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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction  

The trends of the market towards personalized products and 
shorter product life cycles pressures a company’s 
manufacturing to continuously change and adapt. To stay 
competitive, these changes have to be executed in a highly 
effective manner. Therefore, one key element is the availability 
of current information on the different manufacturing levels 
starting from technical processes, single machine components, 
the shop floor and the associated business processes. Based on 
the gathered information, production processes can be 
controlled and optimized; in a first step by humans, while later 
on, machines can cooperatively organize themselves over the 
complete life cycle of products, factories and processes. This 
vision is enabled by massively applying information and 
communication technologies (ICT) and will ultimately change 
the way that products will be produced in the future. Therefore, 
legacy as well as modern, state of the art machines need to be 
integrated into the future production environment. To achieve 
this goal, retrofitting and integrating legacy machines and 

equipment are substantial. In this context, retrofitting focuses 
on the process of enhancing existing machinery to provide 
current information about its status.  

While there are several approaches for how to extract 
different information from heterogeneous sources like sensors, 
machine controls or enterprise resource planning (ERP) 
systems, effectively integrating and utilizing this information 
remains a critical challenge. To address this issue, we 
previously presented the concept of the Manufacturing 
Integration Assistant (MIALinx) [1], [2], a lightweight and 
easy-to-use information and communication technology 
integration solution. It supports rule-based self-organization for 
manufacturing processes by modeling simple, reusable “IF-
THEN” rules that link events in a manufacturing environment 
with corresponding actions. It is crucial to MIALinx that even 
persons without programming knowledge are able to program 
rules linking sensors and actuators flexibly to their current 
needs. Examples for sensors are electrical current and voltage, 
temperatures, but also database entries or production orders. 
Examples for actuators are linear axis, signal lights, emails or a 
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1. Introduction  

The trends of the market towards personalized products and 
shorter product life cycles pressures a company’s 
manufacturing to continuously change and adapt. To stay 
competitive, these changes have to be executed in a highly 
effective manner. Therefore, one key element is the availability 
of current information on the different manufacturing levels 
starting from technical processes, single machine components, 
the shop floor and the associated business processes. Based on 
the gathered information, production processes can be 
controlled and optimized; in a first step by humans, while later 
on, machines can cooperatively organize themselves over the 
complete life cycle of products, factories and processes. This 
vision is enabled by massively applying information and 
communication technologies (ICT) and will ultimately change 
the way that products will be produced in the future. Therefore, 
legacy as well as modern, state of the art machines need to be 
integrated into the future production environment. To achieve 
this goal, retrofitting and integrating legacy machines and 

equipment are substantial. In this context, retrofitting focuses 
on the process of enhancing existing machinery to provide 
current information about its status.  

While there are several approaches for how to extract 
different information from heterogeneous sources like sensors, 
machine controls or enterprise resource planning (ERP) 
systems, effectively integrating and utilizing this information 
remains a critical challenge. To address this issue, we 
previously presented the concept of the Manufacturing 
Integration Assistant (MIALinx) [1], [2], a lightweight and 
easy-to-use information and communication technology 
integration solution. It supports rule-based self-organization for 
manufacturing processes by modeling simple, reusable “IF-
THEN” rules that link events in a manufacturing environment 
with corresponding actions. It is crucial to MIALinx that even 
persons without programming knowledge are able to program 
rules linking sensors and actuators flexibly to their current 
needs. Examples for sensors are electrical current and voltage, 
temperatures, but also database entries or production orders. 
Examples for actuators are linear axis, signal lights, emails or a 
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maintenance demand message generator for computerized 
maintenance management systems (CMMS) or ERP systems. 

In this paper, we present the implemented architecture of 
MIALinx and describe the application in a manufacturing 
environment, where MIALinx is used to retrofit legacy 
machines and integrate them in a modern Industrie 4.0 
environment.  

2. Related work  

Currently, most factories have a very heterogeneous ICT 
landscape. As an example, ERP systems, manufacturing 
execution systems (MES) or machines from different vendors 
are used and must be integrated e.g. using point-to-point 
bridges [3]. This approach is hard to maintain and is not 
supporting the visual modeling of integration rules by domain 
experts. Recently, approaches for standardizing and 
simplifying the integration are built based on the service-
oriented architecture (SOA) paradigm. Enterprise service buses 
(ESB) [4] or specialized manufacturing service buses (MSB) 
[5] are offering such functionality. In our approach we build on 
top of the Virtual Fort Knox (VFK) [6] – which hosts an MSB 
– for executing rules and integrating sensors, actors and 
services.  

