
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of
existing products for an assembly oriented product family identification

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

Keywords: Assembly; Design method; Family identification

1. Introduction

Due to the fast development in the domain of
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global
competition with competitors all over the world. This trend,
which is inducing the development from macro to micro
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1].
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find.

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical).

Classical methodologies considering mainly single products
or solitary, already existing product families analyze the
product structure on a physical level (components level) which
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this

Procedia CIRP 79 (2019) 596–601

2212-8271 © 2019 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 12th CIRP Conference on Intelligent Computation in Manufacturing Engineering.
10.1016/j.procir.2019.02.084

12th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 18-20 July 2018,
Gulf of Naples, Italy

© 2019 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 12th CIRP Conference on Intelligent Computation in Manufacturing Engineering.

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2018) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering.

12th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME '18

Implementation of the MIALinx integration concept for future
manufacturing environments to enable retrofitting of machines

Dominik Luckea, c, *, Peter Einbergera, Daniel Schela, Michael Luckerta, Matthias Schneidera,
Emir Cuka, Thomas Bauernhansla, Matthias Wielandb, Frank Steimleb, Bernhard Mitschangb

aFraunhofer Institute for Manufacturing Engineering and Automation IPA, Nobelstraße 12, 70569 Stuttgart, Germany,
bUniversity of Stuttgart, Institute for Parallel and Distributed Systems (IPVS), Universitätsstraße 38, 70569 Stuttgart, Germany

cHochschule Reutlingen, ESB Business School, Alteburgstr. 150, 72762 Reutlingen, Germany

* Corresponding author. Tel.: +49-711-970-1897; fax: +49-711-970-3606. E-mail address: dominik.lucke@ipa.fraunhofer.de

Abstract

Manufacturing has to adapt to changing situations in order to stay competitive. It demands a flexible and easy-to-use integration of production
equipment and ICT systems. The contribution of this paper is the presentation of the implementation of the Manufacturing Integration Assistant
(MIALinx). The integration steps range from integrating sensors over collecting and rule-based processing of sensor information to the execution
of required actions. Furthermore, we describe the implementation of MIALinx by commissioning it in a manufacturing environment to retrofit
legacy machines for Industrie 4.0. Finally, we validate the suitability of our approach by applying our solution in a medium-size company.
© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 12th CIRP Conference on Intelligent Computation in Manufacturing
Engineering.

 Keywords: Manufacturing, Smart factory, Industrie 4.0, Manufacturing service bus, Rules, Integration, MIALinx

1. Introduction

The trends of the market towards personalized products and
shorter product life cycles pressures a company’s
manufacturing to continuously change and adapt. To stay
competitive, these changes have to be executed in a highly
effective manner. Therefore, one key element is the availability
of current information on the different manufacturing levels
starting from technical processes, single machine components,
the shop floor and the associated business processes. Based on
the gathered information, production processes can be
controlled and optimized; in a first step by humans, while later
on, machines can cooperatively organize themselves over the
complete life cycle of products, factories and processes. This
vision is enabled by massively applying information and
communication technologies (ICT) and will ultimately change
the way that products will be produced in the future. Therefore,
legacy as well as modern, state of the art machines need to be
integrated into the future production environment. To achieve
this goal, retrofitting and integrating legacy machines and

equipment are substantial. In this context, retrofitting focuses
on the process of enhancing existing machinery to provide
current information about its status.

While there are several approaches for how to extract
different information from heterogeneous sources like sensors,
machine controls or enterprise resource planning (ERP)
systems, effectively integrating and utilizing this information
remains a critical challenge. To address this issue, we
previously presented the concept of the Manufacturing
Integration Assistant (MIALinx) [1], [2], a lightweight and
easy-to-use information and communication technology
integration solution. It supports rule-based self-organization for
manufacturing processes by modeling simple, reusable “IF-
THEN” rules that link events in a manufacturing environment
with corresponding actions. It is crucial to MIALinx that even
persons without programming knowledge are able to program
rules linking sensors and actuators flexibly to their current
needs. Examples for sensors are electrical current and voltage,
temperatures, but also database entries or production orders.
Examples for actuators are linear axis, signal lights, emails or a

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2018) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering.

