot calculate based on already entered information. Apparently,

the further the tailoring proceeds, the less input needs to be provided by

a human. The last step of tailoring, for instance, is even fully automated,

i.e., the tool is able to create an ARE instructions document based only

on the intermediate results achieved before. Thus, already in this single

step, significant time and effort can be saved, as the performance of this

step can be reduced from several hours to a couple of seconds. Further-

more, the correctness of the generated ARE instructions can be assured

constructively as the tool applies a validated template (see chapter 4) and

does not require the method tailors to select phrases manually. In gen-

eral, the tool continuously applies plausibility checks, which increase the

correctness and completeness of the processed information. Without this

help, the application of the tailoring would likely be much more compli-

cated, error-prone, and time-consuming.

8.1.4 Empirical Evaluation

In this thesis, empirical evaluations (see chapter 7) were used to show

the usefulness of the methodological approaches with regard to the re-

search questions introduced in chapter 1.

In a case study with two RE experts and two architecture experts from

Fraunhofer IESE as well as a practitioner from a medium-sized software

company, we tried to evaluate the effectiveness of the tailoring method

in a first step. As our goal was to provide evidence that ARE instructions

can be defined systematically, we let these people tailor such instructions

based on a given (fictitious) SPL, respectively a real software platform on

which the involved company develops its customer-specific solutions.

The results of this case study have shown that an incorporation of SPL

knowledge into ARE instructions is basically possible when using the tai-

loring as proposed in this thesis. In particular, all participants confirmed

the statement that they knew what to do in the different tailoring steps,

and that they could perform most steps without problems. Furthermore,

we found that even for industry-size SPLs, an ARE tailoring is feasible

within less than one person-week, which we consider justifiable effort.

Open Issues and Future Work

186

However, we also found that it is indispensable that the underlying con-

cepts as well as the tailoring steps are much better explained before the

tailoring can be effectively used in practice. In this context, we received

important feedback for improving the tailoring approach and especially

the usability of the tool.

Besides the case study, we also performed a controlled experiment with

26 students in order to evaluate whether requirements engineers using

an ARE instructions document according to this thesis are able to elicit

requirements more effectively. As our goal was to investigate whether

this is actually the case, we let a group of students perform interviews

with “our” ARE instructions, while another group used state of the art

ARE instructions for this purpose. The results of the controlled experi-

ment showed that people can actually work more effectively in require-

ments elicitation when they use ARE instructions according to this thesis.

In particular, we found that fewer irrelevant questions are posed, fewer

problematic requirements are elicited, a higher realization fit is achieved,

and more stakeholder questions are answered correctly and convincing-

ly. Another important result of this experiment was that when using ARE

instructions according to this thesis, no other quality characteristic of the

elicitation approach decreased (e.g., no important requirements were

forgotten, etc.). A possible explanation could be the fact that our ARE

approach enhances the state of the art and does not replace it. Thus, re-

quirements engineers using this approach are expected to benefit signifi-

cantly without experiencing any relevant drawbacks. However, the rep-

resentation of the ARE instructions was not considered to be optimal by

the participants.

8.2 Open Issues and Future Work

8.2.1 Foundation

While the conceptual ARE model constitutes a valuable contribution to-

wards clarifying the relationships between SPLs and ARE processes, it is

not comprehensive in the sense that it covers all aspects that may exist in

SPLs or in AE projects in general. This means that concepts that go be-

yond RE may probably not be described sufficiently in this model for be-

ing able to build other software engineering methods. An interesting

part of future work could therefore be investigating how this model

must be extended in order to provide a suitable foundation for other

software engineering disciplines as well. For instance, quality assurance

processes or detailed architecting methods for customer-specific systems

could be derived with an extended version of this model. Furthermore, it

is interesting to see whether this model remains stable when applied in

the context of modern architectural styles or system types such as ser-

vice-oriented, event-based, or emergent systems.

 Summary and Future Work

 187

With regard to the proposed issue model, we are aware that there is no

one-fits-all-solution, even though we carefully elaborated the contained

issues by applying an iterative research approach. Adapting the issue

model based on the actual information needs that exist in a develop-

ment process is therefore an important step in the overall thesis ap-

proach. Nevertheless, future work should analyze whether the issues de-

scribed in the literature (and, thus, also in our issue model) are valid an-

yway, and whether there is an empirically funded set of issues that is

needed every time. Furthermore, future research could deal with the

question of how requirements concerning certain issues should be repre-

sented best in order to make both the provision and consumption of re-

quirements in AE as efficient as possible. Maybe the ongoing work of

Gross [Gro10] will be able to provide suitable answers in this regard.

8.2.2 Methodological Approaches

Even though the representation of SPL knowledge based on the ARE in-

structions template has enabled participants of a controlled experiment

to perform more effective elicitation, we have identified room for future

work in this regard. Besides better representation of the information in

ARE instructions documents, which was asked for by the study partici-

pants (see section 7.2.3.3), future work could also investigate which ad-

ditional support would be helpful for requirements engineers during elic-

itation, analysis, prioritization, specification, and validation of require-

ments in an AE projects. Especially as requirements elicitation always

deals with trade-off decisions, approaches that provide information be-

yond those of the current ARE instructions template would be welcome.

Such work could facilitate the prioritization of requirements, or the im-

mediate calculation of additional costs. In this regard, the role of tool

support should also be discussed, either to improve the impact assess-

ment for customer-specific requirements or to align requirements with

existing solution assets directly. This is especially an important topic

when service repositories are used that may, in contrast to traditional

SPLs, change rapidly over time and do not allow adapting the rather stat-

ic ARE instructions continuously.

With regard to the tailoring, which forms the core contribution of this

thesis, we see future work mainly in the area of automation. Even

though we were able to provide very precise and formal guidance for

each tailoring step, the actual degree of automation is still limited. Thus,

a significant part of knowledge about a given SPL can only be extracted

from informal documents or SPL experts in a human-based way. Future

work should therefore deal with the question of how the degree of au-

tomation can be increased further. This challenge is directly concerned

with the discussion about future work regarding engineering support,

and a technical rather than formalization problem.

Open Issues and Future Work

188

From a conceptual point of view, there are also possibilities for future re-

search. First of all, it should be investigated whether the tailoring also

works when no SPL in the academic sense is used, but rather a service

platform or any other reuse approach. This also holds true for platforms

in which an explicit distinction of configuration and programming using

a domain-specific language is hard to make (see case study in section

7.3). In particular, it should be analyzed how short-lived or open plat-

forms (like large service repositories in the Cloud) will affect the feasibil-

ity of the tailoring approach. Research must be done on the question of

what can remain stable in such a setting (and be reflected in an explicit

ARE instructions document) and what has to be addressed with a com-

plementary approach due to the high change frequency. Furthermore,

the feasibility of our tailoring approach in development contexts in which

there is no clear development strategy must be checked. Particularly

since an increasing number of IS is nowadays built in an agile way, inves-

tigating the impact of this paradigm on the elaboration of development

activities, decisions, and information needs is important.

With regard to the state of the art in SPL engineering, the integration of

the tailoring approach in the DE/FE phase should finally be investigated

more thoroughly. In particular, it is interesting to see which additional

assets from DE/FE could also be taken as input for tailoring. Again, spe-

cific attention should be paid to the automatic processing of this input.

8.2.3 Engineering Support

As it was an important finding from our case study described in section

7.3, the usability and visualization of the tailoring tool has to be im-

proved in order to make the tool easier to use. As a critical point in this

regard, especially the descriptions of how to perform the tailoring steps

with the tool should be enhanced, as otherwise, wide applicability in

practice will not be possible without coaching.

In this regard, we consider better support for aligning the concepts of

the solution space with the concepts of the problem space (issues) as in-

dispensable. Interesting future work could include an investigation of

how text-mining approaches could support the alignment of assump-

tions with corresponding issues automatically. A similar enhancement

could also be valuable in the tailoring step that deals with the elabora-

tion and alignment of information needs. Furthermore, it would also be

interesting research to find out whether it is possible to automatically de-

rive assumptions from the technologies or the architectural elements

used. This could mean that meta-information about existing components

are automatically analyzed in order to understand the constraints under

which these components can provide their services. This is a challenge

insofar as standardized, semantic descriptions of assets do not exist yet

and probably will not exist for a long time.

 Summary and Future Work

 189

Furthermore, we see future work in upfront and downstream activities.

In particular, the extraction of architectural element types and architec-

tural elements seems to be a tailoring step that could be automated to a

high degree by processing the architecture or even the source code of an

SPL. A prominent tool at Fraunhofer IESE that deals with architectural

analysis is the SAVE tool [DKL09]. In future work, it would therefore be

interesting to see how SAVE could enter extracted architectural element

types and architectural elements into the tailoring tool automatically. In

addition, it would be helpful to provide tool mechanisms that quantify

the architectural impact (low, medium, high) of supported flexibility clas-

ses. This work could disburden software architects during tailoring from

making this assessment, and also increase the degree of automated tai-

loring.

With regard to downstream activities, such as the actual elicitation to be

done during AE, it would be nice to provide requirements engineers with

more than just an ARE instructions document in MS Word. We therefore

plan to investigate how the tailoring tool could generate an elicitation

tool instead of a textual instructions document. Such a tool could guide

requirements engineers in a wizard-based way, and give them the op-

portunity to collect the elicited requirements directly in a database. Fur-

thermore, by using the stored information about conceptual relation-

ships or assumptions, the tool could automatically inform the require-

ments engineers about syntactic incompleteness, inconsistencies, or vio-

lations of the given assumptions. Also, direct access to and alignment

with reuse assets stored in a repository would be possible. We expect

that this would further increase the effectiveness of elicitation.

8.2.4 Empirical Evaluation

With regard to the quality of our case study, its low validity (especially

due to the small sample size and low control) can be considered as a

weakness that motivates future work. We therefore recommend replicat-

ing our case study without its observed threats to validity, in order to get

better insights into the strength and weaknesses of the tailoring in prac-

tice. Also interesting in this regard would be a comparison of the tailor-

ing approach with ad-hoc tailoring done by SPL experts (as systematic

candidate approaches do not exist yet). Such an experiment could pro-

vide evidence that the tailoring approach is not only effective, but also

more effective and efficient than any other procedure.

With regard to the quality of the controlled experiment, we consider the

observed threats to validity as acceptable for drawing the aforemen-

tioned conclusions. However, it would be interesting future work to see

whether the experimental results remain stable when involving practi-

tioners instead of students and when minimizing the observed threats

such as the reliability of measures or the experimenter’s expectancies.

Thus, we plan to run an (improved) replicating study.

Open Issues and Future Work

190

Finally, as our studies have not evaluated the overall impact of the thesis

on AE efficiency, future work should particularly deal with this effect. So

far, only the effectiveness of elicitation has been evaluated, but not the

impact this effectiveness may have on development efficiency, which is

ultimately the more relevant information for practitioners. So far, we can

only show this improvement in an argumentative way. This means that

we assume that the higher the realization fit achieved after elicitation,

the higher the development efficiency (as fewer components have to be

developed from scratch). Whether this claim holds true or whether there

are too many other influencing factors has to be evaluated in a series of

industrial case studies. As this was not achievable in the context of the

thesis research, we plan to prepare and carry out such a concluding

study in the future.

References

 191

References

[ABB+02] Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Leitenberger, O., Laqua, R.,

Muthig, D., Paech, B., Wüst, J., Zettel, J.: Component-based Product Line

Engineering with UML. Addison-Wesley, 2002

[ABQ+11] Alegria, J., Bastarrica, M., Quispe, A., Ochoa, S.: An MDE Approach to

Software Tailoring. In: Proceedings of the SCSSP 2011. ACM, 2011

[Ada10] Adam, S.: Improving SPL-based Information System Development Through

Tailored Requirements Processes. In: Proceedings of the Doctoral Symposi-

um at the 18th IEEE International Conference on Requirements Engineer-

ing 2010. Sydney, 2010

[Ada12] Adam, S.: Providing SPL Knowledge to Requirements Engineers – A Tem-

plate for Elicitation Instructions. In: Proceedings of the 18th REFSQ, LNCS

7195. Springer, 2012

[Ada11] Adam, S.: Towards Faster Application Engineering through Better In-

formed Elicitation – A Research Preview. In: Proceedings of the REFSQ

2011 Workshops, ICB-Research Report No. 44. Universität Duisburg-Essen,

2011

[Ada11b] Adam, S.: Higher Efficiency through Tailored Requirements Processes in

Reuse-oriented Development. In: Proceedings of the REFSQ 2011 Work-

shops, ICB-Research Report No. 44. Universität Duisburg-Essen, 2011

[Ada11c] Adam, S.: Produktlinien-bewusste Anforderungserhebung durch maßge-

schneiderte Erhebungsprozesse. Fachgruppentreffen RE der Gesellschaft

für Informatik, 2011

[AD08] Adam, S., Doerr, J.: The Role of Service Abstraction and Service Variability

and its Impact on Requirements Engineering for Service-oriented Systems.

In: Proceedings of the 32nd IEEE International Conference on Computer

Software and Applications. IEEE, 2008

[ADE09] Adam, S., Doerr, J., Eisenbarth, M.: Lessons learned from best practice-

oriented process improvement in Requirements Engineering – A glance in-

to current industrial RE application. In: Proceedings of 4th International

Workshop on Requirement Engineering Education and Training. IEEE,

2009

[ADE+09] Adam, S., Doerr, J., Eisenbarth, M., Gross, A.: Using Task-oriented Re-

quirements Engineering in Different Domains – Experiences with Applica-

tion in Research and Industry. In: Proceedings of the IEEE International Re-

quirements Engineering Conference. IEEE Computer Society, 2009

[ADE+10] Adam, S., Doerr, J., Ehresmann, M., Wenzel, P.: Incorporating SPL

Knowledge into a Requirements Process for Information Systems – Archi-

tecture-driven Tailoring Approach. In: Proceedings of the 1st PLREQ Work-

shop at the REfSQ 2010. Essen, 2010

[AFC+05] Alves, C., Franch, X., Carvallo, J., Finkelstein, A.: Using Goals and Quality

Models to Support the Matching Analysis During COTS Selection. In: Pro-

ceedings of ICCBSS, LNCS 3415. Springer, 2005

[AHH11] Arpinen, T., Hämäläinen, T., Hännikäinen, M.: Meta-Model and UML Pro-

file for Requirements Management of Software and Embedded Systems.

In: EURASIP Journal on Embedded Systems. 2011

References

192

[Ale05] Alexander, I.: A Taxonomy of Stakeholders – Human Roles in System De-

velopment. In: International Journal of Technology and Human Interaction,

Vol. 1, 2005

[Alve03] Alves, C.: COTS-Based Requirements Engineering. In: Proceedings of

Component-Based Software Quality, LNCS 2693. Springer, 2003

[ANA+10] Alves, V., Niu, N., Alves, C., Valenca, G.: Requirments Engineering for

software product lines: A systematic literature review. In: Information and

Software Technology. Elsevier, 2010

[ANT10] Adam, S., Naab, M., Trapp, M.: A Service-Oriented View on Business Pro-

cesses and Supporting Applications. In: Proceedings of 11th International

Workshop on BPMDS, LNBIP 50. Springer, 2010

[AQG12] Analytic Quality Glossary: Effectiveness.

http://www.qualityresearchinternational.com/glossary/effectiveness.htm

(last visited: 2012-02-17)

[ARC08] Adam, S., Riegel, N., Carbon, R.: . Requirements Engineering Approach for

the Identification of Innovative Services. Fraunhofer IESE Report 037.08/E.

Fraunhofer IESE, 2008

[ARG+12] Adam, S., Riegel, N., Gross, A., Uenalan, O., Darting, S.: A Conceptual

Foundation of Requirements Engineering for Business Information Sys-

tems. In: Proceedings of BPMDS, LNBIP. Springer, 2012

[Ars+07] Arsanjani, A., Zhang, L., Ellis, M., Allam, A., Channabasavaiah: S3 – A Ser-

vice-oriented Reference Architecture. In: IT Pro, May / June 2007. IEEE

Computer Society, 2007

[AUY+07] Aoyama, K., Ugai, T., Yamada, S., Obata, A.: Extraction of Viewpoints for

Eliciting Customer’s Requirements based on Analysis of Specification

Change Records. In: Proceedings of the 14th Asia-Pacific Software Engi-

neering Conference. IEEE Computer Society, 2007

[Bas93] Basili, V.: The Experimental Paradigm in Software Engineering. In: Proceed-

ings of Dagstuhl-Workshop, LNCS 706. Springer, 1993

[BBG+00] Baum, L., Becker, M., Geyer, L., Molter, G.: Mapping Requirements to Re-

usable Components using Design Spaces. In: Proceedings of IEEE Interna-

tional Requirements Engineering Conference. IEEE Computer Society,

2000

[BC12] Business Dictionary. http://www.businessdictionary.com, last visited: 2012-

01-12

[BCK03] Bass, L., Clements, P., Kazman. R.: Software Architecture in Practice, Sec-

ond Edition, SEI Series in Software Engineering, Addison-Wesley, 2003.

[BCR94] Basili, V.R., Caldiera, G., Rombach, H. D.: Goal Question Metric Paradigm,

Encyclopedia of Software Engineering, Volume 1, pp. 528-532. John Wiley

& Sons, 1994

[Ber10] Berry, D.: Advice for Finishing that Damn Ph.D.

http://se.uwaterloo.ca/~dberry/FTP_SITE/lecture.slides/finishing.phd.talk.pd

f. (visited: 2010-11-11)

[BGM+00] Bayer, J., Gacek, C., Muthig, D., Widen, T.: PuLSE-I: Deriving Instances

from a Product Line Infrastructure. In: Proceedings 7th IEEE International

Conference and Workshop on the Engineering of Computer-based Sys-

tems. IEEE Computer Society, 2000

[BHL+06] Bühne, S., Halmans, G., Lauenroth, K., Pohl, K.: Scenario-Based Applica-

tion Requirements Engineering: In: Software Product Lines. Springer, 2006

[BI12] Bundesministerium des Inneren: Das V-Modell XT. http://www.v-modell-

xt.de/ (last visited: 2012-01-27)

References

 193

[CA07] Cheng, B., Atlee, J.: Research Directions in Requirements Engineering. In:

Proceedings of Future of Software Engineering (FOSE). IEEE Computer So-

ciety, 2007

[Car08] Carbon, R.: Improving the Production Capability of Product Line Organiza-

tions by Architectural Design for Producibility. In: Proceedings of Doctoral

Symposium @ SPLC 2008

[Car11] Carbon, R.: Architecture-Centric Software Producibility Analysis. PhD The-

ses in Experimental Software Engineering, Vol. 38. Fraunhofer Verlag,

2011

[CDS+05] Ceron, R., Duenas, J., Serrano, E., Capilla, R.: A meta-model for require-

ments engineering in system family context for software process im-

provement using CMMI. In: Profes 2005, LNCS 3547. Springer, 2005

[CFM+02] Casati, F., Fugini, M., Mirbel, I., Pernici, B.: WIRES: A Methodology for De-

veloping Workflow Applications. In: Requirements Engineering, Vol. 7.

Springer, 2002

[CN01] Clements, P., Northrop, L.: Software Product Lines: Patterns and Practice.

Addison Wesley, 2001

[Coc00] Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, 2000

[Dav93] Davis, A.: Software Requirements – Objects, Functions & States. Prentice

Hall PTR, 1993

[DKL09] Duszynsky, S., Knodel, J., Lindvall, M.: SAVE: Software Architecture Visual-

ization and Evaluation. In: Proceedings of 13th European Conference on

Software Maintenance and Reeengineering. IEEE Computer Society, 2009

[DPK04] Doerr, J., Paech, B., Koehler, M.: Requirements Engineering Process Im-

provement Based on an Information Model. In: Proceedings of the 12th

International Requirements Engineering Conference. IEEE Computer Socie-

ty, 2004

[DSB05] Deelstra, S., Sinnema, M, Bosch, J.: Product derivation in software product

families: a case study. In: The Journal of Systems and Software, vol. 74.

Elsevier, 2005

[DS07] Djebbi, O., Salinesi, C.: RED-PL, a Method for Deriving Product Require-

ments from a Product Line Requirements Model. In: Proceedings of CAiSE

2007. Springer, 2007

[FD12] Free Dictionary. http://www.thefreedictionary.com/, last visited: 2012-01-

12

[FGM07] Fricker, S., Gorschek, T., Myllyperkiö, P.: Handshaking Between Software

Projects and Stakeholders Using Implementation Proposals. In: Proceedings

of REFSQ 2007, LNCS 4542. Springer, 2007

[FMS+10] Ferrari, R., Madhavji, N., Sudmann, Ol., Henke, C., Geilser, J.: Require-

ments Engineering Decisions in the Context of an Existing Architecture: A

Case Study of a Prototypical Project. In: Proceedings of the 18th IEEE In-

ternational Requirements Engineering Conference. IEEE Computer Society,

2010

[GD07] González, J.L., Diáz, J.S.: Business process-driven requirements engineer-

ing: a goal-based approach. Proceedings of the BPMDS Workshop, Trond-

heim, Norway, 2007

[GKB08] Goknil, A., Kurtev, I., Berg, K.: A Metamodeling Approach for Reasoning

about Requirements. In: Model-Driven Architecture – Foundation and Ap-

plication, LNCS 5095. Springer, 2008

References

194

[GP07] Guelfi, N., Perrouin, G.: A Flexible Requirements Analysis Approach for

Software Product Lines. In: Proceedings of RefSQ 2007, LNCS 4542.

Springer, 2007

[GPW06] Gordijn, J., Petit, M., Wieringa, R.: Understanding Business Strategies of

Networked Value Constallations Using Goal- and Value Modeling. In: Pro-

ceedings of 14th IEEE International Requirements Engineering Conference.

IEEE Computer Society, 2006

[Gro10] Gross, A.: Perspective-based Specification of Efficiently and Effectively Us-

able Requirements Documents. Doctoral Symposium RE'10. Sydney (2010)

[GRT00] Gzara, L, Rieu, D., Tollenaere, M.: Patterns Approach to Product Infor-

mation System Engineering. In: Requirements Engineering, Vol. 5. Spring-

er, 2000

[Gom04] Gomaa, H.: Designing Software Product Lines with UML: From Use Cases

to Pattern-Based Software Architectures. Addison-Wesley, 2004

[Gul04] Gulla, J.A.: Understanding Requirements in Enterprise System Projects. In:

Proceedings of the 12th IEEE International Requirements Engineering Con-

ference. IEEE Computer Society, 2004

[Hay03] Hay, D.: Requirements Analysis – From Business Views to Architecture.

Prentice Hall PTR, 2003

[HP03] Halmans, G., Pohl, K.: Communicating the variability of a software-

product family to customers. In: Software and System Modeling 2003/2.

Springer, 2003

[HPS08] Halmans, G., Pohl, K., Sikora, E.: Documenting Application-Specific Adap-

tations in Software Product Line Engineering. In: Proceedings of CAiSE

2008. Springer, 2008

[IEEE98a] IEEE Computer Society: IEEE 830-1998 - IEEE Recommended Practice for

Software Requirements Specifications. IEEE, 1998

[IEEE98b] IEEE Computer Society: IEEE 1233-1998 - IEEE Guide for Developing Sys-

tem Requirements Specifications Description. IEEE, 1998

[IEEE98c] IEEE Computer Society: IEEE 1362-1998 - Guide for Information Technol-

ogy - System Definition - Concept of Operations (ConOps) Document De-

scription. IEEE, 1998

[IEEE98d] IEEE Standard 1058-1998 for Software Project Management Plans

[JEF04] Jiang, L., Eberlein, A., Far, B.: A Methodology for Requirements Engineer-

ing Process Development. In: Proceedings of the 11th International Con-

ference and Workshop on the Engineering of Computer-Based Systems.

IEEE Computer Society, 2004

[JJM09] Jeusfeld, M, Jarke, M., Mylopoulos, J.: Metamodeling for Method tailor-

ing. The MIT Press, 2009.