For the Internet of Things (IoT), a huge number of concepts 
and tools for sensor modelling and integration have been 
proposed: SensorML [7] for an example is an extensible XML-
based language for modelling sensors and their characteristics. 
Furthermore, there are approaches like SitOPT that allow 
modelling of aggregated sensor events by executing complex 
events using so-called Situation Templates [8]. In related work 
sensor platforms like OpenMTC [9], OpenIoT [10] or 
FIWARE [11] were introduced for the management of sensor 
information or sensor networks [12], [13]. These approaches 
are very generic and not easy to integrate with legacy machines 
and hardware in manufacturing environments. In MIALinx, 
sensor information is modelled and accessed using so-called 
smart services which were presented in earlier work [2]. For 
further improvement, we now present an approach on how to 
retrofit legacy machines with sensors and show how to 
implement specialized adapters to gain status information of 
legacy machines. 

After the integration of the sensors, the information has to be 
processed. For a rule-based processing, two areas are relevant: 
1) modeling of rules and 2) rule-execution. Paschke and 
Kozlenkov [14] provide an overview of existing types of 
executable rules. For the execution of rules many rule engines 
like Jess [15] or Drools [16] are available and support complex 
rules. However, they do not provide a visual modeling of the 
rules. The project UC4 Decision System [17] has a similar goal 
as MIALinx and also provides a web-based modeling approach. 
However, the UC4 system focuses more on business rules. For 
modeling and execution of rules web automation platforms like 
IFTTT [18], or Zapier [19] are existing. They allow users the 
integration of different IT systems without any programming 
skills. However, they are not adapted to the use for the 

integration of machines, sensors, or actuators as needed in 
manufacturing environments.  

3. MIALinx Concept  

In future manufacturing environments, the capability to 
adapt to changing requirements will be vital to stay 
competitive. One approach to achieve this is the massive 
application of sensors and ICT. The fundamental idea of this 
approach is a flexible integration of sensor-equipped assets 
(machines, tools, but also ICT systems) on the shop floor with 
ICT systems. This integration could be realized by workflow 
technology, e.g. BPEL. However, a workflow-based approach 
has a drawback: It requires extensive knowledge of 
manufacturing workers on the one hand and skilled 
programmers that are able to adjust the existing solution on the 
other. This means, once workers identify the need to change the 
environment, they depend on the IT department to implement 
this change. In most companies, this process is time-consuming 
and slow. 

To overcome this drawback, we introduced the MIALinx 
concept in previous work [1]. Our approach splits the 
integration effort in two tasks. The first task is making the 
assets available in the MIALinx environment. That is, the 
programmer is implementing a smart service. A smart service 
is an administration shell, which implements the access to get 
the information from the source (sensor or ICT system) or a 
logic operation between different sources. This should be 
executed when the smart service gets a specific command from 
the MIALinx environment. When all assets were made 
available to the environment, the second task for the workers is 
to define the current requirements to the environment [2].  

Workers can specify these requirements by defining simple 
and reusable “IF-THEN” rules. Such a rule links events that 
occur in manufacturing environments to corresponding actions. 
The main advantage of this approach is that workers can easily 
create new rules or alter existing rules without any deep 
programming knowledge. A rule consists of four integral parts: 

 
• The sensor: The sensor information is the input of a rule. It 

describes which asset of the manufacturing environment can 
trigger the rule. This not necessarily needs to be a physical 
sensor, such as temperature or vibration sensor. It is also 
possible that the triggering asset is an ICT system, such as a 
stock level or a production order status in an ERP system. 
Basically, everything that produces information in a 
manufacturing environment can be used as a sensor. 
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• The actuator: The actuator is the output of a rule. It describes 
which asset is activated if the rule is executed. An actuator 
can be everything that can consume information. It could be 
a machine, parts of a machine like a signal light, a linear 
axis, or an ICT system like an ERP system. 

• A set of conditions: This set describes the circumstances 
under which the rule is executed. A single condition is a 
triple consisting of a parameter name, a comparator, and a 
comparison value. An example for a condition would be 
(contamination, >, 25%). When a certain sensor publishes 
new event information to the MIALinx environment, 
MIALinx will first look for rules, which use this sensor and 
trigger them. Triggered rules will evaluate their set of 
conditions. If there is a set of conditions, whose members all 
evaluate to true, this rule will be executed. Our model 
ensures that all parameter names used in conditions can be 
matched to values of the sensor. 

• An action configuration: The action configuration describes 
the action that should be executed by the actuator when the 
rule is executed. The configuration consists of key value 
pairs that are sent to the involved actuator. 
 
These four parts can be combined to a rule saying: “If the 

involved sensor sends new information and all conditions are 
met, then send the action configuration to the given actuator”. 