12th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME '18

Implementation of the MIALinx integration concept for future
manufacturing environments to enable retrofitting of machines

Dominik Luckea, c, *, Peter Einbergera, Daniel Schela, Michael Luckerta, Matthias Schneidera,
Emir Cuka, Thomas Bauernhansla, Matthias Wielandb, Frank Steimleb, Bernhard Mitschangb

aFraunhofer Institute for Manufacturing Engineering and Automation IPA, Nobelstraße 12, 70569 Stuttgart, Germany,
bUniversity of Stuttgart, Institute for Parallel and Distributed Systems (IPVS), Universitätsstraße 38, 70569 Stuttgart, Germany

cHochschule Reutlingen, ESB Business School, Alteburgstr. 150, 72762 Reutlingen, Germany

* Corresponding author. Tel.: +49-711-970-1897; fax: +49-711-970-3606. E-mail address: dominik.lucke@ipa.fraunhofer.de

Abstract

Manufacturing has to adapt to changing situations in order to stay competitive. It demands a flexible and easy-to-use integration of production
equipment and ICT systems. The contribution of this paper is the presentation of the implementation of the Manufacturing Integration Assistant
(MIALinx). The integration steps range from integrating sensors over collecting and rule-based processing of sensor information to the execution
of required actions. Furthermore, we describe the implementation of MIALinx by commissioning it in a manufacturing environment to retrofit
legacy machines for Industrie 4.0. Finally, we validate the suitability of our approach by applying our solution in a medium-size company.
© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 12th CIRP Conference on Intelligent Computation in Manufacturing
Engineering.

 Keywords: Manufacturing, Smart factory, Industrie 4.0, Manufacturing service bus, Rules, Integration, MIALinx

1. Introduction

The trends of the market towards personalized products and
shorter product life cycles pressures a company’s
manufacturing to continuously change and adapt. To stay
competitive, these changes have to be executed in a highly
effective manner. Therefore, one key element is the availability
of current information on the different manufacturing levels
starting from technical processes, single machine components,
the shop floor and the associated business processes. Based on
the gathered information, production processes can be
controlled and optimized; in a first step by humans, while later
on, machines can cooperatively organize themselves over the
complete life cycle of products, factories and processes. This
vision is enabled by massively applying information and
communication technologies (ICT) and will ultimately change
the way that products will be produced in the future. Therefore,
legacy as well as modern, state of the art machines need to be
integrated into the future production environment. To achieve
this goal, retrofitting and integrating legacy machines and

equipment are substantial. In this context, retrofitting focuses
on the process of enhancing existing machinery to provide
current information about its status.

While there are several approaches for how to extract
different information from heterogeneous sources like sensors,
machine controls or enterprise resource planning (ERP)
systems, effectively integrating and utilizing this information
remains a critical challenge. To address this issue, we
previously presented the concept of the Manufacturing
Integration Assistant (MIALinx) [1], [2], a lightweight and
easy-to-use information and communication technology
integration solution. It supports rule-based self-organization for
manufacturing processes by modeling simple, reusable “IF-
THEN” rules that link events in a manufacturing environment
with corresponding actions. It is crucial to MIALinx that even
persons without programming knowledge are able to program
rules linking sensors and actuators flexibly to their current
needs. Examples for sensors are electrical current and voltage,
temperatures, but also database entries or production orders.
Examples for actuators are linear axis, signal lights, emails or a

	 Dominik Lucke et al. / Procedia CIRP 79 (2019) 596–601� 597
 D. Lucke et al. / Procedia CIRP 00 (2018) 000–000

maintenance demand message generator for computerized
maintenance management systems (CMMS) or ERP systems.

In this paper, we present the implemented architecture of
MIALinx and describe the application in a manufacturing
environment, where MIALinx is used to retrofit legacy
machines and integrate them in a modern Industrie 4.0
environment.

2. Related work

Currently, most factories have a very heterogeneous ICT
landscape. As an example, ERP systems, manufacturing
execution systems (MES) or machines from different vendors
are used and must be integrated e.g. using point-to-point
bridges [3]. This approach is hard to maintain and is not
supporting the visual modeling of integration rules by domain
experts. Recently, approaches for standardizing and
simplifying the integration are built based on the service-
oriented architecture (SOA) paradigm. Enterprise service buses
(ESB) [4] or specialized manufacturing service buses (MSB)
[5] are offering such functionality. In our approach we build on
top of the Virtual Fort Knox (VFK) [6] – which hosts an MSB
– for executing rules and integrating sensors, actors and
services.