[JKL+06] John, I., Knodel, J., Lehner, T., Muthig, D.: A Practical Guide to Product

Line Scoping. In: Proceedings of the 10th Software Product Line Confer-

ence. IEEE Computer Society, 2006

[Joh10] John, I.: Pattern-based Documentation Analysis for Software Product

Lines. PhD Theses in Experimental Software Engineering, Vol. 30. Fraunho-

fer Verlag, 2010

[KAP+04] Kazhamiakin, R., Pistore, M., Roveri, M.: A Framework for Integrating

Business Processes and Business Requirements. In: Proceedings of the 8th

IEEE International Enterprise Distributed Object Computing Conference.

IEEE Society, 2004

References

 195

[Kit04] Kitchenham, B.: Procedures for Performing Systematic Reviews. In: Keele

University Technical Report TR/SE-0401. Keele University, 2004

[Kne01] Knethen, A.: Change-Oriented Requirements Traceability. Support for Evo-

lution of Embedded Systems. PhD Theses in Experimental Software Engi-

neering, Vol. 9. Fraunhofer IRB, 2001

[Kru00] Kruchten, P.: The Rational Unified Process. Addison-Wesley, 2000

[KS98] Kontonya, G., Sommerville, I.: Requirements Engineering: Processes and

Techniques. Wiley & Sons, 1998

[Lam04] Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Roundtrip

from Research to Practice. In: Proceedings of the 12th IEEE International

Requirements Engineering Conference. IEEE, 2004

[Lam09] Lamsweerde, A.: Requirements Engineering: From System Goals to UML
Models to Software Specifications. John Wiley & Sons, 2009

[Lau02] Lauesen, S.: Software Requirements – Styles and Techniques. Addison-

Wesley, 2002

[LJB98] Lam, W., Jones, S., Britton, C.: Technology Transfer for Reuse: A Man-

agement Model and Process Improvement Framework. In: Proceedings of

the IEEE International Requirements Engineering Conference. IEEE Com-

puter Society, 1998

[LLC04] Laguna, M., Lopez, O., Crespo, Y.: Reuse, Standardization, and Transfor-

mation of Requirements. In: Proceedings of 8th International Conference

on Software Reuse, LNCS 3107. Springer, 2004

[LW00] Leffingwell, D, Widrig, D.: Managing Software Requirements. Addison-

Wesley, 2000

[MA02] Muthig, D., Atkinson, C.: Model-driven Product Line Architectures. In: Pro-

ceedings of the Software Product Line Conference, LNCS 2379. Springer,

2002

[Mut02] Muthig, D.: A Light-weight Approach Facilitating an Evolutionary Transi-

tion Towards Software Product Lines. PhD Theses in Experimental Soft-

ware Engineering, Vol. 11. Fraunhofer IRB, 2002

[Naa09] Naab, M.: Improving the Flexibility of SOA-Based Information Systems by

Adopting Practices from Product Line Engineering. Doctoral Symposium of

SPLC, 2009

[NC07] Northrop, L., Clements, P.: A Framework for Software Product Line Prac-

tice, Version 5.0, Software Engineering Institute, 2007

[NE00] Nuseibeh, B., Easterbrook, S.: Requirements Engineering – A Roadmap. In:

Proceedings of the IEEE International Conference on Software Engineering

(ICSE). IEEE Computer Society, 2000

[NM10] Naab, M., Muthig, D.: Designing Flexible Architectures for Product Lines

Dominated by Open Variability. IESE Report IESE-062.10/E. Fraunhofer IE-

SE, 2010

[OMG11] Onject Management Grouo: Unified Modeling Language.

http://www.uml.org (last-visited: 2011-11-30)

[OMG12] Object Management Group: Meta Object Facility.

http://www.omg.org/mof/ (last visited: 2012-02-08)

[OMG12b] Object Management Group: BPMN Specification. http://www.bpmn.org

(last visited: 2012-02-10)

References

196

[ORR+09] O’Leary, P., Rabiser, R., Richardson, I., Thiel, S.: Important Issues and Key

Activities in Product Derivation: Experience from Two Independent Re-

search Projects. In: Proceedings of the Software Product Line Conference

2009. SEI, 2009

[PK04] Paech, B., Kohler, K.: Task-driven Requirements in Object-oriented Devel-

opment. In: Perspectives on Software Engineering. Kluwer Academic Pub-

lishers, 2004

[PKG+08] Perrouin, G., Klein, J., Guelfi, N., Jezequel, J.: Reconciling Automation and

Flexibility in Product Derivation. In: Proceedings of 12th Software Product

Line Conference. IEEE Computer Society, 2008

[Poh07] Pohl, K.: Requirements Engineering – Grundlagen, Prinzipien, Techniken.

dpunkt.verlag, 2007

[PTG+06] Peffers, K., Tuunanan T., Gengler, C., Rossi, M., Hui, W., Virtanen, V.,

Bragge, J.: The Design Science Research Process: A Model for Producing

and Presenting Information System Research. In: Proceedings of DESRIST

2006. CGU, 2006

[RAG11] Riegel, N., Adam, S., Gross, A.: Adressing Requirements Engineering Chal-

lenges in the Context of Emergent Systems. In: Proceedings of Workshop

on Requirements Engineering for Systems, Services, and Systems-of-

Systems. IEEE, 2011

[RB01] Reason P., Bradbury H. (eds.): Handbook of Action Research. Sage Publica-

tions, 2001

[RGD07] Rabiser, R., Grünbacher, P., Dhungana, D.: Supporting Product Derivation

by Adapting and Augmenting Variability Models. In: Proceedings of the

11th International Software Product Line Conference. IEEE Computer So-

ciety, 2007

[RGD09] Rabiser, R., Grünbacher, P., Dhungana, D.: Requirements for product deri-

vation support: Results from a systematic literature review and an expert

survey. In: Information and Sofware Technology. Elsevier, 2009

[RD07] Rabiser, R., Dhungana, D.: Integrated Support for Product Configuration

and Requirements Engineering in Product Derivation. In: Proceedings of

33rd Conference on Software Engineering and Advanced Applications.

IEEE Computer Society, 2007

[RR99] Robertson, S., Robertson, J.: Mastering the Requirements Process. Addi-

son-Wesley, 1999

[RSB98] Rolland, C., Souveyet, C., Ben Achour, C.: Guiding Goal Modeling using

Scenarios. In: IEEE Transactions on Software Engineering. IEEE Computer

Society, 1998

[Rup07] Rupp, C.: Requirements Engineering und Management – Professionelle, it-

erative Anforderungsanalyse für die Praxis. Hanser, 2007

[RW05] Rozanski, N., Woods, E.: Software System Architecture – Working with

Stakeholders Using Viewpoints and Perspectives. Addison-Wesley, 2005

[Sch01] Scheer, A.-W.: ARIS – Modellierungsmethoden, Metamodelle, Anwen-

dungen. 4. Auflage. Springer, 2001

[Sch03] Schmid, K.: Planning Software Reuse - A Disciplined Scoping Approach for

Software Product Lines. PhD Theses in Experimental Software Engineering,

Vol. 12. Fraunhofer IRB, 2003

[Sch95] Scheer, A.-W.: Wirtschaftsinformatik – Referenzmodelle für industrielle

Geschäftsprozesse. Springer, 1995

[SDH06] Sinnema, M., Deelstra, S., Hoekstra, P.: The COVAMOF Derivation Process.

In: International Conference on Software Reuse. Springer, 2006

References

 197

[SEI08] Software Engineering Institute CarnegieMellon: Software Product Lines.

http://www.sei.cmu.edu/productlines/ (visited: 2008-10-10)

[SGD+01] Soffer, P., Golany, B., Dori, D., Wand, Y.: Modelling Off-the-Shelf Infor-

mation System requirements: An Ontological Approach. In: Requirements

Engineering, Vol. 6. Springer, 2001

[Som04] Sommerville, I.: Software Engineering – Seventh Edition. Addison-Wesley,

2004

[Som05] Sommerville, I.: Integrated Requirements Engineering: A Tutorial. In: IEEE

Software, January / February 2005. IEEE Computer Society, 2005

[SLS+09] Sommerville, I., Lock, R., Storer, T., Dobson, J.: Deriving Information Re-

quirements from Responsibility Models. In: Proceeedings of CAiSE, LNCS

5565. Springer, 2009

[SS97] Sommerville, I., Sawyer, P.: Requirements Engineering – A good practice

guide. John Wiley, 1997

[ST05] Sindhgatta, R., Thonse, S.: Functional and Non-functional Requirements

Specification for Enterprise Applications. In: Proceedings of PROFES 2005,

LNCS 3547. Springer, 2005

[SW04] Soffer, P., Wand, Y.: Goal-Driven Analysis of Process Model Validity. In:

Advanced Information Systems Engineering, Bd. 3084. Springer, 2004

[SW11] Scheinholtz, L., Wilmont, I.: Interview Patterns for Requirements Elicita-

tion. In: Proceedings of REFSQ 2011, LNCS 6606. Springer, 2011

[Swe04] IEEE’s Software Engineering Body of Knowledge – 2004 Version.

http://www.swebok.org, IEEE Computer Society, 2004

[UG12] Usability.gov: Card Sorting. http://www.usability.gov/methods/ de-

sign_site/cardsort.html (last visited: 2012-01-29)

[VMT07] Vicente-Chicote, C., Moros, B., Toval, A.: REMM-Studio: an Integrated

Model-Driven Environment for Requirements Specification, Validation and

Formatting. IN: Journal of Object Technology, Vol. 6, No. 9. ETH Zurich,

2007

[Wie05] Wiegers, K.: Software Requirements – Second Edition (German Version).

Microsoft Press, 2005

[WJR+07] Wegmann, A., Julia, P., Regev, G., Perroud, O., Rychkova, I.: Early Re-

quirements and Business-IT Alignment with SEAM for Business. In: 15th

IEEE International Requirements Engineering Conference. IEEE Computer

Society, 2007

[WW92] Wand, Y., Weber, R.: An ontological model of an information system. In:

IEEE Transactions on Software Engineering. IEEE Computer Society, 1992

[ZoGe03] Zowghi, D., Gervasi, V.: On the interplay between consistency, complete-

ness and correctness in requirements evolution. In: Journal of Information

and Software Technology, Volume 45. Elsevir, 2003

[Zim87] Zimmermann, D.: Comparative Power of Student T Test and Mann-

Whitney U Test for Unequal Sample Sizes and Variances. In: Journal of Ex-

perimental Education. Heldref, 1987

Appendix

 199

Appendix

Appendix A: Review Protocols

200

Appendix A: Review Protocols

Background The survey is needed to find related work in the area of requirements elicitation
instructions.

Research Question Which work exists that aims at providing effective guidance for requirements
elicitation?

Search Strategy Search String:
- (("requirements elicitation" OR "requirements gathering" OR

"requirements collection" OR "elicitation interview" OR "requirements
interview" OR "requirements negotiation" OR "requirements
identification" OR "requirements determination") AND (instruction OR
guideline OR checklist OR guidance OR procedure OR strategy))

Primary Resources:
- IEEE Xplore
- ACM
- Elsevier
- Already know literature

Search Criteria:
- only software engineering or related fields such as business

management
- no standards, but all other publication channels (e.g., conference

proceedings, dissertation, books, journals, etc.)
- search terms only in meta-data (title, abstract, etc.), at least for primary

search
- not older than 15 years (at least for primary search)

Search Approach:
1. Search in the resources
2. Exclude non-fitting papers
3. Search for further papers in the reference list of the fitting paper
4. Proceed with step 2

Study Selection Criteria
and Process

Exclusion Criteria:
- does not deal with requirements engineering (but just uses this term

somewhere)
- is focused on the elicitation of only one specific type of requirements

(e.g., security requirements)
- does not present guidelines but just mentions them
- describes an experience report / case study and no method

Study Quality Assessment 1. Does the guideline provide precise instructions (how-to descriptions)?
2. Does the guideline propose a clear elicitation order?
3. Is the content of the guideline customizable (i.e., can be adapted based on

information needs)?
4. Is the guideline modularized and allows a separation of concerns?
5. Does the guideline reflects RE best practices (e.g., which stakeholders are to

be involved)?
6. Does the guideline provide information about capabilities, needs, and

constraints of downstream development activities?
7. Is the guideline introduced in the context of a reuse-based development

approach (with reuse)?
8. Does the guideline fit into state-of-the-art RE?
9. Is the guideline empirically validated?
10. Is the guideline applicable in the IS domain?

Data Extraction N/A

Synthesis N/A

Project Timetable N/A

Appendix

 201

Background The survey is needed to find related work in the area of application engineering
requirements engineering.

Research Question Which work exists that aims at providing an effective requirements engineering
for the application engineering phase?

Search Strategy Search String:
- ("requirements engineering" OR "elicitation") AND ("application

engineering" OR derivation OR instantiation OR "development with
reuse" OR customization OR configuration) AND ("product line" OR
“product family” OR reuse OR platform)

Resources:
- IEEE Xplore
- ACM
- Elsevier
- Already know literature

Search Criteria:
- only software engineering or related fields such as business

management
- no standards, but all other publication channels (e.g., conference

proceedings, dissertation, books, journals, etc.)
- search terms only in meta-data (title, abstract, etc.), at least for primary

search
- not older than 15 years (at least for primary search)

Search Approach:
1. Search in the resources
2. Exclude non-fitting papers
3. Search for further papers in the reference list of the fitting paper
4. Proceed with step 2

Study Selection Criteria
and Process

Exclusion Criteria:
- does not deal with requirements engineering (but just uses this term

somewhere)
- does not describe how to apply RE in the “development with reuse”

context
- describes an isolated technique and not a complete approach

Study Quality Assessment 1. Does the approach support a problem-oriented elicitation?
2. Does the approach explain elicitation and negotiation activities?
3. Does the approach explain how to deal with customer-specific requirements

beyond the predefined variants?
4. Does the approach explain how to align customer requirements with reuse

capabilities?
5. Is the approach customizable based on the given reuse asset base?
6. Is the approach empirically validated?
7. Does the approach provide precise guidance?
8. Is the approach applicable in the IS domain?

Data Extraction N/A

Synthesis N/A

Project Timetable N/A

Appendix A: Review Protocols

202

Background The survey is needed to find related work in the area of requirements process
tailoring.

Research Question Which work exists that aims at providing an effective tailoring or reengineering
of requirements engineering processes?

Search Strategy Search String:
- ((("requirements engineering process" OR "requirements process" OR

"elicitation process") AND (tailoring OR customization OR adaptation OR
improvement OR reengineering OR definition)) OR (requirements AND
("product line" OR reuse) AND (reengineering OR extraction OR
incorporation)))

Resources:
- IEEE Xplore
- ACM
- Elsevier
- Already know literature

Search Criteria:
- only software engineering or related fields such as business

management
- no standards, but all other publication channels (e.g., conference

proceedings, dissertation, books, journals, etc.)
- search terms only in meta-data (title, abstract, etc.), at least for primary

search
- not older than 15 years (at least primary paper)

Search Approach:
1. Search in the resources

2. Exclude non-fitting papers

3. Search for further papers in the reference list of the fitting paper

4. Proceed with step 2

Study Selection Criteria
and Process

Exclusion Criteria:
- does not deal with requirements engineering processes definition or

requirements reengineering (but just uses this term somewhere)

Study Quality Assessment 1. Is the approach applicable in the IS domain?
2. Does the approach provide precise guidance?
3. Is the approach empirically validated?
4. Does the approach address the extraction and reflection of information

needs?
5. Does the approach address the extraction and reflection of constraints?
6. Does the approach consider the development strategy?
7. Does the approach fit into state-of-the-art RE and consider best practice?
8. Does the approach leads to a requirements process?

Data Extraction N/A

Synthesis N/A

Project Timetable N/A

Appendix

 203

Appendix B: Requirements on ARE Instructions

 Requirement Expert Con-
firmation

G
e
n
e
ra

l
N

a
tu

re

R.N.1. An instruction should allow requirements engineers to deviate from it in

case of need.

Strong

R.N.2. An instruction should provide clear how-to guidance (i.e., it should clearly

mention a sequence of steps to be carried out during elicitation).

Normal

R.N.3. An instruction should explain how to proceed with the elicited require-

ments (e.g., visualizing, describing, classifying, decomposing, refactoring, refer-

encing, …)

Normal

R.N.4. An instruction should be specific, i.e., customized for a certain develop-

ment or project context.

Normal

R.N.5. An instruction should enable less or average experienced requirements

engineers to elicit quite a good set of requirements.

Strong

S
tr

u
ct

u
re

R.S.1. An instruction should make clear in which order certain elicitation steps

should be performed best.

Normal

R.S.2. An instruction should be modularized. Normal

R.S.3. An instruction should make clear at which point in time breaks between

elicitation sessions could be done best.

Normal

R.S.4. An instruction should provide good indications to know when the elicita-

tion is finished.

Strong

C
o
n
te

n
t

R.C.1. An instruction should mention the issues which are relevant to be discussed

with the stakeholders.

Strong

R.C.2. An instruction should make clear until which point in time certain issues

have to be discussed.

Normal

R.C.3. An instruction should name the typical stakeholders needed in a certain

elicitation step.

Strong

R.C.4. An instruction should inform about the concrete information to be elicited

with regard to a certain issue (e.g., for which details do I really need to ask).

Strong

R.C.5. An instruction should inform against which criteria the elicited require-

ments are to be checked.

Normal

R.C.6. An instruction should make clear about which issues a discussion with the

stakeholders is unnecessary (e.g.because no one in the subsequent development

process will care about them).

Strong

R.C.7. An instruction should inform which requirements are implemented by

default anyway (e.g., common realization decisions / features).

Normal

R.C.8. An instruction should inform whether requirements concerning a certain

issue are restricted by architectural constraints.

Normal

R.C.9. An instruction should make clear which properties / assumptions a re-

quirement concerning a certain issue must fulfill in order to be implementable.

Normal

R.C.10. An instruction should inform about those technical issues from the solu-

tion space that might influence the feasibility of requirements.

Strong

R.C.11. An instruction should represent architectural / technical constraints in a

non-technical language.

Normal

R.C.12. An instruction should inform the requirements engineers about conceptu-

al dependencies between issues (e.g., a use case is related to the user role per-

forming the use case).

Strong

Appendix C: ARE Instructions Generation Algorithm (VB Code)

204

Appendix C: ARE Instructions Generation Algorithm (VB

Code)

Option Compare Database

Dim objWord

Dim objDoc

Dim range

Dim strFile As String

' Procedure for building ARE Instruction Document

Private Sub-Command0_Click()

' Variables

 On Error Resume Next

 ' Create path to the Instruction document

 strFile = CurrentProject.Path & "\ARE_Elicitation_Instruction.doc"

 ' Get existing instance of Word if it exists.

 Set objWord = GetObject(, "Word.Application")

 If Err <> 0 Then

 ' If GetObject fails, then use CreateObject instead.

 Set objWord = CreateObject("Word.Application")

 End If

 ' Make Word Visible

 objWord.Visible = True

 ' Brief Waiting Time

 Wscript.Sleep 500

 ' Add a new document.

 objWord.Documents.Add

 ' Add introduction text to document

 objWord.ActiveDocument.Content.InsertAfter ("ARE Elicitation Instruction")

 objWord.ActiveDocument.Paragraphs.Last.Style = objWord.ActiveDocument.Styles("Heading

1")

 objWord.ActiveDocument.Paragraphs.Last.Format.SpaceAfter = 5

 objWord.ActiveDocument.Content.InsertParagraphAfter

 ' Set variables for database query

 Dim dbs As Database

 Dim rst As DAO.Recordset

 Dim strSQL As String

 Dim i As Integer

 On Error Resume Next

 ' Make Database Query for getting general information about SPL

 Set dbs = CurrentDb

 strSQL = "SELECT TOP 1 * FROM [SPL Characterization]"

 Set rst = dbs.OpenRecordset(strSQL)

 ' Iterate over results

 If Not (rst.EOF And rst.BOF) Then

 rst.MoveFirst

 objWord.ActiveDocument.Content.InsertAfter ("This document includes precise process

instruction on how to elicit, negotiate and specify requirements concerning a system de-

rived from the " & rst![SPL name] & " Product Line. ")

 objWord.ActiveDocument.Content.InsertAfter ("For this purpose, the document pro-

vides a sequence of elicitation steps to be carried out in the described order. The overall

aim of this document is to provide requirements engineers with answers to the following

questions:")

Appendix

 205

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("1) With regard to which issues are

requirements needed to make development decisions?")

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("2) Which detailed information must be

elicited (and specified) about each of these issues?")

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("3) What can / should / must be reused

when specifying requirements? And what must be elicited from scratch?")

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("4) Which constraints are given by the

product line architecture?")

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("5) Which stakeholders should be in-

volved in the different elicitation steps?")

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("6) Which notations could support the

elicitation?")

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("7) What is a recommended order in

which the important issues should be discussed for saving rework?")

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("8) How are requirements related and

how can these relationships be used for achieving completeness rather constructively?")

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("To answer all these questions, the

following instructions have been tailored individually based on the constraints and needs

of the underlying software product line (SPL) and the development organization. ")

 objWord.ActiveDocument.Content.InsertAfter ("The overall purpose of system derived

from this SPL is " & rst![purpose] & " ")

 objWord.ActiveDocument.Content.InsertAfter ("in the domain of " & rst![business

domain] & ". ")

 objWord.ActiveDocument.Content.InsertAfter ("While typical customers are " &

rst![Customers] & ", typical users include " & rst![Users] & ". ")

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("The main benefits, systems from this

SPL provide, are that " & rst![Benefits] & ". ")

 objWord.ActiveDocument.Content.InsertAfter ("To make this happen, the following key

features are important: " & rst![Key Features] & ". ")

 objWord.ActiveDocument.Content.InsertAfter ("However, the following limitations

have to be considered: " & rst![Constraints and limitations] & ". ")

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("Systems derived from this SPL are

integrated into their usage environment as follows: " & rst![environmental integration] &

". ")

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("The SPL Specification that provides

you with further and elicitation-relevant information can be found in " &

rst![Specification source] & ". ")

 End If

 Set rst = Nothing

 ' Identify the issues to be included

 dbs.Execute ("UPDATE Issues SET [to be included] = true")

 dbs.Execute ("UPDATE Issues SET [to be included] = false WHERE " & _

 "([type]=3 AND [to be documented]=false) OR " & _

 "(type=2 AND NOT EXISTS (SELECT * FROM [Conceptual Relationships] WHERE

[issue1]=[Issues].[id] AND [type]<>3)) OR " & _

 "([to be documented]=false AND EXISTS (SELECT * FROM [Conceptual Relation-

ships] WHERE [issue1]=[Issues].[id] AND [type]=3) AND NOT EXISTS (SELECT * FROM [Conceptual

Relationships] WHERE [issue1]=[Issues].[id] AND [type]<>3))")

 ' Identify the optional issues

 dbs.Execute ("UPDATE Issues SET optional=false")

 dbs.Execute ("UPDATE Issues SET [optional]=true WHERE EXISTS (SELECT DISTINCT * " & _

 "FROM (SELECT DA.[activity name], DA.[condition], DA.[optional], [affected

issue] FROM (SELECT * FROM [Development Activities] AS DA, Decisions AS D WHERE

DA.ID=D.[made during] And DA.optional=true) AS temp INNER JOIN [Information Needs] AS I1

ON I1.[ID] = temp.[Information needs].Value) " & _

 "WHERE [issue name]=I1.[affected issue])")

Appendix C: ARE Instructions Generation Algorithm (VB Code)

206

 dbs.Execute ("UPDATE Issues SET [optional]=false WHERE EXISTS (SELECT DISTINCT * " & _

 "FROM (SELECT DA.[activity name], DA.[condition], DA.[optional], [affected

issue] FROM (SELECT * FROM [Development Activities] AS DA, Decisions AS D WHERE

DA.ID=D.[made during] And DA.optional=false) AS temp INNER JOIN [Information Needs] AS I1

ON I1.[ID] = temp.[Information needs].Value) " & _

 "WHERE [issue name]=I1.[affected issue])")

 ' Start the actual instruction generation

 dbs.Execute ("DELETE FROM [Processed Issues]")

 dbs.Close

 Call GenerateMilestoneSections

 ' Save the document

 objWord.ActiveDocument.SaveAs FileName:=strFile

 ' Exit Word.

 objWord.Quit

 ' Clear object memory

 Set objWord = Nothing

End Sub

' Generate the milestone sections

Sub-GenerateMilestoneSections()

 ' Set variables

 Dim dbs As Database

 Dim rst As DAO.Recordset

 Dim strSQL As String

 Dim i As Integer

 On Error Resume Next

 Set dbs = CurrentDb

 ' Make Database Query

 strSQL = "SELECT * FROM [Development Phases] WHERE [predecessor] IS NULL OR [predeces-

sor]<1"

 Set rst = dbs.OpenRecordset(strSQL)

 ' Iterate over results

 If Not (rst.EOF And rst.BOF) Then

 Do

 rst.MoveFirst

 i = i + 1

 objWord.ActiveDocument.Sections.Add

 objWord.ActiveDocument.Content.InsertAfter ("Requirements to be elicited for "

& rst![phase name])

 objWord.ActiveDocument.Paragraphs.Last.Style = ob-

jWord.ActiveDocument.Styles("Heading 1")

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter (rst![purpose] & ".")