The overall architecture of MIALinx is shown in Figure 1. 
Our architecture consists of the following components: The 
rule modeling frontend, the rule configurator, the rule catalog, 
the rule execution environment, and the manufacturing service 
bus, which acts as the integration layer for all sensors, actuators 
and services. The rule configurator provides functions to create 

and edit rules. Each rule is saved to the rule catalog. Once the 
user decides to deploy a rule it has to be transformed into an 
executable form. This is done by the rule to integration flow 
transformation. Another important task of the rule configurator 
is detecting rule conflicts. This is done by the rule verifier, but 
this is not scope of this paper. All the described functions are 
encapsulated into a HTTP interface that can be used by 
graphical user interfaces. Therefore, our web-based rule 
modeling tool is the presentation layer for the rule configurator. 
The rule execution environment takes care of evaluating the 
rules based on sensor data and triggering actions of actuators if 
a rule is evaluated to true. This component consists of three 
building blocks: A management API, a rule processing engine, 
and a runtime analysis. In our case, the management API and 
message processing engine components are implemented with 
a manufacturing service bus MSB [20]. This MSB also 
simplifies with its integration layer the integration of different 
sensors and actuators, which implementation is detailed in 
chapter 5. 

To make sure our rules can be created or altered by 
everybody, we have implemented a mobile-first, intuitive, and 
easy-to-use graphical user interface (GUI). Our GUI guides the 
user through the process of rule creation (Figure 2). When a 
user wants to create a new rule, s/he starts by picking a sensor 
from the list (1). In future work, we plan to implement a further 
text field to search for a certain sensor. Furthermore, we plan 
to use context information like position to place currently 
recommended sensors on top of the list. After s/he has chosen 
a sensor, it is possible to select a parameter (2) of the sensor to 
define a condition (3). As soon as at least one condition is 
created, there are two options to select an actuator. The first one 

 

Fig. 1. Extended architecture of MIALinx based on [1]  
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is similar to the sensor selection step: The user can select an 
actuator from the list of all available actuators. The second 
option is selecting an actuator from the recommendation list. 
Each sensor has its own recommendation list, where 
recommended actuators respectively actuators which are often 
used with the selected sensor are listed. When an actuator is 
selected, the user needs to decide which action should be 
executed, by specifying an action configuration (a set of key 
value pairs) which should be sent to the actuator. Then the 
created rule can be saved and executed.  

4. Use case and hardware setup  

To validate our approach, MIALinx is tested in a real 
industrial environment in a maintenance use case. In the field 
of maintenance, digital tools such as computerized 
maintenance management systems (CMMS) are already being 
used. Their main tasks are maintenance planning, work 
execution, documentation and spare part management. 
Condition monitoring systems complete these systems and 
monitor critical components to prevent unplanned failures. As 
the application of condition monitoring systems requires still a 
quite high effort and expertise they are still used for highly 
critical equipment. In our use case we focus on the monitoring 
of air filters in electrical cabinets with low cost, add-on sensors 
to retrofit legacy machines. Air filters are often critical, as dust 
on electrical components causes unforeseen failures. In the 
factory where our solution is applied, most air filters of the 
current electrical cabinets of the machines have no condition 
monitoring.  

Currently, for the air filters a fixed, time-based maintenance 
strategy is assigned. Since several hundred air filters have to be 
regularly controlled manually, this provides potential for 
optimization. Currently, regular manual maintenance is 
indispensable to ensure the proper operation of the air filters. 
The goal is to install with MIALinx a low-priced sensing and 
monitoring solution and have it configured by the maintenance 
workers themselves according to the current requirements.  

Figure 3 depicts an overview of the use case. A color sensor 
monitors the air filter of the machine and continuously sends 

the information to MIALinx (1). It measures the discoloration 
of the air filter that can be used to deduce the degree of 
contamination. Additionally, the temperatures are measured 
inside and outside of the cabinet in order to consider further 
indicators. For sensor data processing and transmission to 
MIALinx, all sensors are connected to a low-cost 
microcontroller with wireless communication capabilities. In 
our case, we used an ESP32 microcontroller with an integrated 
Wi-Fi network device, which sends the sensor information to 
the gateway component (see section 5) forwarding the received 
sensor information to MIALinx. 

The maintenance workers (2a) and planners (2b) can create 
rules for the maintenance of the air filter, based on their 
experience. For the rule creation, two sensors (environmental 
temperature and degree of air filter contamination) as well as 
three actuators (SMS, mail notification and ERP system 
adapter) can be combined. Examples of rules for maintenance 
workers and planners are: 

 
• air filter maintenance demand message change rule 

– sensor: air filter 
– actuator: ERP system 
– set of conditions: contamination > 70 % 
– action configuration: create a maintenance order in the 

ERP system 
• air filter stock rule 

– sensor: stock 
– actuator: Email 
– set of conditions: quantity of air filters in stock < 5 
– action configuration: send mail notification to the 

maintenance planner 
• urgent air filter change rule 

– sensor: air filter 
– actuator: ERP system 
– set of conditions: contamination > 95 % 

 

Fig. 2. Creation of a MIALinx rule screenshots of the user interface 

Step 1: Select and configure
sensor

Step 2: Set rule conditions Step 3: Select actuator
and configure action
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– action configuration: mail notification to the 
responsible maintenance worker 
 

The first two rules support the maintenance planner to 
schedule the maintenance order in time and to manage the stock 
of spare parts (3a, 3b). The third rule prevents overheating and 
unplanned shutdowns due to filter clogging, as the responsible 
maintenance worker is informed directly about the situation 
and can react on time (3c). 