For the Internet of Things (IoT), a huge number of concepts
and tools for sensor modelling and integration have been
proposed: SensorML [7] for an example is an extensible XML-
based language for modelling sensors and their characteristics.
Furthermore, there are approaches like SitOPT that allow
modelling of aggregated sensor events by executing complex
events using so-called Situation Templates [8]. In related work
sensor platforms like OpenMTC [9], OpenIoT [10] or
FIWARE [11] were introduced for the management of sensor
information or sensor networks [12], [13]. These approaches
are very generic and not easy to integrate with legacy machines
and hardware in manufacturing environments. In MIALinx,
sensor information is modelled and accessed using so-called
smart services which were presented in earlier work [2]. For
further improvement, we now present an approach on how to
retrofit legacy machines with sensors and show how to
implement specialized adapters to gain status information of
legacy machines.

After the integration of the sensors, the information has to be
processed. For a rule-based processing, two areas are relevant:
1) modeling of rules and 2) rule-execution. Paschke and
Kozlenkov [14] provide an overview of existing types of
executable rules. For the execution of rules many rule engines
like Jess [15] or Drools [16] are available and support complex
rules. However, they do not provide a visual modeling of the
rules. The project UC4 Decision System [17] has a similar goal
as MIALinx and also provides a web-based modeling approach.
However, the UC4 system focuses more on business rules. For
modeling and execution of rules web automation platforms like
IFTTT [18], or Zapier [19] are existing. They allow users the
integration of different IT systems without any programming
skills. However, they are not adapted to the use for the

integration of machines, sensors, or actuators as needed in
manufacturing environments.

3. MIALinx Concept

In future manufacturing environments, the capability to
adapt to changing requirements will be vital to stay
competitive. One approach to achieve this is the massive
application of sensors and ICT. The fundamental idea of this
approach is a flexible integration of sensor-equipped assets
(machines, tools, but also ICT systems) on the shop floor with
ICT systems. This integration could be realized by workflow
technology, e.g. BPEL. However, a workflow-based approach
has a drawback: It requires extensive knowledge of
manufacturing workers on the one hand and skilled
programmers that are able to adjust the existing solution on the
other. This means, once workers identify the need to change the
environment, they depend on the IT department to implement
this change. In most companies, this process is time-consuming
and slow.

To overcome this drawback, we introduced the MIALinx
concept in previous work [1]. Our approach splits the
integration effort in two tasks. The first task is making the
assets available in the MIALinx environment. That is, the
programmer is implementing a smart service. A smart service
is an administration shell, which implements the access to get
the information from the source (sensor or ICT system) or a
logic operation between different sources. This should be
executed when the smart service gets a specific command from
the MIALinx environment. When all assets were made
available to the environment, the second task for the workers is
to define the current requirements to the environment [2].

Workers can specify these requirements by defining simple
and reusable “IF-THEN” rules. Such a rule links events that
occur in manufacturing environments to corresponding actions.
The main advantage of this approach is that workers can easily
create new rules or alter existing rules without any deep
programming knowledge. A rule consists of four integral parts:

• The sensor: The sensor information is the input of a rule. It

describes which asset of the manufacturing environment can
trigger the rule. This not necessarily needs to be a physical
sensor, such as temperature or vibration sensor. It is also
possible that the triggering asset is an ICT system, such as a
stock level or a production order status in an ERP system.
Basically, everything that produces information in a
manufacturing environment can be used as a sensor.

598	 Dominik Lucke et al. / Procedia CIRP 79 (2019) 596–601 D. Lucke et al. / Procedia CIRP 00 (2018) 000–000

• The actuator: The actuator is the output of a rule. It describes
which asset is activated if the rule is executed. An actuator
can be everything that can consume information. It could be
a machine, parts of a machine like a signal light, a linear
axis, or an ICT system like an ERP system.