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("In order to do the development

work in this phase, requirements concerning all the issues mentioned below are needed by

the engineers for making corresponding design or development decisions. ")

 objWord.ActiveDocument.Content.InsertAfter ("Hence, it is indispensible that

these requirements are elicited before this development phase can start. To make this hap-

pen, we strongly recommend performing the steps in the mentioned order as there are depend-

encies between the addressed issues that may impact the elicitation. ")

 objWord.ActiveDocument.Content.InsertAfter ("In this regard, we describe wheth-

er and in which form artifacts have to be produced for the corresponding requirements. ")

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("However, before you start, plan

which steps you would like to perform during one common elicitation session (interview /

workshop). For this purpose, consider the stakeholders to be involved in these steps as

well as the expected effort and the dependencies between the issues. ")

Appendix

 207

 ' Checks whether phase is iterative

 If (rst![iterative phase] = True) Then

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("Important hint: As the phase

is iterative, this section may be repeated several times.")

 Call Format("Important hint: As the phase is iterative, this section may be

repeated several times.", 0, False, False, True)

 Call Format("Important hint:", 0, True, True, False)

 objWord.ActiveDocument.Paragraphs.Last.Format.SpaceBefore = 5

 End If

 GenerateIssueSections (rst![ID])

 Set rst = dbs.OpenRecordset("SELECT * FROM [Development Phases] WHERE [prede-

cessor]=" & rst![ID])

 Loop Until (rst.EOF Or rst.BOF)

 End If

 dbs.Close

 Set rst = Nothing

End Sub

' Generate the issue sections

Sub-GenerateIssueSections(phaseId As Integer)

' Set variables

 Dim dbs As Database

 Dim rst As DAO.Recordset

 Dim strSQL As String

 Dim i As Integer

 Dim help As Integer

 i = 0

 help = 0

 On Error Resume Next

 ' Make database query

 Set dbs = CurrentDb

 ' 1) Discuss all issues in a random order that do not have any relationship to another

issue.

 strSQL = "SELECT * FROM [Issues] i WHERE [to be discussed before start of]=" & phaseId

& " AND NOT EXISTS (SELECT * FROM [Conceptual Relationships] WHERE issue1=i.id OR is-

sue2=i.id)"

 Set rst = dbs.OpenRecordset(strSQL)

 If Not (rst.EOF And rst.BOF) Then

 rst.MoveFirst

 Do

 If (rst![to be included] = True) Then

 i = i + 1

 ' Start generation

 Call GenerateIssueSectionInternals(rst, i)

 End If

 ' Insert processed issue

 dbs.Execute ("INSERT INTO [Processed Issues] ([processed issue]) VALUES (" &

rst![ID] & ")")

 ' Iterate

 rst.MoveNext

 Loop Until rst.EOF

Appendix C: ARE Instructions Generation Algorithm (VB Code)

208

 End If

 Set rst = Nothing

 ' Discuss all issues in a random order that are not required by, not contained in, not

influenced by, and not a specialization of another issue.

 strSQL = "SELECT * FROM [Issues] i WHERE [to be discussed before start of]=" & phaseId

& " AND NOT EXISTS (SELECT * FROM [Conceptual Relationships] WHERE issue1=i.id) AND NOT

EXISTS (SELECT * FROM [Processed Issues] WHERE [processed issue]=i.id)"

 Set rst = dbs.OpenRecordset(strSQL)

 If Not (rst.EOF And rst.BOF) Then

 rst.MoveFirst

 Do

 If (rst![to be included] = True) Then

 i = i + 1

 ' Start generation

 Call GenerateIssueSectionInternals(rst, i)

 End If

 ' Insert processed issue

 dbs.Execute ("INSERT INTO [Processed Issues] ([processed issue]) VALUES (" &

rst![ID] & ")")

 ' Iterate

 rst.MoveNext

 Loop Until rst.EOF

 ' If there is none, discuss at least the issues in a random order that are influenced

by an already discussed issue, but that have no further required / contained / influenced /

specialization-relationships.

 Else

 Set rst = Nothing

 strSQL = "SELECT * FROM [Issues] i WHERE [to be discussed before start of]=" &

phaseId & " AND EXISTS (SELECT * FROM [Conceptual Relationships] cr WHERE cr.issue1=i.id

AND cr.type=4 AND EXISTS (SELECT * FROM [Processed Issues] WHERE [processed is-

sue]=cr.issue2)) AND NOT EXISTS (SELECT * FROM [Conceptual Relationships] cr WHERE

cr.issue1=i.id AND NOT EXISTS (SELECT * FROM [Processed Issues] WHERE [processed is-

sue]=cr.issue2))"

 Set rst = dbs.OpenRecordset(strSQL)

 If Not (rst.EOF And rst.BOF) Then

 rst.MoveFirst

 Do

 If (rst![to be included] = True) Then

 i = i + 1

 ' Start generation

 Call GenerateIssueSectionInternals(rst, i)

 End If

 ' Insert processed issue

 dbs.Execute ("INSERT INTO [Processed Issues] ([processed issue]) VALUES ("

& rst![ID] & ")")

 ' Iterate

 rst.MoveNext

 Loop Until rst.EOF

 End If

 End If

Appendix

 209

 Set rst = Nothing

 ' Discuss all issues that are required by, contained in, influenced by, or a speciali-

zation of an already discussed issue, and that are neither required by, contained in, in-

fluenced by, nor a specialization of an issue that has not been discussed yet.

 ' If there is more than one, discuss them in the following order.

 ' If there is more than one in each sub-order, discuss them in the order in which the

specialized / containing / requiring / influencing issue has appeared.

 ' Adapt the order continuously and repeat this procedure until all issues related to a

certain milestone have been discussed.

 ' Iterates over all remaining issues of this phase

 Do

 Set rst = Nothing

 help = help + 1

 ' 1) issues that specialize an already discussed one,

 Do

 strSQL = "SELECT * FROM [Issues] i WHERE [to be discussed before start of]=" &

phaseId & " AND EXISTS (SELECT * FROM [Conceptual Relationships] cr WHERE cr.issue1=i.id

AND cr.type=3 AND EXISTS (SELECT * FROM [Processed Issues] WHERE [processed is-

sue]=cr.issue2)) AND NOT EXISTS (SELECT * FROM [Processed Issues] WHERE [processed is-

sue]=i.id) AND NOT EXISTS (SELECT * FROM [Conceptual Relationships] cr2 WHERE issue2=i.id

AND EXISTS(SELECT * FROM [Processed Issues] WHERE [processed issue]=cr2.issue1)) AND NOT

EXISTS (SELECT * FROM [Conceptual Relationships] cr WHERE cr.issue1=i.id AND

cr.issue2<>i.id AND NOT EXISTS (SELECT * FROM [Processed Issues] WHERE [processed is-

sue]=cr.issue2))"

 Set rst = dbs.OpenRecordset(strSQL)

 If Not (rst.EOF And rst.BOF) Then

 rst.MoveFirst

 If (rst![to be included] = True) Then

 i = i + 1

 ' Start generation

 Call GenerateIssueSectionInternals(rst, i)

 End If

 ' Insert processed issue

 dbs.Execute ("INSERT INTO [Processed Issues] ([processed issue]) VALUES ("

& rst![ID] & ")")

 End If

 Loop Until (rst.EOF Or rst.BOF)

 Set rst = Nothing

 ' 2) issues that are contained in an already discussed one

 Do

 strSQL = "SELECT * FROM [Issues] i WHERE [to be discussed before start of]=" &

phaseId & " AND EXISTS (SELECT * FROM [Conceptual Relationships] cr WHERE cr.issue1=i.id

AND cr.type=2 AND EXISTS (SELECT * FROM [Processed Issues] WHERE [processed is-

sue]=cr.issue2)) AND NOT EXISTS (SELECT * FROM [Processed Issues] WHERE [processed is-

sue]=i.id) AND NOT EXISTS (SELECT * FROM [Conceptual Relationships] cr2 WHERE issue2=i.id

AND EXISTS(SELECT * FROM [Processed Issues] WHERE [processed issue]=cr2.issue1)) AND NOT

EXISTS (SELECT * FROM [Conceptual Relationships] cr WHERE cr.issue1=i.id AND

cr.issue2<>i.id AND NOT EXISTS (SELECT * FROM [Processed Issues] WHERE [processed is-

sue]=cr.issue2))"

 Set rst = dbs.OpenRecordset(strSQL)

 If Not (rst.EOF And rst.BOF) Then

 rst.MoveFirst

 If (rst![to be included] = True) Then

Appendix C: ARE Instructions Generation Algorithm (VB Code)

210

 i = i + 1

 ' Start generation

 Call GenerateIssueSectionInternals(rst, i)

 End If

 ' Insert processed issue

 dbs.Execute ("INSERT INTO [Processed Issues] ([processed issue]) VALUES ("

& rst![ID] & ")")

 End If

 Loop Until (rst.EOF Or rst.BOF)

 Set rst = Nothing

 ' 3) issues that are required by an already discussed one

 Do

 strSQL = "SELECT * FROM [Issues] i WHERE [to be discussed before start of]=" &

phaseId & " AND EXISTS (SELECT * FROM [Conceptual Relationships] cr WHERE cr.issue1=i.id

AND cr.type=1 AND EXISTS (SELECT * FROM [Processed Issues] WHERE [processed is-

sue]=cr.issue2)) AND NOT EXISTS (SELECT * FROM [Processed Issues] WHERE [processed is-

sue]=i.id) AND NOT EXISTS (SELECT * FROM [Conceptual Relationships] cr2 WHERE issue2=i.id

AND EXISTS(SELECT * FROM [Processed Issues] WHERE [processed issue]=cr2.issue1)) AND NOT

EXISTS (SELECT * FROM [Conceptual Relationships] cr WHERE cr.issue1=i.id AND

cr.issue2<>i.id AND NOT EXISTS (SELECT * FROM [Processed Issues] WHERE [processed is-

sue]=cr.issue2))"

 Set rst = dbs.OpenRecordset(strSQL)

 If Not (rst.EOF And rst.BOF) Then

 rst.MoveFirst

 If (rst![to be included] = True) Then

 i = i + 1

 ' Start generation

 Call GenerateIssueSectionInternals(rst, i)

 End If

 ' Insert processed issue

 dbs.Execute ("INSERT INTO [Processed Issues] ([processed issue]) VALUES ("

& rst![ID] & ")")

 End If

 Loop Until (rst.EOF Or rst.BOF)

 Set rst = Nothing

 ' 4) issues that are influenced by an already discussed one.

 Do

 strSQL = "SELECT * FROM [Issues] i WHERE [to be discussed before start of]=" &

phaseId & " AND EXISTS (SELECT * FROM [Conceptual Relationships] cr WHERE cr.issue1=i.id

AND cr.type=4 AND EXISTS (SELECT * FROM [Processed Issues] WHERE [processed is-

sue]=cr.issue2)) AND NOT EXISTS (SELECT * FROM [Processed Issues] WHERE [processed is-

sue]=i.id) AND NOT EXISTS (SELECT * FROM [Conceptual Relationships] cr2 WHERE issue2=i.id

AND EXISTS(SELECT * FROM [Processed Issues] WHERE [processed issue]=cr2.issue1)) AND NOT

EXISTS (SELECT * FROM [Conceptual Relationships] cr WHERE cr.issue1=i.id AND

cr.issue2<>i.id AND NOT EXISTS (SELECT * FROM [Processed Issues] WHERE [processed is-

sue]=cr.issue2))"

 Set rst = dbs.OpenRecordset(strSQL)

 If Not (rst.EOF And rst.BOF) Then

 rst.MoveFirst

 If (rst![to be included] = True) Then

Appendix

 211

 i = i + 1

 ' Start generation

 Call GenerateIssueSectionInternals(rst, i)

 End If

 ' Insert processed issue

 dbs.Execute ("INSERT INTO [Processed Issues] ([processed issue]) VALUES ("

& rst![ID] & ")")

 End If

 Loop Until (rst.EOF Or rst.BOF)

 Set rst = Nothing

 ' Check whether there is still something to be included

 strSQL = "SELECT * FROM [issues] i WHERE i.[to be discussed before start of]=" &

phaseId & " AND [to be included] = true AND NOT EXISTS (SELECT * FROM [Processed Issues]

WHERE i.id = [processed issue])"

 Set rst = dbs.OpenRecordset(strSQL)

 ' Timeout

 If (help > 99) Then

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("GENERATION CANCELLED DUE TO

UNRESOLVABLE INCONSISTENCY IN ISSUE MODEL")

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

 End If

 Loop Until (rst.EOF Or rst.BOF Or help > 99)

End Sub

' Generate Issue Section Internals

Sub-GenerateIssueSectionInternals(rst As DAO.Recordset, i As Integer)

 ' Define variables

 Dim dbs As Database

 Dim subRst As DAO.Recordset

 Dim subSQL As String

 Dim name As String

 Dim description As String

 Dim stakeholders As String

 Dim attributes As String

 Dim ID As Integer

 Dim influencingIssues As String

 Dim notation As String

 Dim notationScope As Integer

 Dim notationSource As String

 Dim degreeOf As Integer

 Dim toBeDocumented As Boolean

 Dim forEach As Boolean

 Dim costs As String

 Dim issueType As Integer

 Dim time As String

 Dim opt As Boolean

 Dim conditions As String

 Dim alreadyDescribed As Boolean

 On Error Resume Next

 ' Read and set variables

 Set dbs = CurrentDb

 name = rst![issue name]

 description = rst![description]

 stakeholders = rst![stakeholders]

 attributes = rst![attributes]

Appendix C: ARE Instructions Generation Algorithm (VB Code)

212

 issueType = rst![type]

 ID = rst![ID]

 notation = rst![notation]

 notationScope = rst![notation scope]

 degreeOf = rst![degree of freedom]

 toBeDocumented = rst![to be documented]

 influencingIssues = ""

 costs = rst![costs for specific requirements]

 forEach = False

 notationSource = rst![notation source]

 time = rst![required time]

 opt = rst![optional]

 alreadyDescribed = False

 ' Create header

 ' objWord.ActiveDocument.Sections.Add

 objWord.ActiveDocument.Content.InsertParagraphAfter

 If (issueType <> 3) Then objWord.ActiveDocument.Content.InsertAfter (i & ". Elicitation

of " & name & "s")

 If (issueType = 3) Then objWord.ActiveDocument.Content.InsertAfter (i & ". Elicitation

of " & name)

 objWord.ActiveDocument.Paragraphs.Last.Style = objWord.ActiveDocument.Styles("Heading

2")

 objWord.ActiveDocument.Paragraphs.Last.Format.SpaceBefore = 40

 objWord.ActiveDocument.Paragraphs.Last.Format.SpaceAfter = 10

 ' Insert description of issue

 description = "A " & name & " is " & LCase(description)

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("Definition: " & description)

 Call Format("Definition: " & description, 0, False, False, True)

 Call Format("Definition:", 0, False, True, False)

 ' Insert involvement hints

 subSQL = "SELECT * FROM [Conceptual Relationships] cr, [Issues] i WHERE cr.[issue1] = "

& ID & " AND cr.[type] = 3 AND cr.[issue2]=i.[id] and i.[type]=i2"

 Set subRst = dbs.OpenRecordset(subSQL)

 ' No singleton

 If (issueType <> 3) Then

 If ((Not (subRst.EOF And subRst.BOF) And toBeDocumented) Or (subRst.EOF And

subRst.BOF)) Then

 Call InvolvementHint1(name, stakeholders, time)

 End If

 End If

 ' singleton

 If (issueType = 3) Then

 Call InvolvementHint2(name, stakeholders, time)

 End If

 ' Issue has common requirements

 If (degreeOf = 3 Or degreeOf = 4 Or degreeOf = 6) Then

 Call CommonalityHint(name)

 End If

 Set subRst = Nothing

 ' Insert influence hint when influencing issues exist and issue is NOT abstract

 If (issueType <> 2) Then

 subSQL = "SELECT i.[issue name] FROM [Issues] i, [Conceptual Relationships] cr

WHERE cr.[issue1] = " & rst![ID] & " AND cr.[issue2] = i.[id] AND cr.[type]=4"

 Set subRst = dbs.OpenRecordset(subSQL)

 If Not (subRst.EOF And subRst.BOF) Then

 subRst.MoveFirst

 Do

 influencingIssues = influencingIssues & " " & subRst![issue name] & "s,"

 subRst.MoveNext

 Loop Until subRst.EOF

 Call InfluenceHint1(name, influencingIssues)

 End If

Appendix

 213

 Set subRst = Nothing

 End If

 ' Identifying requirements via consideration of related issues

 subSQL = "SELECT i.[id], i.[issue name], i.[type], cr.[relationship name],

cr.[multiplicity2] FROM [Issues] i, [Conceptual Relationships] cr, [Processed Issues] pr

WHERE cr.[issue1] = " & ID & " AND pr.[processed issue]=i.[id] AND cr.[issue2] = i.[id] AND

cr.[issue1]<>cr.[issue2] AND (cr.[type]=1 OR cr.[type]=2) ORDER BY pr.[id]"

 Set subRst = dbs.OpenRecordset(subSQL)

 ' If requiring or containing issues exist

 If Not (subRst.EOF And subRst.BOF) Then

 subRst.MoveFirst

 Do

 ' If related issue is no singleton

 If (subRst![type] <> 3) Then

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("For each " & subRst![issue

name] & " identified before:")

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

 forEach = True

 End If

 ' If issue class of interest is no singleton

 If (issueType <> 3) Then

 Call IdentifyingInstruction1(name, subRst![relationship name],

subRst![issue name], subRst![multiplicity2], subRst![type], forEach)

 Call CollectingInstruction1(name, subRst![issue name], subRst![type], fo-

rEach)

 Else

 Call DescribingInstruction2(name, subRst![relationship name], subRst![issue

name], attributes, forEach)

 alreadyDescribed = True

 End If

 forEach = False

 subRst.MoveNext

 Loop Until subRst.EOF

 End If

 Set subRst = Nothing

 ' Covering additional requirements (only applicable when: not singleton and not a spe-

cialization and multiplicity2="*")

 subSQL = "SELECT * FROM [Conceptual Relationships] WHERE issue1 =" & ID & " AND type<>3

AND type<>4 AND multiplicity2='*'"

 Set subRst = dbs.OpenRecordset(subSQL)

 If (issueType <> 3 And Not (subRst.EOF Or subRst.BOF)) Then

 Call IdentifyingInstruction2(name, True)

 Call CollectingInstruction2(name)

 End If

 ' Covering additional requirements (also applicable when issue has no relationship but

is not singleton")

 subSQL = "SELECT * FROM [Issues] WHERE [id]= " & ID & " AND type<>3 AND NOT EXISTS

(SELECT * FROM [Conceptual Relationships] WHERE issue1=" & ID & " and type<>4)"

 Set subRst = dbs.OpenRecordset(subSQL)

 If (Not (subRst.EOF Or subRst.BOF)) Then

 Call IdentifyingInstruction2(name, False)

 Call CollectingInstruction2(name)

 End If

 Set subRst = Nothing

 ' Decomposion

Appendix C: ARE Instructions Generation Algorithm (VB Code)

214

 subSQL = "SELECT [issue1], [relationship name] FROM [Conceptual Relationships] WHERE

[issue1] = " & ID & " AND [issue2] = " & ID & " AND [type]=2"

 Set subRst = dbs.OpenRecordset(subSQL)

 If Not (subRst.EOF And subRst.BOF) Then

 subRst.MoveFirst

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("For each " & name & " identified so

far:")

 DecomposingInstruction (name)

 End If

 Set subRst = Nothing

 ' Self Require

 subSQL = "SELECT [issue1], [relationship name], [multiplicity2] FROM [Conceptual Rela-

tionships] WHERE [issue1] = " & ID & " AND [issue2] = " & ID & " AND [type]=1"

 Set subRst = dbs.OpenRecordset(subSQL)

 If Not (subRst.EOF And subRst.BOF) Then

 subRst.MoveFirst

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("For each " & name & " identified so

far:")

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

 forEach = True

 Call IdentifyingInstruction1(name, subRst![relationship name], name,

subRst![multiplicity2], issueType, forEach)

 Call CollectingInstruction1(name, name, issueType, forEach)

 forEach = False

 End If

 Set subRst = Nothing

 ' Notation instruction for visualizing interplay

 If (notationScope = 2 And notation <> "") Then

 Call VisualizingInstruction2(name, notation, notationSource)

 End If

 ' Assumption Hints for Soft Assumptions

 Dim j As Integer

 Dim normalConstraint As Boolean

 normalConstraint = False

 subSQL = "SELECT * FROM [Assumptions] WHERE [affected issue] = '" & name & "' AND [hard

assumption]=false"

 Set subRst = dbs.OpenRecordset(subSQL)

 If Not (subRst.EOF And subRst.BOF) Then

 j = 0

 normalConstraint = True

 Call AssumptionHint1(name, j, subRst)

 End If

 Set subRst = Nothing

 ' Assumption Hints for Hard Assumptions

 subSQL = "SELECT * FROM [Assumptions] WHERE [affected issue] = '" & name & "' AND [hard

assumption]=true"

 Set subRst = dbs.OpenRecordset(subSQL)

 If Not (subRst.EOF And subRst.BOF) Then

 j = 0

 Call AssumptionHint2(name, normalConstraint, j, subRst)

 End If

Appendix

 215

 Set subRst = Nothing

 ' Selection Hint

 If (degreeOf = 1 Or degreeOf = 3 Or degreeOf = 5 Or degreeOf = 6) Then

 Call SelectionHint(name)

 End If

 ' Insert influence hint when influencing issues exist and issue IS abstract

 If (issueType = 2) Then

 subSQL = "SELECT i.[issue name] FROM [Issues] i, [Conceptual Relationships] cr

WHERE cr.[issue1] = " & ID & " AND cr.[issue2] = i.[id] AND cr.[type]=4"

 Set subRst = dbs.OpenRecordset(subSQL)

 If Not (subRst.EOF And subRst.BOF) Then

 subRst.MoveFirst

 Do

 influencingIssues = influencingIssues & " " & subRst![issue name] & "s,"

 subRst.MoveNext

 Loop Until subRst.EOF

 Call InfluenceHint2(name, influencingIssues)

 End If

 Set subRst = Nothing

 End If

 ' Documentation Hint without condition

 If (toBeDocumented = False) Then

 Call DocumentationHint1(name)

 End If

 ' Documentation Hint with condition

 If (toBeDocumented = True And opt = True) Then

 subSQL = "SELECT DISTINCT [condition] " & _

 "FROM Issues, (SELECT DA.[activity name], DA.[condition], DA.[optional],

[affected issue] FROM (SELECT * FROM [Development Activities] AS DA, Decisions AS D WHERE

DA.ID=D.[made during]) AS temp INNER JOIN [Information Needs] AS I1 ON I1.[ID] =

temp.[Information needs].Value) " & _

 "WHERE [issue name]=I1.[affected issue] and [Issues].[optional]=true AND

[Issues].[ID]=" & ID

 Set subRst = dbs.OpenRecordset(subSQL)

 conditions = ""

 If Not (subRst.EOF And subRst.BOF) Then

 subRst.MoveFirst

 Do

 conditions = conditions & subRst![condition]

 subRst.MoveNext

 If (Not subRst.EOF) Then

 conditions = conditions & ", or "

 End If

 Loop Until subRst.EOF

 Call DocumentationHint2(name, conditions)

 End If

 End If

 ' Actual Description (if toBeDocumented or abstract)

 If (toBeDocumented Or issueType = 2) Then

 ' If related issue is no singleton

 If (issueType <> 3) Then

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("For each " & name & " identified

so far:")

Appendix C: ARE Instructions Generation Algorithm (VB Code)

216

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

 forEach = True

 End If

 ' if issue is abstract

 If (issueType = 2) Then

 ' Identify specializing issues and integrate classification hint

 influencingIssues = ""

 subSQL = "SELECT i.[issue name] FROM [Issues] i, [Conceptual Relationships] cr

WHERE cr.[issue2] = " & ID & " AND cr.[issue1] = i.[id] AND cr.[type]=3"

 Set subRst = dbs.OpenRecordset(subSQL)

 If Not (subRst.EOF And subRst.BOF) Then

 subRst.MoveFirst

 Do

 influencingIssues = influencingIssues & " " & subRst![issue name] & ","

 subRst.MoveNext

 Loop Until subRst.EOF

 Call ClassifyingInstruction(name, influencingIssues, forEach)

 End If

 Set subRst = Nothing

 ' reuse in every case required

 ElseIf (degreeOf = 1 Or degreeOf = 3) Then

 Call SelectingInstruction1(name, forEach)

 ' reuse (only if possible) required

 ElseIf (degreeOf = 5 Or degreeOf = 6) Then

 Call SelectingInstruction2(name, attributes, forEach)

 Call FlexibilityHint(name, costs, forEach)

 ' else

 ElseIf (alreadyDescribed = False) Then

 Call DescribingInstruction1(name, attributes, forEach)

 End If

 ' Notation instruction for visualizing each requirement

 If (notationScope = 1 And notation <> "") Then

 Call VisualizingInstruction1(name, notation, notationSource, forEach)

 End If

 End If

End Sub

' Instructions & Hints

' Identifying Instruction 1

Sub-IdentifyingInstruction1(issue As String, relationship As String, referencingIssue As

String, cardinality As String, ty As Integer, forEach As Boolean)

 objWord.ActiveDocument.Content.InsertParagraphAfter

 If (ty <> 3) Then

 objWord.ActiveDocument.Content.InsertAfter ("Ask the stakeholders the following

question: Which " & issue & "s are " & relationship & " this " & referencingIssue & "?")