The rules can easily be changed, optimized or adapted to 
new situations by the workers based on their experience. Due 
to the rule creation, the knowledge of the worker is externalized 
and available to other workers. They can adapt the rules for 
other machines and benefit from the knowledge of more 
experienced workers. 

There are several possibilities for extending the use case: On 
the one hand, additional environmental sensors (e.g. humidity, 
air quality) and actuators (e.g. signal lights) can be added to 
MIALinx. On the other hand, existing information can be read 
out from the control systems (e.g. PLCs). This enables the 
consideration of status messages or sensors and allows new 
actuators, which are directly connected to machines. This is the 
foundation for the already described scenario of production 
information acquisition [1]. In our specific use case, the 
collected information could be analyzed e.g. to identify 
patterns and negative environmental conditions or to evaluate 
different filter types. 

5.  Implementation of the architecture 

For our use case the architecture of the manufacturing 
service bus (MSB) with its several integration interfaces, such 
as RESTful, WebSocket or OPC UA [20], as used in the 
original MIALinx design [2], has been extended with a so- 
called MSB gateway component. It provides a seamless 

connection solution between MIALinx, which is hosted in a 
cloud computing environment and production machines that are 
often integrated in factory local networks with no internet 
access. Apart from smart sensors, the MSB gateway also 
connects OPC UA capable machines to the MSB and makes 
their information available for MIALinx (Figure 4). Via the 
OPC UA client interface component in this MSB gateway, it is 
possible to get access to an OPC UA server of a machine in a 
closed local network. Further advantage of the MSB gateway 
concept are to reduce the outgoing connections of the factory 
network by bundled communication between several devices 
and services with the MSB. It also helps to avoid new security 
problems, compared to a solution that every device or machine 

 

Fig. 4. Manufacturing Service Bus (MSB) architecture for MIALinx 
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communicate directly with the MSB. The MSB gateway is 
structured similar to the MSB architecture. It consists of a 
gateway controller, a broker and the interfaces. The gateway 
controller registers itself as a smart service of type gateway via 
the WebSocket API interface to the MSB. The gateway 
controller presents itself as connected service management and 
message processing component to the broker of the MSB 
gateway. This enables the reuse of the broker and existing MSB 
interfaces.  

Using OPC UA as an example, the OPC UA client interface 
is able to connects to several OPC UA servers of machines. For 
an easy integration then the MSB frontend is used to configure 
the subscription of events and the functions for reading and 
writing variables of the OPC UA server. The advantage is that 
the information, the events and the functions of the configured 
smart services can be used by other connected MSB smart 
services, so a point-to-point integration of the ICT systems is 
obsolete.  

It is also often required to integrate existing IT systems; in 
our use case, the integration of SAP as ERP system is required. 
This requires an SAP Interface as a separate MSB interface. An 
SAP instance must be configured so that it makes its BAPI 
available as a SOAP-based web service. This SAP web service 
is connected to the MSB via the SAP interface. It loads the 
WSDL file of the SOAP-based web service and analyzes it for 
the self-description required for registration with the MSB. At 
MSB level, the SAP web service methods are represented as 
functions and can be directly called in the code.  

6. Conclusion and future work  

In this paper, we show how to integrate sensors installed in 
a shop floor with the existing IT systems of a company. We 
achieved that by using a service-oriented architecture and a 
rule-based approach for modeling the behavior based on smart 
services. We enable domain experts to model individual rules 
in an easy to use tool. Afterwards, these rules are transformed 
into integration flows for the manufacturing service bus. The 
manufacturing service bus integrates all sensors, actors and 
enterprise IT systems. We apply the presented approach in a 
real-world usage scenario based on the needs of small and 
medium-sized enterprises SME to improve the production on 
the shop floor. The research presented in this paper lowers the 
barriers for SMEs to enter the field of Industrie 4.0.  

As future work, we plan to deploy MIALinx in the domain 
of production information acquisition. Furthermore, the goal is 
to provide a catalog of different sets of rules for different use-
cases and domains. Based on our findings, we plan 
continuously improve our approach. Finally, we intend to 
evaluate multiple business models to find the approach most 
suitable for SME. This will lower the effort needed by new 
adaptors of MIALinx; hence, they can reuse the rules and adapt 
them to their concrete production environment.  
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