• A set of conditions: This set describes the circumstances
under which the rule is executed. A single condition is a
triple consisting of a parameter name, a comparator, and a
comparison value. An example for a condition would be
(contamination, >, 25%). When a certain sensor publishes
new event information to the MIALinx environment,
MIALinx will first look for rules, which use this sensor and
trigger them. Triggered rules will evaluate their set of
conditions. If there is a set of conditions, whose members all
evaluate to true, this rule will be executed. Our model
ensures that all parameter names used in conditions can be
matched to values of the sensor.

• An action configuration: The action configuration describes
the action that should be executed by the actuator when the
rule is executed. The configuration consists of key value
pairs that are sent to the involved actuator.

These four parts can be combined to a rule saying: “If the

involved sensor sends new information and all conditions are
met, then send the action configuration to the given actuator”.

The overall architecture of MIALinx is shown in Figure 1.
Our architecture consists of the following components: The
rule modeling frontend, the rule configurator, the rule catalog,
the rule execution environment, and the manufacturing service
bus, which acts as the integration layer for all sensors, actuators
and services. The rule configurator provides functions to create

and edit rules. Each rule is saved to the rule catalog. Once the
user decides to deploy a rule it has to be transformed into an
executable form. This is done by the rule to integration flow
transformation. Another important task of the rule configurator
is detecting rule conflicts. This is done by the rule verifier, but
this is not scope of this paper. All the described functions are
encapsulated into a HTTP interface that can be used by
graphical user interfaces. Therefore, our web-based rule
modeling tool is the presentation layer for the rule configurator.
The rule execution environment takes care of evaluating the
rules based on sensor data and triggering actions of actuators if
a rule is evaluated to true. This component consists of three
building blocks: A management API, a rule processing engine,
and a runtime analysis. In our case, the management API and
message processing engine components are implemented with
a manufacturing service bus MSB [20]. This MSB also
simplifies with its integration layer the integration of different
sensors and actuators, which implementation is detailed in
chapter 5.

To make sure our rules can be created or altered by
everybody, we have implemented a mobile-first, intuitive, and
easy-to-use graphical user interface (GUI). Our GUI guides the
user through the process of rule creation (Figure 2). When a
user wants to create a new rule, s/he starts by picking a sensor
from the list (1). In future work, we plan to implement a further
text field to search for a certain sensor. Furthermore, we plan
to use context information like position to place currently
recommended sensors on top of the list. After s/he has chosen
a sensor, it is possible to select a parameter (2) of the sensor to
define a condition (3). As soon as at least one condition is
created, there are two options to select an actuator. The first one

Fig. 1. Extended architecture of MIALinx based on [1]

ERP RFID PLC

ERP RFID PLC …

E-Mail DBCMMS

Rule Catalog

Rule
Modeling
Frontend

Rule Configurator

…

…

E-Mail CMMS DB …
(Actuator)

Adapter Layer

(Sensor)
Adapter Layer

Integration Layer

Sensors

Actuators
RFID: Radio Frequency Identification
DB: Database
PLC: Programmable Logic Controller
CMMS: Computerized Maintenance Management System

Legend:
Data Flow
Integration
External Systems and Devices
MIALinx Components

Manufacturing Service Bus

Rule Execution Environment

Integration
Flow Execution

Management
Frontend and

API

Runtime
Analysis

Rule Verifier

Rule to Integration Flow
Transformation

	 Dominik Lucke et al. / Procedia CIRP 79 (2019) 596–601� 599
 D. Lucke et al. / Procedia CIRP 00 (2018) 000–000

is similar to the sensor selection step: The user can select an
actuator from the list of all available actuators. The second
option is selecting an actuator from the recommendation list.
Each sensor has its own recommendation list, where
recommended actuators respectively actuators which are often
used with the selected sensor are listed. When an actuator is
selected, the user needs to decide which action should be
executed, by specifying an action configuration (a set of key
value pairs) which should be sent to the actuator. Then the
created rule can be saved and executed.

4. Use case and hardware setup

To validate our approach, MIALinx is tested in a real
industrial environment in a maintenance use case. In the field
of maintenance, digital tools such as computerized
maintenance management systems (CMMS) are already being
used. Their main tasks are maintenance planning, work
execution, documentation and spare part management.
Condition monitoring systems complete these systems and
monitor critical components to prevent unplanned failures. As
the application of condition monitoring systems requires still a
quite high effort and expertise they are still used for highly
critical equipment. In our use case we focus on the monitoring
of air filters in electrical cabinets with low cost, add-on sensors
to retrofit legacy machines. Air filters are often critical, as dust
on electrical components causes unforeseen failures. In the
factory where our solution is applied, most air filters of the
current electrical cabinets of the machines have no condition
monitoring.