 Else

 objWord.ActiveDocument.Content.InsertAfter ("Ask the stakeholders the following

question: Which " & issue & "s are " & relationship & " the " & referencingIssue & "?")

 End If

 If (forEach) Then

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 40

 Else

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

 End If

Appendix

 217

End Sub

' Identifying Instruction 2

Sub-IdentifyingInstruction2(issue As String, okay As Boolean)

 objWord.ActiveDocument.Content.InsertParagraphAfter

 If (okay = True) Then

 objWord.ActiveDocument.Content.InsertAfter ("Ask the stakeholders the following

question: Are further " & issue & "s required? If yes, which ones?")

 Else:

 objWord.ActiveDocument.Content.InsertAfter ("Ask the stakeholders the following

question: Which " & issue & "s are required?")

 End If

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

End Sub

' Collecting Instruction 1

Sub-CollectingInstruction1(issue As String, referencingIssue As String, ty As Integer,

forEach As Boolean)

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("Collect the identified " & issue & "s in a

corresponding bullet list (if not yet done)")

 If (ty <> 3) Then

 objWord.ActiveDocument.Content.InsertAfter (" and add a link to the related " &

referencingIssue & ".")

 Else

 objWord.ActiveDocument.Content.InsertAfter (".")

 End If

 If (forEach) Then

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 40

 Else

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

 End If

End Sub

' Collecting Instruction 2

Sub-CollectingInstruction2(issue As String)

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("Collect the identified " & issue & "s in a

corresponding bullet list (if not yet done).")

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

End Sub

' Describing Instruction 1

Sub-DescribingInstruction1(issue As String, attributes As String, forEach As Boolean)

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("Ask the stakeholders the following ques-

tion: Could you please describe the " & issue & " especially with regard to " & attributes

& "?")

 If (forEach) Then

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 40

 Else

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

 End If

End Sub

Appendix C: ARE Instructions Generation Algorithm (VB Code)

218

' Describing Instruction 2

Sub-DescribingInstruction2(issue As String, relationship As String, referencingIssue As

String, attributes As String, forEach As Boolean)

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("Ask the stakeholders the following ques-

tion: Could you please describe the " & issue & " " & relationship & " this " & refer-

encingIssue & " especially with regard to " & attributes & "?")

 If (forEach) Then

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 40

 Else

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

 End If

End Sub

' Classifying Instruction

Sub-ClassifyingInstruction(issue As String, subIssues As String, forEach As Boolean)

 subIssues = Mid(subIssues, 1, Len(subIssues) - 1)

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("Discuss with the stakeholders if this " &

issue & " is one of the following specialized issues and categorize it accordingly:" &

subIssues & ".")

 If (forEach) Then

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 40

 Else

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

 End If

End Sub

' Visualizing Instruction 1

Sub-VisualizingInstruction1(issue As String, notation As String, source As String, forEach

As Boolean)

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("Use a " & notation & " to clarify the

details of this " & issue & ". ")

 If (source <> "") Then

 objWord.ActiveDocument.Content.InsertAfter ("Additional information about this

technique can be found in " & source)

 End If

 If (forEach) Then

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 40

 Else

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

 End If

End Sub

' Visualizing Instruction 2

Sub-VisualizingInstruction2(issue As String, notation As String, source As String)

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("Use a " & notation & " to clarify the

interplay between all " & issue & "s. ")

 If (source <> "") Then

 objWord.ActiveDocument.Content.InsertAfter ("Additional information about this

technique can be found in " & source)

 End If

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

Appendix

 219

End Sub

' Docomposing Instruction

Sub-DecomposingInstruction(issue As String)

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("Decompose the hierarchy of this " & issue

& " until no further decomposition is possible. Collect the identified " & issue & "s in a

corresponding bullet list (if not yet done) and add a link to the parent " & issue & ".")

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 40

End Sub

' Selecting Instruction 1

Sub-SelectingInstruction1(issue As String, forEach As Boolean)

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("Let the stakeholders select the best fit-

ting " & issue & " from the SPL specification and map it accordingly. Reject all elicited "

& issue & "s that cannot be mapped.")

 If (forEach) Then

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 40

 Else

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

 End If

End Sub

' Selecting Instruction 2

Sub-SelectingInstruction2(issue As String, attributes As String, forEach As Boolean)

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("Motivate the stakeholders to select the

best fitting " & issue & " from the SPL specification and map it accordingly. If the re-

quired " & issue & " is not covered sufficiently in the SPL specification yet, describe

this " & issue & " especially with regard to " & attributes & " from scratch.")

 If (forEach) Then

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 40

 Else

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

 End If

End Sub

' Involvment Hint 1

Sub-InvolvementHint1(issue As String, stakeholders As String, time As String)

 If (stakeholders = "") Then stakeholders = "stakeholder"

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("Invite and involve a (group of) " & stake-

holders & "s to an elicitation session in order to discuss requirements concerning " &

issue & "s. ")

 If (time <> "") Then

 objWord.ActiveDocument.Content.InsertAfter ("The required time for this step is

expected to take around " & time & ".")

 End If

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

End Sub

' Involvment Hint 2

Sub-InvolvementHint2(issue As String, stakeholders As String, time As String)

 If (stakeholders = "") Then stakeholders = "stakeholder"

Appendix C: ARE Instructions Generation Algorithm (VB Code)

220

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("Invite and involve a (group of) " & stake-

holders & "s to an elicitation session in order to discuss requirements concerning the " &

issue & ". ")

 If (time <> "") Then

 objWord.ActiveDocument.Content.InsertAfter ("The required time for this step is

expected to take around " & time & ".")

 End If

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

End Sub

' Influence Hint 1

Sub-InfluenceHint1(issue As String, influencingIssues As String)

 influencingIssues = Mid(influencingIssues, 1, Len(influencingIssues) - 1)

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("Important hint: Consider especially the

already elicited requirements concerning the following issues when determining the " &

issue & "s:" & influencingIssues & ".")

 Call Format("Important hint:", 0, True, True, True)

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

End Sub

' Influence Hint 2

Sub-InfluenceHint2(issue As String, influencingIssues As String)

 influencingIssues = Mid(influencingIssues, 1, Len(influencingIssues) - 1)

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("Important hint: Consider especially the

already elicited requirements concerning the following issues when classifying the " &

issue & "s:" & influencingIssues & ".")

 Call Format("Important hint:", 0, True, True, True)

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

End Sub

' Commonality Hint

Sub-CommonalityHint(issue As String)

 Dim text As String

 text = "Be aware that a set of " & issue & "s is already implemented by default and

need not to be elicited again. Consider the list of these " & issue & "s in the SPL speci-

fication and inform the stakeholders about, so that you can break discussions immediately

as soon as they start asking for the collection of these common requirements. Additional

requirements are of course allowed."

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("Important hint: " & text)

 Call Format("Important hint:", 0, True, True, True)

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

End Sub

' Assumption Hint 1

Sub-AssumptionHint1(issue As String, j As Integer, subRst As DAO.Recordset)

 Dim text As String

 text = "Important hint: Be aware that there are constraints defined for " & issue & "s.

Hence, the " & issue & "s, stakeholders may ask for, are restricted as follows."

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter (text)

 Call Format("Important hint:", 0, True, True, True)

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

 subRst.MoveFirst

Appendix

 221

 Do

 j = j + 1

 Call AssumptionText(subRst![description], subRst![rationale], j)

 subRst.MoveNext

 Loop Until subRst.EOF

 text = "If the stakeholders require something that contravenes these constraints, in-

form them about possible (high) extract costs and that an expert check must be done before

you can accept this requirement."

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter (text)

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

End Sub

' Assumption Hint 2

Sub-AssumptionHint2(issue As String, normalConstraint As Boolean, j As Integer, subRst As

DAO.Recordset)

 Dim text As String

 If (normalConstraint) Then

 text = "Important hint: Be aware that in addition, there are also hard constraints

defined for " & issue & "s! Hence, the " & issue & "s, stakeholders may ask for, are fur-

thermore restricted as follows."

 Else

 text = "Important hint: Be aware that there are constraints defined for " & issue &

"s that are hard! Hence, the " & issue & "s, stakeholders may ask for, are restricted as

follows."

 End If

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter (text)

 Call Format("Important hint:", 0, True, True, True)

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

 subRst.MoveFirst

 Do

 j = j + 1

 Call AssumptionText(subRst![description], subRst![rationale], j)

 subRst.MoveNext

 Loop Until subRst.EOF

 text = "If the stakeholders require something that contravenes these constraints, in-

form them that this is technically not possible."

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter (text)

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

End Sub

' Assumption itself

Sub-AssumptionText(constraint As String, rationale As String, i As Integer)

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter (i & ". " & constraint & ". ")

 If (rationale <> "") Then

 objWord.ActiveDocument.Content.InsertAfter ("The reason for this constraint is: " &

rationale & ".")

 End If

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 20

End Sub

' Selection Hint

Sub-SelectionHint(issue As String)

Appendix C: ARE Instructions Generation Algorithm (VB Code)

222

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter ("Consider the set of predefined " & issue &

"s in the SPL specification.")

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

End Sub

' Flexibility Hint

Sub-FlexibilityHint(issue As String, costs As String, forEach As Boolean)

 Dim text As String

 text = " In in this case, please inform the stakeholders about " & costs & " extra

costs also (even if the given constraints are hold)."

 objWord.ActiveDocument.Content.InsertAfter (text)

End Sub

' Documentation Hint 1

Sub-DocumentationHint1(issue As String)

 Dim text As String

 text = "Important hint: It is not necessary to elicit or describe details about " &

issue & "s. A pure enumeration or collection (e.g., in a bullet list) is sufficient."

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter (text)

 Call Format("Important hint:", 0, True, True, True)

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

End Sub

' Documentation Hint 2

Sub-DocumentationHint2(issue As String, conditions As String)

 Dim text As String

 If (conditions = "") Then

 conditions = "(no condition mentioned)"

 End If

 text = "Important hint: It is only necessary to elicit and describe details about " &

issue & "s, if the customer " & conditions & ". Otherwise, a pure enumeration or collection

(e.g., in a bullet list) is sufficient."

 objWord.ActiveDocument.Content.InsertParagraphAfter

 objWord.ActiveDocument.Content.InsertAfter (text)

 Call Format("Important hint:", 0, True, True, True)

 objWord.ActiveDocument.Paragraphs.Last.Format.LeftIndent = 0

End Sub

' Formating:

Sub-Format(text As String, size As Integer, bold As Boolean, underline As Boolean, italic

As Boolean)

 ' Format header

 Set myRange = objWord.ActiveDocument.Content

 myRange.Find.Execute FindText:=text, Forward:=False

 If myRange.Find.Found = True Then

 If (bold) Then myRange.bold = True

 If (underline) Then myRange.Font.underline = True

 If (italic) Then myRange.Font.italic = True

 If size <> 0 Then myRange.Font.size = size

 End If

End Sub

Appendix

 223

Appendix D: Issue Section Generation Algorithm (Pseudo

Code)

IssueSection(issueName)

{

 // Insert Involvement Hints

 InvolvingInstruction(issueName, stakeholderGroup);

 // Insert Commonality Hint

 If (issue has common requirements concerned with it)

 CommonalityHint(issueName);

 // Insert Influence Hint for non-abstract Issues

 If (issue is not abstract and issue is influenced by another issue)

 InfluenceHint1(issueName, influencingIssues);

 // Process the related Issues

 If (issue is required or contained by / in another issue)

 {

 If (requiring or containing issues is no singleton)

 open (forEachInstructionBlock(requiring or containing issue));

 if (issue is no singleton)

 {

 IdentifyingInstruction1(issueName, relatedIssue, relationship);

 CollectingInstruction1(issueName, relatedIssue);

 }

 Else

 DescribingInstruction2(issueName, relatedIssue, relationship);

If (requiring or containing issues is no singleton)

 close (forEachInstructionBlock(requiring or containing issue));

 }

If (issue can have further instances beyond those related to other issues)

 {

 IdentifiyingInstruction2(issueName);

 CollectingInstruction2(issueName);

 }

If (issue has a self-contain relationship)

 DecomposingInstruction(issueName);

 If (issue has a self-require relationship)

 {

 open (forEachInstructionBlock(issue));

 IdentifyingInstruction1(issueName, issueName, relationship);

 CollectingInstruction1(issueName, issueName);

 close (forEachInstructionBlock(issueName));

 }

// Visualizing the Interplay of Issues

 If (issue has notation and notationScope is all)

 VisualizationInstruction2(issueName, notation);

// Insert Assumption Hint

 If (soft assumptions are defined on issue)

 AssumptionHint1(issueName, assumptions);

 If (hard assumptions are defined on issue)

 AssumptionHint2(issueName, assumptions);

// Insert Selection Hint

 If (issue has predefined requirements concerned with it)

 SelectionHint(issueName);

// Insert Influence Hints for abstract Issues

Appendix D: Issue Section Generation Algorithm (Pseudo Code)

224

 If (issue is abstract and issue is influenced by another issue)

 InfluenceHint2(issueName, influencingIssues);

 // Insert Documentation Hint

 If (issue is not to be documented)

 DocumentationHint(issueName);

 // Describe the details of the elicited Issues

 If (issue is to be documented or issue is abstract)

 {

 If (issue is no singleton)

 open forEachInstructionBlock(issueName);

 if (issue is abstract)

 ClassifyingInstruction(issueName, specializingIssues);

 else if (predefined requirements concerning issue must be reused)

 SelectingInstruction1(issueName);

else if (predefined requirements concerning issue should be reuse wherever

possible)

 {

 SelectingInstruction2(issueName, attributes);

 FlexibilityHint(issueName, costs);

 }

 Else

 DescribingInstruction1(issueName, attributes);

 If (issue is no singleton)

 close forEachInstructionBlock(issueName);

 // Visualize issue details

 If (issue has notation and notationScope is each)

 VisualizationInstruction1(issueName, notation);

}

}

Appendix

 225

Appendix E: Experiment Material

Fachbereich Informatik: Software Engineering: Processes and Measurement Research Group

Dozent: Prof. Dr. Dr. h.c. Dieter Rombach, Dr. Jörg Dörr

Wintersemester 2011/12, Vorlesung 89-3155

Non-Disclosure Agreement & Informed Consent

Last Name (Student):

First Name:

Address:

Date of Birth:

Enrollment Number:

The student is taking part in the lecture ‘Requirements Engineering’ of AG SE in cooperation

with the Fraunhofer Institute for Experimental Software Engineering during the winter
semester 2011/2012. During the lecture the student will participate in an experiment at

Fraunhofer IESE.

To ensure the success of the experiment the student will keep confidential all information
gained during the experiment and shall not disclose any information about aim, procedure

and materials especially to the other students joining the lecture.

The student also accepts that the experiment is recorded for the purpose of anonymous

analysis. All gather data will be kept in confidence. The performance or the results of the
experiment will not influence the grading of the student in the ‘Requirements Engineering’

lecture.

Kaiserslautern, ……………..

…………………………………..
(Student)

Appendix E: Experiment Material

226

Background Questionnaire Participant Code: ___________________

Group: O M O C (filled out by advisor!)

Age: ________ O male O female

What is subject of your study? ___

In which semester? _________ O bachelor O master O diploma

What did you studied before? ___

Is the RE lecture the only source for your requirements engineering knowledge?

O yes O no

If no: Where did you make further experience with requirements engineering?

__

How many interviews have you already conducted to elicit requirements?

 ________ interviews for requirements elicitation

How many interview have you already conducted in other contexts?

 ________ interviews for other purposes

If you have conducted interview before: Have you used checklists / instructions for these

interviews?

O yes O partially O no

For how many years have you already worked in the software industry (also as student)?

 ________ years

Do you know the basics of software product lines?

O yes O no

How do you rate your English competence in understanding text and speak?

O high O rather high O medium O rather low O low

Thank you!

Appendix

 227

Study Instruction

First of all, I would like to thank you for participating in this study.

The overall purpose of this study is to investigate the usefulness of the requirements

elicitation instruction (see material A) handed out to you. For this purpose, you are asked to

perform the tasks described below.

In the main task of the study (task 3), you have to play the role of a requirements engineer

that interviews a stakeholder in order to elicit requirements by using this instruction.

Basically, an elicitation instruction is a document that provides you with concrete steps you

have to do and questions you have to ask during an elicitation session. Furthermore,

additional information and constraints you have to consider are also included in it.

Task 1: Read the elicitation instruction (material A) carefully and completely in order to

understand all elicitation steps as well as the overall structure of the instruction. This is a

prerequisite that you are able to use this instruction appropriately in your interview later.

After that, take also a look at the SPL specification (material B) and browse through it in

order to know where you can quickly find certain information, if required. However, it is

neither needed to read nor to memorize this document completely. Thus, we assume that

you can do this entire task in approximately 15 minutes.

Task 2: Fill out the material questionnaire (material C). We assume that you can do this task

in approximately 10 minutes.

Well, now you are perfectly prepared for the interview.

Task 3: Go to the study adviser and inform him that you are ready to start the interview.

Take all the material as well as a pen and blank sheets with you. Interview the stakeholder

by using the elicitation instruction (material A). You should follow the instruction wherever

possible, but you are free or even requested to improvise. In particular, the stakeholder will

confront you with situations you will not find as-is in the instruction. Be prepared and use

the information given in the material for negotiating; however, please avoid reading the

entire material during interview. For each requirement mentioned, inform the stakeholder

whether you can accept this requirement or whether you have to reject it, respectively

whether you have to ask an expert first. We assume that you can do this task in

approximately 30 minutes.

Task 4: Fill out the post questionnaire (material D) and give all the material you received (A,

B, C, D) back to the advisor. We assume that you can do this task in approximately 10

minutes.

Again, we thank you very much for your participation. Please remember that you are not

allowed to talk with other people about this study, especially not with the other study

participants!

Appendix E: Experiment Material

228

P
O

S
T

 Q
U

E
S

T
IO

N
N

A
IR

E
 P

a
rt

ic
ip

a
n

t
C

o
d

e
:

_
_
_

_
_

_
_
_

_
_
_

_
_

_
_
_
_

_
_

W
it
h
 t
h
is

 q
u
e
s
ti
o
n
n
a
ir
e
,
w

e
 w

o
u
ld

 l
ik

e
 t

o
 i
n
v
e
s
ti
g
a
te

 h
o
w

 h
e
lp

fu
l
th

e
 e

li
c
it

a
ti

o
n

 i
n

s
tr

u
c
ti

o
n

 h
a
s
 b

e
e
n
 f

o
r

s
u
p
p
o
rt

in
g
 y

o
u
 i
n
 t

h
e
 i
n
te

rv
ie

w
.

Y
o

u
r

g
e
n

e
ra

l
o

p
in

io
n

:

W
h
a
t
d
o
 y

o
u
 l
ik

e
 i
n
 t

h
e
 e

lic
it
a
ti
o
n
 i
n
s
tr

u
c
ti
o
n
?

 W

h
a
t
is

 t
h
e
 m

o
s
t
v
a
lu

a
b

le
 i
n
fo

rm
a
ti
o
n
 p

ro
v
id

e
d
 t
o
 y

o
u
 b

y
 t

h
e
 e

lic
it
a
ti
o

n
 i
n
s
tr

u
c
ti
o

n
?

W
h
a
t
s
h
o
u
ld

 b
e
 i
m

p
ro

v
e
d
 i
n
 t
h
e

 e
lic

it
a
ti
o
n

 i
n
s
tr

u
c
ti
o
n
?

W
h
a
t
d
id

 y
o
u

 m
is

s
 i
n
 t
h
e
 e

lic
it
a
ti
o
n
 i
n
s
tr

u
c
ti
o
n
?