Currently, for the air filters a fixed, time-based maintenance
strategy is assigned. Since several hundred air filters have to be
regularly controlled manually, this provides potential for
optimization. Currently, regular manual maintenance is
indispensable to ensure the proper operation of the air filters.
The goal is to install with MIALinx a low-priced sensing and
monitoring solution and have it configured by the maintenance
workers themselves according to the current requirements.

Figure 3 depicts an overview of the use case. A color sensor
monitors the air filter of the machine and continuously sends

the information to MIALinx (1). It measures the discoloration
of the air filter that can be used to deduce the degree of
contamination. Additionally, the temperatures are measured
inside and outside of the cabinet in order to consider further
indicators. For sensor data processing and transmission to
MIALinx, all sensors are connected to a low-cost
microcontroller with wireless communication capabilities. In
our case, we used an ESP32 microcontroller with an integrated
Wi-Fi network device, which sends the sensor information to
the gateway component (see section 5) forwarding the received
sensor information to MIALinx.

The maintenance workers (2a) and planners (2b) can create
rules for the maintenance of the air filter, based on their
experience. For the rule creation, two sensors (environmental
temperature and degree of air filter contamination) as well as
three actuators (SMS, mail notification and ERP system
adapter) can be combined. Examples of rules for maintenance
workers and planners are:

• air filter maintenance demand message change rule

– sensor: air filter
– actuator: ERP system
– set of conditions: contamination > 70 %
– action configuration: create a maintenance order in the

ERP system
• air filter stock rule

– sensor: stock
– actuator: Email
– set of conditions: quantity of air filters in stock < 5
– action configuration: send mail notification to the

maintenance planner
• urgent air filter change rule

– sensor: air filter
– actuator: ERP system
– set of conditions: contamination > 95 %

Fig. 2. Creation of a MIALinx rule screenshots of the user interface

Step 1: Select and configure
sensor

Step 2: Set rule conditions Step 3: Select actuator
and configure action

600	 Dominik Lucke et al. / Procedia CIRP 79 (2019) 596–601
 D. Lucke et al. / Procedia CIRP 00 (2018) 000–000

– action configuration: mail notification to the
responsible maintenance worker

The first two rules support the maintenance planner to
schedule the maintenance order in time and to manage the stock
of spare parts (3a, 3b). The third rule prevents overheating and
unplanned shutdowns due to filter clogging, as the responsible
maintenance worker is informed directly about the situation
and can react on time (3c).

The rules can easily be changed, optimized or adapted to
new situations by the workers based on their experience. Due
to the rule creation, the knowledge of the worker is externalized
and available to other workers. They can adapt the rules for
other machines and benefit from the knowledge of more
experienced workers.

There are several possibilities for extending the use case: On
the one hand, additional environmental sensors (e.g. humidity,
air quality) and actuators (e.g. signal lights) can be added to
MIALinx. On the other hand, existing information can be read
out from the control systems (e.g. PLCs). This enables the
consideration of status messages or sensors and allows new
actuators, which are directly connected to machines. This is the
foundation for the already described scenario of production
information acquisition [1]. In our specific use case, the
collected information could be analyzed e.g. to identify
patterns and negative environmental conditions or to evaluate
different filter types.

5. Implementation of the architecture

For our use case the architecture of the manufacturing
service bus (MSB) with its several integration interfaces, such
as RESTful, WebSocket or OPC UA [20], as used in the
original MIALinx design [2], has been extended with a so-
called MSB gateway component. It provides a seamless

connection solution between MIALinx, which is hosted in a
cloud computing environment and production machines that are
often integrated in factory local networks with no internet
access. Apart from smart sensors, the MSB gateway also
connects OPC UA capable machines to the MSB and makes
their information available for MIALinx (Figure 4). Via the
OPC UA client interface component in this MSB gateway, it is
possible to get access to an OPC UA server of a machine in a
closed local network. Further advantage of the MSB gateway
concept are to reduce the outgoing connections of the factory
network by bundled communication between several devices
and services with the MSB. It also helps to avoid new security
problems, compared to a solution that every device or machine

Fig. 4. Manufacturing Service Bus (MSB) architecture for MIALinx

MSB

Machine

OPC UA Server

WebSocket
API

Interface

OPC UA
Server

Interface

OPC UA
Client

Interface

Connected Service
Management Message Processing

Frontend

Broker

RESTful API
Interface

Identity & Permission
Management

…SAP
Interface

Smart Sensor

HTTP Client

MSB Gateway

OPC UA
Client

Interface

Broker

RESTful API
Interface …

Gateway Controller

WAN
LAN

SAP

SOAP WS

Fig. 3: Use case and hardware setup

Maintenance
Worker 1

Maintenance
PlannerMaintenance

Worker 1

MIALinx
Enterprise
Resource
Planning
System

1 2a
Send sensor data

Define rules

2b 3a

3b

3c
Notify about
maintenace
case Schedule

maintenance
demand messages
to orders

Create
Maintenance
demand
message

Microcontroller
Temperature

sensor

Color sensor
Air filter

Notify about
maintenace case

Maintenance
Worker 1

Maintenance
Planner

Maintenance
Worker 2 Machine

	 Dominik Lucke et al. / Procedia CIRP 79 (2019) 596–601� 601
 D. Lucke et al. / Procedia CIRP 00 (2018) 000–000

communicate directly with the MSB. The MSB gateway is
structured similar to the MSB architecture. It consists of a
gateway controller, a broker and the interfaces. The gateway
controller registers itself as a smart service of type gateway via
the WebSocket API interface to the MSB. The gateway
controller presents itself as connected service management and
message processing component to the broker of the MSB
gateway. This enables the reuse of the broker and existing MSB
interfaces.

Using OPC UA as an example, the OPC UA client interface
is able to connects to several OPC UA servers of machines. For
an easy integration then the MSB frontend is used to configure
the subscription of events and the functions for reading and
writing variables of the OPC UA server. The advantage is that
the information, the events and the functions of the configured
smart services can be used by other connected MSB smart
services, so a point-to-point integration of the ICT systems is
obsolete.

It is also often required to integrate existing IT systems; in
our use case, the integration of SAP as ERP system is required.
This requires an SAP Interface as a separate MSB interface. An
SAP instance must be configured so that it makes its BAPI
available as a SOAP-based web service. This SAP web service
is connected to the MSB via the SAP interface. It loads the
WSDL file of the SOAP-based web service and analyzes it for
the self-description required for registration with the MSB. At
MSB level, the SAP web service methods are represented as
functions and can be directly called in the code.

6. Conclusion and future work

In this paper, we show how to integrate sensors installed in
a shop floor with the existing IT systems of a company. We
achieved that by using a service-oriented architecture and a
rule-based approach for modeling the behavior based on smart
services. We enable domain experts to model individual rules
in an easy to use tool. Afterwards, these rules are transformed
into integration flows for the manufacturing service bus. The
manufacturing service bus integrates all sensors, actors and
enterprise IT systems. We apply the presented approach in a
real-world usage scenario based on the needs of small and
medium-sized enterprises SME to improve the production on
the shop floor. The research presented in this paper lowers the
barriers for SMEs to enter the field of Industrie 4.0.

As future work, we plan to deploy MIALinx in the domain
of production information acquisition. Furthermore, the goal is
to provide a catalog of different sets of rules for different use-
cases and domains. Based on our findings, we plan
continuously improve our approach. Finally, we intend to
evaluate multiple business models to find the approach most
suitable for SME. This will lower the effort needed by new
adaptors of MIALinx; hence, they can reuse the rules and adapt
them to their concrete production environment.

Acknowledgement

MIALinx is a joined research and implementation project of
the Fraunhofer Institute for Manufacturing Engineering and
Automation IPA and the Institute for Parallel and Distributed
Systems of the University of Stuttgart. It is funded by the
Baden-Württemberg Stiftung gGmbH.

References

[1] Wieland M, Hirmer P, Steimle F, Gröger C, Mitschang B, Rehder E, et
al. Towards a Rule-based Manufacturing Integration Assistant. Procedia
CIRP 2016; 57: 213–218.