D

Appendix

 229

 H
o

w
 d

o
 y

o
u

 a
g

re
e
 o

r
d

is
a

g
re

e
 w

it
h

 r
e
g

a
rd

 t
o

 t
h

e
 f

o
ll
o

w
in

g
 s

ta
te

m
e
n

ts
:

to

ta
ll
y

d
is

a
g

re
e

 (
1
)

ra
th

e
r

d
is

a
g

re
e

 (
2
)

n
e
it

h
e
r

a
g

re
e

 n
o

r
d

is
a
g

re
e

 (
3
)

ra
th

e
r

a
g

re
e

 (
4
)

to
ta

ll
y

a
g

re
e

 (
5
)

T
h
e
 e

lic
it
a
ti
o
n
 i
n
s
tr

u
c
ti
o
n
 w

a
s
 h

e
lp

fu
l
fo

r
p
e
rf

o
rm

in
g
 t
h

e
 i
n

te
rv

ie
w

T
h
e
 e

lic
it
a
ti
o
n
 i
n
s
tr

u
c
ti
o
n
 e

n
a
b

le
d
 m

e
 t

o
 a

c
h

ie
v
e
 g

o
o

d
 r

e
s
u
lt
s
 /
 t

o
 e

lic
it

q
u
it
e
 a

 g
o
o

d
 s

e
t

o
f

re
q
u
ir
e

m
e
n
ts

I
w

o
u

ld
 n

o
t

h
a

v
e

 a
c
h

ie
v
e

d
 t

h
e
 s

a
m

e
 r

e
s
u
lt
s
 /

 r
e
q

u
ir
e
m

e
n
ts

 w
it
h
o

u
t
u
s
in

g

th
e
 e

lic
it
a
ti
o
n

 i
n
s
tr

u
c
ti
o
n

I
w

o
u

ld
 h

a
v
e
 r

e
q
u
ir

e
d
 m

o
re

 t
im

e
 f

o
r

a
c
h
ie

v
in

g
 t

h
e

 s
a
m

e
 r

e
s
u
lt
s
 /

re
q
u
ir
e
m

e
n
ts

 w
h
e

n
 n

o
t
u
s
in

g
 t
h

e
 e

lic
it
a
ti
o
n
 i
n
s
tr

u
c
ti
o
n

T
h
e
 e

lic
it
a
ti
o
n
 i
n
s
tr

u
c
ti
o
n
 a

llo
w

e
d

 m
e
 t
o
 d

e
v
ia

te
 f

ro
m

 i
t,

 i
f

n
e
c
e
s
s
a
ry

T
h
e
 e

lic
it
a
ti
o
n
 i
n
s
tr

u
c
ti
o
n
 c

o
u
ld

 a
lw

a
ys

 b
e
 u

s
e
d

 a
s
 a

 c
o
n
c
re

te
 p

ro
c
e
s
s
 t

o

fo
llo

w

T
h
e
 e

lic
it
a
ti
o
n
 i
n
s
tr

u
c
ti
o
n
 p

ro
v
id

e
d

 m
e
 c

le
a
r

h
o

w
-t

o
 g

u
id

a
n
c
e
 (

i.
e
.,
 i
t
c
le

a
rl

y

m
e
n
ti
o
n
s
 a

 s
e
q

u
e
n
c
e
 o

f
s
te

p
s
 t
o
 b

e
 c

a
rr

ie
d

 o
u
t

d
u
ri

n
g
 a

n
 e

lic
it
a
ti
o
n

p
ro

c
e
s
s
)

T
h
e
 e

lic
it
a
ti
o
n
 i
n
s
tr

u
c
ti
o
n
 w

a
s
 e

a
s
y
 t

o
 r

e
a

d

T
h
e
 e

lic
it
a
ti
o
n
 i
n
s
tr

u
c
ti
o
n
s
 w

a
s
 e

a
s
y
 t

o
 h

a
n

d
le

T
h
e
 e

lic
it
a
ti
o
n
 i
n
s
tr

u
c
ti
o
n
 r

e
fl
e
c
te

d
 t
h

e
 s

ty
le

 i
n
 w

h
ic

h
 I

 w
o
u
ld

 a
ls

o
 p

e
rf

o
rm

in

te
rv

ie
w

s
 w

it
h
o

u
t
a

n
 e

lic
it
a

ti
o
n

 i
n
s
tr

u
c
ti
o
n

Appendix E: Experiment Material

230

T
h

e
 e

lic
it
a

ti
o

n
 i
n

s
tr

u
c
ti
o

n
 p

ro
v
id

e
d

 m
e

 w
it
h

 s
o

u
n

d
 k

n
o

w
le

d
g

e
 a

b
o

u
t
th

e

g
iv

e
n
 c

o
n

s
tr

a
in

ts
 a

n
d

 c
a

p
a

b
ili

ti
e

s
 I

 h
a

v
e

 t
o

 c
o

n
s
id

e
r

T
h

e
 e

lic
it
a

ti
o

n
 i
n

s
tr

u
c
ti
o

n
 m

a
d
e
 c

le
a
r

in
 w

h
ic

h
 o

rd
e

r
c
e

rt
a

in
 e

lic
it
a

ti
o

n
 s

te
p
s

s
h

o
u

ld
 b

e
 p

e
rf

o
rm

e
d
 b

e
s
t

T
h

e
 e

lic
it
a

ti
o

n
 i
n

s
tr

u
c
ti
o

n
 p

ro
v
id

e
d

 m
e

 w
it
h

 g
o

o
d

 i
n

d
ic

a
ti
o

n
s
 t

o
 k

n
o
w

 w
h

e
n

th

e
 e

lic
it
a

ti
o

n
 i
s
 f

in
is

h
e

d

T
h

e
 e

lic
it
a

ti
o

n
 i
n

s
tr

u
c
ti
o

n
 i
n

fo
rm

e
d
 m

e
 a

b
o
u

t
th

e
 i
n

fo
rm

a
ti
o

n
 (

e
.g

.,
 b

u
s
in

e
s
s

p
ro

c
e

s
s
e

s
,

d
a

ta
,

u
s
e

 c
a

s
e

s
,

in
te

rf
a

c
e

s
 t

o
 e

x
te

rn
a

l
s
y
s
te

m
s
,

e
tc

.)
 w

h
ic

h
 a

re

re
le

v
a

n
t

to
 b

e
 d

is
c
u

s
s
e

d
 w

it
h

 t
h

e
 s

ta
k
e

h
o

ld
e

rs

T
h

e
 e

lic
it
a

ti
o

n
 i
n

s
tr

u
c
ti
o

n
 e

n
a
b

le
d
 m

e
 t
o

 g
e

t
a

 g
o

o
d
 u

n
d

e
rs

ta
n
d

in
g

 o
f

th
e

s
o

ft
w

a
re

 p
ro

d
u

c
t

lin
e
 o

n
 w

h
ic

h
 t
h

e
 n

e
w

 s
y
s
te

m
 s

h
o
u

ld
 b

e
 b

u
ilt

T
h

e
 e

lic
it
a

ti
o

n
 i
n

s
tr

u
c
ti
o

n
s
 s

u
p
p

o
rt

e
d

 m
e

 i
n

 f
in

d
in

g
 i
m

p
o
rt

a
n
t

in
fo

rm
a

ti
o

n

q
u
ic

k
ly

T
h

e
 e

lic
it
a

ti
o

n
 i
n

s
tr

u
c
ti
o

n
 i
n

fo
rm

s
 m

e
 w

h
e
th

e
r

re
q

u
ir
e

m
e

n
ts

 o
f

a
 c

e
rt

a
in

ty

p
e

 d
o

 a
lr
e

a
d

y
 e

x
is

t
a
n

d
 c

o
u
ld

 b
e

 r
e

u
s
e

d
 i
n

s
te

a
d

 o
f

e
lic

it
e

d
 f

ro
m

 s
c
ra

tc
h

(e

.g
.,

 r
e

u
s
a

b
le

 u
s
e

 c
a

s
e

 v
a

ri
a

n
ts

)

I
c
o

u
ld

 a
n

s
w

e
r

a
ll

s
ta

k
e

h
o

ld
e
r’
s
 q

u
e

s
ti
o

n
s
 b

y
 o

n
ly

 u
s
in

g
 t

h
e

 i
n

fo
rm

a
ti
o

n

g
iv

e
n
 i
n

 t
h

e
 e

lic
it
a

ti
o

n
 i
n

s
tr

u
c
ti
o

n

Th

a
n

k
yo

u
!

Appendix

 231

Material Questionnaire

Participant Code: ___________________

The purpose of this questionnaire is to check whether the given material provides you with

certain information or not.

Please try to answer the questions based on the information given in the elicitation

instruction wherever possible. Only if you cannot find the required information in it, take a

look into the SPL specification too. If you can also not find the required information there,

you are free to answer the questions based on what you have learned in the RE lecture or

elsewhere.

To each question, you may only make ONE selection.

In
fo

rm
at

io
n

 N
ee

d
s

1. Is it necessary to elicit the (business) activities that are to be supported?

 yes yes, but without details no I have no idea

2. Is it necessary to elicit system use cases?

 yes yes, but without details no I have no idea

3. Which detailed information about the user groups are you asked to elicit?

 interest

 education

 responsibilities

 I have no idea and would have to ask an expert

4. Which system functions would you have to elicit and specify in detail, if they
were required by the stakeholders?

 all required system functions have to be elicited and specified

 data mapping, XML export

 PDF export, email notification

 no required system function needs to be elicited and specified

 I have no idea and would have to ask an expert

C

Appendix E: Experiment Material

232

C
o

n
st

ra
in

ts
 &

 C
ap

ab
ili

ti
es

1. Is it easy to realize the requirement that the system shall exchange data with a
self-developed partner system (ERP)?

 yes no I have no idea

2. Is it possible to realize the design requirement that the user interface shall be
implemented with the Adobe Flex/Air technology?

 yes no I have no idea

3. What would be your answer to a stakeholder who requests a data exchange with

MS Office?

 Fine, let’s define this requirement in more detail (e.g., office version)

 That’s possible but will be very expensive to realize

 Such an export mechanism already exists

 I have no idea and would have to ask an expert

4. Which constraints are defined on business rules to be implemented in the

system?

 Only static “if then” rules work, but no calculations

 Only rules with fix values are possible but no rules that read values from a
database

 All business rules can be implemented (i.e., there are no constraints)

 I have no idea and would have to ask an expert

R
at

io
n

al
es

5. Why is it not acceptable that the business processes to be executed shall be
modeled in UML?

 An additional transformation engine would have to be developed

 Two main components of the system would have to be replaced

 UML is not sufficient to express all important process details

 I have no idea and would have to ask an expert

6. Which extra costs are typically needed for supporting a specific, but commercial
ERP system?

 low extra costs

 medium extra costs

 high extra costs

 I have no idea and would have to ask an expert

Thank you!

Appendix

 233

AERE Elicitation Instruction

This document includes precise process instruction on how to elicit, negotiate and specify

requirements concerning a system derived from the ARÜS BPM+ plus Product Line. For this purpose,

the document provides a sequence of elicitation steps to be carried out in the described order.

The overall purpose of system derived from ARÜS BPM+ is to support the definition, development,

execution and monitoring of business processes. While typical customers are enterprises, typical

users include process participants, administrators, analysts, developers, and controllers.

In order to do the development work, requirements concerning all the issues mentioned below are

needed by the engineers for making corresponding design or development decisions. Hence, it is

indispensable that these requirements are elicited before the development can start. To make this

happen, we strongly recommend performing the steps in the mentioned order because there are

dependencies between the addressed issues that may impact the elicitation.

1. Elicitation of Partner Systems & Interfaces

Definition: A Partner System is an external system already available in the customer’s IT landscape or

to be introduced in a parallel project.

Ask the stakeholders the following question: Which Partner Systems are to be connected with the

system?

Collect the identified Partner Systems in a corresponding bullet list.

Important hint: Be aware that there are constraints defined for Partner Systems. Hence, the Partner

Systems, stakeholders may ask for, are restricted as follows.

1. Only commercial ERP systems and no proprietary, self-developed ERP systems can be

connected with the system. The reason for this constraint is: Due to liability reasons, data

are only allowed to be exchanged with certified systems.

If the stakeholders require something that contravenes these constraints, inform them about

possible (high) extract costs and that an expert check must be done before you can accept this

requirement.

For each Partner System identified so far:

Motivate the stakeholders to select a best fitting Partner System from the following list and

map it accordingly.

 SAP

 MS Office

If the required Partner System is not covered sufficiently in this list yet, describe this Partner System

especially with regard to name, purpose, system class (e.g., ERP, office, etc.),

A

Appendix E: Experiment Material

234

interface description from scratch. Inform the stakeholders about medium extra costs (even

if the given constraints are hold) in this case.

2. Elicitation of Technical Infrastructure Components

Definition: A Technical Infrastructure is the external information technology (server operation system,

database systems, user management system, etc.) whose services are used by the system under

development to run.

Ask the stakeholders the following question: Which Technical Infrastructure Components (operation

system, database systems, user management system) are given at the customer side?

Collect the identified Technical Infrastructure Components in a corresponding bullet list.

Important hint: Be aware that there are constraints defined for Technical Infrastructure Components

that are hard! Hence, the Technical Infrastructure Components, stakeholders may ask for, are

restricted as follows.

1. Only MS Windows XP or higher or a Linux distribution is supported as the operation system in

the backend. The reason for this constraint is: The application server used within the system is

only available for these operation systems.

2. Only rational database systems that use the SQL language in the 2008 version or a newer

version as query language are supported. The reason for this constraint is: The system makes use

of the build-in mechanisms of SQL and therefore requires a corresponding support through the

database system.

If the stakeholders require something that contravenes these constraints, inform them that this is

technically not possible.

For each Technical Infrastructure Component identified so far:

Motivate the stakeholders to select a best fitting Technical Infrastructure Component from

the following list and map it accordingly.

Databases

 Oracle 10g

 IBM DB2

 MS SQL

User Management

 Active Directory

If the required Technical Infrastructure Component is not covered sufficiently in this list yet,

describe this Technical Infrastructure Component especially with regard to name,

description, component type (e.g., database, operation system, etc.) from scratch. Inform

the stakeholders about medium extra costs (even if the given constraints are hold) in this

case.

Appendix

 235

Elicitation of Business Processes

Definition: A Business Process is a specific ordering of business activities across time, people, and

place, with a beginning, an end, and clearly identified inputs and outputs in order to react on a

business interaction.

Ask the stakeholders the following question: Which Business Processes are to be implemented?

Collect the identified Business Process in a corresponding bullet list.

Important hint: Be aware that there are constraints defined for Business Processes. Hence, the

Business Processes, stakeholders may ask for, are restricted as follows.

1. Only business processes that starts with ONE clear start event can be supported, i.e.,

processes that may start with alternative events are not executable. The reason for this

constraint is: The process algorithm implemented in the common process engine needs a

clear starting point.

2. Only business processes that are expressible with the BPMN 2.0 notation can be supported.

The reason for this constraint is: Both, the process designer component and the process

engine are only able to deal with BPMN. Replacing or reimplementing these core

components would be much too expensive.

If the stakeholders require something that contravenes these constraints, inform them about

possible high extract costs and that an expert check must be done before you can accept this

requirement.

For each Business Process identified so far:

Ask the stakeholders the following question: Could you please describe the Business Process

especially with regard to name, purpose, precondition, trigger, importance, frequency,

quality constraints.

4. Elicitation of Business Activities

Definition: A Business Activity is a step of a business process that results in a valuable, stable state.

For each Business Process identified before:

Ask the stakeholders the following question: Which Business Activities are part of this

Business Process?

Collect the identified Business Activities in a corresponding bullet list.

Important hint: It is not necessary to elicit or describe details about Business Activities. A pure

enumeration or collection (e.g., in a bullet list) is sufficient.

Appendix E: Experiment Material

236

Discuss with the stakeholders if this Business Activity is one of the following specialized

issues and categorize it accordingly: Human System Activity, i.e., a business activity that is

performed by a user with the system.

5. Elicitation of Business Data

Definition: A Business Data is a business object about which structured information is (to be)

managed.

For each Business Activity identified before:

Ask the stakeholders the following question: Which Business Data are used as output and

input in this Business Activity?

Collect the identified Business Data in a corresponding bullet list.

For each Business Data identified so far:

Ask the stakeholders the following question: Could you please describe the Business Data

especially with regard to name, attributes, data types?

6. Elicitation of Business Rules

Definition: A Business Rule is a rule that guides the behavior of an organization in order to

operationalize the business strategy.

For each Business Process identified before:

Ask the stakeholders the following question: Which Business Rules are to be considered in

this Business Process?

Collect the identified Business Rules in a corresponding bullet list.

Collect the identified Business Rules in a corresponding bullet list (if not yet done).

Important hint: Be aware that there are constraints defined for Business Rules. Hence, the Business

Rules, stakeholders may ask for, are restricted as follows.

1. Only rules that set static values and no calculations are supported (e.g., If A=x and B=y then

C=z works, but if A=x then C=x*y does not work). The reason for this constraint is: The

functionality of the underlying rule engine is still limited. However, extending the rule engine

is much too expensive.

If the stakeholders require something that contravenes these constraints, inform them about

possible (high) extract costs and that an expert check must be done before you can accept this

requirement.

Appendix

 237

For each Business Rule identified so far:

Ask the stakeholders the following question: Could you please describe the Business Rule

especially with regard to name, description, type?

7. Elicitation of System Use Cases

Definition: A System Use Case is an interaction sequence between a user and a system (including

possible alternative or exceptional flows) in order to perform a human system activity.

Important hint: Be aware that a set of System Use Cases is already implemented by default and need

not to be elicited again. Consider the list of these System Use Cases below and inform the

stakeholders about, so that you can break discussions immediately as soon as they start asking for

the collection of these common requirements. Additional requirements are of course allowed.

 Model Business Process. Enables the creation of a business process model using BPMN.

 Implement Business Process. Enables the implementation of an executable business process.

 Deploy Business Process. Enables the execution of an implemented business process.

 Control Business Process. Enables the measurement of an executed business process’

performance.

For each Human System Activity identified before:

Ask the stakeholders the following question: Could you please describe the corresponding

System Use Case especially with regard to name, purpose, precondition, description,

exceptions, frequency, quality constraints, post condition?

Ask the stakeholders the following question: Are further System Use Cases required? If yes, which

ones?

Collect the identified System Use Cases in a corresponding bullet list.

For each System Function identified so far:

Ask the stakeholders the following question: Could you please describe the corresponding

System Use Case especially with regard to name, purpose, precondition, description,

exceptions, frequency, quality constraints, post condition?

8. Elicitation of System Functions

Definition: A System Function is an atomic reaction (i.e., state change or response) of the system

under development that is triggered by an external stimulus, e.g., an environmental change, or an

explicit request of a user or an external system.

Important hint: Be aware that a set of System Functions is already implemented by default and need

not to be elicited again. Consider the list of these System Functions below and inform the

Appendix E: Experiment Material

238

stakeholders about, so that you can break discussions immediately as soon as they start asking for

the collection of these common requirements. Additional requirements are of course allowed.

 PDF Exporter: allows exporting process data in PDF documents

 Calculator: allows making calculations

 Email Notification: sends emails automatically when a certain event happens

 Reminder Service: sends a reminder that a certain task has to be done

Ask the stakeholders the following question: Which specific System Functions are required?

Collect the identified System Functions in a corresponding bullet list.

For each System Function identified so far:

Ask the stakeholders the following question: Could you please describe the System Function

especially with regard to name, purpose, precondition, description, exceptions, frequency,

quality constraints, post condition?

9. Elicitation of User Groups

Definition: A User Group is a group of persons with a common role who will interact with the system

under development.

For each System Use Case identified before:

Ask the stakeholders the following question: Which User Groups are performing this System

Use Case?

Collect the identified User Groups in a corresponding bullet list.

For each User Group identified so far:

Ask the stakeholders the following question: Could you please describe the User Group

especially with regard to name, volume, responsibilities, IT experience, preferences, role

profile?

10. Elicitation of Workplaces

Definition: A Workplace is a place including at which the system under development is used, i.e.,

where a user role works with the system.

For each User Group identified before:

Ask the stakeholders the following question: Which Workplaces are used by this User

Group?

Collect the identified Workplaces in a corresponding bullet list.

Appendix

 239

Important hint: Be aware that there are constraints defined for Workplaces. Hence, the Workplaces,

stakeholders may ask for, are restricted as follows.

1. As mobile devices, only Apple is currently supported (i.e., iPhone and iPad). The reason for

this constraint is: The rendering engine only supports the Apple technology so far. A

reimplementation of this engine is much too expensive.

If the stakeholders require something that contravenes these constraints, inform them about

possible high extract costs and that an expert check must be done before you can accept this

requirement.

Important hint: It is not necessary to elicit or describe details about Workplaces. A pure enumeration

or collection (e.g., in a bullet list) is sufficient.

11. Elicitation of Design Requirements

Definition: A Design Requirement is a constraint for the development of the system under

development including security policies, style guides, desired architecture styles, COTS or open source

to be used, development activities, and development technology.

Ask the stakeholders the following question: Which Design Requirements are required?

Collect the identified Design Requirements in a corresponding bullet list.

Important hint: Be aware that there are constraints defined for Design Requirements that are hard!

Hence, the Design Requirements, stakeholders may ask for, are restricted as follows.

1. For customer-specific extensions of the system functionality, only implementations in Java

1.6. or higher are supported. The reason for this constraint is: The entire system is based on

the Java platform and only supports this technology in the backend.

2. Only simple HTML and Java Script are supported as technologies for developing the user

interfaces. In particular, specific plug-in technologies for animations or rich internet clients

are not supported. The reason for this constraint is: The underlying technology does not

support dynamic content.

If the stakeholders require something that contravenes these constraints, inform them that this is

technically not possible.

For each Design Requirement identified so far:

Ask the stakeholders the following question: Could you please describe the Design

Requirement especially with regard to name, description?

Appendix E: Experiment Material

240

TORE Elicitation Instruction

This document includes process instruction on how to elicit, negotiate and specify requirements

concerning a system derived from the ARÜS BPM+ plus Product Line based on the TORE framework.

For this purpose, the document provides a sequence of elicitation steps to be carried out in the

described order.

The overall purpose of system derived from ARÜS BPM+ is to support the definition, development,

execution and monitoring of business processes. While typical customers are enterprises, typical

users include process participants, administrators, analysts, developers, and controllers.

In order to do the development work, requirements concerning all the issues mentioned below are

needed by the engineers for making corresponding design or development decisions. Hence, it is

indispensable that these requirements are elicited before the development can start. To make this

happen, we strongly recommend performing the steps in the mentioned order as there are

dependencies between the addressed issues that may impact the elicitation.

1. Elicitation of Partner Systems & Interfaces

Definition: A Partner System is an external system already available in the customer’s IT landscape or

to be introduced in a parallel project.

Ask the stakeholders the following question: Should the system under development be connected

with SAP? O yes O no

Ask the stakeholders the following question: Should the system under development be connected

with MS Office? O yes O no

Ask the stakeholders the following question: Which further Partner Systems are to be connected?

Describe the Partner Systems with regard to name, purpose, general description, system class (e.g.,

ERP, office, etc.), interface description.

2. Elicitation of Technical Infrastructure Components

Definition: A Technical Infrastructure is the external information technology (hardware capacity,

network capacity, security systems, server operation system, database systems, user management

system, etc.) whose services are used by the system under development to run.

Ask the stakeholders the following question: Which of the following operation systems is used at the

server side? O MS Windows O Linux

Ask the stakeholders the following question: Which of the following database systems is used in your

organization and to be connected? O Oracle O IBM O MS SQL

A

Appendix

 241

Ask the stakeholders the following questions: Should the system be connected with Active Directory?

O yes O no

Ask the stakeholders the following question: Do the users want to use the systems via their iPhone /

iPad? O yes O no

3. Elicitation of Supported Stakeholders

Definition: A Support Stakeholder is a group of persons with a common role who will benefit from the

system under development.

Ask the stakeholders the following question: Which Stakeholders are to be supported by the system

under development?

Describe the Support Stakeholder with regard to name, average age, working situation, software

experience, typical tasks, preferences, workplace, properties.

4. Elicitation of Stakeholder Goals

Definition: A Stakeholder Goal is a target state in the future that is different from the current state

and that is worthwhile to achieve through the system under development.

Ask the stakeholders the following question: Which Stakeholder Goals are to be achieved by the

system under development?

Describe the Stakeholder Goals with regard to name, description, achievement metric, achievement

date.

5. Elicitation of Stakeholder Tasks

Definition: A Stakeholder Task is a specific ordering of activities with a beginning, an end, and clearly

identified inputs and outputs in order to react on a certain event. Stakeholder Tasks can either be

business processes or individual tasks.

Ask the stakeholders the following question: Which Stakeholder Tasks are to be supported by the

system under development?

Describe the Stakeholder Tasks with regard to name, goal, trigger, priority, execution profile,

precondition, input, output, resources.

Appendix E: Experiment Material

242

Elicitation of To-Be Activities

Definition: A To-Be Activity is a step of a task that results in a valuable, stable (intermediate) state

towards the result of the entire stakeholder task. In this context, “to-be” expresses that this step will

be part of the stakeholder task after the system is developed.

Ask the stakeholders the following question: Which To-Be Activities are steps of the Stakeholder

Tasks?

Describe the To-Be Activities with regard to name, description, precondition, post condition, trigger,

responsible organizational unit, rules to consider.

7. Elicitation of System Responsibilities

Definition: A System Responsibility is a To-Be Activity that is either supported or even automated by

the system under development.

Ask the stakeholders the following question: Which To-Be Activities are to be automated or

supported by the system?

Mark the To-Be Activities accordingly.

8. Elicitation of Domain Data

Definition: A Domain Data is an object in the system environment about which structured information

is (to be) managed.

Ask the stakeholders the following question: Which Domain Data are relevant in the Stakeholder

Tasks?

Describe the Domain Data with regard to name, description, attributes, relationships.

9. Elicitation of System Use Cases (Interactions)

Definition: A System Use Case is an interaction sequence between a user and a system (including

possible alternative or exceptional flows) in order to perform a human system activity.

Ask the stakeholders the following question: Could you please describe the System Use Cases for the

System Responsibilities with regard to name, purpose, precondition, description, exceptions,

frequency, quality constraints, post condition?

Appendix

 243

10. Elicitation of System Functions

Definition: A System Function is an atomic reaction (i.e., state change or response) of the system

under development that is triggered by an external stimulus, e.g., an environmental change, or an

explicit request of a user or an external system.

Ask the stakeholders the following question: Which specific System Functions a required?

Describe the System Functions with regard to name, input, output, description, exceptions, rules,

quality requirements, precondition, post condition.

11. Elicitation of Design Requirements

Definition: A Design Requirement is a constraint for the development of the system under

development including security policies, style guides, desired architecture styles, COTS or open source

to be used, development activities, and development technology.

Ask the stakeholders the following question: Which Design Requirements are given for the system

under development?

Describe the Design Requirements.

12. Elicitation of Quality Requirements

Definition: A Quality Requirement describes a non-functional property of the system such as

efficiency, reliability, usability, security, maintainability and portability.

Ask the stakeholders the following question: Which Quality Requirements are required?

Describe the Quality Requirements.

Appendix E: Experiment Material

244

Observer Checklist Participant Code: ____________

Elicitation of Partner Systems

Ask for partner systems? O yes O no

SAP? O accepted O rejected O tbc

MS Office? O accepted O rejected O tbc

Travel Reservation Service? O accepted O rejected O tbc

Own Absence List? O accepted O rejected O tbc

Question on extra costs correctly answered? O yes O no

[Absence List and TRS will lead to medium extra costs, SAP and Office are for free]

Ask for details of SAP and MS Office? O yes O no O NA

Ask for details of TRS and Absence List? O yes O no O NA

Elicitation of Technical Infrastructure Components

Ask for operation systems? O yes O no

Solaris OS? O accepted O rejected O tbc

Question on why is this not possible answered? O yes O no O not posed

[Underlying application server only available for windows and linux]

Linux OS? O accepted O rejected O tbc

Ask for database system? O yes O no

MySQL? O accepted O rejected O tbc

Question on extra costs correctly answered? O yes O no O not posed

[medium extra costs]

Ask for user management? O yes O no

Active Directory O accepted O rejected O tbc

Mobile Devices Workplaces

Appendix

 245

Ask for details of infrastructure components? O yes O no

Supported Stakeholders

 User Group

Elicitation of Stakeholder Goals

Ask for stakeholder goals O yes O no

Ask for details of stakeholder goals O yes O no

Elicitation of Business Processes / Stakeholder Tasks

Ask for processes / tasks? O yes O no

Business Travel Process O accepted O rejected O tbc

Ask for details of processes / tasks? O yes O no

Two start events O accepted O rejected O tbc

Question on why this is not possible answered? O yes O no O not posed

[process algorithm in process engine do not support this]

EPK usage O accepted O rejected O tbc

Question on extra costs correctly answered? O yes O no O not posed

[high extra costs]

Elicitation of Business Activities / To-Be Activities / System

Responsibilities

Ask for activities? O yes O no

Mentioned activities O accepted O rejected O tbc

Ask for classification of activities? O yes O no

Ask for details of activities? O yes O no

Appendix E: Experiment Material

246

Elicitation of Business Data / Domain Data

Ask for data O yes O no

Travel Application Form O accepted O rejected O tbc

Ask for details of data O yes O no

Elicitation of Business Rules

Ask for business rules O yes O no

Mentioned business rule O accepted O rejected O tbc

Question on feasibility correctly answered? O yes O no O not posed

[yes, no problem]

Ask for details of business rule O yes O no

Elicitation of System Use Cases

Ask for system use cases? O yes O no

Activities of business travel process O accepted O rejected O tbc

Implement business process UC O accepted O explained as not needed

Ask for details of business travel UCs O yes O no

Ask for details of implement UC O yes O no O NA

Elicitation of System Functions

Ask for system function O yes O no

Reminder O accepted O explained as not needed

Question on extra costs correctly answered? O yes O no O not posed

[no extra costs, included anyway]

Ask for details of system functions O yes O no

Appendix

 247

Elicitation of User Groups

Ask for user groups basically O yes O no

Ask for users of application & approval O yes O no

Ask for users of booking & accounting O yes O no

Ask for users of implementation activities O yes O no

Ask for details of user group O yes O no

Elicitation of Workplaces

Ask for workplaces O yes O no

Normal PCs O accepted O rejected O tbc

Ask for mobile devices O yes O no

Android? O accepted O rejected O tbc

Question on why this is not possible answered? O yes O no O not posed

[rendering engine only supports Apple so far. Reimplementation of this engine very

expensive]

Question on extra costs correctly answered? O yes O no O not posed

[high extra costs]

Ask for details of workplace O yes O no

Elicitation of Design Requirements

Ask for design requirements O yes O no

Reuse of C++ O accepted O rejected O tbc

Question of hard constraint correctly answered O yes O no O not posed

[it is a hard constraint and not to change]

Ask for details of design requirements O yes O no

Appendix E: Experiment Material

248

Prepared Requirements and Questions

Elicitation of Partner Systems

R1. The system shall be connected with an SAP system.

R2. The system shall be connected with MS Office.

R3. The system shall be connected with the Travel Reservation Service in the Internet.

R4. The system shall be connected with our own Absence List in der Intranet.

Q1. For which of these systems will there be extra costs?

Elicitation of Technical Infrastructure Components

R5. The system shall run on our servers with Solaris OS.

Q2. Why is this not possible?

R6. Alternative: The system shall run on our Linux servers.

R7: The system shall use our open source DB MySQL.

Q3. What will this cost?

R8. The system shall be connected with our Active Directory as user management.

R?: The system shall be accessible from Android phones.

Q?. Why is this not possible?

Q?. What would it cost to changes this?

Elicitation of Supported Stakeholders

R18. Employees

R18a. For the Application (HSA), Approval (HSA), the system shall support the scientific employees.

R18b. For Booking (HSA), Traveling, Accounting (HSA), the system shall support the administrative

employees.

R18c. For the implementation activities, the system shall support the process developers.

Appendix

 249

Elicitation of Stakeholder Goals

R22. The system should improve our process performance and transparency.

Elicitation of Business Processes / Stakeholder Tasks

R9. The system shall implement our Business Travel Process.

R10. The Business Travel Process shall start either by an employee’s wish to go on business trip or

a project leaders assignment.

Q4. Why is this not possible?

R11. The Business Travel Process that is currently modeled in the notation of EPK should be

imported in the system?

Q5. What would that cost if you would change this?

Elicitation of Business Activities / To-Be Activities / System Responsibilities

R12. The Business Travel Process shall consist of the following activities: Application (HSA),

Approval (HSA), Booking (HSA), Traveling, Accounting (HSA)

Elicitation of Business Data / Domain Data

R13. The system shall manage the Travel Application Form (name, destination, date, expected

costs)

Elicitation of Business Rules

R14. The system shall implement the following business rule “If the costs are higher than 1000 €,

the division head must be involved to give his approval”

Q? Are you sure that this rule can be supported?

Appendix E: Experiment Material

250

Elicitation of System Functions

R17. The system shall provide me a functionality that reminds me via email on the business trips I

have to approve

Q6. There are no extra costs for this?

Elicitation of User Groups

R18. For the business travel activities, the system shall support the normal employees.

R19. For the implementation activities, the system shall support the process developers.

Elicitation of Workplaces

R20. The system shall be accessible from the normal desktop PCs.

R?: The system shall be accessible from Android phones.

Q?. Why is this not possible?

Q?. What would it cost to changes this?

Elicitation of Design Requirements

R21. The system shall be enable to reuse our existing business logic components written in C++.

Q7. Is this hard constraint or is this possible to be changed?

Elicitation of Quality Requirements

R23. The system should be reliable and highly available.

Appendix

 251

Appendix F: Experiment Results

Appendix F: Experiment Results

252

Appendix

 253

Appendix F: Experiment Results

254

Appendix

 255

A
g

re
e

m
e

n
t

o
r

d
is

a
g

re
e

m
e

n
t

w
it

h
 r

e
g

a
rd

 t
o

 t
h

e
 f

o
ll
o

w
in

g
 s

ta
te

m
e

n
ts

 i
n

 M
G

Q
u

e
st

io
n

s
2

4
7

8
1

0
1

1
1

2
1

5
1

7
1

9
2

1
2

3
2

6

I c
o

u
ld

 a
n

sw
e

r
al

l s
ta

ke
h

o
ld

e
r’

s
q

u
e

st
io

n
s

b
y

o
n

ly
 u

si
n

g
th

e
 in

fo
rm

at
io

n
 g

iv
e

n
 in

 t
h

e
 e

li
ci

ta
ti

o
n

 in
st

ru
ct

io
n

5
5

4
2

2
4

3
2

4
3

5
4

2

I w
o

u
ld

 h
av

e
 r

e
q

u
ir

e
d

 m
o

re
 t

im
e

 f
o

r
ac

h
ie

vi
n

g
th

e
 s

am
e

 r
e

su
lt

s
/

re
q

u
ir

e
m

e
n

ts

w
h

e
n

 n
o

t
u

si
n

g
th

e
 e

li
ci

ta
ti

o
n

 in
st

ru
ct

io
n

3
5

4
5

5
5

5
5

4
5

5
5

5

I w
o

u
ld

 n
o

t
h

av
e

 a
ch

ie
ve

d
 t

h
e

 s
am

e
 r

e
su

lt
s

/
re

q
u

ir
e

m
e

n
ts

 w
it

h
o

u
t

u
si

n
g

th
e

e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
5

5
5

5
5

3
4

5
4

5
5

5
5

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 a

ll
o

w
e

d
 m

e
 t

o
 d

e
vi

at
e

 f
ro

m
 it

, i
f

n
e

ce
ss

ar
y

4
2

4
3

3
5

4
3

3
4

4
4

2

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 c

o
u

ld
 a

lw
ay

s
b

e
 u

se
d

 a
s

a
co

n
cr

e
te

 p
ro

ce
ss

 t
o

 f
o

ll
o

w

5
3

5
4

4
1

4
4

3
3

5
5

2

T
h
e
 e

lic
ita

tio
n
 in

s
tr

u
c
tio

n
 e

n
a
b
le

d
 m

e
 t
o
 a

c
h
ie

ve
 g

o
o
d
 r

e
s
u
lts

 /
 t
o
 e

lic
it

q
u
ite

 a
 g

o
o
d
 s

e
t
o
f

re
q
u
ir
e
m

e
n
ts

5
4

4
5

3
5

4
4

4
4

5
4

4

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 e

n
ab

le
d

 m
e

 t
o

 g
e

t
a

go
o

d
 u

n
d

e
rs

ta
n

d
in

g
o

f
th

e
 s

o
ft

w
ar

e
 p

ro
d

u
ct

li
n

e
 o

n
 w

h
ic

h
 t

h
e

 n
e

w
 s

ys
te

m
 s

h
o

u
ld

 b
e

 b
u

il
t

5
2

4
3

3
4

2
2

4
3

4
5

3

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 in

fo
rm

e
d

 m
e

 a
b

o
u

t
th

e
 in

fo
rm

at
io

n
 (

e
.g

.,
 b

u
si

n
e

ss
 p

ro
ce

ss
e

s,
 d

at
a,

u
se

 c
as

e
s,

 in
te

rf
ac

e
s

to
 e

xt
e

rn
al

 s
ys

te
m

s,
 e

tc
.)

 w
h

ic
h

 a
re

 r
e

le
va

n
t

to
 b

e
 d

is
cu

ss
e

d
 w

it
h

 t
h

e
 s

ta
ke

h
o

ld
e

rs
4

5
5

5
3

5
4

5
4

4
4

5
5

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 in

fo
rm

s
m

e
 w

h
e

th
e

r
re

q
u

ir
e

m
e

n
ts

 o
f

a
ce

rt
ai

n
 t

yp
e

 d
o

 a
lr

e
ad

y
e

xi
st

 a
n

d
 c

o
u

ld
 b

e
 r

e
u

se
d

 in
st

e
ad

 o
f

e
li

ci
te

d
 f

ro
m

 s
cr

at
ch

 (
e

.g
.,

 r
e

u
sa

b
le

 u
se

 c
as

e
 v

ar
ia

n
ts

)
4

5
4

5
5

5
4

3
5

5
5

5
4

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 m

ad
e

 c
le

ar
 in

 w
h

ic
h

 o
rd

e
r

ce
rt

ai
n

 e
li

ci
ta

ti
o

n
 s

te
p

s
sh

o
u

ld
 b

e
 p

e
rf

o
rm

e
d

 b
e

st
5

4
5

4
5

4
5

4
5

4
5

5
5

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 p

ro
vi

d
e

d
 m

e
 c

le
ar

 h
o

w
-t

o
 g

u
id

an
ce

 (
i.

e
.,

 it
 c

le
ar

ly
 m

e
n

ti
o

n
s

 a
 s

e
q

u
e

n
ce

 o
f

st
e

p
s

to
 b

e
 c

ar
ri

e
d

 o
u

t
d

u
ri

n
g

an
 e

li
ci

ta
ti

o
n

 p
ro

ce
ss

)
5

5
5

5
4

5
5

3
4

5
5

5
3

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 p

ro
vi

d
e

d
 m

e
 w

it
h

 g
o

o
d

 in
d

ic
at

io
n

s
to

 k
n

o
w

 w
h

e
n

 t
h

e
 e

li
ci

ta
ti

o
n

 is
 f

in
is

h
e

d
5

2
4

4
4

3
5

4
4

4
5

4
4

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 p

ro
vi

d
e

d
 m

e
 w

it
h

 s
o

u
n

d
 k

n
o

w
le

d
ge

 a
b

o
u

t
th

e
 g

iv
e

n

co
n

st
ra

in
ts

 a
n

d
 c

ap
ab

il
it

ie
s

I h
av

e
 t

o
 c

o
n

si
d

e
r

5
5

5
4

2
5

4
4

4
4

5
5

5

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 r

e
fl

e
ct

e
d

 t
h

e
 s

ty
le

 in
 w

h
ic

h
 I

w
o

u
ld

 a
ls

o
 p

e
rf

o
rm

 in
te

rv
ie

w
s

w
it

h
o

u
t

an
 e

li
ci

ta
ti

o
n

 in
st

ru
ct

io
n

4
3

4
3

3
4

2
3

4
3

4
3

1

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 w

as
 e

as
y

to
 r

e
ad

4

4
5

5
4

5
5

3
4

5
5

4
2

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 w

as
 h

e
lp

fu
l f

o
r

p
e

rf
o

rm
in

g
th

e
 in

te
rv

ie
w

5
5

5
5

4
5

5
5

5
4

5
5

4

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
s

su
p

p
o

rt
e

d
 m

e
 in

 f
in

d
in

g
im

p
o

rt
an

t
in

fo
rm

at
io

n
 q

u
ic

kl
y

3
5

5
5

4
5

4
2

3
3

5
5

3

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
s

w
as

 e
as

y
to

 h
an

d
le

3
4

4
4

4
4

5
4

3
4

5
5

4

1
=

to
ta

lly
 d

is
a

g
re

e,
 5

 =
 t

o
ta

lly
 a

g
re

e

Appendix F: Experiment Results

256

A
g

re
e

m
e

n
t

o
r

d
is

a
g

re
e

m
e

n
t

w
it

h
 r

e
g

a
rd

 t
o

 t
h

e
 f

o
ll
o

w
in

g
 s

ta
te

m
e

n
ts

 i
n

 C
G

Q
u

e
st

io
n

s
1

3
5

6
9

1
3

1
4

1
6

1
8

2
0

2
2

2
4

2
5

I c
o

u
ld

 a
n

sw
e

r
al

l s
ta

ke
h

o
ld

e
r’

s
q

u
e

st
io

n
s

b
y

o
n

ly
 u

si
n

g
th

e
 in

fo
rm

at
io

n
 g

iv
e

n
 in

 t
h

e
 e

li
ci

ta
ti

o
n

 in
st

ru
ct

io
n

2
3

3
2

3
3

3
2

2
4

3
2

2

I w
o

u
ld

 h
av

e
 r

e
q

u
ir

e
d

 m
o

re
 t

im
e

 f
o

r
ac

h
ie

vi
n

g
th

e
 s

am
e

 r
e

su
lt

s
/

re
q

u
ir

e
m

e
n

ts

w
h

e
n

 n
o

t
u

si
n

g
th

e
 e

li
ci

ta
ti

o
n

 in
st

ru
ct

io
n

4
2

4
4

5
5

5
5

5
3

5
2

5

I w
o

u
ld

 n
o

t
h

av
e

 a
ch

ie
ve

d
 t

h
e

 s
am

e
 r

e
su

lt
s

/
re

q
u

ir
e

m
e

n
ts

 w
it

h
o

u
t

u
si

n
g

th
e

e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
5

5
5

5
5

5
5

5
5

2
5

1
5

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 a

ll
o

w
e

d
 m

e
 t

o
 d

e
vi

at
e

 f
ro

m
 it

, i
f

n
e

ce
ss

ar
y

5
5

3
5

4
5

3
5

3
2

5
3

4

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 c

o
u

ld
 a

lw
ay

s
b

e
 u

se
d

 a
s

a
co

n
cr

e
te

 p
ro

ce
ss

 t
o

 f
o

ll
o

w

4
5

4
5

4
5

5
4

4
4

3
4

2

T
h
e
 e

lic
ita

tio
n
 in

s
tr

u
c
tio

n
 e

n
a
b
le

d
 m

e
 t
o
 a

c
h
ie

ve
 g

o
o
d
 r

e
s
u
lts

 /
 t
o
 e

lic
it

q
u
ite

 a
 g

o
o
d
 s

e
t
o
f

re
q
u
ir
e
m

e
n
ts

4
5

5
5

4
3

5
4

4
3

5
4

4

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 e

n
ab

le
d

 m
e

 t
o

 g
e

t
a

go
o

d
 u

n
d

e
rs

ta
n

d
in

g
o

f
th

e
 s

o
ft

w
ar

e
 p

ro
d

u
ct

li
n

e
 o

n
 w

h
ic

h
 t

h
e

 n
e

w
 s

ys
te

m
 s

h
o

u
ld

 b
e

 b
u

il
t

2
4

3
4

4
2

4
4

3
4

3
2

2

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 in

fo
rm

e
d

 m
e

 a
b

o
u

t
th

e
 in

fo
rm

at
io

n
 (

e
.g

.,
 b

u
si

n
e

ss
 p

ro
ce

ss
e

s,
 d

at
a,

u
se

 c
as

e
s,

 in
te

rf
ac

e
s

to
 e

xt
e

rn
al

 s
ys

te
m

s,
 e

tc
.)

 w
h

ic
h

 a
re

 r
e

le
va

n
t

to
 b

e
 d

is
cu

ss
e

d
 w

it
h

 t
h

e
 s

ta
ke

h
o

ld
e

rs
5

5
4

5
5

5
5

4
4

2
5

4
4

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 in

fo
rm

s
m

e
 w

h
e

th
e

r
re

q
u

ir
e

m
e

n
ts

 o
f

a
ce

rt
ai

n
 t

yp
e

 d
o

 a
lr

e
ad

y
e

xi
st

 a
n

d
 c

o
u

ld
 b

e
 r

e
u

se
d

 in
st

e
ad

 o
f

e
li

ci
te

d
 f

ro
m

 s
cr

at
ch

 (
e

.g
.,

 r
e

u
sa

b
le

 u
se

 c
as

e
 v

ar
ia

n
ts

)
5

4
1

4
3

4
3

3
3

3
3

3
2

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 m

ad
e

 c
le

ar
 in

 w
h

ic
h

 o
rd

e
r

ce
rt

ai
n

 e
li

ci
ta

ti
o

n
 s

te
p

s
sh

o
u

ld
 b

e
 p

e
rf

o
rm

e
d

 b
e

st
5

5
5

4
4

4
5

1
2

3
4

4
4

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 p

ro
vi

d
e

d
 m

e
 c

le
ar

 h
o

w
-t

o
 g

u
id

an
ce

 (
i.

e
.,

 it
 c

le
ar

ly
 m

e
n

ti
o

n
s

 a
 s

e
q

u
e

n
ce

 o
f

st
e

p
s

to
 b

e
 c

ar
ri

e
d

 o
u

t
d

u
ri

n
g

an
 e

li
ci

ta
ti

o
n

 p
ro

ce
ss

)
5

5
5

4
4

3
5

4
2

5
4

4
4

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 p

ro
vi

d
e

d
 m

e
 w

it
h

 g
o

o
d

 in
d

ic
at

io
n

s
to

 k
n

o
w

 w
h

e
n

 t
h

e
 e

li
ci

ta
ti

o
n

 is
 f

in
is

h
e

d
4

3
2

5
5

3
5

2
1

4
4

4
2

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 p

ro
vi

d
e

d
 m

e
 w

it
h

 s
o

u
n

d
 k

n
o

w
le

d
ge

 a
b

o
u

t
th

e
 g

iv
e

n

co
n

st
ra

in
ts

 a
n

d
 c

ap
ab

il
it

ie
s

I h
av

e
 t

o
 c

o
n

si
d

e
r

3
5

2
5

5
3

5
4

4
2

3
2

3

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 r

e
fl

e
ct

e
d

 t
h

e
 s

ty
le

 in
 w

h
ic

h
 I

w
o

u
ld

 a
ls

o
 p

e
rf

o
rm

 in
te

rv
ie

w
s

w
it

h
o

u
t

an
 e

li
ci

ta
ti

o
n

 in
st

ru
ct

io
n

2
1

3
4

2
3

2
2

5
4

3
3

3

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 w

as
 e

as
y

to
 r

e
ad

5

5
5

4
5

5
5

3
3

5
5

4
4

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
 w

as
 h

e
lp

fu
l f

o
r

p
e

rf
o

rm
in

g
th

e
 in

te
rv

ie
w

5
5

5
5

4
4

5
4

4
4

5
5

5

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
s

su
p

p
o

rt
e

d
 m

e
 in

 f
in

d
in

g
im

p
o

rt
an

t
in

fo
rm

at
io

n
 q

u
ic

kl
y

4
4

5
4

5
3

5
5

1
3

5
3

4

Th
e

 e
li

ci
ta

ti
o

n
 in

st
ru

ct
io

n
s

w
as

 e
as

y
to

 h
an

d
le

5
2

5
4

5
3

3
4

2
5

5
3

4

1
=

to
ta

lly
 d

is
a

g
re

e,
 5

 =
 t

o
ta

lly
 a

g
re

e

Appendix

 257

P
O

S
T

 Q
U

E
S

T
IO

N
N

A
IR

E
 (

M
G

)

Y
o

u
r

g
e
n

e
ra

l
o

p
in

io
n

:
W

h
a
t

d
o

 y
o

u
 l
ik

e
 i
n

 t
h

e
 e

li
c
it

a
ti

o
n

 i
n

s
tr

u
c
ti

o
n

?

 2
.
T

h
e
 r

e
a
l-

w
o
rl
d
 i
n
te

rv
ie

w
 w

h
ic

h
 p

ro
v
id

e
d
 a

 g
o

o
d

e
x
a

m
p
le

 o
f

re
q
u
ir
e
m

e
n
ts

 e
lic

it
a

ti
o
n

4
.
K

la
re

 S
tu

ru
k
tu

r,
 v

o
rg

e
g
e

b
e
n
e

 F
ra

g
e

n

7
.
C

le
a
r,

 s
u
m

m
a
ri
z
e
d
 a

c
c
o
rd

in
g
 t
o
 t

h
e
 p

ra
c
ti
c
a

l
p

u
rp

o
s
e
 o

f
th

e
 e

x
p
e
ri
m

e
n
t
e
a
s
y
 t
o

 s
c
a
n
 t
h
ro

u
g
h
,

u
n
d

e
rs

ta
n
d

a
b
le

.