[2] Wieland M, Steimle F, Mitschang B, Lucke D, Einberger P, Schel D, et
al. Rule-Based Integration of Smart Services Using the Manufacturing
Service Bus. Proc. 14th IEEE Int. Conf. Ubiquitous Intell. Comput.
UIC2017, Fremont, USA: 2017, pp. 1–8.

[3] Kletti J. Manufacturing Execution Systems (MES). Berlin; London:
Springer; 2007.

[4] Chappell DA. Enterprise Service Bus. 1st ed. Sebastopol, Calif:
O’Reilly; 2004.

[5] Minguez J, Lucke D, Jakob M, Constantinescu C, Mitschang B.
Introducing SOA into Production Environments - The Manufacturing
Service Bus. Proc. 43rd CIRP Int. Conf. Manuf. Syst., Vienna, Graz,
Austria: 2010, pp. 1117–1124.

[6] Holtewert P, Wutzke R, Seidelmann J, Bauernhansl T. Virtual Fort Knox
Federative, Secure and Cloud-based Platform for Manufacturing.
Procedia CIRP 2013;7:527–32.

[7] Open Geospatial Consortium I. Sensor Model Language (SensorML)
2007.

[8] Hirmer P, Wieland M, Schwarz H, Mitschang B, Breitenbücher U,
Leymann F. SitRS - A Situation Recognition Service based on Modeling
and Executing Situation Templates. In: Barzen J, Khalaf R, Leymann F,
Mitschang B, editors. Proc. 9th Symp. Summer Sch. Serv.-Oriented
Comput., vol. RC25564, IBM Research Report; 2015, pp. 113–127.

[9] Boosting the Development of Innovative M2M and IoT Applications n.d.
http://www.openmtc.org/ (accessed December 18, 2015).

[10] Soldatos J, Kefalakis N, Hauswirth M, Serrano M, Calbimonte J-P, Riahi
M, et al. OpenIoT: Open Source Internet-of-Things in the Cloud. In:
Žarko IP, Pripužić K, Serrano M, editors. Interoperability Open-Source
Solut. Internet Things, Springer International Publishing; 2015, pp. 13–
25.

[11] FIWARE n.d. https://www.fiware.org/ (accessed April 24, 2018).
[12] Aberer K, Hauswirth M, Salehi A. A Middleware for Fast and Flexible

Sensor Network Deployment. Proc. 32Nd Int. Conf. Very Large Data
Bases, Seoul, Korea: VLDB Endowment; 2006, pp. 1199–1202.

[13] Aberer K, Hauswirth M, Salehi A. Invited Talk: Zero-Programming
Sensor Network Deployment. Int. Symp. Appl. Internet Workshop 2007
St. Workshop 2007, 2007, p. 1–1. doi:10.1109/SAINT-W.2007.57.

[14] Paschke A, Kozlenkov A. Rule-Based Event Processing and Reaction
Rules. In: Governatori G, Hall J, Paschke A, editors. Rule Interchange
Appl., Springer Berlin Heidelberg; 2009, pp. 53–66.

[15] Jess, the Rule Engine for the Java Platform n.d. http://jessrules.com/
(accessed April 24, 2018).

[16] Drools - Business Rules Management System (JavaTM, Open Source) n.d.
http://www.drools.org/ (accessed April 24, 2018).

[17] Obweger H, Schiefer J, Suntinger M, Kepplinger P, Rozsnyai S. User-
oriented Rule Management for Event-based Applications. Proc. 5th
ACM Int. Conf. Distrib. Event-Based Syst., New York, NY, USA: ACM;
2011, p. 39–48. doi:10.1145/2002259.2002266.

[18] IFTTT - Make Your Work Flow n.d. https://ifttt.com/ (accessed
December 18, 2017).

[19] The best apps. Better together. - Zapier n.d. https://zapier.com/ (accessed
April 24, 2018).

[20] Schel D, Henkel C, Stock D, Meyer O, Rauhoeft G, Einberger P, Söhr M,
Daxer M, Seidelmann J. Manufacturing Service Bus: an Implementation. In
11th CIRP Conf. Intell. Comput. Manuf. Eng., 2017, pp. 179–184.