8
.
S

e
q
u

e
n
ti
a

l
lis

t

 g
o

o
d

 o
rd

e
r,

 E
x
p

lic
it
 q

u
e
s
ti
o

n
s
 (

n
o
t

ju
s
t
“a

s
k
 w

h
e

th
e
r…

)
1
0
.
T

h
e
 o

rd
e
r

w
a
s
 q

u
it
e
 h

e
lp

fu
l,
 w

h
ile

 i
t

w
a
s
 a

llo
w

in
g
 m

e
 a

s
 a

 n
o
n

-e
x
p
e
rt

 i
n
 t

h
e
 f

ie
ld

 t
o
 b

e
 s

ti
ll

c
a

p
a
b

le
 o

f
a
s
k
in

g
 q

u
e
s
ti
o
n
s
.

1
1
.
It
 w

a
s
 c

le
a
rl

y
 c

a
te

g
o
ri

z
e
d
,
b

u
t
th

e
 o

rd
e
r

o
f

th
e
 c

a
te

g
o
ri

e
s
 c

o
u
ld

 b
e
 d

if
fe

re
n
t.
 A

n
d
 i
t

g
a

v
e
 m

e
 g

o
o
d

 i
d

e
a
 w

h
a
t

a
n
d
 h

o
w

 t
o
 a

s
k
 m

y
in

te
rv

ie
w

e
r

q
u
e
s
ti
o
n
s

1
2
.
C

le
a
r

s
tr

u
c
tu

re
,
a
 l
o
t

in
fo

rm
a
ti
o
n
 a

b
o

u
t
p

o
s
s
ib

le
 f

e
a
tu

re
s
 /
 c

o
s
ts

 f
o
r

th
e
m

1
5
.
G

u
id

a
n
c
e
 (

c
h
ro

n
o

lo
g
ic

a
l)

1
7
.
H

o
w

 t
o

 e
lic

it
,

n
e

g
o
ti
a
te

 t
h
e
 r

e
q

u
ir
e
m

e
n
ts

 i
n

 g
e

n
e
ra

l,
 C

o
m

m
u
n
ic

a
ti
o
n
 a

ls
o

1
9
.
H

a
t
k
la

re
 S

tr
u
k
tu

r
v
o
rg

e
g
e
b
e

n
,

w
e
lc

h
e

 F
ra

g
e

n
 g

e
s
te

llt
 w

e
rd

e
n
 m

ü
s
s
e
n
.

Z
u
s
a
tz

in
fo

rm
a
ti
o
n
e
n
 (

W
a
s
 i
s
t
e
in

e
 B

u
s
in

e
s
s
 A

c
ti
v
it
y
…

.)

2
1
.
T

h
e
 q

u
e
s
ti
o
n
s
,
th

e
ir
 p

u
rp

o
s
e
s
 a

n
d
 c

o
n
s
tr

a
in

ts
 w

it
h
 t

h
e
ir
 r

e
a
s
o
n
s
 –

 e
v
e
ry

th
in

g
 i
s
 v

e
ry

 s
p

e
c
if
ic

 i
n
 t

h
e
 i
n
s
tr

u
c
ti
o
n

 a
s
 i
t

h
e

lp
e

d
 m

e
 a

 l
o
t

to
 u

n
d
e
rs

ta
n
d
 t

h
e

w
h
o
le

 s
c
e
n
a
ri

o
.

2
3
.
T

h
e
 s

te
p
 b

y
 s

te
p
 i
d

e
a
 i
s
 g

re
a
t.
 I

t
w

a
s
 n

o
t
s
o
 h

a
rd

 t
o

 f
o
llo

w
 t

h
is

 i
n
s
tr

u
c
ti
o
n
.

L
ik

e
 a

 p
ro

c
e
s
s
 /
 l
ik

e
 a

ls
o
 t

h
e
 i
d
e

a
 t
o
 g

o
 f

ro
m

 a
 b

ig
 t
h

in
g

 i
n

to
 a

 m
o
re

d
e
ta

ile
d
 a

n
d
 g

ra
p
h

ic
 t
h

in
g
.

2
6
.

S
y
s
te

m
a
ti
c
 Q

u
e
s
ti
o
n
s

 W
h

a
t

is
 t

h
e
 m

o
s
t

v
a
lu

a
b

le
 i
n

fo
rm

a
ti

o
n

 p
ro

v
id

e
d

 t
o

 y
o

u
 b

y
 t

h
e
 e

li
c
it

a
ti

o
n

 i
n

s
tr

u
c
ti

o
n

?

 2
.
T

h
e
 b

a
s
ic

 s
te

p
s
 t
o
 p

e
rf

o
rm

 a
n
 e

lic
it
a
ti
o
n
 i
n
te

rv
ie

w

4
.
W

e
lc

h
e
 B

e
d

in
g

u
n
g

e
n
 e

rf
ü
llt

 s
e
in

 m
ü
s
s
e
n
,
w

a
s
 n

ic
h
t

m
ö
g
lic

h
 i
s
t.

7
.
S

te
p
s
 o

n
 t
h

e
 e

lic
it
a
ti
o
n
 p

ro
c
e
s
s
,
c
le

a
rl

y
 d

e
fi
n

e
d
.

8
.
S

tr
u
c
tu

re
,
C

o
m

p
le

te
n
e
s
s
,
C

o
n
s
tr

a
in

ts
.

1
0
.
T

h
e
 s

y
s
te

m
 r

e
q
u
ir
e
m

e
n
ts

 a
n
d
 t

h
e
 p

o
s
s
ib

le
 c

o
n
s
tr

a
in

ts

1
1
.

P
o
in

ti
n
g
 o

u
t
th

e
 c

o
n
s
tr

a
in

ts
 (

w
it
h
 s

o
m

e
 e

x
a
m

p
le

s
)

1
2
.
In

fo
rm

a
ti
o
n
:

w
h
a
t

to
 a

s
k
?

1
5
.
Q

u
e
s
ti
o

n
s

1
7
.
h

o
w

 t
o
 g

a
th

e
ri

n
g
 t

h
e
 r

e
q
u
ir
e
m

e
n
ts

,
C

o
m

m
u
n
ic

a
ti
o

n

1
9
.
--

--
-

2
1
.
T

h
e
 c

o
n
s
tr

a
in

ts
,
re

a
s
o
n

s
 b

e
h
in

d
 t

h
e

m
 a

n
d
 t
h

e
ir
 h

a
rd

n
e
s
s
 w

h
e
re

 t
h

e
 m

o
s
t
v
a
lu

a
b
le

 i
n
fo

 a
s
 i
t

h
e
lp

e
d
 m

e
 t
o
 s

tr
u
c
tu

re
 m

y
 r

e
s
p
o
n
s
e
s
 t

o
 t

h
e
 s

ta
k
e
h
o
ld

e
r.

2
3
.
T

h
e
 e

lic
it
a
ti
o
n
 o

f
th

e
 B

u
s
in

e
s
s
 P

ro
c
e
s
s
 w

it
h
 t
h

e
 a

c
ti
v
it
ie

s
 a

n
d
 d

a
ta

.
2
6
.
T

h
e
 s

a
m

p
le

 q
u

e
s
ti
o

n
s
 t

o
 s

ta
rt

 w
it
h
 a

n
d
 i
m

p
o
rt

a
n
t
p

o
in

ts
.

D

Appendix F: Experiment Results

258

W
h

a
t

s
h

o
u

ld
 b

e
 i
m

p
ro

v
e

d
 i

n
 t

h
e

 e
li

c
it

a
ti

o
n

 i
n

s
tr

u
c

ti
o

n
?

 2
.
S

e
p
a

ra
te

 e
lic

it
a

ti
o

n
 i
n

s
tr

u
c
ti
o

n
 a

n
d

p

ro
d

u
c
t

s
p

e
c
if
ic

a
ti
o

n
 –

 w
ill

 m
a

k
e

 t
h

e
 e

lic
it
a

ti
o

n
 e

a
s
ie

r
to

 u
n
d

e
rs

ta
n
d

 a
n

d
 r

e
a

d

4
.
S

c
h

ri
tt

 v
o

n
 3

 b
is

 9
 g

e
h

t
v
o

n
 d

e
r

P
ro

z
e

s
s
 E

b
e
n

e
 r

u
n
te

r
a

u
f

d
ie

 A
k
ti
v
it
ä

ts
e

b
e
n

e
 u

n
d
 S

c
h

ri
tt

 6
 g

e
h

t
w

ie
d

e
r

h
o

c
h

 a
u

f
d

ie
 P

ro
z
e

s
s
 E

b
e
n

e
.

V
ie

lle
ic

h
t

is
t

e
s

e
in

 w
e

n
ig

 v
e

rw
ir
re

n
d

 z
u

n
ä
c
h

s
t

a
u

f
e

in
e
r

E
b

e
n

e
n
 z

u
 b

le
ib

e
n

.

7
.
S

o
m

e
 m

o
re

 e
x
a
m

p
le

s
 o

n
 s

o
m

e
 s

te
p
s
 l
ik

e
:
E

v
a

lu
a

ti
o

n
 o

f
B

u
s
in

e
s
s
 P

ro
c
e

s
s
e

s
,

A
c
ti
v
it
ie

s
,

D
a

ta
,
a

n
d
 S

y
s
te

m
 U

s
e

 C
a
s
e

s
.

H
o

w
e

v
e

r
th

a
t

w
ill

 o
v
e

rl
o

a
d

 t
h

e

d
o
c
u

m
e

n
t

8
.
C

o
n

s
tr

a
in

ts
 l
is

t
c
o

u
ld

 b
e

 m
a

rk
e

d
 s

o
 t
h

a
t

o
n

e
 c

a
n
 f

in
d

 t
h

e
m

 m
o

re
 e

a
s
ily

 (
in

 t
h

e
 a

c
tu

a
l
in

te
rv

ie
w

)

1
0
.
If

 t
h
e

 q
u

e
s
ti
o

n
s
 w

o
u

ld
 b

e
 i
n

 b
o

ld
 f

o
n
t,

 t
h
e

 i
n

te
rv

ie
w

e
r

c
a

n
 a

s
k
 t

h
e

 q
u

e
s
ti
o

n
s
 q

u
ic

k
e

r.

1
1
.
T

h
e
 q

u
e

s
ti
o

n
s
 c

h
e
c
k
lis

t
c
o

u
ld

 b
e
 m

o
re

 e
x
p

lic
it
 a

n
d

 t
h

e
 o

rd
e

r
c
o

u
ld

 b
e

 m
o

re
 a

b
s
tr

a
c
t.

 I
 m

e
a
n

 t
o

 u
n

d
e
rs

ta
n

d
 a

ll
th

e
 B

u
s
in

e
s
s
 G

o
a

ls
 a

n
d

 t
h

e
 P

ro
c
e

s
s
e

s

fi
rs

t
a
n

d
 t

h
e

n
 j
u

m
p

 t
o

 a
ll

te
c
h

n
ic

a
l
is

s
u

e
s
.

1
2
.
--

--
-

1
5
.
Q

u
e

s
ti
o

n
s
 h

ig
h
lig

h
te

d
 (

 I
 d

id
 t
h

is
 i
n

 t
h
e

 p
re

p
a

ra
ti
o

n
)

1
7
.
--

--
-

1
9
.
--

--
-

2
1
.
M

a
y
b

e
,

a
 g

ra
p

h
ic

a
l
re

p
re

s
e

n
ta

ti
o

n
 o

f
p

ro
c
e

s
s
,

a
c
ti
v
it
y
,

d
a

ta
 a

n
d
 t

h
e

ir
 i
n

te
rr

e
la

ti
o

n
s
h

ip
s
 w

o
u

ld
 h

a
v
e

 h
e
lp

e
d

 m
o

re
 t
o
 u

n
d
e
rs

ta
n
d
 t

h
e
 d

e
v
e

lo
p
m

e
n
t

g
u
id

e
lin

e
.

2
3
.
M

a
y
b

e
 g

iv
e

 s
o

m
e

 m
o

re
 e

x
c
e

p
ti
o

n
s
 h

a
n

d
le

rs
 l
ik

e
:
If

 A
 t

h
e

n
 B

,
If

 C
 t

h
e

n
 D

…
.

2
6
.
M

a
y
b

e
 l
e

s
s
 t

e
x
t,

 b
o

ld
 t

e
x
t

 W
h

a
t

d
id

 y
o

u
 m

is
s
 i

n
 t

h
e

 e
li
c

it
a

ti
o

n
 i

n
s

tr
u

c
ti

o
n

?

 2
.
A

t
s
o

m
e

 p
o

in
ts

 I
 c

o
u

ld
n
’t
 f

in
d
 w

h
a

t
I

w
a

s
 l
o

o
k
in

g
 f

o
r

(p
ro

d
u

c
t

s
p

e
c
if
ic

a
ti
o

n
 d

e
ta

ils
)

a
s
 f

a
s
t

a
s
 I

 n
e

e
d

e
d

.

4
.
V

e
rb

in
d
u

n
g
 z

w
.

S
ys

te
m

 F
u

n
c
ti
o

n
s
 u

n
d

 d
e

m
 a

b
z
u

b
ild

e
n

d
e

n
 P

ro
z
e

s
s
 N

o
n

-F
u

n
c
ti
o

n
a

l
R

e
q
u

ir
e

m
e

n
ts

7
.
--

--

8
.
--

--

1
0
.

S
o

m
e

 t
e

c
h

n
ic

a
l
d

e
ta

ils

1
1
.-

--
-

1
2
.
Q

u
e

s
ti
o

n
s
:

S
ta

n
d

a
rd

 /
 P

ro
fe

s
s
io

n
a

l
v
e

rs
io

n

1
5
.
F

ig
u
re

s

1
7
.
--

--
-

1
9
.
--

--
-

2
1
.
T

h
e
 p

ri
o

ri
ti
z
a

ti
o

n
 o

f
re

q
u

ir
e

m
e

n
ts

2
3
.
--

--

2
6
.
T

e
c
h

n
ic

a
l
d

e
ta

ils

Appendix

 259

Appendix G: Case Study Material

Ta
ilo

ri
n

g
M

e
as

u
re

m
e

n
t

P
e

rf
o

rm
e

d
 b

y:
 _

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

_

N
o

St

e
p

U

n
d

er
st

an
d

ab
ili

ty
1

A
p

p
lic

ab
ili

ty
2

In
p

u
t3

p

ro
d

u
ce

d

el
em

e
n

ts

To
ta

l e
ff

o
rt

4
(p

er
so

n
 m

in
u

te
s)

H

el
p

 r
eq

u
ir

ed
?

1
C

h
ar

ac
te

ri
za

ti
o

n
 o

f
So

ft
w

ar
e

P
ro

d
u

ct

Li
n

e
(S

P
L)

2
Id

en
ti

fi
ca

ti
o

n
 o

f
A

rc
h

it
ec

tu
ra

l E
le

m
en

t
Ty

p
es

3
Id

en
ti

fi
ca

ti
o

n
 o

f
A

rc
h

it
ec

tu
ra

l
El

em
en

ts

4
C

h
ar

ac
te

ri
za

ti
o

n
 o

f
Su

p
p

o
rt

ed

Fl
ex

ib
ili

ty
 C

la
ss

es

5
Id

en
ti

fi
ca

ti
o

n
 o

f
Fl

ex
ib

ili
ty

A

ss
u

m
p

ti
o

n
s

6
C

h
ar

ac
te

ri
za

ti
o

n
 o

f
D

ev
el

o
p

m
en

t
P

h
as

es

7
Id

en
ti

fi
ca

ti
o

n
 o

f
D

ev
el

o
p

m
en

t
A

ct
iv

it
ie

s

8
El

ab
o

ra
ti

o
n

 o
f

D
ec

is
io

n
s

an
d

C

o
rr

es
p

o
n

d
in

g
In

fo
rm

at
io

n
 N

ee
d

s

9
D

et
er

m
in

at
io

n
 o

f
R

el
ev

an
t

Is
su

es

1
0

D
et

er
m

in
at

io
n

 o
f

C
o

n
ce

p
tu

al

R
el

at
io

n
sh

ip
s

1
1

D
ef

in
it

io
n

 o
f

A
ER

E
El

ic
it

at
io

n

In
st

ru
ct

io
n

s

TO

TA
L

1 I
u

n
d

er
st

an
d

 w
h

at
 I

h
av

e
to

 d
o

[1

 =
 t

o
ta

lly
 d

is
ag

re
e

, 2
 =

 r
at

h
e

r
d

is
ag

re
e

, 3
 =

 n
ei

th
er

 a
gr

ee
 n

o
r

d
is

ag
re

e
, 4

 =
 r

at
h

er
 a

gr
e

e,
 5

 =
 t

o
ta

lly
 a

gr
ee

]

2 I
ca

n
 p

er
fo

rm
 t

h
e

st
ep

 w
it

h
o

u
t

p
ro

b
le

m
s

[1

 =
 t

o
ta

lly
 d

is
ag

re
e

, 2
 =

 r
at

h
e

r
d

is
ag

re
e

, 3
 =

 n
ei

th
er

 a
gr

ee
 n

o
r

d
is

ag
re

e
, 4

 =
ra

th
er

 a
gr

e
e,

 5
 =

 t
o

ta
lly

 a
gr

ee
]

3 W
h

at
 h

as
 b

ee
n

 t
ak

en
 t

o
 p

er
fo

rm
 t

h
e

st
ep

[o

n
ly

 d
o

cu
m

en
t,

 o
n

ly
 e

xp
er

t
in

te
rv

ie
w

s,
 b

o
th

]
4 In

cl
u

d
in

g
ef

fo
rt

 f
o

r
in

vo
lv

ed
 e

xp
er

ts
, i

f
n

ec
e

ss
ar

y

Appendix G: Case Study Material

260

W
h

at
 d

o
 y

o
u

 li
ke

 in
 t

h
e

ta
ilo

ri
n

g
ap

p
ro

ac
h

?

 W
h

ic
h

 p
ar

ts
 o

f
th

e
ta

ilo
ri

n
g

ap
p

ro
ac

h
 d

o
 y

o
u

 f
in

d
 h

el
p

fu
l?

 W
h

at
 w

as
 p

ro
b

le
m

at
ic

 f
o

r
yo

u
 t

o
 d

o
 (

an
d

 w
h

y)
?

 W
h

at
 w

as
 v

er
y

ea
sy

 f
o

r
yo

u
 t

o
 d

o
 (

an
d

 w
h

y)
?

Appendix

 261

Appendix H: Case Study Results

Each column reflects one participant. The numbers in the cells of the first and second sub-table are ratings on the 5-point-

Likert-scale where 1=totally disagree, 5=totally agree.

Case Study Resuts

1 2 3 4 5 AVG

Characterization of Software Product Line (SPL) 4 5 5 5 4 4,6

Identification of Architectural Element Types 5 4 4 4 3 4

Identification of Architectural Elements 4 5 4 2 3 3,6

Characterization of Supported Flexibility Classes 4 3 5 4 3 3,8

Identification of Flexibility Assumptions 3 4 5 5 2 3,8

Characterization of Development Phases 4 5 5 5 2 4,2

Identification of Development Activities 5 5 5 5 3 4,6

Elaboration of Decisions and Corresponding Information Needs 5 4 5 5 3 4,4

Determination of Relevant Issues 4 4 4 4 3 3,8

Determination of Conceptual Relationships 4 4 5 5 3 4,2

Definition of AERE Elicitation Instructions 5 5 5 5 2 4,4

1 = totally disagree, 5 = totally agree

1 2 3 4 5 AVG

Characterization of Software Product Line (SPL) 4 4

Identification of Architectural Element Types 3 3

Identification of Architectural Elements 3 3

Characterization of Supported Flexibility Classes 5 3 4 5 3 4

Identification of Flexibility Assumptions 3 4 3 4 2 3,2

Characterization of Development Phases 5 4 5 5 2 4,2

Identification of Development Activities 5 5 4 5 3 4,4

Elaboration of Decisions and Corresponding Information Needs 4 4 3 4 3 3,6

Determination of Relevant Issues 4 4 5 5 3 4,2

Determination of Conceptual Relationships 5 4 4 3 3 3,8

Definition of AERE Elicitation Instructions 5 5 5 5 2 4,4

1 = totally disagree, 5 = totally agree

1 2 3 4 5 AVG

Characterization of Software Product Line (SPL) 30,00 6,00

Identification of Architectural Element Types 12,00 2,40

Identification of Architectural Elements 4,50 0,90

Characterization of Supported Flexibility Classes 1,50 1,67 0,83 1,00 8,57 2,71

Identification of Flexibility Assumptions 8,00 3,00 2,20 2,50 13,33 5,81

Characterization of Development Phases 1,67 1,67 1,67 1,00 15,00 4,20

Identification of Development Activities 0,43 1,07 0,71 0,57 1,76 0,91

Elaboration of Decisions and Corresponding Information Needs 1,07 1,07 1,00 2,00 4,09 1,85

Determination of Relevant Issues 0,33 0,38 0,33 0,33 17,14 3,71

Determination of Conceptual Relationships 0,33 0,67 0,28 0,62 13,33 3,05

Definition of AERE Elicitation Instructions 1,00 1,00 1,00 1,00 30,00 6,80

I understand what I have to do

I can perform the step without problems

Required time per processsed element (in min)

Appendix H: Case Study Results

262

W
h

at
 d

o
 y

o
u

 li
ke

 in
 t

h
e

ta
ilo

ri
n

g
ap

p
ro

ac
h

?

1
: E

as
y

to
 u

se
, n

o
t

m
u

ch
 p

re
-k

n
o

w
le

d
ge

 n
ec

e
ss

ar
y,

 g
o

o
d

 g
u

id
an

ce

2
: A

 lo
t

o
f

st
ep

s
ar

e
au

to
m

at
ic

al
ly

 d
o

n
e

o
r

p
ar

ti
al

ly
 d

o
n

e.
 E

ac
h

 s
te

p
 is

 s
ep

ar
at

ed
 f

ro
m

 t
h

e
o

th
er

.
3

: S
ys

te
m

an
ti

c
gu

id
an

ce
 t

h
ro

u
gh

 e
lic

it
at

io
n

 p
ro

ce
ss

 p
re

p
ar

at
io

n
 (

o
n

ly
 r

el
ev

an
t

as
p

ec
ts

 w
ill

 b
e

el
ic

it
ed

 in
 in

te
rv

ie
w

s)

4
: G

u
id

an
ce

 a
n

d
 T

o
o

l-
Ti

p
p

s,
 a

u
to

m
at

ic
 g

en
er

at
io

n

 W
h

ic
h

 p
ar

ts
 o

f
th

e
ta

ilo
ri

n
g

ap
p

ro
ac

h
 d

o
 y

o
u

 f
in

d
 h

el
p

fu
l?

1
: G

u
id

an
ce

 t
h

ro
u

gh
 t

h
e

w
h

o
le

 p
ro

ce
ss

. A
u

to
m

at
ic

 r
ec

o
m

m
en

d
at

io
n

s
fo

r
si

n
gl

e
p

ro
p

er
ti

es
 w

it
h

in
 t

h
e

st
ep

s
2

: D
ef

in
it

io
n

s
o

f
q

u
es

ti
o

n
s

fo
r

th
e

ap
p

lic
at

io
n

 e
en

gi
n

ee
r,

 r
ic

h
 o

f
m

in
in

g
an

 is
su

e
is

 r
ed

u
ce

d

3
: i

n
 t

h
e

to
o

l,
th

e
in

st
ru

ct
io

n
s

ar
e

ve
ry

 h
el

p
fu

l a
s

w
el

l a
s

th
e

q
u

es
ti

o
n

s
th

at
 s

h
o

u
ld

 b
e

as
ke

d

 W
h

at
 w

as
 p

ro
b

le
m

at
ic

 f
o

r
yo

u
 t

o
 d

o
 (

an
d

 w
h

y)
?

1
: N

/A

2
: m

ap
p

in
g

o
f

R
E-

el
em

en
ts

 t
o

 a
rc

h
it

ec
tu

ra
l e

le
m

en
ts

, b
ec

au
se

 it
 is

 h
ar

d
 t

o
 m

at
ch

 b
et

w
ee

n
 s

o
lu

ti
o

n
 a

n
d

 p
ro

b
le

m
 s

p
ac

e

3
: i

n
it

ia
lly

, i
t

w
as

 p
ro

b
le

m
at

ic
 t

o
 a

ss
ig

n
 t

h
e

co
rr

ec
t

is
su

es
. I

n
 g

en
er

al
, t

h
e

st
ep

s
2

-5
 a

n
d

 9
 w

er
e

co
m

p
ar

ed
 t

o
 6

-8
 a

 b
it

 m
o

re
 c

o
m

p
lic

at
ed

 a
s

th
er

e
w

er
e

co
n

ce
p

ts

I'm
 n

o
t

th
at

 f
am

ili
ar

 w
it

h
. H

o
w

ev
er

, t
h

e
p

ro
vi

d
ed

 g
u

id
el

in
es

 w
er

e
h

el
p

fu
l t

o
 u

n
d

er
st

an
d

 w
h

at
 t

o
 d

o
.

4
: C

o
n

ce
p

tu
al

 M
o

d
el

 (
R

el
at

io
n

sh
ip

s
/

C
ar

d
in

al
it

ie
s)

, U
n

d
er

st
an

d
in

g
o

f
A

rc
h

it
ec

tu
ra

l E
le

m
en

t
Ty

p
es

, R
ef

er
en

ce
 Is

su
es

 W

h
at

 w
as

 v
er

y
ea

sy
 f

o
r

yo
u

 t
o

 d
o

 (
an

d
 w

h
y)

?

1
: I

n
te

rv
ie

w
in

g
Ex

p
er

t
th

ro
u

gh
 c

le
ar

 a
d

vi
ce

s
/

gu
id

an
ce

 b
y

th
e

to
o

l
2

: m
ap

p
in

g
o

f
el

em
en

ts
 t

o
 p

h
as

es
 w

as
 q

u
it

e
se

lf
-e

xp
la

in
in

g
si

n
ce

 t
h

e
m

et
h

o
d

 h
as

 s
ep

ar
at

ed
 t

h
e

el
em

en
ts

 v
er

y
cl

ea
r

3
: e

sp
ec

ia
lly

 s
te

p
s

6
 t

o
 8

 w
er

e
ea

sy
 a

s
I'm

 a
ls

o
 f

am
ili

ar
 w

it
h

 t
h

es
e

co
n

ce
p

ts
.

4
: C

o
n

fi
rm

at
io

n
 o

f
au

to
ge

n
er

at
ed

 c
o

n
te

n
t

Appendix

 263

 Fe
ed

b
ac

k:

A
b

st
ra

kt
e

u
n

d
 in

te
re

ss
an

te
 H

er
an

ge
h

en
sw

ei
se

 a
n

 d
ie

 A
n

fo
rd

er
u

n
gs

er
h

eb
u

n
g

Te
ilw

e
is

e
sc

h
w

er
 a

u
f

P
ro

d
u

kt
 a

b
zu

b
ild

en
, d

a
U

n
te

rs
ch

ei
d

u
n

g
zw

is
ch

en
 C

u
st

o
m

iz
in

g
u

n
d

 n
eu

e

K
o

m
p

o
n

en
te

 t
e

ilw
ei

se
 s

ch
w

ie
ri

g
zu

 z
ie

h
en

 is
t.

o

C
u

st
o

m
iz

in
g

b
ei

 P
ro

d
u

kt
 b

ez
ie

h
t

si
ch

 n
ic

h
t

n
u

r
au

f
P

ar
am

et
e

r
vo

rg
eb

en
, s

o
n

d
er

n

au
ch

 a
u

f
p

ro
gr

am
m

at
is

ch
e

A
n

p
as

su
n

ge
n

B
ed

ie
n

u
n

g
ge

w
ö

h
n

u
n

gs
b

ed
ü

rf
ti

g

Fü
r

Le
u

te
, d

ie
 n

ic
h

t
se

h
r

ve
rt

ra
u

t
si

ch
 m

it
 d

ie
se

r
A

rt
 d

er
 E

rf
as

su
n

g
er

fo
rd

er
t

es
 m

eh
r

al
s

ei
n

en
 D

u
rc

h
la

u
f

Appendix I: Project Analysis (State of Practice)

264

Appendix I: Project Analysis (State of Practice)

This table shows data of five industrial AE projects in which a document

analysis software was individually adapted and integrated at the custom-

er’s site.

P
ro

je
kt

-M
e

ss
w

e
rt

e

P
ro

je
kt

 1
P

ro
je

kt
 2

P
ro

je
kt

 3
P

ro
je

kt
 4

P
ro

je
kt

 5
D

u
rc

h
sc

h
n

it
t

P
ro

je
kt

d
au

e
r

in
 M

o
n

at
e

n
13

9
9

21
11

13

P
ro

je
kt

gr
ö

ß
e

 in
 P

T
63

0
35

0
18

0
10

00
17

0
46

6

R
E-

A
u

fw
an

d
 in

 P
T

(r
e

gu
lä

r)
90

50
25

10
0

35
60

Lä
n

ge
 R

E
in

 W
o

ch
e

n
 (r

e
gu

lä
r)

10
8

10
4

4
7

A
n

za
h

l R
E-

W
o

rk
sh

o
p

s
(r

e
gu

lä
r)

12
7

10
15

5
10

A
n

za
h

l R
E-

A
b

st
im

m
u

n
ge

n
 (r

e
gu

lä
r)

30
8

0
0

0
8

A
n

za
h

l v
e

re
in

b
ar

te
r

A
n

fo
rd

e
ru

n
ge

n
60

0
40

0
8

80
0

19
36

5

Ex
p

li
zi

t
an

ti
zi

p
ie

rt
 A

n
fo

rd
e

ru
n

ge
n

 (c
a

.)
50

%
50

%
50

%
80

%
80

%
62

%

Im
p

li
zi

t
an

ti
zi

p
ie

rt
 A

n
fo

rd
e

ru
n

ge
n

 (
ca

.)
25

%
30

%
25

%
10

%
10

%
20

%

N
ic

h
t

an
ti

zi
p

ie
rt

e
 A

n
fo

rd
e

ru
n

ge
n

 (c
a

.)
25

%
20

%
25

%
10

%
10

%
18

%

V
e

rw
o

rf
e

n
e

 A
n

fo
rd

e
ru

n
ge

n
5%

5%
10

%
3%

0
5%

V
o

n
 E

xp
e

rt
e

n
 g

e
p

rü
ft

e
 A

n
fo

rd
e

ru
n

ge
n

30
%

20
%

0%
10

0%
0%

30
%

N
ac

h
ve

rh
an

d
lu

n
gs

ge
sp

rä
ch

e
 (

zu
sä

tz
li

ch
)

30
10

2
5

1
10

N
ac

h
ve

rh
an

d
lu

n
gs

au
fw

an
d

 in
 P

T
(z

u
sä

tz
li

ch
)

30
10

5
30

1
15

N
ac

h
ve

rh
an

d
lu

n
gs

ge
sp

rä
ch

e
 n

ac
h

 Im
p

le
m

e
n

ti
e

ru
n

gs
b

e
gi

n
n

15
6

0
1

0
4

A
n

te
il

 d
e

r
N

ac
h

ve
rh

an
d

lu
n

ge
n

 im
 R

E
 in

 P
T

25
%

17
%

17
%

23
%

3%
17

%

A
n

te
il

 d
e

r
N

ac
h

ve
rh

an
d

lu
n

ge
n

 a
n

 a
ll

e
n

 R
E-

Te
rm

in
e

n
42

%
40

%
17

%
25

%
17

%
28

%

W
is

se
n

 d
e

r
R

El
e

r
ü

b
e

r
d

ie
 P

ro
d

u
kt

p
la

tt
fo

rm
te

il
w

e
is

e

w
e

n
ig

vo
ll

st
än

d
ig

vo

ll
st

än
d

ig

vi
e

l
vi

e
l

W
is

se
n

 d
e

r
R

El
e

r
ü

b
e

r
En

tw
ic

kl
u

n
gs

st
ra

te
gi

e
w

e
n

ig
w

e
n

ig
vo

ll
st

än
d

ig

vo
ll

st
än

d
ig

vi

e
l

vi
e

l

P
ro

je
kt

e
rf

ah
ru

n
g

te
il

w
e

is
e

te

il
w

e
is

e

te
il

w
e

is
e

te

il
w

e
is

e

vi
e

l
te

il
w

e
is

e

Er-

fahrung

Ver-

handlung
Projekt RE Anforderungen

Appendix

 265

D
u

rc
h

sc
h

n
it

tl
ic

h
e

 u
n

d
 in

te
rp

o
lie

rt
e

 W
e

rt
e

Er
h

o
b

e
n

e
 A

n
fo

rd
e

ru
n

ge
n

 p
ro

 R
E-

W
o

rk
sh

o
p

 /
 -

A
b

st
im

m
u

n
g

21
St

ü
ck

R
E-

W
o

rk
sh

o
p

s
/

-A
b

st
im

m
u

n
ge

n
 p

ro
 W

o
ch

e
2,

4
St

ü
ck

Er
h

o
b

e
n

e
 u

n
d

 s
p

e
zi

fi
zi

e
rt

e
 A

n
fo

rd
e

ru
n

ge
n

 p
ro

 P
T

im
 R

E
(E

ff
iz

ie
n

z)
6,

1
St

ü
ck

V
o

n
 E

xp
e

rt
e

n
 g

e
p

rü
ft

e
 A

n
fo

rd
e

ru
n

ge
n

11
0

St
ü

ck

N
ac

h
ve

rh
an

d
e

lt
e

 A
n

fo
rd

e
ru

n
ge

n
 v

o
r

Im
p

l.
 (

in
te

rp
o

li
e

rt
 ü

b
e

r
A

n
fo

rd
e

ru
n

ge
n

 p
ro

 P
T)

93
St

ü
ck

25
%

N
ac

h
ve

rh
an

d
e

lt
e

 A
n

fo
rd

e
ru

n
ge

n
 p

ro
 N

ac
h

ve
rh

an
d

lu
n

gs
ge

sp
rä

ch
 v

o
r

Im
p

l.
10

St
ü

ck

V
e

rz
ö

ge
ru

n
ge

n
 d

u
rc

h
 N

ac
h

ve
rh

an
d

lu
n

ge
n

 v
o

r
Im

p
l.

 (
in

te
rp

o
li

e
rt

 ü
b

e
r

R
E-

W
o

rk
sh

o
p

s
p

ro
 W

o
ch

e
)

4,
0

W
o

ch
e

n

V
e

rz
ö

ge
ru

n
g

d
u

rc
h

 N
ac

h
ve

rh
an

d
lu

n
g

vo
r

Im
p

l.
 p

ro
 n

ac
h

zu
ve

rh
an

d
e

ln
d

e
r

A
n

fo
rd

e
ru

n
g

0,
04

W
o

ch
e

n

N
ac

h
ve

rh
an

d
e

lt
e

 A
n

fo
rd

e
ru

n
ge

n
 n

ac
h

 Im
p

l.
 (

in
te

rp
o

li
e

rt
 ü

b
e

r
n

a
ch

ve
r.

 A
n

fo
rd

e
ru

n
ge

n
 p

ro
 G

e
sp

rä
ch

)
42

St
ü

ck

V
e

rz
ö

ge
ru

n
ge

n
 d

u
rc

h
 s

p
ät

e
 N

ac
h

ve
rh

an
d

lu
n

ge
n

 (
A

n
n

a
h

m
e

 e
in

e
s

Fa
kt

o
r

5
)

9,
1

W
o

ch
e

n

In
sg

e
sa

m
t

n
ac

h
ve

rh
an

d
e

lt
e

 A
n

fo
rd

e
ru

n
ge

n
13

5
St

ü
ck

37
%

In
sg

e
sa

m
te

 V
e

rz
ö

ge
ru

n
g

d
u

rc
h

 n
ac

h
zu

ve
rh

an
d

e
ln

d
e

 A
n

fo
rd

e
ru

n
ge

n
13

,1
W

o
ch

e
n

26
%

Mittel-

werte

Interpolierte und

hochgerechnete Werte

Appendix J: Calculation of Expected Improvements

266

Appendix J: Calculation of Expected Improvements

As shown in Appendix I, only about 60% of the requirements in an AE

project are explicitly anticipated on average in practice. For the elicitation

of the other 40%, there is no explicit support. Hence, the fit of these re-

quirements depends on the experience of the involved people and there-

fore partially on luck. We assume that only half of these requirements fit

straightaway (50:50 chance) and do not lead or rework or re-

negotiations. Thus, only 80% of the elicited requirements are expected

to fit directly in today’s practice, while 20% of the requirements have to

be renegotiated. This is even a quite optimistic assumption, as the inter-

polation shown in Appendix I comes to the result that almost all re-

quirements that are not explicitly anticipated (37%) have to be reworked

in a project, which will take about 26% of the entire project duration.

For the rest of this calculation, however, we act on the assumption that

about 20% of the calendar time spent in a project is needed due to non-

fitting requirements in an average AE project today. According to our

project analysis shown in Appendix I, these 20% amount to about 10

weeks.

However, when using the thesis tailoring approach, requirements engi-

neers are explicitly informed about the feasibility of (the 20%) implicitly

anticipated requirements and about the constraints that exist for (the

20%) non-anticipated requirements. Thus, it is assumed that the fit of

only 10% of the requirements still depends on luck and has to be vali-

dated by involved SPL experts, which would result in rework for only

about 5% of the requirements. In sum, 95% of the elicited requirements

are therefore expected to fit directly, which would be an improvement of

about 18% compared to today’s practice. However, as the actual distri-

bution of explicitly anticipated, implicitly anticipated, and non-

anticipated requirements may vary among different SPLs, we act on the

assumption that a fit improvement of 15% is realistic on average.

Thus, when using the thesis approach, only 5% of the requirements

would have to be renegotiated. Furthermore, as the requirements engi-

neers would be aware of the requirements that have to be checked by

an SPL expert, it is assumed that all re-negotiations could even be done

before the start of the implementation (which is a significant benefit

compared to today’s practice). According to the project data shown in

Appendix I, this rework would lead to an overall delay of about one

week. Hence, in contrast to today’ practice, 90% of the delay could be

saved, which would result in an overall reduction of time to market by

again 18%. However, as the actual distribution of requirements may

vary among different SPLs, we act on the assumption that a time-to-
market reduction by 15% (approx. two months per project year) is

more realistic.

Appendix

 267

Appendix K: Initial Issue List

IE
E

E
 8

3
0

IE
E

E
 1

3
6

2

IE
E

E
1

2
3

3

V
o

le
re

A
R

IS

Z
a

c
h

m
a

n

R
U

P

T
O

R
E

Business Activity X X X X

Business Area X

Business Event X X X X

Business Object X X

Business Objects X X X X X X

Business Process X X X X X

Business Role X X X

Business Rule X X

Business Service X X X

Human System Activity X X X X X X X

Interaction Data X X X

Operation Modes X X X

Organizational Unit X X X X

Partner Systems X X X X X X

Physical Backend Environment X X X X

Project X X X X X

Quality Characteristic X X X X X

Realization Policy X X X X

Regulation X X X X

System Function X X X X

System Interface X X X X

System-System Interactions X X X

Technical Infrastructure Component X X X X X X

UI Area X X X

UI Style X

Usage Profile X X X

User Role X X X X X

Workplace X X X

Misc.
Requirements

Specification

Business

Modeling

Lebenslauf

 269

Lebenslauf

Name Sebastian Adam

Anschrift Lessingstraße 7

 67663 Kaiserslautern

Geburtsdatum 03.12.1979

Geburtsort Idar-Oberstein

Familienstand ledig

Staatsangehörigkeit Deutsch

Schulbildung 1986-1990 Grund- und Hauptschule Westrich, Baumholder

 1990-1999 Gymnasium an der Heinzenwies, Idar-Oberstein

 Abschluss: Abitur

Zivildienst 1999-2000 Zivildienst im Kinder- und Jugendheim der

„kreuznacher diakonie“, Niederwörresbach

Studium 2000-2005 Studium der Angewandten Informatik

Technische Universität Kaiserslautern

Abschluss: Diplom

Berufstätigkeit 2005-heute Wissenschaftlicher Mitarbeiter

Fraunhofer IESE, Kaiserslautern

Kaiserslautern, den 19.12.2012

PhD Theses in Experimental Software Engineering

Volume 1 Oliver Laitenberger (2000), Cost-Effective Detection of Software Defects
Through Perspective-based Inspections

Volume 2 Christian Bunse (2000), Pattern-Based Refinement and Translation of
Object-Oriented Models to Code

Volume 3 Andreas Birk (2000), A Knowledge Management Infrastructure for
Systematic Improvement in Software Engineering

Volume 4 Carsten Tautz (2000), Customizing Software Engineering Experience
Management Systems to Organizational Needs

Volume 5 Erik Kamsties (2001), Surfacing Ambiguity in Natural Language
Requirements

Volume 6 Christiane Differding (2001), Adaptive Measurement Plans for Software
Development

Volume 7 Isabella Wieczorek (2001), Improved Software Cost Estimation
A Robust and Interpretable Modeling Method and a Comprehensive
Empirical Investigation

Volume 8 Dietmar Pfahl (2001), An Integrated Approach to Simulation-Based
Learning in Support of Strategic and Project Management in Software
Organisations

Volume 9 Antje von Knethen (2001), Change-Oriented Requirements Traceability
Support for Evolution of Embedded Systems

Volume 10 Jürgen Münch (2001), Muster-basierte Erstellung von Software-
Projektplänen

Volume 11 Dirk Muthig (2002), A Light-weight Approach Facilitating an Evolutionary
Transition Towards Software Product Lines

Volume 12 Klaus Schmid (2003), Planning Software Reuse – A Disciplined Scoping
Approach for Software Product Lines

Volume 13 Jörg Zettel (2003), Anpassbare Methodenassistenz in CASE-Werkzeugen

Volume 14 Ulrike Becker-Kornstaedt (2004), Prospect: a Method for Systematic
Elicitation of Software Processes

Volume 15 Joachim Bayer (2004), View-Based Software Documentation

Volume 16 Markus Nick (2005), Experience Maintenance through Closed-Loop
Feedback

Volume 17 Jean-François Girard (2005), ADORE-AR: Software Architecture
Reconstruction with Partitioning and Clustering

Volume 18 Ramin Tavakoli Kolagari (2006), Requirements Engineering für Software-
Produktlinien eingebetteter, technischer Systeme

Volume 19 Dirk Hamann (2006), Towards an Integrated Approach for Software
Process Improvement: Combining Software Process Assessment and
Software Process Modeling

Volume 20 Bernd Freimut (2006), MAGIC: A Hybrid Modeling Approach for
Optimizing Inspection Cost-Effectiveness

Volume 21 Mark Müller (2006), Analyzing Software Quality Assurance Strategies
through Simulation. Development and Empirical Validation of a Simulation
Model in an Industrial Software Product Line Organization

Volume 22 Holger Diekmann (2008), Software Resource Consumption Engineering for
Mass Produced Embedded System Families

Volume 23 Adam Trendowicz (2008), Software Effort Estimation with Well-Founded
Causal Models

Volume 24 Jens Heidrich (2008), Goal-oriented Quantitative Software Project Control

Volume 25 Alexis Ocampo (2008), The REMIS Approach to Rationale-based Support
for Process Model Evolution

Volume 26 Marcus Trapp (2008), Generating User Interfaces for Ambient Intelligence
Systems; Introducing Client Types as Adaptation Factor

Volume 27 Christian Denger (2009), SafeSpection – A Framework for Systematization
and Customization of Software Hazard Identification by Applying Inspection
Concepts

Volume 28 Andreas Jedlitschka (2009), An Empirical Model of Software Managers’
Information Needs for Software Engineering Technology Selection
A Framework to Support Experimentally-based Software Engineering
Technology Selection

Volume 29 Eric Ras (2009), Learning Spaces: Automatic Context-Aware Enrichment of
Software Engineering Experience

Volume 30 Isabel John (2009), Pattern-based Documentation Analysis for Software
Product Lines

Volume 31 Martín Soto (2009), The DeltaProcess Approach to Systematic Software
Process Change Management

Volume 32 Ove Armbrust (2010), The SCOPE Approach for Scoping Software
Processes

Volume 33 Thorsten Keuler (2010), An Aspect-Oriented Approach for Improving
Architecture Design Efficiency

Volume 34 Jörg Dörr (2010), Elicitation of a Complete Set of Non-Functional
Requirements

Volume 35 Jens Knodel (2010), Sustainable Structures in Software Implementations by
Live Compliance Checking

Volume 36 Thomas Patzke (2011), Sustainable Evolution of Product Line Infrastructure
Code

Volume 37 Ansgar Lamersdorf (2011), Model-based Decision Support of Task
Allocation in Global Software Development

Volume 38 Ralf Carbon (2011), Architecture-Centric Software Producibility Analysis

Volume 39 Florian Schmidt (2012), Funktionale Absicherung kamerabasierter Aktiver
Fahrerassistenzsysteme durch Hardware-in the-Loop-Tests

Volume 40 Frank Elberzhager (2012), A Systematic Integration of Inspection and
Testing Processes for Focusing Testing Activities

Volume 41 Matthias Naab (2012), Enhancing Architecture Design Methods for
Improved Flexibility in Long-Living Information Systems

Volume 42 Marcus Ciolkowski (2012), An Approach for Quantitative Aggregation of
Evidence from Controlled Experiments in Software Engineering

Volume 43 Igor Menzel (2012), Optimizing the Completeness of Textual Requirements
Documents in Practice

Volume 44 Sebastian Adam (2012), Incorporating Software Product Line Knowledge
into Requirements Processes

Vol. 44

Sebastian Adam

Incorporating Software
Product Line Knowledge into
Requirements Processes

Editor-in-Chief: Prof. Dr. Dieter Rombach
Editorial Board: Prof. Dr. Frank Bomarius

Prof. Dr. Peter Liggesmeyer
Prof. Dr. Dieter Rombach

V
o

l. 44 Seb
astian

 A
d

am
In

co
rp

o
ratin

g
 So

ftw
are Pro

d
u

ct Lin
e K

n
o

w
led

g
e in

to
 R

eq
u

irem
en

ts Pro
cesses

Ph
D

 Th
eses in

 Exp
erim

en
tal So

ftw
are En

g
in

eerin
gPh

D
 T

h
es

es
 in

 E
xp

er
im

en
ta

l S
o

ft
w

ar
e

En
g

in
ee

ri
n

gSoftware Engineering has become one of the major foci of Computer
Science research in Kaiserslautern, Germany. Both the University of
Kaiserslautern‘s Computer Science Department and the Fraunhofer

Institute for Experimental Software Engineering (IESE) conduct re-
search that subscribes to the development of complex software ap-
plications based on engineering principles. This requires system and
process models for managing complexity, methods and techniques
for ensuring product and process quality, and scalable formal meth-
ods for modeling and simulating system behavior. To understand the
potential and limitations of these technologies, experiments need to
be conducted for quantitative and qualitative evaluation and improve-
ment. This line of software engineering research, which is based on
the experimental scientific paradigm, is referred to as ‘Experimental
Software Engineering‘.
In this series, we publish PhD theses from the Fraunhofer Institute for
Experimental Software Engineering (IESE) and from the Software En-
gineering Research Groups of the Computer Science Department at
the University of Kaiserslautern. PhD theses that originate elsewhere
can be included, if accepted by the Editorial Board.

Editor-in-Chief: Prof. Dr. Dieter Rombach
Executive Director of Fraunhofer IESE and Head of the AGSE Group
of the Computer Science Department, University of Kaiserslautern

Editorial Board Member: Prof. Dr. Peter Liggesmeyer
Scientific Director of Fraunhofer IESE and Head of the AGDE Group
of the Computer Science Department, University of Kaiserslautern

Editorial Board Member: Prof. Dr. Frank Bomarius
Deputy Director of Fraunhofer IESE and Professor for Computer Sci-
ence at the Department of Engineering, University of Applied Sci-
ences, Kaiserslautern

ag Software engineering

ISBN 978-3-8396-0514-1

9 7 8 3 8 3 9 6 0 5 1 4 1
FraunhoFer Verlag

